
1 
 

Title: Developing a framework to improve global estimates of conservation area coverage 

 

Rachel E. Sykes1, Diego Juffe-Bignoli1, Kristian Metcalfe2, Helen M.K. O’Neill1, P.J. Stephenson3, 

Matthew J. Struebig1, Piero Visconti4, Neil D. Burgess5, 6, Naomi Kingston5, Zoe G. Davies1 and Robert 

J. Smith1  

 

1 Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University 

of Kent, Canterbury, UK 

2 Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of 

Exeter, Penryn Campus, Penryn, Cornwall, UK 

3 IUCN SSC Species Monitoring Specialist Group, Laboratory for Conservation Biology, Department of 

Ecology & Evolution, University of Lausanne, Lausanne, Switzerland 

4 Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management 

Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria 

5 UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, 

UK 

6 Centre for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 

Denmark 

 

Keywords (alphabetical order): conservation areas, other effective area-based conservation 

measures, protected areas, systematic conservation planning, targets 

 

Word number (Abstract to Acknowledgements): 5848 

 

Number of references: 73 

 

Number of figures and tables: 4 figures and 2 tables 

 

Correspondence details: Professor Bob Smith, Durrell Institute of Conservation and Ecology, School 

of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, Kent CT2 7NR; 

UK. Tel: +44 1227 823667. E-mail: R.J.Smith@kent.ac.uk. 

 

  

mailto:R.J.Smith@kent.ac.uk


2 
 

Developing a framework to improve global estimates of 

conservation area coverage 

 

Abstract 

Gaps in existing global conservation area datasets hamper efforts to measure progress towards 

international coverage and biodiversity representation targets. Here we present a framework to 

produce more accurate global conservation area metrics, based on selecting a representative set of 

nations for future collection of the best available data on protected area (PA) and other effective 

area-based conservation measures (OECM). First, we identified 10 factors that are drivers of 

conservation area establishment and drivers of biodiversity patterns, and then produced maps sub-

dividing each factor into a number of categories to produce 89 features. Second, we used a global 

search algorithm to select the smallest number of nations needed to contain at least 10% of each 

feature, identifying a total of 25 countries and finding that some countries could be swapped with 

others without impacting the efficiency of the results. Third, we repeated the prioritisation approach 

with the same targets to identify a series of 100 km2 grid squares within these countries to avoid 

over-representing the larger nations. Collecting and analysing data for this sample could produce 

quicker, more accurate estimates of conservation area coverage and representativeness, and this 

approach could potentially improve other global conservation metrics. 
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Introduction 

Conservation areas are an essential component of global efforts to prevent biodiversity loss (Watson 

et al. 2014). To this end, the 196 signatories to the Convention on Biological Diversity committed 

through Aichi Target 11 to conserve 17% of the global terrestrial area within protected areas (PAs) 

and land under other effective area-based conservation measures (OECMs) by 2020 (CBD 2010). 

Progress towards Aichi Target 11 and other international commitments, such as the environment-

related Sustainable Development Goals, is assessed using data from the World Database of 

Protected Areas (WDPA). This database is compiled and maintained by the UN Environment 

Programme World Conservation Monitoring Centre (UNEP-WCMC), based on conservation area data 

approved by each national government or following an expert review and validation process (Lewis 

et al. 2019; Bingham et al. 2019; UNEP-WCMC and IUCN 2021). This makes the WDPA an extremely 

important source of information and this needs long-term, sustained resourcing to maintain its 

accuracy (Juffe-Bignoli et al. 2016). However, there are data limitations (Visconti et al. 2013), as 

some countries lack the capacity to provide up-to-date and accurate information, so it can take time 

for newer PAs to be included (UNEP-WCMC 2019). More generally, non-state PAs and OECMs are 

under-represented in the database (Stolton et al. 2014; Bingham et al. 2017; Garnett et al. 2018; 

Corrigan et al. 2018; Donald et al. 2019), partly because governments have only recently started 

collecting data on conservation areas not owned or managed by the state, and partly because some 

owners of non-state conservation areas lack the capacity or are wary of providing information to the 

government about their land (Fitzsimons & Wescott 2007; Clements et al. 2018). 

 

These limitations make it difficult to measure progress towards international area-based 

conservation targets accurately. It also makes it difficult to measure how well the global network 

represents biodiversity, especially as recent work suggests that non-state PAs can play a vital role in 

representing species and ecosystems that are missing from state PAs (Gallo et al. 2009; Archibald et 

al. 2020). Both these issues then hamper the process of setting new targets, which is particularly 

important given that the international conservation community is pushing for more ambitious goals 

for conservation area extent and representativeness post-2020 (Dudley et al. 2018; Maron et al. 

2018; Visconti et al. 2019; CBD 2021). One way to address this is to invest in improving the quality of 

global conservation area datasets and there is an ongoing process for increasing the accuracy for 

state PAs and collecting information on non-state PAs and OECMs (UNEP-WCMC 2019). Such work is 

vital but a long-term process (Juffe-Bignoli et al. 2016), so complementary approaches are needed. 
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One potential solution is to adopt an analogous methodology to that of the Sampled Red List Index, 

an approach that produces a metric to better understand species status and trends by accounting 

for taxonomic biases in the groups that have been fully assessed in the IUCN Red List (Baillie et al. 

2008; Henriques et al. 2020). Developing the Sampled Red List Index involved selecting a 

taxonomically representative set of species, conducting Red List assessments for those species that 

had not been assessed, and combining results for all of the selected species to produce a single 

measure (Lewis & Senior 2011; Brummitt et al. 2015). The equivalent for developing an estimate of 

global conservation area coverage would involve selecting a representative set of nations and then 

collecting the best available PA and OECM data to produce more accurate global indices. This would 

have similar benefits in terms of time and resources because data collection efforts would focus on a 

subset of countries. Just as importantly, producing this estimate based on a sample of data would 

not involve reporting results per country, so the analysis could use the latest and most accurate 

conservation area datasets without contradicting official data reported by governments. Here we 

present the first step in producing such a sampled approach for future estimates of global 

conservation area coverage and representativeness, developing a framework to identify a 

representative set of countries, and a set of sampling sites within them. 

