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Abstract 

1. Estimates of temporal change of biodiversity, and its components loss and gain, are 

needed at local and geographical scales. However, we lack them because of data in-

completeness, heterogeneity, and lack of temporal replication. Hence, we need a tool 

to integrate heterogeneous data and to account for their incompleteness. 

2. We introduce spatiotemporal machine learning interpolation that can estimate cross-

scale biodiversity change and its components. The approach naturally captures the 

expected and complex interactions between scale (grain), geography, data types, and 

drivers of change. As such it can integrate inventory data from reserves or countries 

with data from atlases and local survey plots. We present two flavors, both blending 

tree-based machine learning (random forests, boosted trees) with advances in eco-

logical scaling: The first combines machine learning with species-area relationships 

(SAR method), the second with occupancy-area relationships (OAR method). 

3. Using simulated data and an empirical example of global mammals and European 

plants, we show that tree-based machine learning effectively captures temporal bio-

diversity change, loss, and gain across a continuum of spatial grains. This can be 

done despite the lack of time series data (i.e., it does not require temporal replication 

at sites), temporal biases in the amount of data, and highly uneven sampling area. 

These estimates can be mapped at any desired spatial resolution.  

4. In all, this is a user-friendly and computationally fast approach with minimal re-

quirements on data format. It can integrate heterogeneous biodiversity data to obtain 

estimates of temporal biodiversity change, loss, and gain, that would otherwise be 

invisible in the raw data alone.  
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Introduction 

Despite the concern that we face an unprecedented global alteration of biodiversity through 

extinctions, extirpations, invasions, and biotic homogenization, we still lack rigorous esti-

mates of how fast, where, and at which scales this happens. The major problem with quanti-

fying biodiversity change is lack of data. Only a small fraction Earth has been surveyed re-

peatedly in time, and there are geographic gaps in most taxa and regions (Meyer et al., 2015; 

Mora et al., 2008); for example, even the most comprehensive database of local biodiversity 

change (Dornelas et al., 2018) misses many taxa and vast geographic regions (i.e., little cover-

age in much of South America, Africa, and Asia). Given the cost of biodiversity surveys re-

peated in time and over large scales, this data deficiency will likely persist. 

Apart from the data problems, it has been increasingly clear that analyses of biodiversity 

trends need to acknowledge the grain dependency of biodiversity change (Chase et al., 2019) 

and its components: loss (Keil et al., 2018) and gain (Englund & Hambäck, 2007). The rea-

son is that biodiversity change at the global scale can be decoupled from local or regional 

change, and vice versa (Fig. 1) (Chase et al., 2019; Keil et al., 2018). For example, even 

though species richness is declining globally via extinction (Barnosky et al., 2011), local 

trends show increases, decreases and stasis, often with an average of no net change (Blowes 

et al., 2019; Dornelas et al., 2014; Vellend et al., 2013). Yet, integrative studies mapping di-

versity change across grains are lacking. Instead, some report extinction rates at the global 

level and observed over centuries (Alroy, 2015; Barnosky et al., 2011), others examine biodi-

versity change in local assemblages over years or decades (Blowes et al., 2019), while rates of 

invasion are often studied at the regional level (e.g., a country or state level) (van Kleunen et 

al., 2015). Further, data from different grains suffer their own grain-specific deficiencies and 

challenges. For instance, fine-grain time series are geographically clumped (Dornelas et al., 

2018); in contrast, although less clumped, coarse-grain data on extinctions 

(https://www.nationalredlist.org/) and invasions (van Kleunen et al., 2019) are only available 

for political administrative units that are highly variable in their area, hindering direct com-

parisons across grains. 

Here, we present a method that addresses these issues. It is based on the idea that, instead of 

collecting more data, we can learn from the strengths of different data types at different 

grains, and interpolate biodiversity change into unsurveyed areas and spatial grains. In (Keil 

& Chase, 2019), we used a similar idea to integrate heterogeneous data from local plots and 

regional checklists to estimate static patterns of species richness, and their environmental 

drivers, across a continuum of spatial grains. Here we generalize the method to include time. 

