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Abstract.— Character dependency is a major conceptual and methodological problem in 16 

phylogenetic inference of morphological datasets, as it violates the assumption of characters 17 

independency that is common to all phylogenetic methods. It is more frequently observed in 18 

higher-level phylogenies or in datasets characterizing major evolutionary transitions, as these 19 

represent parts of the tree of life where (primary) anatomical characters either originate or 20 

disappear entirely. As a result, secondary traits related to these primary characters become 21 

“inapplicable” across all sampled taxa in which that character is absent. Various solutions have 22 

been explored over the last three decades to handle character dependency, such as alternative 23 

character coding schemes and, more recently, new algorithmic implementations. However, the 24 
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accuracy of the proposed solutions, or the impact of character dependency across distinct 25 

optimality criteria, has never been directly tested using standard performance measures. Here, we 26 

utilize simple and complex simulated morphological datasets analyzed under different maximum 27 

parsimony optimization procedures and Bayesian inference to test the accuracy of various coding 28 

and algorithmic solutions to character dependency. We find that in small simulated datasets, 29 

absent coding performs better than other popular coding strategies available (contingent and 30 

multistate), whereas in more complex simulations (larger datasets controlled for different tree 31 

structure and character distribution models) contingent coding is favored more frequently. Under 32 

contingent coding, a recently proposed weighting algorithm produces the most accurate results 33 

for maximum parsimony. However, Bayesian inference outperforms all parsimony-based 34 

solutions to handle character dependency due to fundamental differences in their optimization 35 

procedures—a simple alternative that has been long overlooked. Yet, we show that the more 36 

primary characters bearing secondary (dependent) traits there are in a dataset, the harder it is to 37 

estimate the true phylogenetic tree, regardless of the optimality criterion. owing to a considerable 38 

expansion of the tree parameter space. 39 

Keywords—character dependency, character coding, performance, phylogenetic accuracy, 40 

distance metrics, morphological phylogenetics, Bayesian inference, maximum parsimony. 41 
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 One of the most important assumptions common to all phylogenetic methods, regardless 45 

of their optimality criteria, is that individual variables within any given dataset (e.g., 46 

morphological characters or molecular sites) are independent from each other (Farris et al. 1970, 47 

Felsenstein 2004). In practice, however, there may exist several variables within a given data 48 

matrix that share some level of dependency among each other. Such dependencies can be either 49 

logical—the state (or  condition) of a variable depending directly on the state of another 50 

variable—or biological—e.g., evolutionary integration among two or more variables. Biological 51 

dependencies theoretically occur in molecular and morphological datasets (Brazeau et al. 2019), 52 

but both types of dependencies are conspicuous to morphological characters(Maddison 1993, 53 

Wilkinson 1995, Klingenberg 2008, Goswami and Polly 2010, Goswami et al. 2014). Despite 54 

existing guidelines to construct morphological characters in ways to minimize such dependencies 55 

(Sereno 2007, Simões et al. 2017a), it is almost impossible to completely avoid them for most 56 

empirical datasets. Consequently, character dependency has a direct and pervasive impact in 57 

datasets that can only be analyzed with morphological data (e.g., paleontological datasets), or 58 

which include morphological and molecular data to integrate fossils and extant taxa in total 59 

evidence phylogenetic inference—e.g., (Pyron 2011, Simões et al. 2018b, Mongiardino Koch 60 

and Thompson 2020, Ballesteros et al. 2022). 61 

One of the most common forms of logical dependency in morphological phylogenetics 62 

are hierarchical characters—i.e., a set of two or more characters, including one primary character 63 

(governing the absence or presence of an anatomical structure) and one or more secondary 64 

characters (governing various properties of that same structure). A classic example of this logical 65 

dependency was introduced by (Maddison 1993) and is known as the Reb-Blue Tail (RBT) 66 

problem. In the latter, tails can be absent/present (primary character), but tail color (secondary 67 
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character) can only be determined for species in which the primary character is present (Fig. 1). 68 

Characters with such hierarchical structure are widespread in morphological datasets, especially 69 

those designed to assess higher-level phylogenetic relationships. The latter are more prone to 70 

include anatomical structures that originate (neomorphisms) or disappear across major branches 71 

of the tree of life, thus making all traits related to such structures secondary characters directly 72 

dependent on their presence. Examples of this include the origin of limb bones, which results in 73 

all limb related characters acting as secondary characters, during the fish-tetrapod transition 74 

(Simões and Pierce 2021); multiple independent limb losses within squamates (Wiens et al. 75 

2006); the origin of wings in insects (Wipfler et al. 2019); the origin of all floral structures at the 76 

origin of angiosperms (Frohlich and Chase 2007). Therefore, hierarchical characters can be 77 

especially prone to impact phylogenetic datasets aimed towards understanding evolutionary 78 

transitions, as those are typically characterized by the origin or loss of major anatomical 79 

structures (and their dependent secondary characters). Furthermore, even datasets aimed at 80 

smaller taxonomic scales may include hierarchical characters, such as datasets focusing on early-81 

deriving snakes, in which various cranial, limb, and pectoral girdle characters may be either 82 

absent or present (Garberoglio et al. 2019), directly impacting all secondary characters 83 

contingent upon those traits. 84 

Historically, whenever a primary character is absent for any given taxon, secondary 85 

characters that are contingent on the presence of such primary character are traditionally treated 86 

as inapplicable (Maddison 1993). This is represented by the introduction of a gap (‘-’) or missing 87 

data symbol (‘?’) in the phylogenetic data matrix—in either case, that state is treated as the same 88 

by available algorithms in most phylogenetic programs (Brazeau 2011). This strategy, known as 89 

contingent (or traditional) character coding, incorporates the hierarchical relationships between 90 
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characters during tree inference, although it keeps these anatomical traits as separate characters 91 

despite their logical dependency (Maddison 1993, Strong and Lipscomb 1999). Additionally, the 92 

introduction of inapplicable or missing character state scores (‘-’ or ‘?’) have an undesirable 93 

effect during tree search—the placement of taxa in a poorly resolved node in one sector of the 94 

tree being influenced by the placement of other taxa in another distant sector of the tree (Fig. 1). 95 

This is driven by the inability of most phylogenetic programs, especially by maximum 96 

parsimony (MP) algorithms, to find all possible resolutions for the tree node in question 97 

(Maddison 1993, Strong and Lipscomb 1999) —see also Supplementary Material. 98 

Figure 1 99 

 100 
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An alternative to contingent coding—multistate coding—would merge all characters into 101 

a single character with multiple states, and it was the first proposed solution to the problem 102 

introduced by dependent characters by (Maddison 1993). Multistate coding removes the problem 103 

of dependency between anatomical traits but it does not recover the hierarchical relationship 104 

among them, thus removing the phylogenetic signal inherent to this important property and 105 

creating polytomic nodes that should have been resolved (Hawkins et al. 1997, Strong and 106 

Lipscomb 1999). In medium to large-sized datasets, it is also common for primary characters to 107 

have not just one, but multiple secondary characters dependent on it. In these cases, it is 108 

unfeasible to create a single multistate character including all possible combinations of 109 

secondarily dependent traits.  110 

Besides multistate coding, numerous other solutions have been proposed over the past 111 

three decades to handle this simple but pervasive problem, from new character coding strategies 112 

(Maddison 1993, Hawkins et al. 1997, Strong and Lipscomb 1999, Hawkins 2000, Brazeau 113 

2011, Tarasov 2019) to new algorithmic solutions (Brazeau et al. 2019, Tarasov 2019, Hopkins 114 

and St John 2021). The vast array of character coding schemes, their benefits and limitations, 115 

have been reviewed in many recent studies (Simões et al. 2017a, Brazeau et al. 2019, Hopkins 116 

and St John 2021), and so we refer the reader to these for further information (and also our 117 

Supplementary Material). In summary, despite the problems introduced by contingent coding, 118 

nearly all studies have agreed that contingent coding should be preferred over others as it is the 119 

least spurious solution to the problem of hierarchical characters (e.g., the RBT problem) (Strong 120 

and Lipscomb 1999, Sereno 2007, Brazeau 2011, Simões et al. 2017a).  121 

As alternative coding schemes did not provide clear solutions to handle dependent 122 

characters, there was a recent shift in focus towards new algorithmic solutions rather than dataset 123 
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construction ones. The first, the Morphy maximum parsimony algorithm introduced by (Brazeau 124 

et al. 2019), aims to escape the problem of inapplicable characters in contingent coding by 125 

providing a distinct treatment of inapplicable scores—referred to as the MP-M algorithm herein. 126 