 

Identifying a representative sample of countries, so that conservation area data from this subset can 

be used to estimate the extent to which the existing global PA and OECM network meets area and 

biodiversity targets, involves considering two sets of factors: drivers of conservation area 

establishment and drivers of biodiversity patterns. Establishment of conservation areas is likely 

influenced by a range of economic, political and social factors. For example, it is well known that 

conservation area coverage is higher on land that is of lower value for commercial agriculture or 

resource extraction (Pressey & Tully 1994; Loucks et al. 2008; Joppa & Pfaff 2009). Drivers of 

biodiversity patterns include latitude and elevation, as species and ecosystems show strong variation 

across these and other gradients (Gaston & Spicer 2013). Selecting a set of countries that best mirror 

these patterns is mathematically defined by the minimum set problem, a problem formulation 

commonly used to identify priority areas for conservation, so our framework is based on algorithms 

typically designed to solve these problems. This involves: (a) selecting and mapping the features that 

influence conservation area extent and/or biodiversity pattern features, such as elevation zones and 

landcover types; (b) setting targets for how much of each feature should be included in the sample, 

and then; (c) using complementarity-based algorithms to choose sets of countries that best meet 

these targets (Kukkala & Moilanen 2013). 
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Using this approach also involves choosing a cost metric, so that the prioritisation process minimises 

the cost while also meeting the targets (Naidoo et al. 2006). In our case this metric needs to reflect 

the time and effort involved in collecting the conservation area information, as this is what we want 

to minimise. PA and OECM data are generally collected and collated at the national level (Bingham 

et al. 2019), so each new country added to our sample would add an extra cost in terms of effort 

required to obtain their datasets. Thus, we define our cost metric as the number of countries in 

which our sample areas are found. Such a metric is a simplification, as the effort required will vary 

between countries based on their capacity and the number of conservation agencies that are 

responsible for national or regional data collection. We partially account for this in our study by 

dividing larger countries into their highest administrative units below the level of national 

government, such as states or provinces, which better matches the devolved nature of conservation 

management and data collection in these countries. 

 

Collecting data at the national level has one obvious disadvantage though, as these large sampling 

units are likely to contain some land that is not needed to meet the targets, producing a less 

balanced sample because larger countries will be over-represented (Nhancale & Smith 2011). 

However, overcoming this simply involves repeating the spatial prioritisation using smaller sample 

units within the subset of selected countries. So, here we describe a sampling approach using this 

two-stage process to identify a representative set of countries and grid squares, designed to inform 

future efforts to collect, collate and supplement existing national PA and OECM datasets and 

produce more accurate measures of global patterns in conservation area coverage. 

 

Methods 

Our approach consisted of four steps, beginning with: (i) choosing socio-economic and 

biogeographic factors that represent drivers of conservation area extent and global biodiversity 

patterns, and (ii) defining and mapping the features that make up the categories within each factor. 

This was followed by a two-stage analysis: (iii) Stage 1 to identify the minimum set of countries 

needed to meet targets for each feature, and; Stage 2 to identify sets of 100 km2 grid squares that 

meet these targets within this subset of countries (Figure 1). 

 

Figure 1 
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Choosing factors affecting biodiversity patterns and area-based conservation efforts 

We conducted a literature review to identify factors that likely determine total conservation area 

network extent and patterns of global biodiversity. We then ran a workshop with 12 conservation 

area network experts to discuss these and other possible factors (Supplementary Materials Table S1) 

before generating a final list of the most important. We then identified ten available global datasets 

that mapped these important factors: biomes, elevation, government effectiveness, islands and 

continents, landcover, latitude, income, population density of humans, realms and subregions. Three 

of these factors were selected to represent only drivers of conservation area network extent, five to 

represent both drivers of conservation area network extent and global biodiversity patterns and two 

to represent only global biodiversity patterns (Table 1, Figure 2). 

 

Table 1 

  

Figure 2 

 

Defining and mapping the features 

To produce a representative sample, we needed to divide each factor into a number of categories 

(referred to as ‘features’ hereafter), either by using the existing classification system for categorical 

data or choosing appropriate thresholds for continuous data. We used three datasets for the factors 

that only represent drivers of conservation area network extent. For government effectiveness 

features we used the World Bank’s Worldwide Governance Indicators dataset, grouping countries 

into four categories based on government effectiveness scores of 0 - 24.9, 25 - 49.9, 50 - 74.9 and 75 

- 100 (World Bank 2019a). For income features we used the World Bank low, lower-middle, upper-

middle and high income country categories, which are based on per capita gross national income 

(World Bank 2019b). For human population density features we used UN data (UNPD 2013) 

classified into five categories using a logarithmic scale (0 - 0.9, 1 - 9.9, 10 - 99.9, 100 - 999.9 and > 

1000 people per km2) to ensure that the data adequately represented areas with very low and very 

high population densities. 

 

We used five datasets for the factors that represent drivers of conservation area network extent and 

global patterns of biodiversity. For biome features we used WWF’s global ecoregion GIS layer, where 

each of the 16 biomes is a broad ecosystem type (Olson et al. 2001). For elevation features, we used 

the Shuttle Radar Topography Mission’s 1 km elevation data and divided these into five elevation 

categories of 0 – 299 m, 300 – 799 m, 800 – 1399 m, 1400 – 1999 m, ≥ 2000 m, based on existing 
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studies of biodiversity and elevation gradients (Bruijnzeel & Veneklaas 1998; Linkie et al. 2010). For 

landcover features, we used the European Space Agency’s GlobCover landcover map which divides 

the terrestrial realm into 12 broad landcover types (ESA GlobCover Project 2009). For the latitude 

features we created a latitudinal zone layer by dividing the globe into seven bands. Each band has a 

width of 20°, apart from at the poles where we used bands of 40° to avoid over-representing 

differences in these relatively small regions. For the subregion features we used the United Nations 

subregions classification to group countries into 22 categories (UNSD 2019). 