In short, using tree-based machine learning (Breiman et al., 1984; Hastie et al., 2011; Viana et 

al., 2019), we model species richness and species occupancy as a function of the interaction 

between geographic coordinates, area, and time. The method can use heterogeneous data to 

reliably estimate temporal change of species richness, and its components loss and gain, 

across spatial grains, and can map the estimated biodiversity trends geographically. This can 

be done even when there are no repeated estimates of biodiversity in one location through 

time (i.e., time series). 
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Material and Methods 

Theoretical background 

Our proposed approach stands on four principles: 

Principle 1: Grain dependence of diversity change can be modelled as an interaction 

between time and area. First, a grain dependent effect of time on biodiversity can be as-

sessed from a statistical interaction between time t and area 𝐴 of spatial units (sites, regions, 

polygons). When the 𝐴 is constant across a set of spatial units, we call it grain. Let’s consider 

change of species richness as a function of time and area in power-law species-area relationship 

(SAR): 

𝑆̂𝑖 = 𝛽0𝐴
𝑖

𝑧𝑡𝑖
 
       (eq. 1) 

where 𝑆̂𝑖 is expected mean number of species at i-th observation (data point) of area 𝐴𝑖 and 

time 𝑡𝑖. 𝛽0 is constant, and 𝑧𝑡𝑖
  is the time-dependent SAR exponent. We can assume that 𝑧 

changes as a linear function of t as 𝑧𝑡𝑖
= 𝛽1 + 𝛽2𝑡𝑖, and thus 𝑆̂𝑖 = 𝛽0𝐴𝑖

(𝛽1+𝛽2𝑡𝑖)
, which is: 

ln (𝑆̂𝑖) = ln(𝛽0) + 𝛽1 ln(𝐴𝑖) + 𝛽2 ln(𝐴𝑖) 𝑡𝑖   (eq. 2) 

We can further add an area-independent effect of time 𝛽3𝑡𝑖: 

ln (𝑆̂𝑖) = ln(𝛽0) + 𝛽1 ln(𝐴𝑖) + 𝛽2 ln(𝐴𝑖) 𝑡𝑖 + 𝛽3𝑡𝑖.  (eq. 3) 

The observed species richness 𝑆𝑖 can be modelled, for example, as 𝑆𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆̂𝑖), which 

together with eq. 3 give us a Poisson generalized linear model (GLM) with log link function 

and with an interaction term between time and area. This GLM can be trained on data on 

species richness across spatial units of varying area, and then used to predict 𝑆̂ at any chosen 

location of an arbitrarily chosen area and time, as long as these fall within the range of values 

of the training data. The predicted temporal change of richness at a given area between times 

1 and 2 can be then expressed as a simple difference,  

𝑆̂∆  = 𝑆̂𝑡=1 − 𝑆̂𝑡=2,      (eq. 4) 

or as a log ratio: 

𝐿𝑅 = log10(𝑆̂𝑡=1/𝑆̂𝑡=2).     (eq. 5) 

The interaction between time and area in eqs. 2 and 3 allows for the seeming paradox of 𝑆̂∆ 

or 𝐿𝑅 being positive at one grain and negative at another, as observed by several studies 

(Chase et al., 2019; Keil et al., 2011; Powell et al., 2013).  

Principle 2: Occupancy-area relationship (OAR) is a single-species version of SAR. In 

eqs. 1-5 we only focused on species richness. But the approach can be applied to individual 

species, and thus to interpolate species composition when, for each location, species identities 

are available.  

The relationship between area and probability of observing a single species is known as the 

occupancy-area relationship (OAR) (Azaele et al., 2012; Kunin, 1998), which can be under-

stood as a single-species SAR. Let 𝑃𝑖𝑗 be the probability of observing a species j at site i of 
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area 𝐴𝑖 at time 𝑡𝑖, where 𝑗 ∈ {1,2, . . . , 𝑆𝑡𝑜𝑡}, and  𝑆𝑡𝑜𝑡 is the total number of species in the 

entire extent of our study. If we consider no effect of spatial coordinates, then 𝑃𝑖𝑗 is the 

frequency of species across all sites of a given area at time 𝑡𝑖, which is sometimes termed 

occupancy (Azaele et al., 2012). Analogically to the time-dependent SAR in q. 2, we can write a 

time-dependent OAR as: 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑖𝑗) = ln (
𝑃𝑖𝑗

1−𝑃𝑖𝑗
) = ln(𝛽𝑗0) + 𝛽𝑗1 ln(𝐴𝑖) + 𝛽𝑗2 ln(𝐴𝑖) 𝑡𝑖  (eq. 6) 

The observed binary presence or absence 𝑂𝑖𝑗 is then 𝑂𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑖𝑗  ). Note that since 

each of the 𝛽𝑗 coefficients is species-specific, we effectively have a total number of 𝑆𝑡𝑜𝑡 sep-

arate GLMs, which means that there is a statistical interaction between species identity and the 

effects of area and time. The GLM in eq. 8 can be further extended by adding a random 

effect of species identity, non-linear effects of time and area, and/or by including geographic 

coordinates and the interaction terms mentioned above. Once fitted, this GLM can predict 

𝑃𝑗 at any chosen location of an arbitrarily chosen area and time. From the predicted 𝑃𝑗, we 

can then get to expected species richness as:  

