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Abstract 12 

The correlation between two characters is often interpreted as evidence that there exists a 13 

significant and biologically important relationship between them. However, Maddison and 14 

FitzJohn (2015) recently pointed out that in certain situations find evidence of correlated 15 

evolution between two categorical characters is often spurious, particularly, when the dependent 16 

relationship stems from a single replicate deep in time. Here we will show that there may, in fact, 17 

be a statistical solution to the problem posed by Maddison and FitzJohn (2015) naturally 18 

embedded within the expanded model space afforded by the hidden Markov model (HMM) 19 

framework. We demonstrate that the problem of single unreplicated evolutionary events 20 

manifests itself as rate heterogeneity within our models and that this is the source of the false 21 

correlation. Therefore, we argue that this problem is better understood as model misspecification 22 

rather than a failure of comparative methods to account for phylogenetic pseudoreplication. We 23 

utilize HMMs to develop a multi-rate independent model which, when implemented, drastically 24 

reduces support for correlation. The problem itself extends beyond categorical character 25 

evolution, but we believe that the practical solution presented here may lend itself to future 26 

extensions in other areas of comparative biology.  27 

  28 
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Correlated or dependent evolution on a macroevolutionary scale is defined as a change in 34 

a character state (e.g., plumage color) that is linked to the presence of a particular state in a 35 

separate character (e.g., beak color). In other words, the evolution of character X can be said to 36 

be dependent on character Y if in the presence of a particular state of Y (e.g., Y0), shifts within 37 

character X occur in a different way from when the lineage is in an alternative state of Y (e.g., 38 

Y1). For example, a shift from X0 to X1 may occur more quickly when paired with Y1 than with Y0 39 

resulting in a distribution with many character pairs X1Y1. It is often the case that these sorts of 40 

dependent relationships between characters seem obvious, especially if the observations of many 41 

individuals are consistent.  42 

However, what happens when all observations of the pair come from, for example, one 43 

biogeographic region? In other words, there may have been many individual pairs of X1Y1 44 

observed, but they all came from one population. Since the strength of the relationship is related 45 

to the number of individual observations, the non-independence of them raises concerns about 46 

the validity of the proposed correlation. This problem extends to interspecific comparisons too, 47 

but rather than observations being linked to one of two populations, they are associated with 48 

particular taxonomic groupings and shared histories. This fact was well understood as early as 49 

Darwin (1859) and the tools for dealing with the resulting statistical non-independence have 50 

been available to comparative biologists since the foundational work of Felsenstein (1985). 51 

Nevertheless, this issue of “phylogenetic pseudoreplication”, where species are non-independent 52 

due to their shared ancestry, served as the basis for the concerns raised by Maddison and 53 

FitzJohn (2015) regarding tests of dependent character evolution. 54 

Maddison and FitzJohn (2015) demonstrated that the most widely used phylogenetic 55 

method for detecting correlated evolution between categorical characters (Pagel 1994), almost 56 
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always indicates strong evidence of correlation when singular events deep in time can account 57 

for the co-distribution of two characters. To demonstrate their point, they fit correlated models to 58 

datasets generated under their so-called, “Darwin's” and the “Unreplicated Burst” scenarios (Fig. 59 

1). Darwin’s scenario results in the perfect co-distribution of two characters, which in practice, 60 

might occur when testing for correlations between two synapomorphies (e.g., presence/absence 61 

of middle ear bones and fur). Under the Unreplicated Burst scenario, only one of the two 62 

characters has phylogenetically replicated change. This scenario occurs when one of the 63 

characters is a synapomorphy for the clade, with the other character undergoing several changes 64 

within the focal clade. The issue is that, when applied to either Darwin’s or the Unreplicated 65 

Burst scenario, commonly used comparative methods (Pagel 1994) will almost always indicate 66 

X0
X1

Y0
Y1

a) Darwin's scenario b) Unreplicated bursts

Figure 1. The two problematic scenarios from Maddison and FitzJohn (2015) for the evolution 
of characters X and Y. Character X is painted on the left phylogeny using red and orange for state 
X0 and X1, whereas character Y is painted on the right phylogeny using dark blue and light blue 
for state Y0 and Y1. a) Darwin’s scenario is depicted as a single event deep in time that has led to 
the co-distribution of X0Y0 outside of the focal clade and X1Y1 within the focal clade. b) 
Unreplicated bursts scenario is where a single event deep in time has led to the co-distribution of 
X0Y0 outside of the focal clade and X1Y0 and X1Y1 within the focal clade. 
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strong evidence of correlation despite the dependent relationship arising from little more than a 67 

single event deep in time. 68 

There is considerable interest in understanding and, ultimately, finding a resolution to the 69 

problem posed by Maddison and FitzJohn (2015). Recently, Uyeda et al. (2018) suggested that 70 

for Darwin’s scenario, the relatively long periods of stasis between the two characters (i.e., 71 

minimal trait change) is the primary cause for their significant dependent relationship. In fact, 72 

they showed that the probability of selecting a character-dependent model (i.e., a model of 73 

correlated evolution between the two characters) over a character-independent model (i.e., a 74 

model where the two characters are explicitly not correlated) was proportional to the ratio 75 

between the length of the branch where the shift occurred and the total length of the tree. The 76 

nature of this ratio ensured that a correlated model would always be supported in cases where 77 

singular evolutionary events led to a co-distribution of characters. Another study, by Gardner and 78 

Organ (2021), tested a variety of correlated models beyond Markov models and examined the 79 

structure of datasets which are susceptible to the problem of false dependence. They found that 80 

all the tested comparative methods produced erroneous correlations when datasets were 81 

phylogenetically pseudoreplicated. 82 

In both of these studies, the authors have addressed the problem by encouraging scientists 83 

to think critically about their models. While this recommendation is certainly admirable and 84 

correct, it is not a direct and satisfying solution to the statistical problems presented so far, as no 85 

amount of methodological vigilance will ever prevent analyses from being marred by 86 

phylogenetic pseudoreplication. However, prior analyses have limited model comparisons to 87 

only a few models, and have overlooked the very large set of alternative Markov models which 88 

can also be consistent with correlation or independence depending on the model’s structure. 89 
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These alternative models have been briefly discussed previously (Pagel 1994; Pagel and Meade 90 