Subsequently, (Hopkins and St John 2021) suggested down-weighting secondary characters 127 

relative to primary characters, also using maximum parsimony—referred as MP-HSJ herein. 128 

Subsequently, (Goloboff et al. 2021) advocated for the usage of Sankoff matrices to model 129 

character contingency in maximum parsimony.  130 

The performance of these recent alternative algorithmic solutions, however, remains 131 

largely unknown. Simulated datasets, in which the “true” answer is known, have only been used 132 

once to test phylogenetic accuracy using a small synthetic dataset (with eight taxa) and restricted 133 

to maximum parsimony optimization approaches (Hopkins and St John 2021). Although 134 

analyzing small-sized simulated datasets can be useful as a proof of concept to better understand 135 

the behavior of alternative optimization methods, these do not explicitly test the model 136 

complexities that are inherent to much larger datasets that are closer in size to empirical ones. 137 

Important parameters that can be modeled in more complex simulated datasets include variable 138 

levels of homoplasy, character evolutionary rates (contributing to branch lengths), tree 139 

symmetry, the proportion of primary and secondary characters, among others. For instance, 140 

previous studies have reported a significant performance disparity of various methods to 141 

accurately infer datasets originated from symmetric and asymmetric trees (O'Reilly et al. 2018, 142 

Puttick et al. 2019). Tree symmetry is also at the heart of the problem of hierarchical 143 

characters—(Maddison 1993), see also Fig. 1 and Supplementary Material herein—and so we 144 

should expect different performances from the proposed solutions to the problem of hierarchical 145 

characters across different models. 146 
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Additionally, it has been shown that the number of secondary characters for each primary 147 

character will affect the performance of distinct optimization procedures, as demonstrated by 148 

(Hopkins and St John 2021). However, another key factor is the proportion of primary characters 149 

that are associated with secondary characters within a dataset. For instance, in approaches that 150 

down-weight secondary characters (e.g., MP-HSJ), if 30 secondary characters are dependent 151 

upon a single primary character, then their total weight will add up to a maximum of 1 step for 152 

the total tree score, and their individual relative weights will be of only 1/30 (= 0.03). However, 153 

if these 30 secondary characters come from 5 independent primary characters (e.g., 6 from each 154 

primary character), then their total contribution to the tree score can add up to a maximum of 5, 155 

and their individual relative weights will thus be five times higher than in the previous 156 

example—1/6 (= 0.167). To our knowledge, the proportion of primary characters with secondary 157 

characters has never been previously investigated for its impact on phylogenetic accuracy, and 158 

we predict it should considerably impact various phylogenetic inference approaches. 159 

Importantly, morphological datasets are now frequently analyzed by 160 

probabilistic/statistical methods—maximum likelihood and Bayesian inference (BI)—across 161 

various study systems—e.g.,(Lee et al. 2014, Giles et al. 2017, King et al. 2017, Simões et al. 162 

2017b, Paterson et al. 2019, Simões and Pierce 2021). Yet, the problem of hierarchical characters 163 

has rarely been discussed in the context of probabilistic inference methods. One major exception 164 

is a recent study suggesting the polymorphic re-coding of characters following the concept of 165 

structured and hidden states Markov models to incorporate the hierarchical structure of primary 166 

and secondary characters into Bayesian inference, as a solution to the problem of hierarchical 167 

characters (Tarasov 2019). However, no study to date has demonstrated if and how the problems 168 

introduced by hierarchical characters in MP impacts probabilistic phylogenetic algorithms to 169 
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begin with, despite some previous suggestions that they would (Brazeau et al. 2019). At least in 170 

principle, theory suggests that likelihood-based methods should be less impacted by hierarchical 171 

characters. That is because all maximum likelihood and BI software implement variations of the 172 

Felsenstein likelihood optimization algorithm (Felsenstein 1973, 1981), which includes only a 173 

“down-pass” phase (from tips towards the root) for the calculation of likelihood scores at every 174 

node in the tree being reconstructed. The absence of an “up-pass” phase during the optimization 175 

of ancestral nodes—which is characteristic of maximum parsimony approaches (Brazeau 2011, 176 

Brazeau et al. 2019)—would suggest, for instance, that the dependency problem introduced by 177 

inapplicable state scores in contingent character coding should not impact tree inference using 178 

likelihood optimization procedures. 179 

Here, we utilized a series of simulations of morphological datasets to address the 180 

following questions: how do different character coding schemes impact the relative performance 181 

of MP and BI in both simple and complex morphological datasets? Under a common coding 182 

scheme, how do classical and recently proposed optimization algorithms for MP perform relative 183 

to each other and to BI in morphological datasets? What is the impact of different tree and 184 

character models for the performance of each method? We find a striking contrast of results 185 

between simplistic and complex simulated datasets regarding best coding practices and a large 186 

disparity in performance among methods depending on tree or character distribution structures. 187 

As with other recent studies, our results are quite variable depending on the metric used for 188 

assessing accuracy and, using simulations, we demonstrate that quartet distance is less sensitive 189 

to tree resolution than bipartition-based metrics, being a better metric for differences in topology 190 

only. Finally, our results indicate that standard BI is significantly less impacted by contingent 191 
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coding, displaying superior performance to all MP methods tested here, even those explicitly 192 

model to handle inapplicable characters. 193 

 194 

MATERIALS AND METHODS  195 

Simulation 1: Simplified Synthetic Datasets 196 

To make our study directly comparable to previous ones addressing issues of character 197 

coding, we replicate the simplified synthetic datasets used to exemplify the RBT problem of 198 

(Maddison 1993), which was also used by others (Strong and Lipscomb 1999, Tarasov 2019). 199 

Specifically, this includes two datasets aimed towards replicating the two distinct problematic 200 

scenarios introduced by contingent coding and inapplicable character states.  201 

Dataset 1 (Scenario 1, symmetric trees).— Refers specifically to the RBT example of 202 

(Maddison 1993) with 14 taxa plus 1 outgroup with their internal relationships fully resolved and 203 

with each internal node supported by one synapomorphy, with the exception of the taxa within 204 

the so called zone of contention (Fig. 1a). A total of 11 characters are used to create this tree 205 

topology. The tree topology is symmetric and includes one fully resolved clade on the right side 206 

of the tree in which the primary character is present and the secondary character is applicable, 207 

and one unresolved clade in which the primary character is convergently evolving on the left side 208 

of the tree. Subsequently, one or two extra characters are added to the dataset (depending on the 209 

coding scheme to be tested). For all coding schemes in which two characters are added, 210 

“character 12” is the primary character (denoting absence and presence of tail) and “character 211 

13” (denoting tail color) is the secondary character dependent on the primary character. Under 212 

multistate coding, a single “character 12” is present (Fig. 1b). 213 
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Dataset 2 (Scenario 2, asymmetric trees). —Simulates the tree example used by Strong & 214 

Lipscomb (1999, Fig. 12 therein). The objective with this dataset is to explore potential biases 215 

introduced by primary absences and resulting secondary inapplicable characters at the base of the 216 

tree. This dataset includes 7 taxa plus 1 outgroup with their internal relationships fully resolved 217 

and with each internal node supported by one synapomorphy, except for the taxa within the zone 218 

of contention (Fig. 1f-i). A total of three characters are used to create this tree topology. The tree 219 

topology is strongly asymmetric and includes a single zone of contention. As for Dataset 1, one 220 

or two characters are added to represent primary and secondary characters for the various coding 221 

schemes.  222 

 223 

Simulation 2: Complex Synthetic Dataset 224 

It is well-established that number of taxa (Hillis 1996, 1998, Pollock et al. 2002, Zwickl 225 

and Hillis 2002, Hillis et al. 2003, Heath et al. 2008, Vernygora et al. 2020), number of 226 

characters (Wright and Hillis 2014, O'Reilly et al. 2016, Puttick et al. 2017, Puttick et al. 227 

2019)—but see (Keating et al. 2020)—and the relative number of taxa per character 228 

(taxon:character ratio) (Graybeal 1998) all impact the performance of phylogenetic analyses 229 

using both morphological and molecular data under different optimality criteria. Therefore, we 230 

kept the number of taxa, number of characters, and the taxon: character ratio all constant to avoid 231 

introducing the impact of those extra variables on tree inference accuracy. Specifically, we used 232 

the following fixed values: 31 taxa (30 ingroup taxa +1 outgroup) and 60 characters—and thus a 233 

fixed taxon:character ratio 1:2 for the ingroup, which approximates well the taxon:character ratio 234 

in empirical datasets (Scotland et al. 2003, Murphy et al. 2021).  235 
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The approach above gives us the following fixed parameters: T (total number of taxa), 𝐶 236 