𝑆̂ = ∑ 𝑃𝑗 
𝑆𝑡𝑜𝑡
𝑗=1        (eq. 7) 

Moreover, for the j-th species and at a given area, we can predict probability of extinction 

between time 1 and 2 as 𝑃𝑒𝑥𝑡𝑗
(𝐴) = 𝑃𝑗,𝑡=1(1 − 𝑃𝑗,𝑡=2) and probability of species gain as  

𝑃𝑔𝑎𝑖𝑛𝑗
= 𝑃𝑗,𝑡=2(1 − 𝑃𝑗,𝑡=1).  From these we can get to the total expected number of extinct 

species at a given area as: 

𝑆̂𝑒𝑥𝑡 = ∑ 𝑃𝑒𝑥𝑡𝑗

𝑆𝑡𝑜𝑡
𝑗=1 ,      (eq. 8) 

and gained species, 

𝑆̂𝑔𝑎𝑖𝑛 = ∑ 𝑃𝑔𝑎𝑖𝑛𝑗

𝑆𝑡𝑜𝑡
𝑗=1 ,      (eq. 9) 

and thus  

𝑆̂∆ = 𝑆̂𝑔𝑎𝑖𝑛 − 𝑆̂𝑒𝑥𝑡      (eq. 10) 

Further, predicted 𝑃𝑗 values for multiple species can be used to calculate species temporal 

turnover at a site, or temporal change of spatial turnover between sites. 

Principle 3: Diversity and its drivers follow gradients which can be interpolated. Spe-

cies distributions are spatially aggregated, which is also reflected in spatial autocorrelation of 

species distributions and richness (Dormann et al., 2007; McGill, 2010). Because of this, 

richness at a given grain and time tends to follow spatial gradients (Lomolino et al., 2010), 

where a gradient is defined as a systematic change of richness along one or more spatial co-

ordinates. An example is latitudinal gradient of richness: 
𝑑ln(𝑆̂)  

𝑑𝐿𝑎𝑡 
= 𝑓(𝐿𝑎𝑡). Furthermore, not 

only richness, but also the effects (coefficients) of other variables on richness follow spatial 

gradients; for example the ratio of regional and local diversity (which directly relates to coef-

ficient 𝑧 of SAR, eq. 1) in Palearctic region has been shown to increase towards South-East 

Asia (Keil & Chase, 2019). It has also been shown that effects of environmental predictors 

on richness follow geographic gradients (Whittaker et al., 2006). To represent this mathemat-

ically, instead of the spatially constant (stationary) coefficient 𝛽3 from eq. 3 consider 𝛽3 as a 
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function 𝛽3(𝐿𝑎𝑡) which follows a latitudinal gradient, i.e. 
𝑑𝛽3(𝐿𝑎𝑡)

𝑑𝐿𝑎𝑡 
= 𝑔(𝐿𝑎𝑡). When 𝑔(𝐿𝑎𝑡) 

is a constant, then we have a linear gradient, and by integration we get a statistical interaction 

between time and latitude 𝑐𝑜𝑛𝑠𝑡. +𝛽3𝑡𝑖𝐿𝑎𝑡𝑖, instead of 𝛽3𝑡𝑖 in eq. 3. This logic can be ex-

tended to any term in eq. 3 to get both independent effect of predictors (𝐴, 𝑡, 𝐿𝑎𝑡) on species 

richness as well as their interactions: 

ln (𝑆̂𝑖) = ln(𝛽0) + 𝛽1 ln(𝐴𝑖) + 𝛽2 ln(𝐴𝑖) 𝑡𝑖 + 𝛽3𝑡𝑖 + 𝛽4 ln(𝐿𝑎𝑡𝑖) + 𝛽5𝑡𝑖 ln(𝐿𝑎𝑡𝑖) +

𝛽6 ln(𝐴𝑖) 𝐿𝑎𝑡𝑖 + 𝛽7 ln(𝐴𝑖) 𝑡𝑖𝐿𝑎𝑡𝑖    (eq. 11) 

Eq. 11 is an example of a model that can be used to interpolate richness along spatial coordi-

nate(s) into locations and grains with no data. When eq. 5 is fitted to data with varying A and 

t of each spatial unit, it can predict 𝑆̂, 𝑆̂∆, or 𝐿𝑅 continuously along latitude, and at grains and 

locations that have not been surveyed. Because of the interaction terms, eq. 5 allows 𝑆̂∆ and 

𝐿𝑅 to have different magnitudes (and directions) at different parts of the geographic gradient 

and at different grains. 