2006) and, as we will show, the inclusion of a few examples within the model set can play a 91 

crucial role in ensuring a fair test of correlation. These underrepresented models, in addition to 92 

enormous model space provided by hidden Markov models (HMMs) for addressing rate 93 

heterogeneity across the tree (Beaulieu et al. 2013; Boyko and Beaulieu 2021), form the basis of 94 

our putative statistical solution to the problem posed by Maddison and FitzJohn (2015). We 95 

acknowledge that the problem itself extends beyond categorical character evolution, but we 96 

believe that the practical solution presented here may lend itself to future extensions in other 97 

areas.  98 

We draw on two important insights as they relate to models of categorical character 99 

evolution. The first is that model space is severely underexplored and that the inclusion of more 100 

complex, character-independent models within our modeling set helps reduce evidence of false 101 

correlation. We note that estimates of transition rates to and from unobserved character states are 102 

not statistically identifiable, revealing that the canonical character-dependent model is over-103 

parameterizationed in phylogenetically pseudoreplicated datasets like Darwin’s scenario (Fig. 104 

1a). When only two or three of the four possible character state combinations are observed, we 105 

produce models nested within the correlated and independent model that are overwhelmingly 106 

favored over both. Second, the issue of false dependent relationships is not one of stasis per se, 107 

but rather, a failure to account for rate heterogeneity. We demonstrate that an explicit character-108 

independent hidden Markov model (HMM) provides significant evidence for models of 109 

independent evolution in cases where a correlated model would have previously been supported. 110 

This is because under the classic Pagel (1994) framework, support for correlation comes from 111 

both a dependent relationship between characters and a strong signal of rate heterogeneity. By 112 
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amending the Pagel framework with a model which allows for rate heterogeneity independent of 113 

a focal character, we correct the bias towards correlation. We also reiterate that the relative 114 

support of each model should be considered when interpreting biologically sound results rather 115 

than examining tests of character dependence against “trivial” nulls (Beaulieu and O’Meara 116 

2016; Caetano et al. 2018; O’Meara and Beaulieu 2021). 117 

 118 

Correlated models depend on observations of intermediate states 119 

While much has been written about the specifics of Pagel’s model, we briefly review 120 

aspects of it in order to better illustrate our point — namely, that certain transition rates are not 121 

estimatable and that their inclusion may be an additional cause of false correlations uncovered by 122 

Maddison and FitzJohn (2015). The correlated or dependent model of discrete character 123 

evolution, introduced by Pagel (1994), uses a continuous-time Markov process to estimate the 124 

rate of transitions between character states (Fig. 2ab). With a single binary character, X, the 125 

transition rate matrix, denoted as Q, is a simple 2x2 matrix, which contains all the information 126 

necessary to estimate the probability of a transition occurring between two states of character X 127 

over a given period of time. At its most complex, Q would contain two transition rates: from 128 

state X0 to state X1, and from state X1 to state X0. If we introduce a second binary character, Y, the 129 

number of possible observed state combinations is expanded — that is, the possible observed 130 

state combinations become X0Y0, X0Y1, X1Y0, and X1Y1. Consequently, this requires an expansion 131 

of Q to a 4x4 matrix, to account for all the possible transitions between state combinations. This 132 

model is considerably more complex, as the number of transitions goes from a maximum of two 133 

to a maximum of 12. However, the model introduced by Pagel (1994) is constrained specifically 134 

for the purpose of detecting correlations between characters by examining whether the state of 135 
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one variable affects the probability of change in the other. To do this, dual transitions (i.e., 136 

changes in both X and Y occurring in a single time step) are removed. As noted by Pagel (1994), 137 

setting dual transition rates to zero does not rule out dual transitions over long periods of time. 138 

Figure 2. Representations of the different transition rate matrices, Q, with k number of 
parameters associated with each. Where transitions are fixed to occur at the same rate, the 
squares are colored to be the same. Unique parameters are also indicated with a roman numeral 
in the bottom left corner of the square. To the right of each matrix, a ball and stick 
representation of the model is presented with colors and parameter numbers matching the 
transitions indicated in the matrix, Q. The ball and stick representation is organized such that 
internal arrows represent transitions from 1 to 0, and external arrows represent transitions from 
0 to 1. Additionally, arrows which cross the vertical midpoint indicate transitions in character X, 
whereas transitions across the horizontal midpoint indicate transitions in character Y. a) An 
independent model with four unique parameters, which fixes transitions within a character such 
that changes in X or Y do not depend on the state of the other character. b) A dependent model 
with eight unique parameters, whichs model allows transitions within a character to depend on 
the state of the other character. c) A model which removes transitions to and from an 
unobserved state from the independent model (a). d) A model that removes transitions to and 
from an unobserved state from the dependent model (b). In (c) and (d) the unobserved state is 
based on the Unreplicated Burst scenario where X0Y1 is not observed. 
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Rather, a dual transition from X0Y0 must first pass through state X0Y1 or X1Y0, before finally 139 

transitioning to X1Y1. Equating the rates of transitions between particular pathways allows for the 140 

construction and testing of an independent model (Pagel and Meade 2006). A model of 141 

independent evolution is nested within the correlated model but assumes that the transition rates 142 

between states of a character are equal to one another regardless of the state of the other 143 

character (e.g., [X0 to X1 | Y0] = [X0 to X1 | Y1]; Fig. 2ab). In other words, if these two characters, 144 

X and Y, are independent, the presence of one character will have no influence on the change of 145 

the other and thus model selection criteria should choose the simpler model.  146 

Using this specific nested framework, we were able to replicate the results of Maddison 147 

and Fitzjohn (2015). Specifically, we generated 100 datasets for Darwin’s scenario and the 148 

