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Abstract 
Temporal trends in species occupancy or abundance are a fundamental source of information for 

ecology and conservation. Model-based uncertainty in these trends is often communicated as 

frequentist confidence or Bayesian credible intervals; however, these are often misinterpreted in 

various ways, even by scientists. Research from the science of information visualisation indicates 

that line ensemble approaches that depict multiple outcomes compatible with a fitted model or data 

may be superior for the clear communication of model-based uncertainty. The discretisation of 

continuous probability information into frequency bins has also been shown to be useful for 

communicating with non-specialists. We present a simple and widely applicable approach that 

combines these two ideas, and which can be used to clearly communicate model-based uncertainty 

in species trends (or composite indicators) to stakeholders. We also show how broader ontological 

uncertainty can also be communicated via trend plots using risk-of-bias visualisation approaches 

developed in other disciplines. The techniques are demonstrated using the example of long-term 

plant distributional change in Britain, but are applicable to any temporal data consisting of averages 

and associated uncertainty measures. Our approach supports calls for full transparency in the 

scientific process by clearly displaying the multiple sources of uncertainty that can be estimated by 

researchers. 
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Introduction 
The monitoring of trends in species’ distributions or populations is a fundamental activity within 

ecology and conservation (Lindenmayer and Likens, 2010). The resulting trends may have different 

uses depending on the rationale and design of the underlying monitoring program, but much 

“surveillance”-style monitoring is driven by both policy requirements and the curiosity of invested 

naturalists (Pescott et al., 2015; Schmeller et al., 2009). This means that feedback on trends to non-

scientist stakeholders of various types is often a key program output. Species-level trends also form 

the basis of various multi-species composite indicators (e.g. van Strien et al., 2016). The literature on 

these has emphasised the importance of mathematical aspects of their construction (e.g. Lamb et 

al., 2009), including the development of methods for the propagation of model-based uncertainty 

from the species level to the multi-species trend line (Soldaat et al., 2017). Indeed, the accurate and 

full communication of uncertainty is now widely considered to be fundamental for the development 

and maintenance of trust between scientists and the wider public (Fischhoff and Davis, 2014; 

Spiegelhalter, 2017), and considerable effort has been invested by information visualisation 
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scientists in how best to achieve widespread understanding of technical scientific results (e.g. see 

the review of Padilla et al., 2022). 

A standard approach to the visualisation of uncertainty in temporal trends is the use of frequentist 

confidence or Bayesian credible intervals to produce error ribbons or bands. Arguably, however, 

these are merely defaults (Gelman, 2014), and these types of presentations have not, to our 

knowledge, been critically examined within ecology in terms of whether they can be improved for 

the clear communication of uncertainty to stakeholders. Reviewing similar types of statistical 

visualisation based on conventional error bar types, Padilla et al. (2022) point to evidence that these 

can lead to misinterpretations of uncertainty, such as viewers assuming that points outside of error 

bars are impossible. Continuous probability information is mis-construed as categorical and 

deterministic. This is perhaps not surprising given that even researchers have trouble interpreting 

the information content of these conventions (Belia et al., 2005; Greenland et al., 2016; Hoekstra et 

al., 2014), and that the statistical meaning of similar graphics may vary between presentations (e.g. 

whether standard errors, confidence intervals, bootstrapped intervals etc.) When these practices are 

extended to two dimensions, as for a linear regression line presented with a continuous error 

ribbon, then additional interpretational issues, such as the potential for trends that are not parallel 

to (and possibly in directional conflict with) the average trend, may also present themselves (for 

examples, see Kay, 2021). Researchers have also found that the use of different graphical “marks” 

(e.g. types of line) to distinguish between average expectations and uncertainty in these, such as is 

common in the presentation of species’ trends and indicators (e.g. van Strien et al., 2016), can result 

in a bias of attention towards the expected value and away from its associated uncertainty (Hullman 

et al., 2015). 

In the search for better visualisations, many different types of statistical and graphical strategies 

have been explored (Padilla et al., 2022). These include ways of illustrating the variety of outcomes 

that are compatible with a fitted model or data, rather than just easily misinterpreted summary 

statistics (Greenland et al., 2016; Kale et al., 2018). Different graphical marks and “encodings” (e.g. 

colour and transparency) have also been widely explored. Whilst it is generally appreciated that it is 

unlikely that there is any one single, universal best practice for communicating uncertainty to 

viewers (Padilla et al., 2022), arguably enough experimental evidence has accumulated to indicate 

opportunities for improving practice in ecology. For example, the use of line ensembles, e.g. from 

multiple model fits derived from bootstrapping or Bayesian posteriors, that visualise the actual 

distribution of compatible outcomes, offer “a more interpretable rendering of uncertainty […], 

especially when viewers are unlikely to have statistical training” (Kale et al., 2018). 