Principle 4: Tree-based machine learning suits complex interactions between area, 

time, and their non-linear effects. So far, we have considered simple gradients along one 

spatial dimension. However, data on real-world biodiversity are 2- or 3-dimensional and 

diversity follows complex and non-linear geographic gradients (Lomolino et al., 2010). Fur-

ther, SARs are unlikely to follow a simple power law over large spans of grains (Storch, 

2016), and temporal trends of richness can be non-linear, for example, when responding to 

abrupt anthropogenic pressures (Jung et al., 2019). Because of these complexities, generalized 

linear models (GLM) introduced above, and related parametric methods, are prone to over-

simplification and misspecification. We propose that this can be addressed by using flexible 

machine learning algorithms based on classification and regression trees (CART), and methods 

derived from CART such as random forests (RF) or boosted regression trees (BRT) (Breiman et al., 

1984; Hastie et al., 2011), hereafter we will use tree-based methods for all of these.  

Statistical interactions and non-linear responses are implicit in the very construction of 

CART, and their shape is estimated from the data without requiring the researcher to have 

any preconception on this matter (Schiltz et al., 2018). Furthermore, the logic described in 

eqs. 1-5 applies equally to GLM and CART, because the expected value in both approaches 

follow the same general formula 𝑿𝜷, where matrix 𝑿 is matrix of predictors and 𝜷 is the 

vector of coefficients. For example, eq. 1 describes the expected value of species richness (𝑆̂) 

in a Poisson GLM, which can be re-written using matrix notation as 𝑺̂ = 𝑿𝜷, which reads: 

the vector of expected values of species richness (𝑺̂) is a product of the matrix of predictors 

𝑿 and vector of coefficients 𝜷. This can be expanded as: 

 

(
ln (𝑆̂1)

⋮
ln (𝑆̂𝑛)

)=𝑋𝛽 = (
1 ln(𝐴1) 𝑡1 ln(𝐴1) 𝑡1

1 ⋮ ⋮ ⋮
1 ln(𝐴𝑛) 𝑡𝑛 ln(𝐴𝑛) 𝑡𝑛

) 𝛽.  (eq. 12) 
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Figure 1 Alternative ways to model mean species richness 𝑆̂ as a function of area and time. (a-b) Illustra-

tion of a regression tree algorithm in which the cartesian space defined by the area and time is divided into 𝐾 

regions 𝑅𝑘 at splitting points located at values 𝑝𝑙 . (c-f) 𝑆̂, represented by black lines fitted through observed 

richness S (points) using four alternative algorithms, called by their respective R functions.  

 

In regression trees, as in GLM, the expected value is 𝑺̂ = 𝑿𝜷. However, instead of using the 

predictors such as 𝐴 and 𝑡 directly, the cartesian space defined by the predictors is divided 

into 𝐾 regions 𝑅𝑘 at splitting points located at values 𝑡𝑝 along the predictors (Fig. 1a), and 

these regions are represented by binary vectors. Regions 𝑅𝑘  are identified using a recursive 
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splitting algorithm that, at each split 𝑡𝑝, maximizes the difference between expectancy in the 

two groups resulting from the split. Thus, we get: 

(
ln (𝑆̂1)

⋮
ln (𝑆̂𝑛)

)=𝑿𝜷 = (
1 𝑅11 … 𝑅1𝐾

1 ⋮ ⋯ ⋮
1 𝑅𝑛1 … 𝑅𝑛𝐾

) 𝜷.   (eq. 13) 

 

In Fig. 1 we see that a simple regression captures both the non-linearity and the time-area 

interaction even though these are not explicitly specified in the function call. This is an ad-

vantage over the GLM, where these complexities need to be specified á priori. However, the 

downside of a single tree is that it only proceeds in discrete steps, and it can be prone to 

overfitting. Fortunately, RF and BRT address this problem (Fig. 1), producing smooth non-

linear responses, while avoiding overfitting and offering the same flexibility and simplicity as 

a regression tree. 

Practical recipe 

We have shown that species richness and individual species’ probability of occurrence can be 

modelled as a function of an interaction between area, time, and spatial coordinates, and 

these models can be used to predict gain, loss, and change of biodiversity at any grain, and 

interpolated to locations and times with no data. This can be done using GLM, or more con-

veniently, using conceptually similar but more flexible tree-based machine learning. Here we 

show how to do this in R. We propose 2 approaches, depending on the type of data at hand:  

(i) SAR method (Fig. 2 left). When we only have data on species richness of each 

location, we can fit the time-dependent species-area relationship (eqs. 1-3), or its 

extension with spatial coordinates (eq. 11).  

(ii) OAR method (Fig. 2 right). When we also have species composition for each 

location, we can use the time- and species-dependent occupancy-area relation-

ship (eq. 6), which we fit for all species (together, in one model), and we then 

summarize the predicted 𝑃𝑖𝑗 of each species to any desired quantity (eqs. 7-10).  