Unreplicated Bursts scenario. Phylogenies were simulated under a λ=1 and μ=0.5 until 100 149 

extant taxa were reached, and each resulting tree was then evaluated for a focal monophyletic 150 

group between 40 and 60 taxa. For Darwin’s scenario, extant species within the focal clade were 151 

assigned X1Y1 and species outside the clade were assigned X0Y0. We simulated Unreplicated 152 

Bursts by assigning all species outside the focal clade X0, and all species within the clade X1. 153 

Next, character Y was simulated at a rate of 100 transitions per million years. Outside of the focal 154 

clade, species were assigned Y0 whereas within the focal clade, the simulated data resulted in 155 

both Y0 and Y1. We used corHMM (Beaulieu et al. 2013; Boyko and Beaulieu 2021) to fit and 156 

compare the four-state independent model (Fig. 2a) against the four-state correlated model (Fig. 157 

2b) using Akaike Information Criterion (AIC). In all cases, we found overwhelming support for 158 

the correlated model for both Unreplicated Bursts and Darwin's scenario datasets (See 159 

Supplemental Materials). The mean AIC weight for the correlated model under Darwin’s 160 
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scenario was 92.52% and under Unreplicated Bursts it was 99.96%. As expected, an independent 161 

model was never favored over a correlated model in either scenario. 162 

For Darwin’s scenario, setting aside the critical analytical issues regarding phylogenetic 163 

pseudoreplication, we had additional concerns with the structure of the data and how this might 164 

impact estimates of transition rates. Under any continuous-time Markov process, the estimates of 165 

the transition rates among all possible character combinations are reflective of the observed state 166 

frequencies and distribution at the tips. But, what if two of the four character combinations are 167 

not observed at all? Here we are referring to the two combinations, X0Y1 and X1Y0, not observed 168 

in any of the tips under Darwin's scenario. There may be biological reasons for not observing 169 

intermediate state combinations. For example, these combinations may be at some selective 170 

disadvantage, resulting in rapid transitions to another, more viable character combination (e.g., 171 

X0Y0 or X1Y1). Alternatively, it could be that one or both combinations are never possible due to 172 

some underlying genetic or developmental reasons (e.g., certain fruit character combinations, see 173 

Beaulieu and Donoghue 2013). However, whatever biological meaning is attributed to the lack 174 

of intermediate character state observations, in this case, is beside the point. There seems to be 175 

obvious, and yet unrecognized, identifiability issues with including transitions to and from these 176 

unobserved state combinations in the model, calling into question fitting the correlated model to 177 

these types of data. That is to say, if we never see intermediate state combinations at the tips, 178 

how can the model ever favor one pathway over the other? 179 

To illustrate this point, we examined the likelihood surface of one of the datasets 180 

simulated under Darwin's scenario and fit under Pagel's correlated model (Fig. 3). Whether 181 

starting from X0Y0 or X1Y1, transition rate estimates to either of the unobserved character 182 

combinations fall along a ridge of equal likelihood, where changing the rate of transition to one 183 
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unobserved state determines the rate for the transitions to the other unobserved state. When a 184 

lineage transitions into one of the states, the likelihood surface for transitions out of these states 185 

to either state X0Y0 or X1Y1 are completely flat, with all rates ranging from 0.1 to 100 transitions 186 

per unit time all having nearly identical likelihoods. Taken together, the preferred model 187 

estimates for various transition rates arise simply by chance of the optimization procedure, but 188 

more importantly, there are parameters which are clearly unneeded to explain the data.  189 

Figure 3. An example likelihood surface of a correlated model when applied to one of the 100 
Darwin’s scenario datasets. The color of the plot indicates the likelihood of a particular pair of 
parameters when the remaining transition rates are optimized. Thus, each point represents the 
maximum likelihood estimate when the transition rates indicated by the axes are fixed. a) 
Transitions from X0Y0 to an intermediate state result in several likelihood ridges. b) Transitions 
from X1Y1 to an intermediate state result in several likelihood ridges. c) Transitions from X0Y1 to 
either X0Y0 or X1Y1 result in a completely flat likelihood surface. d) Transitions from X1Y0 to 
either X0Y0 or X1Y1 result in a completely flat likelihood surface. 
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One obvious solution is to simply remove the unobserved character combinations from 190 

the model completely. From a modeling perspective, removing unobserved states removes the 191 

parameters that fall along the likelihood ridge and should lead to a model that ends up being well 192 

estimated. Consequently, the question of whether independent or dependent models better 193 

explain the data becomes irrelevant as the two models collapse into one another when 194 

unobserved states are removed (Fig. 2c,d). This is clearly seen when the collapsed model is 195 

applied to an Unreplicated Burst scenario. Whether one starts with an independent model (Fig. 196 

2a) or a correlated model (Fig. 2b), once unobserved states are removed, comparing alternative 197 

transition pathways between X0Y0 and X1Y1 are no longer possible. For example, take transitions 198 

between states of character X. Both the correlated and independent models estimate transitions 199 

from X0 to X1 as depending only on Y0, since X0Y1 is not observed in the dataset. Since it is not 200 

possible to compare the likelihood of alternative scenarios of dependence a comparison of 201 

correlation and independence becomes irrelevant.  202 

Including a collapsed model as part of our model set drastically changes the results. We 203 

found complete support for a collapsed state model for both Darwin’s scenario and Unreplicated 204 

Bursts (see Supplemental Materials). The average AIC weight for the collapsed model is 99.7% 205 

under Darwin’s scenario and 100.0% under an Unreplicated burst scenario. This suggests that the 206 

support for the correlated models over simpler independent models is a result of an intuitive, but 207 

necessary parameter constraint. Specifically, in an independent model, transitions between 208 

observed states are constrained to be identical to transitions between unobserved states (e.g., 209 

X0Y0 to X0Y1 must be identical to X0Y1 to X1Y1, even if X0Y1 is never observed). In contrast, the 210 

correlated model is not subject to these constraints. This is, of course, the important distinction 211 

between the two models and what allows us to test for correlated evolution. In this case, the 212 
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support for dependence occurs because, in a sense, the correlated model is free to “throw away” 213 

the inestimatable transition rates which describe movement to and from intermediate states, 214 

while the independent model is forced to evaluate them. However, this issue becomes moot when 215 

exclusively modeling observed state combinations because the dependent and independent 216 

models become equivalent descriptions of the evolutionary process and are, therefore, 217 

indistinguishable for the given data.  218 

 219 

Rate heterogeneity is necessary when testing for correlation between categorical variables 220 