We introduce a simple method for communicating uncertainty in linear regression fits for species’ 

temporal trends (the linear component of temporal patterns in occupancy or abundance being often 

considered a useful summary; Erickson et al., 2017; Soldaat et al., 2017). The approach presented 

here is based on bootstrapped regression line ensemble plots, combined with a frequency-based 

discretised summary of the ensemble slopes. It could, however, also be easily applied to the 

posterior distribution of the slope parameter from a single Bayesian model. We argue that the 

visualisation of multiple outcomes compatible with our model/data combination, combined with a 

discretised summary of these, clearly demonstrates model-based uncertainty in complementary 

ways, with the discretisation providing a frequency-based presentation that is likely to be more 

easily understood by non-specialist viewers (Hullman et al., 2018). We also demonstrate how 

broader ontological uncertainty (Spiegelhalter, 2017)—i.e. non-model based uncertainty—can be 

included in such plots, acknowledging that model-based uncertainty alone can be very misleading 
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for model/data combinations with a high risk-of-bias (Boyd et al., 2022; Greenland, 2017; van der 

Bles et al., 2019). 

Methods and results 

Case study 
Here we use plant distribution data collected by the Botanical Society of Britain and Ireland (BSBI) to 

demonstrate our approach. The frequency scaling using local occupancy method (“Frescalo”; Hill, 

2012) is used to produce temporal relative occupancy estimates for each species (see SM1). The 

uncertainty visualisation method developed here, however, is sufficiently general to be applied to 

any dataset or model that can be made to yield averages and associated measures of uncertainty per 

time period (cf. Soldaat et al., 2017). The four example species used here are Allium vineale L., 

Hornungia petraea (L.) Rchb., Hypochaeris maculata L., and Parnassia palustris L. (names follow 

Stace, 2019), and were chosen to provide different temporal trends and levels of uncertainty. 

Monte Carlo simulation bootstrapping and trend classification 
For a given species, 100 simulated relative occupancy estimates were drawn for each of the four 

time periods based on their Frescalo-estimated means and standard deviations. For each set of four 

estimates, a linear regression fit was calculated. Line ensemble plots providing the 100 simulated 

linear regression fits for each species are given in Figure 1, along with the original means and 

standard deviations from Frescalo. Density plots showing the distribution of the 100 linear 

regression slope estimates for each species are given in Figure 2, along with the cut-points for our 

discretisation scheme. For this example, the cut-points shown were developed by the authors based 

on temporal trends estimated for around 1,700 taxa modelled. Any scheme of cuts could be used, 

and these could be labelled howsoever is thought best for the data, model, and communication 

aims. Here we use a five-point scheme, with category labels as: strong decline (--), moderate decline 

(-), stable (0), moderate increase (+), and strong increase (++). The 100 simulated slope estimates for 

each species were then classified based on these cut-points, and are displayed as frequency charts in 

Figure 3. A link to the R code and data is in SM2. 

Broader ontological uncertainty 
An additional species, Potamogeton polygonifolius Pourr., was chosen to demonstrate the fact that 

model-based uncertainty alone can often be highly misleading, particularly where observational data 

with potentially serious biases are being used (Boyd et al., 2022; Greenland, 2017). For this species, 

the Frescalo estimates have low uncertainty, and suggest that a strong increase in the species’ 10 km 

distribution over the last one-hundred years is highly plausible. However, the authors of this paper 

assessed this conclusion to have a high risk-of-bias (Boyd et al., 2022), due to external knowledge of 

how this species was treated by recorders in the first time period (1930–69; Braithwaite et al., 2006). 