 

We used two datasets for the two factors that only represent global biodiversity patterns. For the 

realm features we used WWF’s global ecoregion dataset, where each of the eight realms is a large 

biogeographic unit (Olson et al. 2001). For the island and continent features, we used the Global 

Administrative Areas dataset (GADM 2018) and grouped them into five categories of < 1,000 km2, ≥ 

1,000 - 10,000 km2, ≥ 10,000 - 100,000 km2, ≥100,000 - 1,000,000 km2 and “Continent” (>= 1,000,000 

km2). As part of this, we removed islands with an area < 1 km2 because these are less likely to 

contain important terrestrial biodiversity (Whittaker & Fernandez-Palacios 2007). In addition, we 

classified islands as belonging to the continent feature if they were both <10 km2 and within 100 km 

of a continent or Greenland, as these are likely to have similar species composition to their 

associated continents (Whittaker & Fernandez-Palacios 2007). 

 

Producing the prioritisation systems 

We adopted a systematic conservation planning approach to identify a representative sample of the 

terrestrial realm based on meeting targets for each of the 89 features from the ten factors. This 

involved two stages. Stage 1 identified the set of countries and territories. Stage 2 then identified 

100 km2 grid squares within these countries (Table 2), thus refining the sample from Stage 1 to avoid 

over-representing larger nations. In both stages we used the Marxan spatial prioritisation software 

(Ball et al. 2009), which uses a simulated annealing approach to determine near-optimal portfolios of 

planning units that meet targets, whilst minimising planning unit and boundary costs. Each Marxan 

analysis involves running the software multiple times and producing a near-optimal portfolio each 

time. Marxan then produces two key outputs: the “best” output, which is the portfolio from the run 

with the lowest cost, and the “selection frequency” output, which counts the number of times each 

planning unit appears in each of the portfolios. Planning units with high selection scores are always 

needed to meet the targets; lower scoring planning units can be swapped with similar planning units 

without affecting target attainment (Ball et al. 2009). 
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Table 2 

 

To conduct the spatial analysis we created planning systems for both Stage 1 and Stage 2 using the 

CLUZ plugin (Smith 2019) for QGIS 3 (QGIS 2019), based on the Mollweide map projection. This 

involved dividing the planning region into a series of planning units, giving each planning unit a cost 

for including it in a portfolio, and calculating the amount of each feature in each planning unit. For 

Stage 1, planning units were derived from the Database of Global Administrative Areas (GADM 2018) 

and consisted of countries for nations with an area < 1,000,000 km2 or the highest sub-national 

administrative level polygons for larger countries (e.g. states, provinces, etc that are classified as L1 

in the database and referred to as ‘sub-national planning units’ hereafter). We took this approach 

because larger nations tend to have sub-national conservation agencies and legislation, so we 

wanted to minimise the number of these sub-national administrative units selected to avoid having 

to collect data from a large number of sub-national expert groups. We followed established practice 

for reporting terrestrial coverage statistics by excluding Antarctica from our analyses (Butchart et al. 

2015). We then converted each layer into a 1000 x 1000 m resolution raster and calculated the area 

of each feature (i.e., each category type of each of the ten factors) in each planning unit using CLUZ. 

 

In the Stage 1 analysis, we needed to select a set of countries that represented all the features, while 

also minimising the number of countries selected. To do this we set the combined planning unit cost 

of each country as 1, so that selecting more countries was more costly. To account for the larger 

nations being split into several planning units, based on the sub-national administrative units, we set 

the planning unit costs as the inverse of the number of sub-national units in the country. For 

example, each of South Africa’s nine provinces had a planning unit cost of 0.111. In addition, we 

needed to ensure that Marxan met targets by selecting the sub-national planning units from the 

same countries whenever possible. To do this we manipulated the Marxan boundary cost file so it 

appeared that every sub-national planning unit in the same country shared a boundary. This meant 

that if Marxan selected one sub-national planning unit in a particular country then it would be less 

costly to select subsequent sub-national planning units from the same country. To make sure this 

cost would be the same per country, we set the boundary length equal to the inverse of the number 

of different sub-national boundary pairs in each country so, for instance, the nine provinces in South 

Africa produced 45 combinations of sub-national pairs and so the boundary length was 0.0222. This 

manipulation of the boundary cost data has been used in previous studies to ensure that certain 

planning units are more likely to be selected together, even when they are not physically adjacent 

(Possingham et al. 2005; Hermoso et al. 2011; Makino et al. 2013). 
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The Stage 2 planning system was based on a global set of 10 km x 10 km grid squares, which was 

created in QGIS 3 using the Create Grid tool. We then used the Union tool to combine this global grid 

layer with the national and sub-national planning units used in Stage 1 to produce the final planning 

unit layer. The amount of each feature present in each of these smaller planning units was 

calculated using CLUZ. For this finer-scale analysis we used the planning unit area as the cost metric 

and did not account for boundary cost. This was because in Stage 2 we were simply seeking to 

identify the smallest area of land needed to meet the targets, as the logistical cost of collecting PA 

coverage data is not affected by whether the Stage 2 planning units neighbour each other. 

 

Spatial analysis 

To ensure that the planning units selected in Stage 1 and 2 were representative of the terrestrial 

realm, we applied the same percentage target for every feature. We carried out a sensitivity analysis 

to select this target, based on identifying a good compromise between sampling a sufficient 

proportion of the planet to produce a robust estimate of conservation area coverage, whilst 

minimising the number of national and sub-national planning units. Based on this sensitivity analysis 

we chose a target value of 10%, as the number of planning units required to meet higher targets 

increased more than two-fold (Supplementary Material Table S2). 

 

We then ran the Stage 1 analysis using Marxan, which consisted of 1,000 runs of 10,000,000 

iterations and used a Boundary Length Modifier value of 1.5. These parameters were selected to 

produce results that minimised the number of countries and planning units selected. Of the resulting 

1,000 portfolios, 284 had equally low costs, i.e., contained exactly the same number of countries and 

planning units. To produce our final list of sample countries we therefore needed to develop our 

own scoring system to choose between these low-cost portfolios. We did this by first selecting 

portfolios with the most even spread of countries selected across the continents to further improve 

the representativeness of the sample. We then identified the portfolios containing planning units 

that were selected most often in the 1,000 runs, based on calculating their mean selection frequency 

score. This provided us with our final set of national and sub-national planning units that were then 

used in the Stage 2 analysis. Thus, our first step in Stage 2 was to update the planning system to 

specify in CLUZ that all of the 100 km2 planning units found outside the national and sub-national 

regions selected in Stage 1 should be excluded from subsequent Marxan analyses. The Stage 2 