A major issue for the collapsed model described above is that in Darwin’s scenario, a 221 

single observation of X0Y1 and X1Y0 removes the possibility of collapsing the model structure. 222 

This suggests that modeling only observed state combinations is not a generalizable solution to 223 

the phylogenetic pseudoreplication of categorical characters. As we will show, with only a single 224 

observation of intermediate character combinations, support for the correlated model over an 225 

independent model remains substantial. Even so, the results above highlight information 226 

limitations and that the strong evidence for dependent models may be due to a lack of viable 227 

alternative independent models rather than being irrefutable evidence of correlation.  228 

It is worth considering again the possible explanations of the data under Darwin’s 229 

scenario. One possibility is that the characters X and Y evolve slowly and that their co-230 

distribution is the result of two independent events deep in time. The probability of this scenario 231 

has been explored in-depth and its implausibility is a major contributor to the recurrent issues of 232 

false correlation when comparing dependent and independent models (Uyeda et al. 2018). We 233 

propose a complementary explanation for the correlated model’s support: the independent model 234 

structure fixes the transition X0 to X1 to always be the same rate in the context of the state of Y 235 
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(Fig. 2a), whereas a dependent model structure allows transitions from X0 to X1 to vary 236 

depending on the state of Y (Fig. 2b). Support for the correlated model, therefore, comes from the 237 

fact that the best explanation of the data is not one that has a single slow transition rate for the 238 

characters. Instead, the most likely description of the process is one in which transitions between 239 

X0 and X1 or Y0 and Y1 are allowed to occur rapidly within the focal clade and occur slowly 240 

outside of the focal clade. The relative stasis of X0 outside the focal clade and the rapid 241 

accumulation of X1 within the clade suggests that changes in X are not consistent throughout the 242 

tree. 243 

Hidden Markov models (HMMs) are a natural way to deal with this kind of rate 244 

heterogeneity across the tree. The underlying mathematical framework of an HMM is no 245 

different than a typical Markov model. They utilize a rate matrix, Q, to estimate the probabilities 246 

of transitioning between discrete states and arrive at the likelihood of the model given the 247 

observed dataset (Felsenstein and Churchill 1996). However, HMMs introduce a so-called 248 

“hidden-state”, which can represent any number of unobserved factors, biological or otherwise. 249 

Based on the presence or absence of this hidden-state, changes between observed states are 250 

allowed to vary. In the most extreme cases, the absence of the hidden state may halt the 251 

evolutionary process and result in periods of stasis. For example, Marazzi et al. (2012) 252 

conceptualized the hidden-state as a “precursor” trait and only in its presence could extrafloral 253 

nectaries (EFNs) emerge. It is important to emphasize that the precursor state was never directly 254 

observed and that the information for its presence or absence of the hidden state came from the 255 

rate heterogeneity of EFNs transitions. In some parts of the tree, the model EFNs emerged 256 

rapidly and in others there were periods of stasis. Of course, HMMs are more general than either 257 

halting or actuating the evolutionary process and are used to quantify rate heterogeneity without 258 
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the necessity of stasis (e.g., comparing fast, slow, or intermediate rates as in Beaulieu et al. 259 

2013). The key point here is that they allow for rate heterogeneity that is unlinked to another 260 

observed character. 261 

We developed and tested a hidden Markov independent model (HMIM) which accounts 262 

for rate heterogeneity while maintaining the independence of the observed focal characters X and 263 

Y (Fig. 4). In our view, the inclusion of our model within the evaluated set better levels the 264 

playing field between correlated and independent models. For example, if we focus on character 265 

X, our proposed model utilizes hidden states to vary transition rates between X0 and X1 based on 266 

an unobserved character. This is similar to the way that the correlated model allows transition 267 

rates between X0 and X1 to differ based on the observed state of Y. If the cause of false 268 

correlation was, as we suspect, not accounting for rate heterogeneity, then both the hidden state 269 

Figure 4. The hidden Markov independent model (HMIM), which allows transitions within a 
character to have rate heterogeneity without it necessarily being linked to an observed character. 
This matrix can be read as a block matrix, with 4x4 blocks representing transitions between 
observed characters following an independent model (top left and bottom right) and transitions 
between hidden rate classes A and B (top right and bottom left). The independent model is 
essentially duplicated in the top left (blue and green) and bottom right (red and orange) of the 
block matrix with transitions occurring between these different types of independent models 
(purple). Here, transition rates between the hidden states are fixed to be the same (parameter ix), 
but it is straightforward to allow the transition between rate class A and B to differ. 
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independent and correlated model should be preferable to the simple independent model and 270 

evidence of correlation between X and Y should be greatly reduced.  271 

We first removed the possibility of collapsing the Markov model by modifying Darwin’s 272 

scenario. We defined the focal clade as being the monophyletic group where all observations of 273 

X1Y1 occur and randomly add the intermediate state observations of X0Y1 and X1Y0 within the 274 

focal clade (which refer to as “inside” hereafter), outside of the focal clade (which we refer to as 275 