(total number of characters), R (taxon/character ratio). Additionally, the total number of 237 

characters (C) can be represented by: 𝐶 = 𝑃𝑛 + 𝑆𝑛, where 𝑃𝑛 is the total number of primary 238 

characters and 𝑆𝑛 is the total number of secondary characters. As previously acknowledged 239 

(Hopkins and St John 2021), the proportion of secondary characters in the dataset will impact the 240 

outcome of the results. Therefore, we simulated three groups of datasets with increasing amounts 241 

of secondary characters relative to the total number of characters: 10%, 25% and 50%. Given a 242 

constant total of 60 characters, the latter translates into 𝑆𝑛= 6, 15 and 30 secondary characters, 243 

respectively (Table 1). 244 

 245 

TABLE 1. Combinations of characters distribution models. 246 

Model C 𝑺𝒏(%C) 𝑺𝒏  (absolute) 𝑷𝒏 𝑷𝒔 𝑺𝒅 

M1 60 10 6 54 1 6 

M2 60 25 15 45 1 15 

M3 60 50 30 30 1 30 

M4 60 50 30 30 2 15* 

M5 60 50 30 30 5 6* 

 247 
*Note that the number of secondary characters per primary character (𝑆𝑑)on models M4 and M5 248 
are the same as in models M2 and M1, respectively. However, the secondary characters in M4 249 
and M5 are distributed across more primary characters (𝑃𝑠), which will impact the final Fitch 250 
scores and tree lengths. 251 

 252 

As discussed above, another key factor is how secondary characters are distributed 253 

among primary characters. For instance, in approaches that down-weight secondary characters 254 

(e.g., HSJ), if 30 secondary characters are dependent upon a single primary character their total 255 
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weight will add up to a maximum of 1 step for the total tree score, and their individual relative 256 

weights will be of only 1/30 (= 0.03) (for a HSJ α =1). However, if these 30 secondary characters 257 

come from 5 independent primary characters (e.g., 6 from each primary character), then their 258 

total contribution to the tree score will add up to a maximum of 5, and each secondary 259 

character’s relative weight will be five times higher than in the previous example—1/6 (= 0.167). 260 

Therefore, secondary characters may have quite different weights depending on the relative 261 

distribution of secondary characters among primary characters. To account for the latter, we 262 

introduced another variable to our simulations: the number of secondary characters per primary 263 

characters (𝑆𝑑), with the relationship 𝑆𝑑 =  𝑆𝑛/𝑃𝑠, where 𝑃𝑠 is the number of primary characters 264 

with dependent secondary characters. For instance, if we have 30 secondary characters 265 

dependent on just one primary character—as in all examples from (Hopkins and St John 2021), 266 

where all secondaries are dependent on a single primary character— that would be a case where: 267 

 268 

            60(𝐶) = 30(𝑃) + 30(𝑆)  269 

and, 270 

 𝑆 = 30 and 𝑃௦ = 1, then 𝑆ௗ =  𝑆/𝑃௦ = 30 secondary characters per primary character. 271 

However, if we have 30 secondary characters dependent upon 5 primary characters: 272 𝑆 = 30 and 𝑃௦ = 5, then 𝑆ௗ =  𝑆/𝑃௦ = 6 secondary characters per primary character. 273 

 274 

Therefore, here we simulated three categories for the distribution of secondary characters 275 

for datasets with 30 secondary characters: 𝑆ௗ = 6, 15, and 30 secondary characters per primary 276 

character (Table 1).  277 

 278 
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Simulated tree construction.—We generated two simulated master (“true”) trees, one 279 

fully symmetrical and another with perfectly asymmetrical topology, to test for the impact of 280 

different tree symmetries on phylogenetic performance. Each tree included 31 taxa (30 ingroup 281 

and 1 outgroup) as defined in the previous section. To emulate the RBT problem, we designated 282 

10 ‘crown’ taxa in each sector of the symmetrical tree (total = 20 taxa) and 10 ‘crown’ taxa in 283 

the asymmetrical tree—therefore fixing to 10 the number of taxa with applicable secondary 284 

characters forming the zone of contention (Fig. S1). All ‘stem’ taxa lying rootward of the 285 

‘crown’ were designated to have the primary character absent, thus being inapplicable in respect 286 

to secondary characters. Because our simulation design focused on generating morphological 287 

data with no common evolutionary mechanism (Puttick et al. 2019), the branch length parameter 288 

was omitted from the generated master trees. 289 

 290 

Simulated dataset construction.—We used each simulated tree to generate 100 replicates 291 

of binary morphological data matrices for each set of parameters (Models 1-5; listed in Table 1), 292 

following the conceptual approach of (Puttick et al. 2019). This procedure does not use explicit 293 

molecular substitution models to simulate morphological datasets, as in most previous 294 

simulations of morphological datasets—e.g., (Wright and Hillis 2014, O'Reilly et al. 2016, 295 

Puttick et al. 2017, O'Reilly et al. 2018, Vernygora et al. 2020). Instead, each individual 296 

character is first defined as either homologous or homoplastic based on a probability function of 297 

character homoplasy derived from an extensive survey of empirical datasets (Goloboff et al. 298 

2017, Puttick et al. 2019). This approach is designed to generate morphological characters with a 299 

model that does not necessarily favor probabilistic inference approaches—in fact, possibly 300 

favoring MP (Puttick et al. 2019)—for directly comparing the performance of MP and 301 
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probabilistic methods in phylogenetics (Puttick et al. 2019). For homologous characters, terminal 302 

taxa are assigned states that result in the minimum number of character state transformations and 303 

therefore have a consistency index (CI)=1. If a character was defined as homoplastic, character 304 

states were assigned to the terminal taxa to produce CI<1. For our simulated datasets, we set a 305 

target CI index for the entire matrix to be within an intermediary range between 0.4 – 0.5 [bin 5 306 

in (Puttick et al. 2019)].   307 

We generated datasets using a two-step procedure. First, we generated all primary 308 

characters that were applicable to all taxa. Primary characters that were designated to have 309 

secondary characters were assigned a specific pattern of character state scores: present [char.state 310 

= 1] in the ‘crown’ ten taxa and absent [char. state = 0] in the outgroup and ‘stem’ taxa (Fig. S1). 311 

Next, we performed a second round of simulations to generate scores for the secondary traits 312 

only. The latter included pruned versions of the master trees only with taxa that were scored as 313 

having the primary characters as present. These simulated secondary data matrices were then 314 

merged with the primary data matrices. Taxa that were scored as ‘absent’ for the primary traits 315 

were scored as ‘inapplicable’ for the secondary traits in the final merged datasets. All simulated 316 

datasets contained variable characters only, which is typical of morphological datasets.  317 

 318 

Analyses of Simulated Datasets 319 

MP-F tree searches for the simplified datasets generated by Simulation 1 for distinct 320 

coding strategies were conducted using the “Implicit Enumeration” algorithm in the software 321 

TNT v.1.5 (Goloboff and Catalano 2016).  For Simulation 2, tree searches were conducted using 322 

the phangorn R package (Schliep et al. 2017). For tree searches with MP-M optimization we 323 

used its implementation in the R package TreeSearch v1.0.1 (Smith 2018), which uses 324 
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MorphyLib (Brazeau et al. 2017) to handle inapplicable data (Brazeau et al. 2019). Tree searches 325 

with MP-HSJ optimization, we used the “dissimilarity” and “ hsjScorer” R functions from 326 

(Hopkins and St John 2021) in conjunction with the branch-swapping algorithms available in the 327 

package TreeSearch v1.0.1 (Smith 2018). Starting rooted trees were subject SPR and TBR 328 

branch swapping operations, the results of which were used as starting trees for further analyzes 329 

with a series of ratchet iterations (functions “Ratchet” and “pratchet”), switching to the next run 330 

if the best score was hit 10 times, and stopping all searches if best score from each run was the 331 

same for 20 runs. The best scoring tree was used as the starting point for multiple ratchet 332 

(function “MultiRatchet”) runs with the same criteria as above to obtain multiple most 333 

parsimonious trees. 334 

For the MP-HSJ optimization, we further tested the performance of distinct α rescaling 335 

parameter values—for details on its implementation, see (Hopkins and St John 2021). In 336 

summary, when α = 0, secondary characters are disregarded entirely from the analysis (weight = 337 

0), and when α = 1, secondary characters will not be further penalized, although all characters 338 

that are secondary to a primary character will still have a combined maximum score value of 1. 339 

To see the impact of different α values on the performance of MP-HSJ optimization, we tested 340 

for a range of three possible α values: 0, 0.5 and 1.  341 

Bayesian analyses used the Mk model for morphological characters assuming the 342 

presence of variable characters only (Mkv model), with rate variation among characters sampled 343 

from a gamma distribution. Each analysis consisted of two independent runs using four chains 344 

each, sampling at every 1000 generation, for a total of 10 million generations using the software 345 