Marxan analysis also consisted of 1,000 runs of 10,000,000 iterations (with a Boundary Length 

Modifier value of 0 because we were not interested in selecting adjacent planning units). 
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Comparative analyses 

To assess whether the samples reflect global patterns, and whether the sample of grid squares is an 

improvement on the sample of national and sub-national planning units in terms of 

representativeness, we undertook two analyses. The first analysis compared the percentage of the 

terrestrial realm covered by PAs with the percentage of each of the 1,000 Marxan outputs produced 

in the Stage 1 and Stage 2 analyses. We also compared them with a 1,000 randomly selected sets of 

national and sub-national planning units (analogous to the Stage 1 Marxan analysis) and 1,000 

randomly selected sets of the 100 km2 planning units (analogous to the Stage 2 Marxan analysis but 

based on all the planning units across the global terrestrial realm, rather than those only found 

within the areas selected in the Stage 1 Marxan analysis). To do this, we developed a Python script 

(Van Rossum & Drake 2009) that added randomly selected planning units until the set met or 

exceeded the combined area of the best respective Stage 1 or Stage 2 Marxan output. The PA data 

came from the publicly available WDPA dataset downloaded in May 2021 (UNEP-WCMC and IUCN 

2021). It should be noted that this dataset does not include most PAs in China and India. We 

followed the standard protocol (UNEP-WCMC & IUCN 2016) by excluding PAs that are ‘Proposed’ or 

‘Not Reported’ and UNESCO-MAB Biosphere Reserves. We also only used point data if the PA extent 

was recorded, converting it into a polygon of the required size by producing a buffer with the 

required radius around the point (UNEP-WCMC & IUCN 2016). We combined the PAs for each 

country and then used QGIS to calculate the total area of each grid square using the Clip and 

Dissolve functions, before using these data to calculate the area per Stage 1 administrative unit. 

 

For the second analysis, we developed a Python script to calculate how many of the targets were 

met by each of the 1,000 Stage 1 and Stage 2 Marxan outputs and the 1,000 Stage 1 and Stage 2 

randomly selected sets of planning units. 

 

Results 

Stage 1 analysis 

The best portfolio identified using Marxan consists of nine whole countries and territories, and 33 of 

the sub-national planning units within another 16 countries (Figure 3a). These 25 countries and 

territories are: Argentina, Australia, Brazil, China, Democratic Republic of the Congo, Dominican 

Republic, France, French Polynesia, Greenland, Indonesia, India, Italy, Kazakhstan, Kiribati, Mexico, 

Mali, Papua New Guinea, Russia, Saudi Arabia, Sudan, South Georgia and the South Sandwich 



11 
 

Islands, South Africa, Sweden, Tanzania and the United States of America. Only 17 of these 42 

planning units were selected in every one of the 1,000 portfolios identified by Marxan (Figure 3b), 

meaning that each of the other 25 planning units could be swapped for planning units containing 

similar amounts of the different features to produce similarly efficient portfolios. 

 

Figure 3 

 

Stage 2 analysis 

The best portfolio identified by Marxan contained 4,581 of the 137,287 planning units, covering 

10.86% of the terrestrial area (Figure 4a). The area of each of the 42 Stage 1 planning units also 

selected in Stage 2 ranged between 27.8% for French Polynesia and 100% for three US states, with a 

median of 92.5% (Figure 3a); only 7 had less than half their area selected in Stage 2. The percentage 

of Stage 1 planning units selected in Stage 2 mirrors the selection frequency results, with low 

selection frequency scores for planning units where Marxan only needed to select a smaller 

proportion of the national and sub-national planning units (Figure 4b). 

 

Figure 4 

 

Sampling comparison 

The area of the terrestrial realm, excluding Antarctica, in our analysis is 135,008,972 km2. The mean 

selected area of the 1,000 Stage 1 Marxan outputs was 16.82% (S.E. < 0.031) of the terrestrial realm 

and the mean selected area of the 1,000 Stage 2 Marxan outputs was 10.88%. (S.E. < 0.001). The 

publicly available WDPA data showed that 15.25% of the terrestrial realm is under protection, 

compared to 15.34% (S.E. = 0.069) for the 1000 Stage 1 Marxan outputs, and a mean of 15.92% (S.E. 

= 0.008) for the 1000 Stage 2 Marxan outputs. This compares to a mean area under protection for 

the Stage 1 random sets of planning units of 15.26% (S.E. = 0.080) and for the Stage 2 random sets of 

planning units of 15.22% (S.E. = 0.018). 

 

The global area of the different features varied between < 0.001% for the Micronesia subregion and 

94% for continents. All of the Stage 1 and Stage 2 Marxan outputs met all the 89 feature coverage 

targets, whereas the random sets for Stage 1 failed to meet a mean of 20.9 targets (S.E. = 0.152) and 

the random sets for Stage 2 failed to meet 15.9 targets (S.E. = 0.109). The mean percentage target 

met for the different factors for Stage 1 ranged between 12.94% of the elevation features and 
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22.18% of the subregion features and for Stage 2 ranged between 10% of the elevation features and 

14.08 % of the subregion features (Table 2, Supplementary Material Table S3) 

 

Discussion 

Well-defined, measurable conservation targets, and accurate on-the-ground data to compare 

against them, are vital for driving forward progress towards our goal of a sustainable and 

ecologically healthy future for the planet (Mace et al. 2018). However, obtaining such data for the 

entire globe is a slow process (Juffe-Bignoli et al. 2016), a problem compounded by a lack of 

monitoring capacity in some high biodiversity countries (Stephenson et al. 2017). An alternative is to 

derive estimates from a sample of features, an approach pioneered by the Sampled Red List Index 

and similar projects (Butchart et al. 2007; Baillie et al. 2008). In this study we propose a framework 

for producing more accurate estimates of progress towards global conservation area targets by 

identifying a sample of countries and grid squares that are representative of the factors that 

determine total conservation area network extent and patterns of global biodiversity. 

 

Choosing the factors and features 

When choosing factors to include in our study, we sought to represent those that influence 

conservation area establishment across the world and broad patterns of biogeographic diversity. 