“outside” hereafter), and both within and outside the focal clade (which refer to as “both” 276 

hereafter) (Fig. 5). Next, we verified that this modified Darwin’s scenario still suffers from the 277 

problems of the original Darwin’s scenario by comparing the independent and correlated models 278 

sensu Pagel (1994). We then added the hidden Markov independent model to the model set and 279 

evaluated two questions: (1) when comparing independent models to one another, is there 280 

evidence of rate heterogeneity? and (2) is support for the correlated model reduced when 281 

compared to an independent model with rate heterogeneity? In addition to AIC weight, we 282 

utilized evidence ratios (ER) to explore the relative likelihood of our models. Evidence ratios are 283 

a simple extension of AIC weights, but as a means of evaluation, are important here since they 284 

allow us to focus on evaluating the relative evidence of pairs of models irrespective of other 285 

models in the set (Burnham and Anderson 2002). The evidence for model i over model j is the 286 

ratio between their AIC weights: ER = wi /wj and it can help quantify whether the best model in 287 

our comparison is convincingly best. With alternative samples, a convincingly best model is 288 

likely to be chosen again sample to sample. However, if evidence for a model is low, we expect 289 

model selection uncertainty to be high. Following Burnham and Anderson (2002), an evidence 290 

ratio of greater than 2.7 is used as a guide to justify judging support for one model being better 291 

than another. This also neatly corresponds to a ΔAIC = 2. We emphasize that this value should 292 
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not be misconstrued as a significant test in a frequentist sense since we are not evaluating the 293 

probability of rejecting a null hypothesis.  294 

For all modified Darwin’s scenarios, we found substantial evidence (ER > 2.7) for a 295 

correlated model over a single rate class independent model (Fig. 5). The geometric mean 296 

evidence ratio for the correlated model over the single rate independent model was ERoutside= 297 

59.51, ERinside= 78.16, ERboth= 11.44 (Fig. 5), thus we, again, successfully recreated the 298 

conditions of Maddison and FitzJohn (2015) under a modified Darwin’s scenario. Next, we 299 

examined the evidence for rate heterogeneity by comparing a single rate independent model to 300 

the hidden Markov independent model. We found substantial evidence for rate heterogeneity 301 

across all scenarios, with all mean evidence ratios of the HMIM over the standard independent 302 

model well over 20, indicating substantial support for rate heterogeneity (ERoutside= 24.45, 303 

ERinside= 24.33, ERboth= 50.45). Finally, we tested whether there is still conclusive evidence of 304 

correlation between characters if we include the hidden state independent model within our 305 

modeling set. We found that the evidence for a correlated model over the hidden Markov 306 

independent model was greatly reduced when compared to the single rate class independent 307 

model (Fig. 5; ERoutside= 2.43, ERinside= 3.21, ERboth= 0.22; Fig. 5). In fact, with only two 308 

observations of each intermediate state combination (X0Y1 and X1Y0), support for the hidden 309 

Markov independent model over the correlated model was substantial (evidence for HMIM over 310 

a correlated model: ERboth= 4.41). Taken together, these findings suggest that 1) there is indeed 311 

substantial evidence of rate heterogeneity, and that this is causing the signal of false correlation; 312 

and 2) including a hidden Markov independent model can, at least, muddle evidence for 313 

correlation. 314 
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Figure 5. The amount of evidence for correlation when comparing a correlated model to ether 
an independent model (IM) or hidden Markov independent model (HMIM). The models are fit 
to data of the modified version of Darwin’s scenario where a single observation of X0Y1 and X1Y0 
is added outside of the focal clade (a), inside of the focal clade (b), and both within and outside 
of the focal clade (c). Evidence ratios for each m`odel comparison are plotted as boxplots to the 
left of the simulation scenario. In all cases, the evidence ratio of the correlated model over the 
independent model is substantially greater than 2.7 (left boxplot) but, the correlated model 
receives much less support over the hidden Markov independent model (right boxplot). 
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A (potentially) complete solution to biased correlation between synapomorphies 316 

It was still concerning to us that for the original and two of the modified Darwin’s 317 

scenarios (specifically the “outside” and “inside” sets; see Fig. 5), support for the correlated 318 

model was still often greater than the hidden state independent model. Although the addition of 319 

character independent rate heterogeneity muddles support for the correlated model, in the most 320 

extreme cases the best model remained the dependent model. To deal with this issue, we applied 321 

what we learned thus far, with regards to the over-parameterization of models and the necessity 322 

of rate heterogeneity and added a new set of simpler and nested models within the set presented 323 

thus far to specifically address the issues of Darwin’s scenario.  324 

It is critical to emphasize that model space has been underexplored and that there are 325 

many nested model structures that are consistent with either independence or correlation 326 

depending on their constraints (see also Pagel and Meade 2006). Here we describe two 327 

constrained versions of the independent and correlated models that achieve the most efficient 328 

description of the data. One simplified version of the correlated model suggests that when either 329 

character X or Y is in state 0, rates of change are slower or faster than when either character is in 330 

state 1 (Fig. 6b). We refer to this as the “simplified correlated” model and it represents the 331 

simplest way to model a dependent relationship between two binary characters. Next, we created 332 

a “simplified independent” model of equal parameterization to the simplified correlated model, 333 

which equates all changes from 0 to 1 regardless of the character and the same is done for 334 

changes from 1 to 0 (Pagel and Meade 2006; Fig. 6a).  335 

The structures of these simplified models have certain qualities that may make them apt 336 

descriptions of data like Darwin’s scenario. Primarily, these models suggest that changes 337 

between states 0 and 1 do not necessarily depend on the specific identity of character X or Y 338 
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since they are constrained to be equal. When we consider the redundancy of a dataset composed 339 

of two synapomorphies, it is obvious that there is little to no information that distinguishes the 340 

two characters– that is, it makes no difference whether one analyzes character X or character Y 341 

since their distributions are identical. The simplified models make that assumption explicit. It is 342 

also important to note that the simplified independent model and simplified correlated model 343 

maintain independence and dependence sensu Pagel (1994). The background state of the 344 

unchanging character does not influence changes in the case of the simplified independent 345 

model, whereas the background state of the unchanging character will influence rates of change 346 

in the case of the simplified dependent model (Pagel and Meade 2006). Finally, we can introduce 347 

rate heterogeneity by modeling the simplified independent and correlated models as two rate 348 

class hidden Markov models (Fig. 6c).  349 

 350 

Figure 6. a) A simplified independent model. In this model, transitions from 0 to 1 all occur at 
the same rate and transitions from 1 to 0 all occur at the same rate. b) A simplified correlated 
model. Under this model, transitions between states of character X and Y depend on the 
background state of the other character. c) A simplified hidden Markov independent model, 
where the simple independent model of (a) is used in the hidden Markov framework which 
allows for rate heterogeneity independent of focal characters. The same can be done for the 
simple correlated model (not shown).  
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Returning to the modified Darwin’s scenario datasets, we found consistent and 351 

overwhelming support for the simplified hidden Markov independent model across all scenarios 352 