Mr. Bayes v 3.2.6 (Ronquist et al. 2012). 346 
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All most parsimonious trees (MPTs) obtained from each optimization procedure were 347 

used to calculate a strict consensus tree. Posterior tree samples obtained by BI were used to 348 

calculate a majority rule consensus tree. Both consensus options were chosen as they are the 349 

standard output trees for each of those respective optimization procedures in most studies using 350 

morphological data. Consensus trees were subsequently used for comparison with the master 351 

trees generated by simulations.  352 

 353 

Performance Measures 354 

We measured accuracy based on the total similarity shared by the inferred trees to the 355 

generated master trees using both bipartition and quartet tree distance metrics. For bipartition 356 

comparisons, we used similarity scores based on the Mutual Clustering Information metric 357 

(MCI) (Smith 2020), an information theory-based metric that shows the amount of mutual 358 

clustering information shared by all bipartitions in two or more trees. The latter is part of a larger 359 

class of generalized Robinson-Foulds (RF) distance metrics that overcome the limitations from 360 

classical implementations of the RF distance, such as quick saturation of distance scores (Smith 361 

2020). Quartet similarity is based on the “tqDist” algorithm from (Sand et al. 2014)—362 

implemented in the R package Quartet (Smith 2019)—to measure the number of shared four-363 

taxon subtrees between two or more trees.  364 

Quartet similarity is predicted to outperform bipartition metrics as it better reflects 365 

phylogenetic patterns at deeper internal nodes, thus better handling poorly resolved nodes 366 

(Mongiardino Koch et al. 2021)—a problem for previous tree distance metrics, including 367 

traditional RF and Matching split distances [e.g., (Vernygora et al. 2020)]. Further, quartet 368 

similarity is less prone to the influence of wildcard taxa and tree shape (Smith 2020, 369 
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Mongiardino Koch et al. 2021). Accordingly, we found several instances in which MCI and 370 

quartet similarity differed when applied to the same trees, and so we simulated how each metric 371 

is impacted by decreased tree resolution or increased topological differences to test the precise 372 

conditions in which these metrics yield different results. For both the asymmetric and the 373 

symmetric 30-taxa master trees, we randomly collapsed from 1 to 28 internal nodes and 374 

calculated MCI and Quartet similarity to the starting tree. Similarly, we randomly applied from 1 375 

to 45 nearest-neighbor interchange (NNI) moves and compared the resulting tree to the starting 376 

tree under both metrics. For each number of collapsed nodes or NNI moves, we did 50 replicates. 377 

Finally, we compared both metrics in terms of their sensitivity to the number of collapsed nodes 378 

(tree resolution) or number of NNI moves (topological differences), and whether tree symmetry 379 

affected either metric.  380 

As discussed in detail in our Results, we found a superior performance of quartet 381 

distances over bipartition metrics (e.g., MCI) in instances of poor node resolution (Fig. 2). This 382 

limits our ability to infer resolution error, since this metric is calculated based on bipartition tree 383 

distances (Smith 2020). Hence, we only evaluated resolution error when results from MCI 384 

matched the results obtained by quartet distances. 385 

Finally, considering the BI is not intended to provide a point tree estimate, we also 386 

examined the size of the parameter space using different coding schemes for BI results. We did 387 

that by calculating the mean and variance of RF distances among the post-burnin trees of the 388 

posterior sample sensu Wright and Lloyd (2020). Since the trees in the posterior sample do not 389 

contain polytomies, the RF distance metric is not impacted by differences in tree resolution (see 390 

Results). This metrics provide a perspective on tree disparity in the posterior sample (i.e., how 391 

loosely or tightly scattered trees are in the posterior distribution). 392 
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 393 

Statistical Analyses  394 

To assess if there were significant differences between performance results among 395 

different tree and character models by inference method type, we conducted nonparametric 396 

pairwise Wilcoxon rank sum (Mann-Whitney) between all analyses (Supplementary Tables 1-3). 397 

Parametric tests were not possible considering the bimodal distribution of some of the results 398 

(e.g., Figs 3-5). 399 

 400 

RESULTS 401 

“Solutions” to the RBT Problem—a Conceptual Paradox 402 

There are only three pieces of phylogenetic information universally present within 403 

primary and secondary characters as illustrated by the RBT problem (Fig. 1): i) the primary 404 

character groups all taxa with tails together and those without tails as a second clade; ii) the 405 

secondary character (tail color) groups red-tailed taxa together and blue-tailed taxa together; iii) 406 

the biological dependency of the secondary character upon the primary character indicates that 407 

all aspects of the secondary character should be only applicable to taxa in which the primary 408 

character is present (defining the clade with tail). Beyond these three aspects, there is no data 409 

provided by either the primary or secondary characters to inform which tail color evolved first. 410 

In fact, the latter is irrelevant for tree inference under either MP or probabilistic methods, since 411 

reconstructing the direction of character state transformation (i.e., identifying synapomorphies) is 412 

only performed by MP upon the rooting of the tree once the most parsimonious solutions have 413 

already been found (Nixon and Carpenter 1993, 2012). For probabilistic methods (maximum 414 

likelihood and Bayesian inference) outgroup comparison and the direction of character-state 415 
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transformation is not taken into consideration during tree sampling (Felsenstein 1973, 2004). 416 

Therefore, in the absence of additional characters, there is no single solution to the RBT problem 417 

as presented in Scenarios 1 and 2—contra (Tarasov 2019). Instead, any coding method or 418 

inference algorithm should allow the two possible solutions (i.e., red and blue first hypotheses) 419 

to be equally likely, and the latter should only be considered within the clade composed by taxa 420 

where the primary character is present. Therefore, the information content of any set of primary 421 

and secondary characters do require that the following criteria should be met for any coding 422 

approach or inference method to produce logically plausible and biologically realistic results: 423 

Corollary 1.—Secondary characters (e.g., tail color) can only evolve within a clade where 424 

the primary character is present (e.g., tail is present). This hierarchical relationship is important 425 

both biologically and methodologically, as the inability to recover this hierarchical relationships 426 

will inevitably lead to the loss of tree resolution (Hawkins et al. 1997).  427 

Corollary 2.—As we have no prior information on which state of the secondary character 428 

(e.g., tail color) evolved first, all known states (e.g., red and blue tails) should be considered as 429 

equally parsimonious/likely to be the ancestral condition. Under MP, solutions S1-S2 (Fig. 1c-e) 430 

and A1-A3 (Fig. 1f-i) should all be inferred as equally most parsimonious. For BI, tree 431 

topologies with blue evolving first and red evolving first should all be equally likely to be 432 

inferred and subsequently sampled from the posterior distribution with similar frequencies, 433 

considering all other parameters remaining constant. Both hypotheses should also have similar 434 

posterior probabilities.  435 

To meet expectations from both corollaries above, two or more distinct tree topologies 436 

should be estimated for a coding or inference approach to be valid, depicting tree topologies with 437 

both valid solutions within the zone of contention (e.g., blue-first vs red-first hypotheses). 438 
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Additionally, all resulting trees should have the primary character grouping all taxa with the 439 

present condition within the zone of contention. Therefore, the consensus (strict or majority rule) 440 

tree estimated from the output trees meeting these criteria will necessarily include all taxa in the 441 

zone of contingency as monophyletic (supported by the primary character), but with no particular 442 

preference for either blue or red evolving first. Hence, the consensus tree should necessarily be 443 

unresolved, depicting a polytomic relationship for the taxa within the zone of contention. 444 

 445 

Simplified synthetic datasets 446 

Fitch MP (MP-F) .—Under MP-F, we find that four combinations of coding schemes/tree 447 

topologies meet the two corollaries for logically sound resolutions of the RBT problem (Table 448 

2). One is provided by contingent coding under Scenario 2 (asymmetric trees), but which fails 449 

under Scenario 1 (symmetric trees), as illustrated in Fig. 1 (f-i) and discussed in the 450 

Supplementary Material. A second coding scheme to meet both corollaries is represented by 451 

multistate coding under Scenario 1 (symmetric trees), which had been highlighted by (Maddison 452 

1993) as a solution to the contingent coding problem (Table 2). However, multistate coding fails 453 

under Scenario 2 as it cannot recover the hierarchical relationship between primary and 454 

secondary characters— as previously observed by (Hawkins et al. 1997). The latter results in 455 

some taxa (in which the primary character is absent) to be estimated as nested within the zone of 456 

contention, and a strict consensus tree with reduced resolution relative to other coding schemes 457 