We have therefore added this information as a “risk-of-bias” bar (McGuinness & Higgins, 2021) to 

the plot to alert the viewer (Fischhoff and Davis, 2014; van der Bles et al., 2019). Within the medical 

sciences, such visualisations are used to summarise bias assessments conducted according to 

standard protocols (McGuinness & Higgins, 2021) and new schemes within ecology, such as the 

“Risk-of-Bias in Temporal Trends in ecology” (ROBITT) protocol (Boyd et al., 2022), could be 

extended to provide semi-quantitative summaries such as this.  
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Figure 1. Temporal trend line ensemble plots for four plant species. In each case 100 linear regression fits to Monte Carlo-

simulated data are given; transparent lines are used in order to further communicate model-based certainty. The filled 

white points and black bars are the Frescalo means and standard deviations for each time period, plotted at the median of 

each date-class. Note the different y-axis scale for the species (Hypochaeris maculata) with the less certain relative 

occupancy estimates. 
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Figure 2. Density plots for the 100 simulated linear regression slope estimates for each species. The black vertical broken 

lines indicate the cut-points used; a grey vertical solid line is plotted at zero. The trend categories used in this case are 

given along the top of the plots as: -- (strong decline); - (moderate decline); 0 (stable); + (moderate increase); and, ++ 

(strong increase). 
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Figure 3. Discretised frequency charts based on the distribution of the 100 simulated linear regression slope estimates 

shown in Figure 2. 
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Figure 4. Line ensemble and discretised slope magnitude frequency plots for Potamogeton polygonifolius. Here, a “risk-of-

bias” visualisation bar has been added to the discretised frequency plot to emphasise the presence of high non-model-

based uncertainty (McGuinness & Higgins, 2021), where green = “Low risk”, yellow = “Some concerns”, and red = “High 

risk”. Risk levels were assessed using a version of the ROBITT scheme of Boyd et al. (2022), and the overal high risk 

evaluation relates to the strong expert belief in significant variation in how the species was identified by recorders over the 

time period considered (Braithwaite et al., 2006). 

Discussion 
Understanding uncertainty is a fundamental part of science, but uncertainty itself is often poorly 

communicated by scientists (Greenland, 2017; Hullman, 2020). The subject is complicated by the 

many types of uncertainty that reseachers encounter (Regan et al., 2002), and by the fact that subtle 

statistical and philosophical concepts overlay scientists’ attempts to characterise reality from 

samples (Rafi and Greenland, 2020; Spiegelhalter, 2017). Whilst here we mainly deal with the 

communication of uncertainties that are conditional on the chosen model, as opposed to those that 

relate to the internal or external validities of chosen models (Boyd et al., 2022), research suggests 

that even this aspect of scientific communication can be improved (Hullman et al., 2015), particularly 

where non-scientist stakeholders are the target audience (van der Bles et al., 2019). Techniques 

have been developed for propagating error from species-level models to composite indicators (e.g. 

Soldaat et al., 2017), but within ecology there has been little consideration of alternative techniques 

for the visual communication of trend uncertainty, outside of simply presenting ribbons around an 

average trend. 

Research within information visualisation science suggests that the use of “visual boundaries” (e.g. 

error ribbons) can be a useful technique (Padilla et al., 2022); however, ribbons could also serve to 

emphasise the slope of the average trend, rather than indicating all the possible trajectories that are 

compatible with a fitted model (cf. Fig. 1). The development of static line ensembles and dynamic 

hypothetical outcome plots (i.e. animations of outcomes compatible with a model; Hullman et al., 

2015) has sought to overcome this limitation. For example, the psychologist John Kruschke 

presented a technique for visualising ensembles of linear regression posterior fits within the first 

edition of his book on Bayesian methods (Kruschke, 2011). More recently, Kay (2021) released an R 

package that includes functions for the creation of both ensemble and hypothetical outcome plots 

from posteriors estimated using the Hamiltonian Monte Carlo-based Bayesian modelling framework 
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Stan. Such technical developments, coupled with empirical explorations of the experienced 

information content of such displays by user groups (e.g. Kale et al., 2018), suggests that their use is 

likely to increase in the coming years. 

Whilst much of the work on ensemble plots has been within a Bayesian framework, the principle can 

be applied to any model parameter for which probabilistic outcomes can be generated, either via 

parametric or non-parametric methods (Padilla et al., 2022). Here we used a Monte Carlo 

simulation-based approach to produce bootstrapped linear models to propagate uncertainty from 

an earlier analysis yielding time period-specific relative occupancy mean and standard deviation 

estimates (Hill, 2012). Such ensembles contain more information than a frequentist confidence 

(better termed a “compatibility” interval; Amrhein and Greenland, 2022; Rafi and Greenland, 2020) 

or Bayesian credible intervals (even if displayed with multiple percentile bands), as they clearly 

visualise the range of possible outcomes that are compatible with a fitted model. However, 

ensembles still communicate information in the visual and numerical terms of the statistical model 

used, and this places a burden on the viewer to translate model-based expectations into verbal 

understanding. In some cases, but particularly for those where non-scientist stakeholders are an 

important target audience, we suggest that a simple classification of this uncertainty will make the 

information transmitted by ensembles easier to understand (cf. Hullman et al., 2018). Indeed, whilst 

writing this paper, we discovered that educators in psychology have demonstrated benefits of 

discretising continuous probability information into frequency formats when teaching Bayesian 

reasoning (Gigerenzer and Hoffrage, 1995; Sedlmeier and Gigerenzer, 2001). 