First, we start with the data - these can be from local plots, nature reserves, counties, or 

countries (hereafter polygons, Fig. 2a). We need information either on species richness or spe-

cies composition (presences/absences) of each polygon. The polygons can vary considerably 

in their area and each individual polygon can surveyed once, or more than once. Even 

though Figure 2a considers two temporal periods (for the sake of simplicity), each polygon 

can be surveyed at a different time. 

The second step (Fig. 2b) is to format the data. For the SAR method, we need a data frame 

with n rows (n is the number of observations) with observed species richness (𝑆𝑖𝑡), survey 

time (date, year), polygon area, and geographic coordinates. For the OAR method we need a 

data frame of  𝑛𝑆𝑡𝑜𝑡 rows, and instead of richness, we need data on occupancy (binary pres-

ence/absence 𝑂𝑖𝑗)  of every species, and an additional categorical variable identifying each 

species. 

Third, we fit a GLM, or a machine learning algorithm that allows for complex interactions 

and non-linear effects (RF or BRT are particularly suitable), with either 𝑆𝑖 or 𝑂𝑖𝑗 as a re-

sponse, and with time, area, geographic coordinates, and categorical species identity, as pre-

dictors. 
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Finally, we can use the fitted object to predict several features of biodiversity change (Fig. 

2ed-f). For example, we can predict static SAR or OAR relationships at any desired time 

period (Fig. 2d), we can calculate average 𝑆̂∆ (or the separate components of species gain and 

loss) across the whole spatial extent at any grain (Fig. 2e) using eqs. 8 and 9, and we can pre-

dict spatially explicit and contiguous maps of biodiversity change at any grain (Fig. 2f). 

 

 

Figure 2 Illustration of the practical workflow of applying the SAR-method or the OAR-method on hetero-

geneous polygon data varying in their area, time, and lacking temporal replication. 
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Test on simulated data 

We tested the performance of the SAR and OAR methods described above on simulations 

of grain-dependent biodiversity change. In these simulations we also examined the sensitivity 

of the approach to sampling effort, temporal bias of sampling effort, as well as sensitivity to 

variation in the total number of species, magnitude of gain and loss, and spatial grain of the 

predictions. All the code for the simulations and their analyses is at 

https://github.com/petrkeil/S_change_interpolation. 

Simulations. Our aim was to simulate situations with potentially different directions of bio-

diversity change at different grains. In each simulation, we first generated a community of 

 𝑆𝑡𝑜𝑡 species at time 1, each species as a spatially explicit point pattern within a square do-

main of side of length 1, with a  𝑆𝑎𝑏𝑠 fraction of  𝑆𝑡𝑜𝑡 being absent from the community at 

time 1. Individuals (i.e. points) of each species j were aggregated in 𝑁𝑐𝑙𝑢𝑠𝑡𝑗
 spatial clusters, 

where 𝑁𝑐𝑙𝑢𝑠𝑡𝑗
 values were sampled from a log-normal distribution, and rounded to whole 

numbers. On average, every species had 𝑁𝑖𝑛𝑑𝑗
 individuals per cluster, with the total number 

of individuals per species being 𝑁𝑗 = 𝑁𝑖𝑛𝑑𝑗
𝑁𝑐𝑙𝑢𝑠𝑡𝑗

. We then generated a community at time 

2 by subjecting each species in community at time 1 to random loss or gain of individuals or 

clusters, or both. The loss and gain at the level of clusters and individuals enabled the grain-

dependent biodiversity change. This was modulated by three parameters: 𝑃𝑗(𝐼|𝑁𝑗 = 0), the 

probability of immigration I, i.e. the probability of an absent species to re-appear; −1 <

𝛥𝑐𝑙𝑢𝑠𝑡 < 1, the temporal trend of 𝑁𝑐𝑙𝑢𝑠𝑡𝑗
; −1 < 𝛥𝑖𝑛𝑑 < 1, the temporal trend of 𝑁𝑖𝑛𝑑𝑗

. We 

simulated this procedure for all combinations of the following parameter values:  𝑆𝑡𝑜𝑡 ∈

{13, 26, 52}, 𝑁𝑐𝑙𝑢𝑠𝑡𝑗
∈ {100, 500}, 𝑁𝑖𝑛𝑑𝑗

∈ {100, 500}, 𝑃𝑗(𝐼|𝑁𝑗 = 0) ∈ {0, 0.2, 0.7}, 

∆𝑐𝑙𝑢𝑠𝑡∈ {−0.7, −0.3, 0, 0.3, 0.7}, and ∆𝑖𝑛𝑑∈ {−0.7, −0.3, 0, 0.3, 0.7}, resulting in 16,200 

simulations in total. For each simulation we then calculated 𝑆̂∆ at four spatial grains with 

areas of cells of 0.001, 0.0039, 0.156 and 0.0625 (corresponding to grid cell side lengths of 

32, 16, 8, and 4). 