(Figs. S2-S7). Finally, all options including character ordering logically prevent the basic 458 

assumption set by corollary 2, as the ordering scheme will inevitably predetermine which 459 

secondary state (red or blue) will evolve first (Figs. S6 and S7, Table 2). 460 
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The only coding approach to successfully meet the conditions set by corollaries 1 and 2 461 

above under both symmetric and asymmetric trees (Scenarios 1 and 2) is “absent coding” (Fig. 462 

S8 and S9, Table 2). Despite being briefly discussed in the literature before, absent coding was 463 

tested only once (Strong and Lipscomb 1999), and its ability to meet both corollaries was never 464 

previously realized (Supplementary Material). 465 

 466 

Morphy MP (MP-M) .—This approach correctly recovers the hierarchical relationship between 467 

primary and secondary characters as well as correctly finding the blue-first and red-first 468 

hypotheses as equally parsimonious among the MPTs (Figs. S10 and S11, Table 2). This 469 

matches the expectations of both corollaries, as predicted (Brazeau et al. 2019). 470 

 471 

HSJ MP (MP-HSJ) .—As with MP-M, this approach was designed to correctly recover blue-first 472 

and red-first hypotheses as equally parsimonious (Hopkins and St John 2021). As expected, it 473 

does recover those hypotheses among the MPTs (Figs. S12 and S13, Table 2). The hierarchical 474 

relationship between primary and secondary characters are recovered, but we note that those 475 

must be provided by the user in the form of text file indicating a priori what characters are the 476 

primary characters and secondary characters. 477 

 478 

Bayesian Inference-Mkv model (BI) .—Using traditional (non-clock) BI and traditional modelling 479 

of morphological characters (Mkv model), we found a substantial contrast of performance 480 

between scenarios 1 and 2 concerning hierarchy (corollary 1). Regardless of the character coding 481 

scheme, BI analyses of symmetric trees always inferred the clade defined by the presence of the 482 

primary character (i.e., tail) as monophyletic in more than 90% of the sampled posterior trees 483 
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(Figs. S14-S16, Table 2), and the posterior trees sampled successfully converged towards an 484 

optimal tree topology solution (Fig. S14-16, c,d). Additionally, frequency among posterior trees 485 

for the correct inference of the clade defined by the presence of the primary character (i.e., tail) 486 

was slightly higher for absent coding (98.7%), compared to contingent coding (97%) or 487 

multistate (92.9%) coding.  488 

In contrast, asymmetric trees were much harder to estimate using BI across all coding 489 

schemes, with the posterior sample of trees not converging towards similar topologies (Fig. S17-490 

19) and with the focal clade defined by the primary character being inferred at drastically lower 491 

frequencies compared to symmetric trees (Table 2). However, the absent coding scheme still was 492 

the best performing one relative to competing coding schemes in this aspect (ca. 50% compared 493 

to 21 and 23% from other schemes). 494 

Additionally, we expected the frequency of posterior trees inferring red and blue-first 495 

hypotheses to be similar to each other under corollary 2. We found exactly this pattern with 496 

almost identical sampling frequencies (<1% of difference) in the frequency of trees with blue or 497 

red first hypotheses under absent and multistate coding for symmetric trees (Scenario 1) (Table 498 

2). We found similar results using absent and contingent coding for asymmetric trees (Scenario 499 

2). However, contingent coding in Scenario 1 strongly favored a blue-first hypothesis (similarly 500 

to MP-F), whereas multistate coding in Scenario 2 favored a red-first hypotheses more strongly. 501 

As with MP-F, absent coding was the only coding scheme meeting both corollaries for both 502 

simulated scenarios. 503 

 504 

 505 

 506 
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TABLE 2.  Results for the simplified synthetic datasets using various coding schemes. Coding 507 
schemes meeting expectations from corollaries 1 and 2 are highlighted with blue background. 508 
Coding schemes with results pre-established by users (ordered characters) highlighted in gray. 509 
Results for coding schemes that are not applicable to particular methods are marked with “NA”. 510 
Abbreviations: Abs, absence coding; B, blue tail-first hypothesis; Cont, contingent coding; Cor, 511 
corollaries; M, method; Multi, multistate coding; P-S, primary and secondary character 512 
hierarchy; ord, ordered; R, red tail-first hypothesis; unord, unordered. 513 

  Scenario 1 (Symmetric/two zones) Scenario 2 (Asymmetric/one zone) 

M Cor 
Abs 

Cont 
Multi Abs 

Cont 
Multi 

Ord Unord Ord Unord Ord Unord Ord Unord 

M
P-

F 1 yes yes yes yes yes yes yes yes yes no 

2 no yes no no yes no yes yes no yes 

M
P-

M
 1 NA NA yes NA NA NA NA yes NA NA 

2 NA NA yes NA NA NA NA yes NA NA 

M
P-

H
SJ

 1 NA NA yes NA NA NA NA yes NA NA 

2 NA NA yes NA NA NA NA yes NA NA 

BI
 

1 yes yes 
(98.7%) 

yes  
(97%) yes yes  

(92.9%) yes no  
(50.2%) 

no  
(21.13%) yes no  

(23%) 

2 no yes 
(B-R <1%) 

no 
(B-R=26%) no yes 

(B-R <1%) no yes 
(B-R <1%) 

yes 
(B-R <1%) no no 

(B-R=15.7%) 

 514 
* Yes if >90% of posterior trees infer the focal clade (defined by primary character being 515 
present) as monophyletic. 516 
**Yes if difference in frequency between blue (B) and red (R)-first hypotheses <1%. 517 

 518 

 519 

 520 

 521 
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Complex synthetic datasets 522 

Performance of tree distance metrics.—We found that both metrics are insensitive to the 523 

symmetry of the starting tree (Fig. 2). For both MCI and Quartet similarity, similarity decreases 524 

approximately linearly with the number of NNI moves (Fig. 2a). MCI show signs of saturation 525 

earlier than Quartet similarity, with a decreasing slope as NNI moves increase, while for Quartet 526 

similarity the relationship continues approximately linear even when the number of NNI moves 527 

is greater than the number of internal nodes in the tree (Fig. 2a). The two metrics differ more 528 

strongly in their response to decreased tree resolution, however. While MCI decreases 529 

approximately linearly with the number of collapsed nodes, quartet similarity is less sensitive to 530 

decreased tree resolution when the number of polytomies is small and decreases sharply when 531 

trees approach a complete polytomy (Fig. 2b). 532 

Figure 2 533 

 534 

 535 

Performance across coding and alpha schemes.—Only two methods could be tested for different 536 

coding schemes (MP-F and BI), since the two other MP methods (MP-M and MP-HSJ) were 537 
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designed to handle datasets constructed using contingent coding schemes specifically. 538 

Additionally, we tested the performance across different weighting schemes for secondary 539 

characters (alpha variable) for the MP-HSJ optimization (Hopkins and St John 2021), which was 540 

previously untested.  541 

Figure 3 542 
 543 

 544 
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Under MP-F, all coding methods had extremely similar performances regardless of the 545 

tree distance metric used (Fig 3a). Given the extremely similar results presented by both metrics, 546 

we evaluated the resolution error incurred by different coding schemes—see Methods. 547 

Resolution error was also identical across all three coding methods for both Type I (incorrectly 548 

resolved notes) and Type II (incorrectly unresolved nodes) for all coding schemes. 549 

Under BI, however, mean, median, and modal accuracy values were significantly higher 550 

for contingent coding relative to absent and multistate coding under both MCI and quartets tree 551 

distance metrics (Fig. 3b). Furthermore, resolution error results indicate contingent coding 552 

induces a slightly lower amount of Type I and II errors compared to absent and multistate 553 

coding.  554 

For the MP-HSJ optimization, quartet distances indicate no substantial difference in 555 

performance across distinct alpha values, whereas MCI indicates a likely worse performance for 556 

alpha values of 0 relative to 0.5 and 1, which is induced by higher proportions of Type II error 557 

(Fig. 3c). 558 

 559 

Performance across methods.—When comparing all methods based on contingent coding—the 560 

best performing coding procedure (Fig. 3a and b) and the only one common to all inference 561 

methods—MP-F has the worst accuracy compared to all other methods (Fig. 4). This result is 562 

consistent with predictions in the literature and is consistent regardless of accuracy metric (Fig. 563 