There is an established literature on the factors that determine global biodiversity patterns, so we 

can be confident that our final sample is representative at this global scale (Gaston & Spicer 2013). 

The literature on conservation area establishment factors is less well established, although we know 

that demographic, economic and governance factors are important (Mascia et al. 2014; Kroner et al. 

2019), so differing social and socio-economic conditions will result in conservation area networks 

with differing extents (Bohn & Deacon 2000). More specifically, a number of previous studies have 

shown the importance of human population density and proxies of agricultural opportunity cost, 

such as elevation and landcover (Loucks et al. 2008; Joppa & Pfaff 2009) and the link between 

government effectiveness and wealth in determining conservation outcomes (Waldron et al. 2017).  

 

Some factors that our expert group identified as potentially important could not be included 

because they have not been mapped at the global scale (Supplementary Material Table S1). Political 

and public support for conservation in each country, for example, may have an effect on 

conservation area establishment but global datasets were not available. This could be resolved in 

future through polling data and citizen science initiatives (McKinley et al. 2017). Collecting data on 

national land tenure systems might also be important, as this is likely to have a large impact on the 
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extent of privately- and communally-managed PAs and OECMs in each country (Bingham et al. 

2017). However, we did broadly account for this, as well as other potential factors, by using the 

geographic subregions dataset, ensuring representation of countries with shared legal, cultural and 

historical backgrounds. Another issue is that while some of our datasets are a snapshot of the 

current situation, conservation area coverage reflects both past and current circumstances, although 

governments often add or remove conservation areas in response to immediate conditions (Mascia 

& Pailler 2011; Radeloff et al. 2013). 

 

Defining the planning units and selecting the sample 

The second key aim of our study was to ensure that the sampling approach was also a feasible basis 

for future data collection and study. Such data collection is resource intensive (Juffe-Bignoli et al. 

2016), so we needed to balance between selecting a sample that was large enough to be sufficiently 

representative, but not so large as to make collecting data for every area in the sample unrealistic. 

We based Stage 1 of our framework on identifying countries and large within-country sub-regions to 

be included in our sample. This is because the nation state is the functional unit in conservation area 

data collection and reporting (Dallimer & Strange 2015) but large countries often have sub-national 

conservation agencies. Thus, by minimising the number of countries in our sample we also 

minimised the number of agencies and organisations involved in data collection. For the largest 

countries we also assumed that their conservation authorities would have a devolved structure, with 

national and sub-national agencies, hence our use of sub-national boundaries as planning units. 

Research is needed to test these assumptions and better assess this trade-off between sample size 

and sampling effort. 

 

The best portfolio identified in Stage 1 comprised nine whole countries and 33 administrative units 

in a further 16 countries. The selection frequency scores, which are based on how many times each 

planning unit was selected in each of the runs, showed that only 17 of these planning units were 

chosen every time (Figure 3b). The other planning units are potentially interchangeable, which is 

important because if obtaining data from a particular country was impossible for logistical or 

political reasons, these units could be excluded and the analysis run again to find suitable 

replacements (Ball et al. 2009). The selection frequency results for the Stage 2 analysis also showed 

potentially interchangeable planning units, mostly within the largest sub-national planning units 

selected in Stage 1 containing additional land not needed to meet the targets (Figure 3). This Stage 2 

result also shows the efficiency benefits of using a complementarity-based algorithm to select areas 

(Ball et al. 2009), as Marxan was able to meet the 10% targets for each feature in close to 10% of the 
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planning region, even though features belonging to different factors have different spatial 

distributions and extents. This involved selecting more than 10% for some features that are found in 

lots of planning units and so are over-represented through meeting targets for other features (Table 

2, Supplementary Material Table S3). However, this is not expected to impact estimates of 

conservation area coverage based on the Stage 2 sample because the over-represented features 

include those with both high and low opportunity costs. 

 

Comparing the analysis outputs in terms of their percentage in PAs is less straightforward for two 

reasons. First, the publicly available WDPA information used in this analysis does not include every 

PA provided by each country, as China and India have chosen to restrict some of their data (Bingham 

et al. 2019). This explains why the global PA coverage of the terrestrial realm calculated from our 

analysis of 15.25% is less than the 15.67% calculated by UNEP-WCMC based on all the data (UNEP-

WCMC 2021). Second, our sampled approach was developed in part because of known limitations 

with the WDPA, so while comparing levels of protection based on the WDPA provides helpful 

insights, the results should not be seen as definitive. One clear trend from our results is that the 

Stage 1 and Stage 2 random sets of planning units had near identical levels of PA coverage as the 

global figure. However, none of these random outputs met all of the feature targets, so would be 

less suitable for assessing the extent to which a sample of conservation areas represented 

biodiversity adequately. The Stage 1 and Stage 2 Marxan outputs met all the targets, indicating that 

they could be used to measure conservation area representativeness, but the mean PA coverage for 

the Stage 2 Marxan outputs is 0.65% more than the global figure. More research is needed to 

understand this disparity, but in the short-term it would probably be prudent to modify conservation 

area estimates from this sampled approach based on the difference between the global and sample 

WDPA PA coverage. 

 

Policy implications and wider relevance 

Ongoing monitoring of progress towards conservation targets is essential but the required data are 

often lacking (Brooks et al. 2015). Resolving this will need more resources and capacity building 

(Stephenson et al. 2017), especially at the level of the nation state where most action is carried out 

and thus where guidance is most needed (Smith et al. 2009). At the same time, we need timely 

global estimates of progress to inform international policy. Our proposed solution is to identify a 

representative sample of countries and collect better data just from these, taking advantage of the 

availability of accurate information that has not yet been officially approved. Importantly, such a 



15 
 

study would not need to report the estimated conservation area coverage for each country, avoiding 

problems associated with reporting unofficial national datasets. 

 

In this study, we have shown that it is possible to identify such a representative sample of areas 

across the globe within a small enough number of countries to make data collection realistic. More 

research is needed on the trade-off between the percentage of the terrestrial realm included in the 

sample and the number of countries and sub-national administrative units required to provide the 

data. Nonetheless, we have demonstrated proof of concept and identified a sample of reasonable 

size that is also a realistic basis for data collection. Our sampling approach is also likely to be suitable 

for marine conservation areas, as the existing literature suggests that their distributions are similarly 

impacted by comparable social and socio-economic factors (Devillers et al. 2020). 