Sampling. For each simulation we generated a set of non-overlapping polygons of varying 

area, representing real-world shapes such as reserves, or administrative regions (Fig. 2a). We 

generated the polygons like this: Within the community domain we simulated a realization of 

the Thomas cluster process (Diggle et al. 1976) with a constant intensity 5, random dis-

placement standard deviation from cluster centers of 0.08, and mean number of points per 

cluster of 50. We used these points as centers of Dirichlet tesselation in R package spatstat 

(Baddeley et al., 2016).  

We then sampled fractions P1 and P2 of the total number of polygons in time 1 and 2 re-

spectively, with P1 and P2 having all combinations of 0.2 and 0.4, so that we had temporally 

balanced (𝑃1 = 𝑃2) and temporally biased sampling (𝑃1 ≠ 𝑃2), as well as lower (𝑃1 =

𝑃2 = 0.2) and higher (𝑃1 = 𝑃2 = 0.4) sample size. None of the polygons was surveyed 

twice in time. We then extracted species composition, species richness, area, and geographic 

coordinates of each polygon, and we also extracted these values for grid cells in regular grids 

of 𝐴 ∈ {0.001, 0.0039, 0.0156, 0.0625}, corresponding to grid cell side lengths of 32, 16, 

8, and 4. These then represented our “true” values that we then aimed at predicting with the 

machine learning approaches. 

https://github.com/petrkeil/S_change_interpolation
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Analyses. We fitted four variants of the SAR method and one variant of the OAR method 

to the polygon data (these correspond to columns in Fig. 3):  

1. SAR-based, with only A and t as predictors (Fig. 3a). 

2. SAR-based, with A, t, and X and Y spatial coordinates as predictors (Fig. 3b). 

3. SAR-based, fitted separately in each time, with A, X and Y as predictors (Fig. 3c). 

4. SAR-based, fitted separately in each time, with only A as predictor (Fig. 3d). 

5. OAR-based, with A, t, X and Y as predictors (Fig. 3e) 

For each of these variants we used random forests using R package randomForest and 

boosted regression trees using R package gbm. These were used to predict average 𝑆𝑖̅𝑡 at the 

four spatial grains described above, and we compared the predicted values with the simulated 

“truth”. 

Results. Using the simulations, we found that the all versions of the SAR-based method, as 

well as the OAR method, estimated average species richness change 𝛥𝑆𝑖̅ that was in line with 

the true change (Fig. 3). Algorithms without spatial coordinates X and Y performed worse 

than those with them, and the OAR method gave slightly better correlation between true and 

predicted values than SAR methods (Fig. 3). When time t was not a predictor in the models, 

but the two time periods were modelled separately, the true-predicted correlation was lower 

than when t was a predictor (Fig. 3). We did not find a clear indication that either RF or BRT 

performed better than the other (Fig. 3). Focusing specifically on the SAR method and the S 

~ A + t + X + Y formula implemented in BRT, we found that predictive errors de-

creased towards fine grain (Fig. S1), decreased with increasing sampling effort in the less-

surveyed time period (Fig. S2), but were not as sensitive to temporal bias (Fig. S3). We didn’t 

find any clear effect of grain, sampling effort, or temporal bias on the prediction bias (Figs. 

S1-S3). 

 

Figure 3. Average 𝑆̂∆ predicted by tree-based machine learning trained on messy polygon data with no 

temporal replication versus the “true” 𝑆̂∆ from the simulations. Rows indicate the two algorithms (random 

forest or boosted trees). The first four columns are variants of the SAR-based method, the fifth column is the 
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OAR method. Red diagonals are 1:1 lines, r is Pearson correlation coefficient, A is area, t is time, X and Y 

are spatial coordinates. Shades of blue indicate count of simulations. 

Application to empirical data 

Data and code necessary to reproduce the empirical analyses is openly available at: 

https://github.com/petrkeil/S_change_interpolation. 

Global mammals. We used the Phylacine 1.2.1 atlas (Faurby et al., 2018) of mammal mac-

roecology for the first illustration of our approach. Phylacine provides two types of geo-

graphic ranges of 5,831 known mammal species: (1) current ranges, which are the present-day 

distributions over 1-degree global grid (Behrmann projection), and (2) present natural ranges, 

which are assumed ranges that a species would have if it had never experience anthropogenic 

pressures. This category also encompasses species that went extinct during the Holocene, 

such as mammoths, Coelodonts, Smilogons, or ground sloths, as well as species that under-

went range expansion. Here we treat the present natural ranges to represent Time 1, and the 

current ranges to represent Time 2, in line with (Faurby & Svenning, 2015). We excluded all 

marine species and all species ≤ 20 kg from the database, assuming that large species are 

better mapped and preserved in the fossil record, leaving us with 444 species.  