(Table 1). The average AIC weight of the simplified HMIM when fit to modified Darwin’s 353 

scenarios are woutisde= 89.6%, winside= 90.2%, and wboth= 93.5%. The set of models applied to this 354 

data included all models discussed thus far as well as more complicated versions of those 355 

previously described (such as a standard correlated model with multiple rate classes). 356 

Additionally, to ensure that these models are not biased towards being favored across all 357 

datasets, we simulated data under a simplified correlated, simplified independent, and simplified 358 

hidden Markov independent models. We then fit each model to these datasets and found that the 359 

generating model is consistently chosen as the best fitting model (see Supplemental Materials). 360 

In summary, our findings suggest that when a complete model set is considered, the bias towards 361 

a correlation noted by Maddison and Fitzjohn (2015) disappears. The model which best describes 362 

data under a strict Darwin’s scenario is not one of correlation, but a simplified independent 363 

model with character independent rate heterogeneity.  364 

 365 

Broadly applicable solutions 366 

The issue discussed herein is recognized as being broadly applicable to several 367 

comparative methods that test for associations between variables (FitzJohn 2010; Rabosky and 368 

Goldberg 2015; Uyeda et al. 2018; Nakov et al. 2019; Gardner and Organ 2021). It is concerning 369 

that such a significant issue has seemingly gone unresolved for so long given comparative 370 

methods are of critical importance for understanding macroevolutionary patterns. However, in 371 

our view, the prevalence of the problems identified over the past few years is due to a singular 372 

overarching cause, namely, model misspecification, which occurs when a model, or set of 373 



Boyko and Beaulieu 22 

models, is incomplete. Within the context of their model sets, authors of previous studies have 374 

correctly portrayed and analyzed the correlation bias of modeling dependence between discrete 375 

characters (Maddison and FitzJohn 2015; Uyeda et al. 2018; Gardner and Organ 2021). 376 

However, the danger of model misspecification is that the inferences drawn from an incomplete 377 

set are highly susceptible to unforeseen biases – a fact will hold true in both theoretical and 378 

empirical contexts. Here, we are arguing that the model set is incomplete without the inclusion of 379 

models that allow for rate heterogeneity that is independent of the focal characters. The 380 

canonical character independent model of Pagel (1994) has no way to account for multiple rates 381 

of evolution, whereas support for a correlated model can come from both evidence of correlation 382 

and evidence of rate heterogeneity. The additional support from explaining rate heterogeneity is 383 

not a feature exclusive to correlated characters, and thus accounting for independent rate 384 

heterogeneity is necessary to resolve the model set misspecification. This misspecified model set 385 

has led to consistently biased evidence towards correlation, and it is the same issue addressed by 386 

the inclusion of the character independent models within state-dependent speciation extinction 387 

models (Beaulieu and O’Meara 2016). In that case, the biased association was between 388 

diversification rates and phenotype (Rabosky and Goldberg 2015), but the cause is the same. 389 

Models in which there are no differences in diversification are compared to models which tested 390 

for the presence of a correlation between character and diversification rate (which necessarily 391 

allow for multiple rates of diversification). 392 

One difference between the problem of false correlation in SSE models and the problems 393 

within simpler Markov models is the narrative surrounding them. In the case of SSE models, the 394 

problem was viewed as a high false positive rate (Rabosky and Goldberg 2015), whereas in the 395 

case of discrete character evolution we are led towards viewing rate heterogeneity through the 396 
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lens of single unreplicated evolutionary events (Maddison and FitzJohn 2015). However, both 397 

points contribute to the same problem and if we view single evolutionary events as examples of 398 

where evolution has changed in tempo or mode, then the inclusion of hidden Markov models as a 399 

solution arises naturally from the problem. 400 

Since we as comparative biologists are involved in a historical science, we will inevitably 401 

encounter single evolutionary events of large importance. However, it must be recognized that 402 

datasets which are susceptible to biases from singular events are not amenable to most 403 

phylogenetic comparative tests. Although here we have resolved the statistical biases associated 404 

with false correlations, there is no amount of methodological massaging that will allow for a 405 

satisfying test of macroevolutionary correlation between two synapomorphies. This is because 406 

comparative methods rely on several independent replicates of correlation such that the 407 

associations found between the variables may be considered robust even when extended beyond 408 

the dataset used for the analysis. If there is only one example of the correlation arising in the 409 

entire dataset, we should not have confidence in extending our inferences beyond the clade and 410 

should be wary of the correlation even within the focal clade. However, that is not to say there is 411 

no mechanistic reason for an association between synapomorphies. It is entirely possible that two 412 

characters which share identical evolutionary histories have an underlying biological link. 413 

Nonetheless, conclusions about the potential links between these characters cannot come from 414 

studies conducted at a macroevolutionary scale, and they should instead be investigated at a 415 

smaller scale (Beaulieu and O’Meara 2018, 2019; Donoghue and Edwards 2019). Additional 416 

lines of evidence and a more mechanistic explanation will be necessary in order for a conclusion 417 

of correlation to be satisfying (Gardner and Organ 2021). In a sense, the hidden rate classes of 418 

our proposed framework may represent lineage-specific factors that, once present, readily allow 419 
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for a shift in the tempo and mode of a lineage's evolution (Maddison and FitzJohn 2015; Ogburn 420 

and Edwards 2015).  421 

A broader methodological conclusion that can be drawn from our results, which have 422 

been echoed elsewhere (Beaulieu and O’Meara 2016; Caetano et al. 2018; O’Meara and 423 