 

The next step is to collect data on conservation areas within the sample we have identified, working 

with local experts and non-government sources. This should then be used to develop improved 

global conservation area metrics, measuring coverage, connectivity levels (Saura et al. 2018) and 

how well these conservation area networks represent biodiversity (Butchart et al. 2015). This will be 

particularly important for OECMs, as national- and regional-scale data suggest they enhance PA 

network connectivity and cover different biodiversity elements (Dudley et al. 2018). More broadly, 

we hope that this sampling approach could be used to produce global estimates of a range of other 

conservation metrics, related to costs and effectiveness (Coad et al. 2015; Iacona et al. 2018) and 

social impacts, governance and equity (Dawson et al. 2018; Gill et al. 2019; Naidoo et al. 2019). In 

doing so, our sampling approach could help monitor progress towards meeting a number of 

international conservation targets and policies. 
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Table 1. Factors that drive global biodiversity patterns and conservation area extent used in our 

analysis. 

Factor Drivers of conservation area extent Drivers of global biodiversity patterns 

Biomes Conservation area extent is higher in 

biomes with less land suitable for 

agriculture, such as deserts, and rock and 

ice (Hoekstra et al. 2005). 

Biodiversity differs greatly between 

biomes, with ecosystem types sharing 

similar species compositions (Gaston & 

Spicer 2013). 

Elevation Conservation area extent tends to increase 

at higher elevations (Joppa & Pfaff 2009). 

Species composition varies across 

elevation gradients (Gaston & Spicer 

2013). 

Government 

effectiveness 

Stable countries with higher bureaucratic 

quality have greater capacity to expand 

conservation area networks (Laurance 

2004). 

 

Income (per 

capita) 

Wealthier countries have more resources 

to fund the expansion of conservation area 

networks (Waldron et al. 2013). 

 

Islands and 

continents 

 Islands are often geographically and 

biologically distinct, with unique and highly 

threatened biodiversity (Gaston & Spicer 

2013). 

Landcover Conservation area extent differs between 

landcover types (Joppa & Pfaff 2009). 

Species composition varies between 

vegetation types and land-uses (Gaston & 

Spicer 2013). 

Latitude Conservation area extent is higher at 

latitudes with less land suitable for 

agriculture, such as closer to the poles 

(Hoekstra et al. 2005). 

Species composition shows strong 

latitudinal gradients (Gaston & Spicer 

2013). 

Population 

density 

Conservation area extent is lower in 

regions with high human population 

density (Joppa & Pfaff 2009). 

 

Realms  Biodiversity shows strong biogeographic 

patterns at the continental scale (Gaston & 

Spicer 2013). 

Subregions Sub-sections of continents have relatively 

similar histories, economies and legislative 

frameworks (Siegfried et al. 1998). 

Biodiversity shows strong biogeographic 

patterns at the sub-continental scale 

(Gaston & Spicer 2013). 
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Table 2. Details of the factors used in the analysis that are likely to determine total conservation area 

network extent and patterns of global biodiversity, the extent of the feature with the smallest and 

largest area for each factor in the terrestrial realm, and the per factor mean percentage coverage of 

each feature identified in the Stage 1 and Stage 2 best portfolios. 

Factor Number 

of 

features 

Global area 

of feature 

with 

smallest 

extent (%) 

Global area 

of feature 

with largest 

extent (%) 

Stage 1 mean 

of % of each 

feature in the 

selected 

sample 

Stage 2 mean 

of % of each 

feature in the 

selected 

sample 

Biomes 16 0.24 20.67 15.23 10.99 

Elevation 5 5.38 41.24 12.94 10.00 

Government effectiveness 4 17.34 35.99 15.28 10.95 

Income 4 10.66 44.91 15.45 11.51 

Islands and continents 5 0.36 94.23 14.95 10.71 

Landcover 12 0.01 19.41 17.26 11.65 

Latitude 7 0.16 23.74 17.79 13.35 

Population density 5 0.79 39.82 13.76 10.73 

Realms 9 <0.01 38.95 21.79 13.34 

Subregions 22 <0.01 15.95 22.18 14.08 
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Figure 1: The four steps in the analysis involved: (i) identifying spatial datasets that represent the 

factors driving conservation area establishment and drivers of biodiversity patterns; (ii) defining and 

mapping the features that make up the categories within each factor, dividing the terrestrial realm 

into a series of planning units, calculating the extent of each feature in each planning unit, and 

setting targets for how much of each feature should be selected; (iii) in the Stage 1 analysis, 

identifying the set of countries and, for the larger countries, sub-national units that meet the targets 

for each of the features, and (iv) in the Stage 2 analysis, identifying the 100 km2 grid squares within 

the selected countries that meet the targets for each of the features. 
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Biomes (16 features) Elevation (5 features) 

  
Government effectiveness (4 features) Income (4 features) 

  
Islands and continents (5 features) Landcover (12 features) 

  
Latitude (7 features) Population density (5 features) 

  
Realms (9 features) Subregions (22 features) 

Figure 2: Maps of the ten factors used in the analysis to identify a representative sample of countries 

demonstrating drivers of conservation area extent and drivers of global biodiversity patterns. Details 

of the features that make up each factor are given in Supplementary Material Table S3. 
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(a) 

 

(b) 

 

Figure 3: (a) Sample of countries (national planning units) and administrative units (sub-national 

planning units) that meet 10% targets, selected based on 1,000 Marxan runs and selecting the result 

with the smallest number of planning units, most even spread across the continents and with 

planning units with the highest mean selection frequency. (b) Selection frequency scores from Marxan 

showing the number of times each planning unit was selected across the 1,000 runs used to identify 

the sample. 
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(a) 

 

(b) 

 

Figure 4. (a) Sample of 100 km2 grid squares found in the focal countries (national planning units) and 

administrative units (sub-national planning units) selected by Marxan that best meets 10% targets 

for biogeographic and conservation area extent factors while minimising sample area. (b) Selection 

frequency scores from Marxan showing the number of times each planning unit was selected across 

the 1,000 runs used to identify the best sample. 
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Supplementary Materials  

 

Initial list of factors to be included in spatial prioritisation 

 