S20). However, the best solution among the three remaining methods depends on the 564 

performance metric. Similarity scores based on MCI (Smith 2020) suggests MP-HSJ perform the 565 

best whereas quartet distances indicate BI performs more accurately than other inference 566 

methods (Fig. S20). However, quartet distances were found to be more robust to variations in 567 
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tree resolution when compared to bipartition metrics here (Fig. 2)—an important factor when 568 

comparing consensus trees, as done herein. Considering this, we favor the results provided by 569 

quartet distances, which suggest BI outperforms all inference methods based on MP, even those 570 

specifically designed to handle inapplicable characters. 571 

When examining the tree-to-tree distances within each posterior sample (Fig. S21), we 572 

observed that simulation conditions in which secondary characters are spread more evenly 573 

among primary characters showed higher mean RF distances (i.e., models 3, 4, and 5). It should 574 

be noted that unlike in accuracy comparisons between methods, a higher RF score does not mean 575 

more differences from a “true” or simulation tree.  This is a metric of within-posterior sample 576 

differences. In this case, a higher RF means that more different trees are being proposed and 577 

evaluated in these simulation conditions. We confirmed this by calculating a per-posterior 578 

variance in the RF distance. This measure, too, indicated that greater dispersal of secondary 579 

characters is associated with exploring more disparate phylogenetic trees (Fig. S22). 580 

 581 

Figure 4 582 

 583 

 584 
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Performance across tree and character models.—The larger data dispersal and bimodality in the 585 

results for each inference method (Fig. 4) suggest that other factors influence their respective 586 

performance, two of which were explicitly modeled here: tree symmetry and distribution of 587 

secondary characters among primary characters.  588 

Using quartets distances, MP-F performs significantly better for asymmetric trees 589 

compared to symmetric trees (Fig. 5a, Figs. S23 and S24, and Table S2), as predicted by the 590 

RBT problem (Maddison 1993) and in our simplified synthetic datasets (Fig. 1 and Table 2). 591 

MP-M performs significantly better than MP-F for both tree models, and with asymmetric trees 592 

also significantly more accurately inferred compared to symmetric trees. MP-HSJ and BI have 593 

greater accuracy relative to MP-M and MP-F (Fig. 5a, Figs. S23 and S24). The latter two 594 

methods perform relatively similarly for datasets used to reconstruct symmetric and asymmetric 595 

trees, with a slight advantage for symmetric trees (although nonsignificant for MP-HSJ). The 596 

greatest improvement in performance for MP-HSJ and BI relative to MP-F and MP-M is 597 

observed on the inference of symmetric trees (Fig. 5a,), suggesting they are more capable than 598 

MP-M of removing the problems introduced by inapplicable characters. 599 

In contrast, the MCI metric suggests that accuracy in MP-F tree inference is similar for 600 

symmetric and asymmetric trees (Figs. S23 and S24), thus going against all predictions above 601 

and previous evidence from the literature indicating symmetric trees (as in Figs. 1a, c-e) are 602 

considerably harder to estimate using MP-F compared to asymmetric trees (as in Fig. 1f-i) in the 603 

presence of inapplicable scores for hierarchical characters. This further suggests this metric is not 604 

capable of detecting meaningful differences in performances across methods.  605 

The performance of distinct inference methods when considering different primary and 606 

secondary character distribution models (Table 1) indicates a significant decrease in accuracy of 607 
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MP-F when increasing the number of secondary characters per primary character (M1-M3), or 608 

when increasing the number of primary characters bearing secondary characters (M3-M5) (Figs. 609 

5b, S25 and S26, and Table S3). Such decrease in accuracy is also observed among other 610 

methods under the same circumstances, but to a much lower extent, except for model M5. In the 611 

latter, the increase in the number of primary characters bearing secondary characters dependent 612 

upon them substantially decreases performances across all methods (Fig. 5b).  613 

Figure 5 614 

 615 

 616 
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DISCUSSION 617 

Differences between quartet and bipartition metrics to measure method accuracy 618 

 Here we found that quartet and bipartition metrics favor different inference methods. Our 619 

simulations show that this is likely due to a difference in the sensitivity of each metric to tree 620 

resolution in summary trees and topological differences, but not to tree symmetry. MCI 621 

decreases approximately linearly with tree resolution and small topological differences (Fig. 2). 622 

As a result, when trees being compared include polytomies (e.g., most summary or consensus 623 

trees from MP and non-clock BI studies), the underlying cause of distances estimated may be 624 

ambiguous. Quartet similarity, on the other hand, appears to be less sensitive to polytomies 625 

except for extreme cases, better reflecting differences in topology. When applied only to fully 626 

resolved trees, MCI possesses several desirable properties in relation to other metrics, including 627 

Quartet Similarity (Smith, 2020). When trees vary both in topology and resolution, however, 628 

interpretation from MCI can be problematic. By using of both metrics, we are able to find that BI 629 

results in more accurate but less resolved trees, while MP-HSJ results in trees with higher 630 

information content shared with true trees because they are better resolved, although less 631 

accurate (i.e., include more false positives).  632 

 633 

Advantages of contingent coding over other coding schemes under MP and BI 634 

It has long been suggested that contingent coding is the less spurious solution to the 635 

problem of dependent characters despite the introduction of inapplicable character states in 636 

secondary characters (Strong and Lipscomb 1999, Sereno 2007, Brazeau 2011, Simões et al. 637 

2017a). However, this assumption had never been tested using complex simulated morphological 638 

datasets, and nearly all conclusions regarding distinct coding strategies come from small, 639 
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simulated datasets (Strong and Lipscomb 1999, Brazeau et al. 2019, Hopkins and St John 2021), 640 

equivalent in size and scope to our Simulations 1 (simplified synthetic datasets). By examining 641 

both symmetric and asymmetric tree structures for Simulations 1 and ancestral state 642 

reconstructions for each of the three optimization procedures tested here (contingent, absent, and 643 

multistate), we find new results and interpretations concerning the utilization of these coding 644 

schemes. We find that the problems introduced by character dependency are most easily avoided 645 

by using absent coding instead of contingent or multistate coding (Table 2, Figs. S8and 9), thus 646 

going against previous suggestions concerning this particular coding strategy using similarly 647 

small synthetic datasets (Strong and Lipscomb 1999, Brazeau et al. 2019, Hopkins and St John 648 

2021).  649 

We attribute some of this difference to the fact that ancestral state reconstructions were 650 

not conducted for all outputs of distinct coding strategies by (Strong and Lipscomb 1999), 651 

among other issues in the interpretation their results—see Supplementary Material. Additionally, 652 

the other two studies (Brazeau et al. 2019, Hopkins and St John 2021) used a distinct, although 653 

analogous, approach to absent coding as defined here, in which inapplicable scores were 654 

interpreted as a new character state—i.e., gaps (‘-‘) interpreted as a third character state for 655 

otherwise binary characters. Therefore, some of the difference in results may derive from the fact 656 

that interpreting inapplicable scores as a distinct third state is not, strictly speaking, the same as 657 

scoring it with the absent state, as the latter is homologous to the absent state on the primary 658 

character. Additionally, the simplistic simulations of (Hopkins and St John 2021) introduced 659 

more secondary characters, which might have increased the negative impact of overweighting 660 

the new character state—a problem also pervasive to absent coding, as described below. 661 
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By comparing the results of our Simulations 1 with more complex simulation scenarios 662 

(Simulations 2) we find important contrasts in our results and to previous conclusions using 663 

simplified datasets. When simulating larger datasets with explicit tree and character model 664 

variations, there is no significant difference in accuracy or resolution error among distinct coding 665 

strategies for traditional MP (MP-F), regardless of the performance metric (Fig. 3). We attribute 666 

this difference to the fact that the detected advantages of absent coding in simplified simulations 667 

(the only coding method meeting the assumptions of corollaries 1 and 2 discussed above) is 668 

counterbalanced by the negative bias introduced by the repeated occurrence of the absent state. 669 

As the number of secondary characters increases for larger datasets, it also increases the number 670 

of secondary characters with the absent condition, disproportionally overweighting the absent 671 

state. Although we did not explicitly test for a variable number of characters, we predict that 672 

datasets with a larger number of characters analyzed by traditional MP (MP-F) might see an even 673 

greater negative impact from the overweighting of the absent condition with absent coding, 674 

potentially leading contingent coding to become the most accurate coding, as previously 675 

suggested (Strong and Lipscomb 1999, Sereno 2007, Brazeau 2011, Simões et al. 2017a). 676 

Under BI, contingent coding has a slightly superior performance compared to other 677 

coding schemes for the complex simulated datasets (Simulations 2) (Fig. 3). This is expected 678 

from theory since BI is not as strongly impacted by inapplicable scores introduced by contingent 679 

coding as the Fitch algorithm for MP (MP-F) due to the absence of an “up-pass” phase in the 680 

former. Therefore, the advantages of absent relative to contingent coding detected for small 681 

datasets under MP-F are not observed under BI. However, as BI also suffers from the biases 682 

introduced by the overweighting of the absent condition, there is an overall negative balance for 683 

the performance of absent coding relative to other coding schemes.  684 
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 685 