Beaulieu 2021), is that testing against simple null hypotheses is usually not a productive way to 424 

do science. Rather than testing for a binary outcome of whether or not correlation is present, it is 425 

often beneficial to examine what these models suggest about the evolutionary process. Utilizing 426 

model comparison and finding that correlation exists is certainly interesting, but the real utility of 427 

modeling macroevolutionary processes is interpreting parameters that could not have been 428 

identified from the pattern alone. Within reason, it is often possible to look at the distribution of 429 

two discrete characters and be able to say whether the two are correlated before doing any 430 

modeling. However, it is more difficult to specify numerical values for the rates at which these 431 

characters evolve. For example, neither a glance at the dataset nor summary statistics will be 432 

consistently informative as to how many orders of magnitude faster a lineage in state Y0 evolves 433 

character X than a lineage in state Y1. Additionally, transition rates which are measured in 434 

changes per million years (more specifically, changes per time unit of the phylogenetic tree) are 435 

directly comparable across any comparative study. For instance, changes in flower color in one 436 

study can be compared directly to changes in mammalian diet in another, because the parameters 437 

of transition have the same unit (event per unit of time). With these parameter estimates we may 438 

more robustly test hypotheses based on a well-defined model of macroevolution (Pennell and 439 

Harmon 2013). Furthermore, an examination of parameter estimates applies to most commonly 440 

used macroevolutionary models. For example, Vasconcelos et al. (2021) tested a set of three 441 

hypotheses related to how the mode of seed dispersal related to climatic niche evolution using 442 
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Ornstein-Uhlenbeck models. This is not new for these types of models, but a key point from this 443 

study is that the model support was not as important as the relative value of the parameters. 444 

Instead of examining whether model A was more supported than model B, they looked at how 445 

specific hypotheses (i.e., that abiotically dispersed seeds tend to have a more arid climatic 446 

optima) were differentially supported across a diverse set of models. A focus on parameter 447 

estimates rather than relative model support underscores that we are uncertain about the best 448 

model, but we wish to estimate parameters which reflect that uncertainty and robustly relate 449 

them to our hypotheses. This insight spurred the adoption of model-averaging by comparative 450 

biologists, which is now recognized as vital for macroevolutionary studies (see Caetano et al. 451 

2018).  452 

 453 

Concluding Remarks 454 

Sparked by an appreciation of the limitations of PCMs, several commonly used 455 

phylogenetic comparative methods have seen critical challenges recently, which have led to 456 

advancements useful for both developers and users (Boettiger et al. 2012; Maddison and 457 

FitzJohn 2015; Rabosky and Goldberg 2015; Louca and Pennell 2020). Here, too, the critiques of 458 

classic tests of correlation (Pagel 1994) are not wrong, and the recommendations of past studies 459 

remain useful (Maddison and FitzJohn 2015; Uyeda et al. 2018; Gardner and Organ 2021). 460 

Instead, what we have demonstrated is that the statistical bias towards correlation is primarily 461 

due to a misspecification of the model set and a failure to account for character independent rate 462 

heterogeneity. We have highlighted that the inclusion of non-standard Markov models in the 463 

model set can be critical for the quality of the inferences being made. We acknowledge that 464 

choosing a diverse set of models a priori is not always straightforward, but both likelihood and 465 
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Bayesian methods will only be as effective as the plausibility of the models set being analyzed 466 

(Burnham and Anderson 2002). We know that a homogeneous process over millions of years 467 

and across thousands of lineages is incorrect (Eldredge and Gould 1972) and that the individual 468 

parts of an organism do not evolve independently (Levins and Lewontin 1985). While we may 469 

not be able to always specify each of these individual processes, we must try to incorporate them 470 

in our modeling. Accounting for rate heterogeneity through HMMs is a simplified way that we 471 

can bring realism to our modeling while also making statistically consistent and unbiased 472 

estimates of evolutionary parameters. From there, undoubtedly more work will be necessary 473 

(e.g., Goldberg and Foo 2020). But comparative analyses must at the very least attempt to 474 

account for what we know about macroevolution while making us aware of the wonderful 475 

idiosyncrasies of evolutionary history. 476 

 477 

Data Availability 478 

Data and a user guide are available from the following github repository: 479 

https://github.com/jboyko/2022_unsolved-challenge  480 
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Tables 487 

Table 1. Average ΔAIC values for 100 datasets with standard deviations shown in brackets. 488 

Each column represents a scenario described in the main text and each row represents a different 489 

Markov model structure which may be consistent with independence or correlation. For each 490 

scenario, 8 or 9 models were fit to the datasets. The collapsed model is fit only when not all 491 

potential state combinations are directly observed and therefore are not fit in modified scenarios. 492 

A ΔAIC of 0 indicates the best model and models within 2 AIC units of each other are generally 493 

considered good fits to the data (Burnham and Anderson 2002).  494 

Scenario 
 

Darwin's Unreplicated 
bursts 

Modified 
Darwin's 
(outside) 

Modified 
Darwin's 
(inside) 

Modified 
Darwin's 

(both) 
Collapsed 0.0 (± 0.0) 0.0 (± 0.0) NA NA NA 
Independent 17.9 (± 12.3) 36.8 (±9.0) 14.3 (±3.6) 14.8 (±4.0) 15.6 (±4.7) 
Simplified independent 13.9 (±2.3) 67.3 (±15.8) 10.3 (±3.6) 10.8 (±4.0) 11.6 (±4.7) 
Correlated 12.0 (±0.2) 8.0 (±0.1) 6.1 (±0.5) 6.1 (±0.7) 10.8 (±2.6) 
Simplified correlated 13.9 (±2.3) 30.0 (±8.2) 9.8 (±3.6) 10.4 (±4.1) 11.6 (±4.7) 
Hidden Markov independent 20.8 (±6.8) 9.2 (±0.4) 7.9 (±1.2) 8.4 (±3.3) 7.8 (±2.2) 
Simplified hidden Markov independent 5.5 (±0.1) 36.3 (±9.1) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 
Correlated hidden Markov 29.7 (±0.3) 24.9 (±0.8) 22.9 (±0.7) 23.5 (±0.8) 23.2 (±1.4) 
Simplified correlated hidden Markov 18.8 (±2.1) 34.3 (±7.7) 14.2 (±3.3) 14.3 (±2.8) 15.7 (±3.5) 