Table S1: Factors discussed in our expert workshop as potential drivers of conservation area 

establishment and drivers of biodiversity patterns 

African, Caribbean and Pacific Group of States Latitude 

Age of PA network Legal system type 

Carbon payments Major habitat types 

Climate vulnerability indices PA investment 

Completeness of WDPA country records PA management effectiveness 

Continents PA management record 

Corruption PA visitor numbers 

Degraded and pristine areas Political groupings (e.g. ex-Soviet, ex-colonial) 

Ecoregions Political stability 

Endemism Rates of forest loss 

Freshwater Rates of habitat conversion 

Islands Religious groupings 

Land tenure Sacred sites 

Landcover trends Size of country 

Language groups Within country variability 
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Sensitivity analysis to set targets 

The sensitivity analysis explored the trade-off between the area of the terrestrial realm selected to 

be a potential sample for future studies on conservation area extent and representativeness, and 

the number of planning units selected (where each planning unit was a country or, for countries with 

an area ≥1 million km2, sub-national units such as provinces and states). This was based on the 

premise that selecting a larger percentage of the planet would produce a more robust sample but 

selecting more countries and provinces would increase the time and resources needed to collect the 

conservation area data. So, we used the conservation planning system developed for Stage 1 to run 

eight Marxan analysis using the same percentage target for each feature in each analysis. These 

different targets were 1%, 2%, 5%, 10%, 20%, 30%, 40% and 50% of the total extent of each feature, 

and each analysis consisted of 100 runs of 10,000,000 iterations. We used a Boundary Length 

Modifier of 1.5 (Ball et al. 2009), a value that we determined through testing to best ensure that 

Marxan chose enough sub-national units from the same countries to meet the targets. We then 

counted the number of whole countries and the number of planning units in the ‘best’ solution for 

each of the eight analyses. 

 

The number of planning units selected by Marxan to meet the targets for the 89 conservation 

features ranged from 23 for the 1% targets to 206 for the 40% targets (Table S2). The number of 

planning units more than doubled when comparing results from using 10% and 20% targets, with a 

levelling off when the targets were ≥ 30%. Based on these results, we decided to use 10% targets for 

the main analyses.   

 

References 

Ball, I., Possingham, H. & Watts, M. (2009). Marxan and relatives: Software for spatial conservation 
prioritization. In: Spatial conservation prioritisation: quantitative methods and computational tools 
(eds. Moilanen, A., Wilson, K. & Possingham, H.). Oxford University Press, Oxford, UK, pp. 185–195. 
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Table S2. The number of planning units and countries selected to meet specific percentage targets for 

each of the 89 features. Planning units consisted of whole countries for nations with an area <1 

million km2 and highest level sub-national units (provinces, states, etc) for countries with an area ≥1 

million km2. 

Conservation feature 

targets (%) 

Number of planning units 

selected 

Number of countries 

selected 

1 23 22 

2 24 22 

5 30 24 

10 50 25 

20 117 27 

30 204 32 

40 206 32 

50 205 32 
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Details of the features used in the analysis and their levels of representation in the selected samples 

 

Table S3: Details of all the features used in the analysis, their total extent, the proportion of the Stage 1 and Stage 2 best outputs covered by each, and the 

proportion of the terrestrial realm covered by the Stage 1 and Stage 2 best outputs. 

Category Feature Global 

extent 

(km2) 

Terrestrial 

realm 

covered by 

feature 

(%) 

Stage 1 

sample 

covered 

by 

feature 

(%) 

Stage 2 

sample 

covered 

by 

feature 

(%) 

Global 

extent 

found in 

Stage1 

sample 

(%) 

Global 

extent 

found in 

Stage 2 

sample 

(%) 

Biomes Tropical and subtropical moist broadleaf forest 19,847,759 14.67 10.78 13.49 11.40 10.00 

Biomes Tropical and subtropical dry broadleaf forest 3,017,092 2.23 1.92 2.54 13.36 12.41 

Biomes Tropical and subtropical coniferous forest 711,296 0.53 0.34 0.48 9.98 9.98 

Biomes Temperate broadleaf and mixed forest 12,772,448 9.44 6.64 8.68 10.91 10.00 

Biomes Temperate conifer forest 4,075,868 3.01 1.97 2.77 10.16 10.00 

Biomes Boreal Forest/taiga 15,046,636 11.12 14.11 10.99 19.68 10.75 

Biomes Tropical and Subtropical grasslands, savannas and shrubland 20,285,917 14.99 14.04 15.73 14.53 11.41 

Biomes Temperate grasslands, savannas and shrublands 10,098,291 7.46 4.92 6.86 10.22 10.00 

Biomes Flooded grasslands and savannas 1,094,839 0.81 0.63 0.83 12.03 11.13 

Biomes Montane grasslands and shrublands 5,203,199 3.85 3.28 3.58 13.23 10.13 

Biomes Tundra 8,206,496 6.07 9.22 7.90 23.59 14.16 

Biomes Mediterranean forests, woodlands and scrub 3,210,402 2.37 3.59 2.34 23.50 10.70 

Biomes Deserts and xeric shrublands 27,969,796 20.67 25.21 21.03 18.92 11.06 

Biomes Mangroves 320,823 0.24 0.21 0.23 13.99 10.51 

Biomes Inland water 1,039,692 0.77 0.84 0.96 16.96 13.54 

Biomes Rock and ice 1,973,619 1.46 1.99 1.34 21.16 10.00 

Realms Australasia 9,232,561 6.82 15.77 8.78 35.85 13.99 

Realms Antarctic 11,159 0.01 0.02 0.01 33.00 10.88 
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Realms Afrotropics 21,769,183 16.09 13.08 16.22 12.62 10.96 