We then used the geographic ranges to create a spatially and temporally incomplete dataset 

for the SAR and OAR methods. Specifically, we first overlaid the range maps with polygons 

of countries, using Level 3 classification (Fig. 4a) of Brummitt (2001). We randomly assigned 

each country polygon as being sampled either in Time 1 or Time 2. For each polygon we 

noted all mammal species, and species richness, that could be detected within its boundaries 

in the given time. Thus, each polygon has only been sampled once, either in time 1 or 2. We 

created a hexagonal grid with grid cells of area of 209,903 km2 (Fig. 4b) from which we cal-

culated the true 𝑆̂𝑒𝑥𝑡, 𝑆̂𝑔𝑎𝑖𝑛, 𝑆̂∆ and LR directly from the Phylacine database. We then com-

pared these “true” values with the values estimated by the machine learning approach from 

the incomplete dataset. We used the boosted regression trees algorithm from R package gbm 

for both the SAR method and the OAR method (Fig. 2).  

Looking at the Holocene empirical change in 444 species of mammals heavier than 20 kg, we 

found that both the SAR and OAR methods predicted geographic patterns of 𝛥𝑆𝑖̅ derived 

from the country-level incomplete data matched the true patterns (Fig. 4b-d), although the 

true vs predicted match was considerably better for the countries (see the online repository) 

then for the regular hexagons (Fig 4). Further, the OAR method gave unbiased predictions 

of 𝑆̂∆  and 𝑆̂𝑒𝑥𝑡  outperformed the SAR method in estimation of 𝛥𝑆𝑖̅, but over-estimated 

𝑆̂𝑔𝑎𝑖𝑛  (Fig. 5b). 

 

https://github.com/petrkeil/S_change_interpolation
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Figure 4. Maps of true change of species richness of large mammals (𝑆̂∆, panel b), and 𝑆̂∆ predicted by 

boosted regression trees (panels c and d) trained on spatially heterogeneous and temporally incomplete data 

(panel a). We stress that each of the countries in panel only had data from a single temporal period, and the 

countries varied in shape and area. Yet, the interpolation algorithm could predict temporal change of diversity 

in a regular grid that correlated well with the true change (see Fig. 5). 

 

 

 

Figure 5. Comparison of true values of mammal biodiversity change (𝑆̂∆, blue; 𝑆̂𝑒𝑥𝑡, red; 𝑆̂𝑔𝑎𝑖𝑛, green) 

with values predicted by boosted regression trees trained on spatially heterogeneous and temporally incomplete 

data. Each point here represents a hexagon of equal area, as presented in Fig. 4b-d. 
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European plans. We also tested our machine learning approach on European plants. Spe-

cifically, we used data by Essl et al. (2013), who provide data on all non-native, native, and 

extinct plant in individual European countries (Fig. 6a). In this case our aim was to use the 

SAR method (Fig. 2) to standardize the observed change of species richness to a regular grid, 

and to look for a pattern that might have been obscured by the varying area of European 

countries. To do this, we used the randomForest function in R package randomForest 

(Breiman et al., 1984). After predicting the log ratios of species richness to the regular grid, 

we found a latitudinal gradient of species gain, with higher gains towards the north (Fig. 6b), 

which is something that would otherwise be obscured in the country-wide data. Further, the 

magnitude species gain in the cells of the grid is considerably lower than the gain on the level 

of northern European countries. 

 

 

Figure 6. Maps of change of species richness (expressed as log ratio) of European plants. Panel (a) shows 

raw data from Essl et al. (2013), grey areas have no data available. Panel (b) is species richness change 

predicted by a random forest-based SAR method, with the raw data as an input.  

Discussion 

Overall, our machine learning approach produced mostly unbiased estimates of temporal 

biodiversity change in both simulated data and in empirical data on mammals. This worked 

even when temporally replicated data were unavailable, and when sampling effort was une-

ven in time. On the example of European plants, we have further demonstrated that the 

approach can uncover spatial patterns of change that may not be obvious in heterogeneous 

raw data. Thus, even though there is a margin for improvement (see below), our approach 

can be a foundation for larger data integration efforts, and particularly promising for applica-

tion on messy data that vary in their area, and that lack temporal replication. This data defi-

ciency is the case of most regions outside the wealthy global North (Meyer et al., 2015), par-

ticularly in the tropics. In these regions, it is unlikely that we will soon have high-quality 
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large-scale standardized biodiversity data. Thus, if we want to get an idea about how biodi-

versity changes in time in these regions, standardization and interpolation methods will be 

essential. Here we offer a user-friendly take on such a method. 