 495 

Figures 496 

Figure 1. The two problematic scenarios from Maddison and FitzJohn (2015) for the evolution 497 

of characters X and Y. Character X is painted on the left phylogeny using red and orange for state 498 

X0 and X1, whereas character Y is painted on the right phylogeny using dark blue and light blue 499 

for state Y0 and Y1. a) Darwin’s scenario is depicted as a single event deep in time that has led to 500 

the co-distribution of X0Y0 outside of the focal clade and X1Y1 within the focal clade. b) 501 

Unreplicated bursts scenario is where a single event deep in time has led to the co-distribution of 502 

X0Y0 outside of the focal clade and X1Y0 and X1Y1 within the focal clade. 503 
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 504 

Figure 2. Representations of the different transition rate matrices, Q, with k number of 505 

parameters associated with each. Where transitions are fixed to occur at the same rate, the 506 

squares are colored to be the same. Unique parameters are also indicated with a roman numeral 507 

in the bottom left corner of the square. To the right of each matrix, a ball and stick representation 508 

of the model is presented with colors and parameter numbers matching the transitions indicated 509 

in the matrix, Q. The ball and stick representation is organized such that internal arrows 510 

represent transitions from 1 to 0, and external arrows represent transitions from 0 to 1. 511 

Additionally, arrows which cross the vertical midpoint indicate transitions in character X, 512 

whereas transitions across the horizontal midpoint indicate transitions in character Y. a) An 513 

independent model with four unique parameters, which fixes transitions within a character such 514 

that changes in X or Y do not depend on the state of the other character. b) A dependent model 515 

with eight unique parameters, whichs model allows transitions within a character to depend on 516 

the state of the other character. c) A model which removes transitions to and from an unobserved 517 

state from the independent model (a). d) A model that removes transitions to and from an 518 

unobserved state from the dependent model (b). In (c) and (d) the unobserved state is based on 519 

the Unreplicated Burst scenario where X0Y1 is not observed. 520 

 521 

Figure 3. An example likelihood surface of a correlated model when applied to one of the 100 522 

Darwin’s scenario datasets. The color of the plot indicates the likelihood of a particular pair of 523 

parameters when the remaining transition rates are optimized. Thus, each point represents the 524 

maximum likelihood estimate when the transition rates indicated by the axes are fixed. a) 525 

Transitions from X0Y0 to an intermediate state result in several likelihood ridges. b) Transitions 526 
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from X1Y1 to an intermediate state result in several likelihood ridges. c) Transitions from X0Y1 to 527 

either X0Y0 or X1Y1 result in a completely flat likelihood surface. d) Transitions from X1Y0 to 528 

either X0Y0 or X1Y1 result in a completely flat likelihood surface. 529 

 530 

Figure 4. The hidden Markov independent model (HMIM), which allows transitions within a 531 

character to have rate heterogeneity without it necessarily being linked to an observed character. 532 

This matrix can be read as a block matrix, with 4x4 blocks representing transitions between 533 

observed characters following an independent model (top left and bottom right) and transitions 534 

between hidden rate classes A and B (top right and bottom left). The independent model is 535 

essentially duplicated in the top left (blue and green) and bottom right (red and orange) of the 536 

block matrix with transitions occurring between these different types of independent models 537 

(purple). Here, transition rates between the hidden states are fixed to be the same (parameter ix), 538 

but it is straightforward to allow the transition between rate class A and B to differ. 539 

 540 

Figure 5. The amount of evidence for correlation when comparing a correlated model to ether an 541 

independent model (IM) or hidden Markov independent model (HMIM). The models are fit to 542 

data of the modified version of Darwin’s scenario where a single observation of X0Y1 and X1Y0 is 543 

added outside of the focal clade (a), inside of the focal clade (b), and both within and outside of 544 

the focal clade (c). Evidence ratios for each model comparison are plotted as boxplots to the left 545 

of the simulation scenario. In all cases, the evidence ratio of the correlated model over the 546 

independent model is substantially greater than 2.7 (left boxplot) but, the correlated model 547 

receives much less support over the hidden Markov independent model (right boxplot). 548 

 549 
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Figure 6. a) A simplified independent model. In this model, transitions from 0 to 1 all occur at 550 

the same rate and transitions from 1 to 0 all occur at the same rate. b) A simplified correlated 551 

model. Under this model, transitions between states of character X and Y depend on the 552 

background state of the other character. c) A simplified hidden Markov independent model, 553 

where the simple independent model of (a) is used in the hidden Markov framework which 554 

allows for rate heterogeneity independent of focal characters. The same can be done for the 555 

simple correlated model (not shown). 556 

 557 
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Supplemental Figures 621 

 622 

 623 

Figure S1. Replicated the Maddison and Fitzjohn (2015) result with our simulation and model 624 

fitting framework. Support for a dependent/ correlated model is consistently greater than an 625 

independent model.  626 
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 627 

 628 

Figure S2. The same model set used by Maddison and Fitzjohn (2015), but with the inclusion of 629 

a collapsed model. SUpport for the collapsed model is overwhelming.  630 
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 631 

Figure S3. The effect of increasing the number of taxa on model support. Shown here are the 632 

two standard Pagel (1994) models (independent and correlated) as well as the unsimplified 633 

hidden state independent model. Support for the models is consistent across 100, 250, 500 taxa. 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 
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 642 

 643 

Figure S4. Akaike model weights are shown for data simulated under a simplified independent 644 

model (ind_dat), simplified correlated model (cor_dat) and simplified hidden Markov 645 

independent model (ind_2) for 100 unique datasets (See Figure 6 for model structure). For the 646 

simple independent and dependent models, the rates of evolution were 1 and 5 changes per 647 

million years. With the addition of the hidden states, we added rates of 2 and 10 for the second 648 

rate category as well as a transition rate of 4 between rate classes. Phylogenetic trees of 100 taxa 649 

were simulated with a birth rate of 1 and death rate of 0.75. Total branching time in the tree was 650 

rescaled to a total of 10 MY.  651 
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