Limitations of approaches explicitly designed to deal with character dependency 686 

Perhaps the first attempt toward solving the problem of character dependency, outside the 687 

scope of character coding schemes, was the utilization of step-matrices of costs—or Sankoff 688 

matrices—as they could embed hierarchical relationships among characters (Forey and Kitching 689 

2000). These have long been criticized for the amount of time required to build individual 690 

matrices for every collection of primary character and their dependent secondary characters, 691 

among other issues—e.g., (Brazeau et al. 2019). Recently, such problems were ameliorated by 692 

faster methods to construct Sankoff matrices in the program TNT (Goloboff et al. 2021). 693 

However, as the number of secondary characters increases in a dataset, this solution becomes 694 

less practical as it surpasses the total possible number of states allowed by TNT (32 states). The 695 

latter creates a maximum limit of four binary dependent characters (Goloboff et al. 2021). Even 696 

if a larger number of character states are enabled the future implementations of TNT, the costs of 697 

character state transformations would still have to be subjectively customized and without 698 

accounting for uncertainty around such transformational costs. Therefore, Sankoff matrices may 699 

never be a feasible universal solution to the problem of character dependency. 700 

The Morphy (MP-M) approach (Brazeau et al. 2019) is, to our knowledge, the first 701 

algorithmic attempt to revise traditional parsimony optimization schemes for discrete characters 702 

(Fitch 1971), allowing for a more appropriate treatment of dependent characters. It was analyzed 703 

conceptually and empirically by subsequent studies, which criticized MP-M for not controlling 704 

for primary characters and their relationship to secondary characters (the same major limitation 705 

of the Fitch algorithm), leading to overweighting of absences for controlling primary characters 706 

(Hopkins and St John 2021). It was also detected that, by increasing the number of secondary 707 
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characters, the MP-M approach (just as with MP-F) would result in a larger set of MPTs, 708 

including solutions where secondary characters were treated as applicable, thus contrary to its 709 

primary goal—a behavior not detected for the MP-HSJ method. 710 

Our results support and expand upon those findings, by establishing that MP-M 711 

optimization can improve on the performance of datasets with inapplicable scores when 712 

reconstructing asymmetric trees (Figs. 5b). However, MP-M faces similar difficulties as 713 

traditional parsimony (MP-F) in the case of symmetric trees (Figs. 5b, S17 and S23), precisely 714 

where the negative effects of inapplicable scores for contingent coding are expected to be the 715 

greatest (Maddison 1993, Brazeau et al. 2019, Hopkins and St John 2021). Additionally, MP-M 716 

has greater accuracy across different models of primary and secondary character distribution in 717 

the dataset compared to MP-F, but we note that significantly higher levels of accuracy are 718 

obtainable by MP-HSJ and BI under these same conditions (Figs. 5b, S23 and S24). The latter 719 

suggests that not only MP-M becomes less accurate than alternative methods (MP-HSJ and BI) 720 

when increasing the number of secondary characters for a single controlling primary character 721 

(models M1-M3 herein) as previously suspected (Hopkins and St John 2021), but it also 722 

becomes less accurate when increasing the number of primary characters with dependent 723 

characters (models M3-M5 herein). 724 

Among all parsimony-based methods, MP-HSJ is consistently recovered as the best 725 

performing method to handle the problem of inapplicable scores for dependent characters, 726 

regardless of accuracy metric, tree structure, and character models simulated herein (Figs. 4, 5, 727 

S21-S24). We attribute this performance to the fact that this is the only approach that specifically 728 

identifies primary characters and each of their secondary character dependencies (Hopkins and St 729 

John 2021). However, MP-HSJ downweighs secondary characters to only a small fraction of the 730 
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relative weight attributed to primary characters, and this penalization increases proportionally to 731 

the number of secondary characters in a dataset. The downweighing of secondary characters may 732 

even be further boosted through the α parameter introduced by this optimization procedure 733 

(Hopkins and St John 2021). Our tests revealed that the downweighing of secondary characters 734 

by MP-HSJ is so extensive that performance results under this approach are nearly identical 735 

regardless of the chosen value of α (even for α = 0, which completely eliminates secondary 736 

characters from the analysis) (Fig. 3c). Such heavy downweighing of secondary characters may 737 

pose a limitation for datasets in which those characters are the only ones available to resolve 738 

relationships within the zone of contention (e.g., Fig. 1). The latter might be one of the key 739 

reasons for the superior performance of BI relative to MP-HSJ under the most accurate metric 740 

(quartets), even though BI does not distinguish primary and secondary characters. 741 

 742 

The inapplicable states problem is mostly restricted to MP 743 

The primary cause for the problem of contingent coding and its impact on tree inference 744 

relates to the two-steps approach towards the optimization of ancestral state in MP—the “down-745 

pass” and “up-pass” phases of the Fitch algorithm (Fitch 1971, Brazeau 2011). Since BI 746 

programs use the Felsenstein optimization (Felsenstein 1973, 1981) when calculating likelihoods 747 

for internal nodes, which has only a “down-pass” phase, it would be expected that the impact of 748 

inapplicable characters from contingent coding would be strongly reduced, or at least 749 

substantially minimized, relative to MP. Our results in Simulations 1 support our predictions in 750 

finding that contingent coding in MP-F will favor a blue-first hypothesis 100% of the time and 751 

never return any trees with a red-first hypotheses in Scenario 1 (Fig. 1, Table 2). On the other 752 

hand, BI will favor a similar hypothesis (blue-first = 46.1%) but it retrieves the competing 753 
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hypotheses at frequencies much higher than 0% (i.e., red-first = 21%) (Table 2). As expected by 754 

their design, both MP-M and MP-HSJ accurately find most parsimonious trees with both blue 755 

and red-first hypotheses. 756 

The advantage of BI under Simulations 1 is limited to the better-studied Scenario 1 757 

(symmetric trees). The difficulty of retrieving hierarchical relationships and reaching topological 758 

convergence in small asymmetric trees causes BI to fail corollaries 1 and 2 more frequently than 759 

MP-F when estimating asymmetric trees (Table 2). Our findings thus corroborate previous 760 

studies suggesting symmetric trees can be more accurately reconstructed than asymmetric trees 761 

using phenotypic data under BI (Puttick et al. 2017, Puttick et al. 2019), although we do not 762 

recover such performance disparity for distinct tree models under MP-F. 763 

Using more complex simulations combining several parameters and larger numbers of 764 

taxa and characters (Simulation 2), BI again consistently recovers more accurate trees than MP 765 

using the traditional Fitch algorithm (MP-F). How BI compares in performance to other 766 

approaches designed to correct for the impact of inapplicable characters (MP-M and MP-HSJ) 767 

depends on the measure of accuracy. BI performs equally well under various scenarios to MP-M, 768 

but less accurately than MP-HSJ using the MCI metric. When analyzed under the quartet 769 

similarity metric, which is less influenced by tree resolution (Figs. 4 and 5), BI is significantly 770 

more accurate than the two parsimony approaches that correct for inapplicable characters.  771 

Interestingly, solutions to character dependency have also been proposed in the context of 772 

Bayesian inference in recent years, such as for the utilization of structured (SMM) and hidden-773 

state Markov models (HMM) (Tarasov 2019). While the latter study demonstrates that these 774 

newer methods can adequately deal with inapplicable states in dependent characters, no study 775 

has ever shown that traditional BI using the Mk model has a poor performance. Tarasov’s 776 
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comparison between traditional BI and SMM/HMM models is limited to a 4-taxon case example, 777 

which may not generalize well to larger trees. The proposed solution to the RBT problem from 778 

Tarasov’s SMM model (2019, Fig. 5 therein)—equivalent to our simplistic Simulations 1 herein 779 

using a symmetric tree topology—is the result in which red and blue tailed clades evolve 780 

“simultaneously” and receive similar posterior support in the majority rule consensus tree . This 781 

is the same result obtained here by using standard Fitch parsimony with the default collapsing 782 

rule in TNT (Fig. 1d), or when using the Mk model for BI under absence or unordered multistate 783 

coding (Figs, S14-16, Table 2)—the best performing coding strategy detected here for such small 784 

data sets. As demonstrated above, these results are expected for BI analyses due the way that 785 

maximum likelihood optimization operates, and not something unique to the SMM or HMM 786 

models.  787 

 788 

Limitations of BI and how to move forward. 789 

It should be noted that BI performing more accurately than alternative MP approaches 790 

does not mean it is completely exempt of biases introduced by inapplicable character states in 791 

contingent coding. The sampling of the posterior distribution via the MCMC algorithm is 792 

strongly impacted by the number of primary characters with dependencies. In simulation models 793 

with an increasingly larger number of primary characters with dependent secondary characters 794 