Sensitivity to biases in data. In the simulations, our approach underperformed when the 

sampling effort was low, i.e. when the input data have low N, for example at the coarsest 

spatial grains (Fig. S1, S2). This can also explain the weak performance when predicting spe-

cies gain in the empirical dataset (Fig. 5), since there was only a small number of large mam-

mal species that expanded their geographic ranges. We thus advise caution when interpolat-

ing (or extrapolating) to regions or grains with low sample sizes, unless the uncertainty due to 

low sample size is taken into account (e.g. using Bayesian inference, as in Keil & Chase, 

2019). Encouragingly, however, the approach worked well in the face of temporal bias in the 

amount of data (Fig. S3); this will often be the case in real-world data, particularly when 

comparing the pre- and post-2000 periods, where the availability of GPS and mobile compu-

ting devices dramatically increased the amounts of data. 

Possible improvements. Indeed, we only present the approach in its simplest form, and 

additional predictors can easily be added, which include the shape and elongation of poly-

gons which are known to influence diversity estimates (Kunin, 1997), variables capturing 

sampling methodology (e.g. as in Blowes et al., 2019), variables representing drivers of biodi-

versity and its change, such as climate or land use (as in Keil & Chase 2019), and a variable 

representing the known effect of temporal grain (Foote, 1994). Another simplification is that 

so far we focused on prediction of the expected mean value at a given location, tree-based 

machine learning can be used for both inference about the effects of predictors, as well as 

calculation of statistical significance of effects of predictors (R package ranger, Janitza et 

al., 2018; R package randomForestCI, Wagner et al., 2014). Also, R packages random-

Forest and gbm offer implementations to visualize marginal effects of predictors through 

patialPlot and plot.gbm respectively, and both can extract relative importance of 

both individual predictors and their interactions. For an overview of recent advances in ML-

based inference in ecology see Lucas (2020). Clearly, the possibilities for extensions and im-

provements of our approach are numerous and well beyond a scope of a single paper. How-

ever, even in its current form, we provide a significant advance by combining machine learn-

ing with fundamental biodiversity scaling theory in a user-friendly concept.  

Alternatives. There are indeed alternative techniques that have been used to standardize, or 

integrate, heterogeneous biodiversity data. The first is individual-based or sample-based rare-

faction (Gotelli & Colwell, 2001), which has the advantage that it can be interpreted mechanis-

tically; however, it does not account for sample shape and area, it cannot predict species 

composition, nor interpolate to regions that lack data. The other approach—integrated species 

distribution modlling (ISDM)—has recently been reviewed by Miller et al. (2019) and Isaac et al. 

(2019). It assumes that there is a continuous and scale-free layer of point pattern intensity, 

which then translates to likelihood of different data types. ISDM can be used to make predic-

tions at any desired grain, and they can be stacked across multiple species, or to make predic-

tions of biodiversity change, although ISDMs have not yet been tested for the latter. The 

downsides of ISDM are strict requirements on data format, the need of having the model 

structure a priori, nontrivial implementation, and very high computational cost. In contrast, 

our approach works across any range of spatial grains and it is simpler and easier to use. 

Conclusion. To conclude, we present a user-friendly framework that can account for multi-

ple biases and data deficiencies simultaneously. It can use these deficient data to estimate: (1) 
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biodiversity change across spatial and temporal grains, (2) average biodiversity change, (3) 

change in individual species distributions. Additionally, (4) it can be used to create geograph-

ic maps of biodiversity change, loss, and gain, (5) and since it can predict changes in species 

composition, it can also be used to map temporal species turnover. As such, our approach 

can be a starting point for integrative and comprehensive analyses of multiple facets of bio-

diversity change. It will be useful particularly in areas where standardized and temporally 

replicated data are rare, particularly in the tropics. 
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Supplementary Material 

 

 

 

Figure S1 Prediction error (a) and bias (b) as a function of spatial grain at which predictions were made. 

The errors and biases were obtained from applying boosted regression trees, and the SAR-based eq. 6 (main 

text) on 4,000 simulated datasets. 

 

 

 

Figure S2 Prediction error (a) and bias (b) as a function of mean sampling effort. Mean sampling effort is 

the proportion of polygons sampled in both time periods. The errors and biases were obtained from applying 

boosted regression trees, and the SAR-based eq. 6 (main text) on 4,000 simulated datasets.   
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Figure S3 Prediction error (a) and bias (b) as a function of temporal sampling bias, which is the difference 

between the proportions P1 and P2 of polygons sampled in time 1 and 2 respectively. The errors and biases 

were obtained from applying boosted regression trees, and the SAR-based eq. 6 (main text) on 4,000 simu-

lated datasets.  

 

 