Realms Indomalay 8,513,981 6.29 4.08 5.79 10.06 10.00 

Realms Nearctic 20,398,341 15.08 12.92 13.86 13.30 10.00 

Realms Neotropics 19,368,174 14.31 10.32 13.16 11.19 10.00 

Realms Oceania 43,247 0.03 0.09 0.10 45.13 32.70 

Realms Palearctic 52,705,510 38.95 40.89 39.84 16.28 11.12 

Realms Snow and ice 2,832,017 2.09 2.52 2.01 18.66 10.44 

Elevation 0 – 299 m 55,813,693 41.25 37.82 39.26 14.23 10.35 

Elevation 300 – 799 m 43,299,328 32.00 35.59 33.97 17.26 11.54 

Elevation 800 – 1399 m 19,827,397 14.65 16.57 15.77 17.54 11.71 

Elevation 1400 – 1999 m 7,279,095 5.38 4.47 4.95 12.88 10.00 

Elevation >= 2000 m 8,627,189 6.38 5.32 5.86 12.94 10.00 

Islands and continents < 1,000 km2 487,462 0.36 0.29 0.33 12.28 10.00 

Islands and continents 1,000 to 10,000 km2 660,808 0.49 0.60 0.50 18.95 11.07 

Islands and continents 10,000 to 100,000 km2 1,621,613 1.20 0.86 1.11 11.11 10.03 

Islands and continents 100,000 to 1,000,000 km2 5,009,245 3.70 4.04 3.95 16.92 11.60 

Islands and continents > 1,000,000 km2 127,492,420 94.23 94.20 94.10 15.51 10.86 

Landcover Croplands 10,044,523 7.42 7.92 9.62 16.54 14.08 

Landcover Croplands mosaic 17,948,478 13.27 10.76 12.81 12.59 10.50 

Landcover Closed forest 25,436,142 18.80 13.85 17.29 11.43 10.00 

Landcover Open forest 12,323,377 9.11 12.82 11.32 21.85 13.51 

Landcover Mosaic grassland/shrubland 26,265,135 19.41 20.05 18.32 16.02 10.26 

Landcover Sparse vegetation 13,551,920 10.02 12.60 9.22 19.52 10.01 

Landcover Flooded forest/grassland 1,902,386 1.41 1.53 1.45 16.92 11.19 

Landcover Artificial surfaces 317,365 0.23 0.20 0.22 12.94 10.04 

Landcover Bare areas 21,608,578 15.97 15.35 15.53 14.91 10.57 

Landcover Water bodies 2,980,599 2.20 2.08 2.18 14.68 10.75 

Landcover Snow and ice 2,913,595 2.15 2.82 2.02 20.29 10.21 

Landcover No data 14,186 0.01 0.02 0.02 29.48 18.71 
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Latitude 50N to 90N 31,826,862 23.52 27.39 22.89 18.06 10.58 

Latitude 30N to 50N 32,126,360 23.74 20.68 21.83 13.51 10.00 

Latitude 10N to 30N 26,501,375 19.59 15.65 21.21 12.40 11.78 

Latitude -10S to 10N 20,617,051 15.24 13.90 16.00 14.15 11.42 

Latitude -30S to -10S 18,842,279 13.93 18.04 14.11 20.10 11.02 

Latitude -50S to -30S 5,146,310 3.80 4.04 3.54 16.48 10.13 

Latitude -90S to -50S 214,058 0.16 0.30 0.41 29.83 28.50 

Income classification Low income 14,417,961 10.66 11.06 14.00 16.10 14.29 

Income classification Lower middle income 22,038,475 16.29 12.63 15.92 12.03 10.63 

Income classification Upper middle income 60,767,325 44.91 40.77 41.32 14.08 10.00 

Income classification High income 38,082,584 28.15 35.54 28.76 19.59 11.11 

Population density 0 to 0.9 53,883,215 39.82 46.44 39.53 18.09 10.79 

Population density 1 to 9.9 39,359,881 29.09 28.03 31.21 14.95 11.67 

Population density 10 to 99.9 27,781,643 20.53 16.15 18.89 12.20 10.00 

Population density 100 to 999.9 9,292,487 6.87 5.54 7.02 12.52 11.11 

Population density 1000+ 1,070,380 0.79 0.56 0.73 11.05 10.10 

Govt. Effectiveness 0 - 24.9 23,463,373 17.34 11.34 15.95 10.15 10.00 

Govt. Effectiveness 25 - 49.9 48,702,809 35.99 33.62 34.59 14.49 10.45 

Govt. Effectiveness 50 - 74.9 28,037,538 20.72 23.55 24.89 17.64 13.06 

Govt. Effectiveness 75 – 100 35,102,625 25.94 31.49 24.58 18.83 10.30 

Subregions Australia and New Zealand 7,985,635 5.90 12.08 5.43 31.75 10.00 

Subregions Caribbean 233,427 0.17 0.23 0.33 20.70 20.62 

Subregions Central America 2,481,651 1.83 1.25 1.70 10.57 10.05 

Subregions Central Asia 4,380,003 3.24 2.29 2.98 10.99 10.00 

Subregions Eastern Africa 7,049,679 5.21 4.52 4.79 13.45 10.00 

Subregions Eastern Asia 11,598,707 8.57 10.87 9.46 19.68 12.00 

Subregions Eastern Europe 18,604,967 13.75 14.62 12.64 16.49 10.00 

Subregions Melanesia 544,908 0.40 2.22 1.38 85.63 37.36 

Subregions Micronesia 3,576 0.00 0.00 0.00 27.68 15.27 
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Subregions Middle Africa 6,608,246 4.88 3.55 5.01 11.27 11.15 

Subregions Northern Africa 7,647,985 5.65 4.80 6.74 13.18 12.97 

Subregions Northern America 21,581,549 15.95 14.61 14.67 14.21 10.00 

Subregions Northern Europe 1,803,994 1.33 2.13 1.23 24.83 10.00 

Subregions Polynesia 8,613 0.01 0.02 0.01 46.37 14.01 

Subregions South America 17,845,353 13.19 9.80 12.40 11.53 10.23 

Subregions South-eastern Asia 4,483,416 3.31 2.24 3.05 10.50 10.00 

Subregions Southern Africa 2,681,065 1.98 1.73 1.82 13.54 10.00 

Subregions Southern Asia 6,710,677 4.96 3.35 4.75 10.49 10.41 

Subregions Southern Europe 1,316,461 0.97 1.43 1.11 22.85 12.38 

Subregions Western Africa 6,082,789 4.50 2.99 4.20 10.33 10.15 

Subregions Western Asia 4,528,985 3.35 2.62 3.08 12.16 10.00 

Subregions Western Europe 1,102,673 0.81 2.62 3.24 49.81 43.21 

 

 