(M4 and M5), there is only a small difference in performance of BI relative to MP-M and MP-795 

HSJ— although all the latter three still outperform traditional Fitch maximum parsimony (Fig. 796 

5b).  797 

Additionally, by quantifying the distribution of posterior trees from BI across the tree 798 

parameter space (Figs. S20 and S21), we find that the mean RF distance between the posterior 799 
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trees within each simulation for models M1 and M2 is considerably lower than for models with a 800 

larger proportion of secondary characters (M3) or with more primary characters bearing 801 

secondary characters for each dataset (M4 and M5), irrespective of coding strategy. The total 802 

variance (or disparity) of RF values is also considerably higher for models M3 to M5, except for 803 

contingent coding, which is only higher for symmetric trees under models M3 to M5. Overall, 804 

this indicates a substantial increase in the size of the tree space when there is a large amount of 805 

secondary characters in the dataset (30% herein), and especially when there is an increase in the 806 

number of primary characters bearing secondary traits within the same dataset. This increase in 807 

the tree space (most notably in absent and multistate coding) makes it harder for the MCMC to 808 

sample across all local optima and reach the global optimum, which is the most likely cause 809 

further significant reduction in accuracy for models M4 and M5. The similarity of this result with 810 

that observed for the results from MP analyses suggests the same phenomenon might be 811 

impacting MP tree inference. 812 

These results demonstrate the pervasive and detrimental role of increasing the number of 813 

primary characters with dependent characters in phylogenetic datasets, even when there is a 814 

decrease in the proportion of secondary characters for each primary character decreases (models 815 

M3 to M5). The unfortunate practical consequence of our findings is that, considering there is a 816 

finite number of anatomical structures from which morphological characters can be created in 817 

the context of any given organismal study system, increasing the number of morphological 818 

characters in a dataset will strongly rely on increasing the number of secondary characters that 819 

are dependent on the presence of these anatomical structures (primary characters). Therefore, 820 

increasing the number of characters in morphological datasets—a clearly recognizable pattern 821 

for the past two decades and which is likely to continue into the future (Simões et al. 2017a, 822 
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2018a)—will almost invariably expand the tree parameter space in a way that both MP or BI 823 

algorithms will struggle to find answers closer to the global optimum, decreasing the accuracy of 824 

such inferences.  825 

 826 

CONCLUSIONS 827 

Dependency among morphological characters has been a long-recognized issue in 828 

phylogenetic inference (Maddison 1993), and which has been considered a problem without a 829 

clear solution for nearly three decades. New algorithmic solutions to this problem have been 830 

proposed in recent years, but without benchmarks studies assessing the accuracy of those 831 

solutions to character dependency.  832 

Using different simulation scenarios, we demonstrate that alternative maximum 833 

parsimony algorithms designed to handle character dependency can generally produce more 834 

accurate results than traditional (Fitch) maximum parsimony, especially in cases with symmetric 835 

tree topologies and with low numbers of secondary characters. The MP-HSJ algorithm is 836 

generally more accurate than the competing approach MP-M, but traditional (non-clock) 837 

Bayesian inference is significantly more accurate than all MP approaches. This simple 838 

alternative to analyze datasets with dependent secondary characters has long been overlooked, 839 

and its superior performance derives from the fact that the likelihood optimization approach 840 

utilized by all probabilistic methods of phylogenetic inference does not include an “up-pass” 841 

phase, which is the cause of the issues introduced by secondary characters in MP. Importantly, 842 

increasing the number of secondary characters, and most importantly, increasing the number of 843 

primary characters with secondary characters that become inapplicable, substantially reduces 844 

phylogenetic accuracy regardless of optimality criterion or character coding strategy. 845 
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Most studies have historically found that increasing the number of morphological 846 

characters generally produces more accurate phylogenetic reconstructions—e.g., (Wiens 2004, 847 

Wright and Hillis 2014, O'Reilly et al. 2018, Puttick et al. 2019, Barido-Sottani et al. 2020). 848 

However, more recent simulations that assume the non-randomness of homoplastic distributions 849 

across the tree have found that an absolute increase in the number of characters does not produce 850 

more accurate phylogenetic trees due to convergent evolution (Keating et al. 2020). Our findings 851 

suggest that, if increasing the number of characters is majorly performed by increasing the 852 

number of secondary characters, then performance may in fact the reduced. We expect that the 853 

future development of more efficient algorithms to explore the larger tree parameter space 854 

created by secondary characters more thoroughly (especially for BI) might alleviate some of the 855 

existing limitations demonstrated here. Additionally, we urge caution when increasing the 856 

number of characters in morphological datasets, as the indiscriminate expansion of secondary 857 

characters that are dependent on primary characters that become absent (and therefore 858 

inapplicable) to a portion of the sampled taxa may introduce the detrimental effects phylogenetic 859 

accuracy detected herein. 860 
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 FIGURES CAPTIONS  1039 

 1040 

FIGURE 1. Problems stemming from contingent coding and introduced by inapplicable character 1041 

states. a) Single tree from the analysis of 11 characters with homoplastic evolution of a primary 1042 

character in distantly related clades that are separated by intervening taxa in which the primary 1043 

character is inapplicable. b) Distinct coding schemes for new (tail) characters. c-e) Alternative 1044 

resolutions for the ambiguous node in this case (Scenario 1, symmetric trees): the optimization of 1045 

ancestral nodes on the right side of the tree will determine the ancestral state optimization on an 1046 

unresolved clade (zone of contention) on the opposite side of the tree. Although there are three 1047 

possible resolutions for the taxa in the zone of contention, most programs will only infer one of 1048 

the S1 trees (depending on collapsing rules). One tree (Tree S2) will never be inferred by MP. f-1049 

i) Alternative resolutions for the ambiguous node in a distinct case (Scenario 2, asymmetric 1050 

trees): when the primary character is inapplicable on the outgroup/earliest evolving taxa. In this 1051 

case, all three solutions are inferred by MP programs, but the third solution (trees A3) can be 1052 

presented in either one of two ways: supporting ambiguous nodes, as set by default in TNT and 1053 

PAUP (tree A3a) or collapsing all nodes with zero branch lengths (‘rule 1’in TNT) (tree A3b).  1054 

 1055 

FIGURE 2. Comparison of tree distance metrics. Lines show linear relationships between 1056 

variables. Symmetric and asymmetric starting trees are the same used in the simulation of 1057 

complex datasets. a) Decrease in similarity with number of random NNI moves from starting 1058 

tree. b) Decrease in similarity with number of randomly collapsed nodes from starting tree. 1059 

 1060 

 1061 
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FIGURE 3. Accuracy and resolution error for different coding and weighting schemes across 1062 

distinct phylogenetic inference procedures. Results for absent (Abs), contingent (Cont), and 1063 

multistate (Multi) coding schemes for MP using the traditional Fitch optimization—MP-F (a), 1064 

for Bayesian inference—BI (b), and distinct weighting schemes for secondary characters as 1065 

implemented by MP using HSJ optimization—MP-HSJ (c). For each quadrant, accuracy 1066 

measured by MCI similarity (top left, in cyan) and quartets similarity (bottom left, in green), 1067 

followed by resolution error measured by the proportion of incorrectly resolved nodes—Type I 1068 

error (top right, in orange), and incorrectly unresolved nodes—Type II error (bottom right, in 1069 

red). 1070 

 1071 

FIGURE 4. Overall accuracy of each phylogenetic inference method using the best performing 1072 

accuracy metric (quartets distance) regardless of simulated tree or character models. All methods 1073 

are significantly different in performance based on pairwise Mann-Whitney tests (Supplementary 1074 

Table 1). For method abbreviations, see Methods. 1075 

 1076 

FIGURE 5. Accuracy of each phylogenetic inference method using the best performing accuracy 1077 

metric (quartets distance) for distinct simulated tree and character models. Difference in 1078 

performance between symmetric (Scenario 1) and asymmetric (Scenario 2) tree models (a), and 1079 

between different character models (see Table 1) (b), for distinct phylogenetic inference 1080 

methods. There is a steady increase in accuracy from MP-F (top row) to BI (bottom row) for 1081 

both model classes (a and b). Most results are significantly different in performance based on 1082 

pairwise Mann-Whitney tests (Supplementary Tables 2 and 3), with notable exceptions: 1083 
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nonsignificant between tree models for MP-HSJ, and between character models M3-M4 for all 1084 

inference methods. For method abbreviations, see Methods. 1085 
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