We recognise, and indeed emphasise, that model-based uncertainty is only one aspect of the overall 

uncertainty associated with statistical inference (Rafi and Greenland, 2020; Regan et al., 2002; 

Spiegelhalter, 2017). Multiple models of reality may fit data equally well by some metric, but provide 

different conclusions (Copas and Eguchi, 2020; Steegen et al., 2016); samples may also lack external 

validity (i.e. be unrepresentative of the statistical target population; Boyd et al., 2022). Model-based 

uncertainty is uncertainty conditional on a chosen model (or multiple models, for model-based 

averaging approaches) combined with a dataset, and may actually still miss the true parameter at 

which science aims. This is a wider issue, and, at least for the description of species’ trends or 

composite indicators based on these, relates to the numerous steps between the observation of a 

species in the field and the creation of some statistical model to estimate a temporal trend (Boyd et 

al., 2021). Fully accounting for, and clearly communicating, this broader uncertainty is a much larger 

project, and research in this area continues to develop. Current areas that are developing rapidly 

include techniques designed to visualise the effects of “forking paths” (Gelman and Loken, 2014) in 

research (Liu et al., 2021), frameworks for visually communuicating risk-of-bias effectively 

(McGuinness and Higgins, 2021), and the body of work on the visualisation of multi-model ensemble 

outcomes, which has hitherto largely been the preserve of those working with complex, process-

based, numerical simulations, e.g. climate, weather, and fisheries stock modellers (Potter et al., 

2009). 

For the broader trend creation exercise used here as a case study, we have found species where the 

model-based uncertainty is low, but for which the estimated trend is considered unlikely by taxon 

group experts. For example, the temporal trend for Bog Pondweed (P. polygonifolius; Fig. 4) suggests 

an increase in relative occupancy over the period modelled. However, expert opinion has previously 

considered this to be an artifact of changes in recorders’ approaches to the identification of this 

species in Britain over the twentieth century, and we agree with this assessment. This is a case of 

low model-based uncertainty coupled with an expert-assessed high risk of bias. The current 

distribution atlas project of the BSBI (Walker et al., 2010) is therefore also considering the use of an 



v. 1.0 

expert-assessed risk-of-bias classification (McGuinness and Higgins, 2021) to present alongside a 

discretised line ensemble approach (Fig. 4). 

Accurately communicating the full uncertainty in species’ temporal trends is a complex matter that 

has arguably not been well addressed by the ecological literature to date. There is, however, much 

to learn from other disciplines, both in terms of visualisation technique (Padilla et al., 2022), and in 

terms of careful thought about the assumptions underlying typical statistical practice in our field 

(Boyd et al., 2022; Greenland, 2021, 2017; Rafi and Greenland, 2020). Despite the challenges, we 

believe that the clear communication of as much of the estimable uncertainty as possible is the most 

ethical and honest way forward for science in terms of how it relays its findings to the rest of society 

(Fischhoff, 2012; Spiegelhalter, 2017; van der Bles et al., 2019). 
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Supplementary Material 1 

Case study data and temporal trend models 
The Botanical Society of Britain and Ireland (BSBI) have a long history of collecting species 

occurrence data to inform ecological and conservation research (Pescott et al., 2015; Preston, 2013), 

and this has resulted in two published plant distribution atlases during the past one-hundred years 

(Perring and Walters, 1962; Preston et al., 2002). Data collection for a third atlas (Walker et al., 

2010), to be published in 2023, is now complete. Temporal trends in 10 km grid occupancy for all 

native, and numerous non-native, species have been created as one output of this initiative. These 

have been developed using the frequency scaling using local occupancy (“Frescalo”) approach 

developed by Hill (2012). The method was designed to adjust for variable recording effort across 

time periods, and has been used successfully on many distribution datasets (e.g. see Pescott et al., 

2019 and references therein). For this example, we applied Frescalo to British vascular plant data 

gridded at the 10 km scale within the following time periods: 1930–69; 1987–99; 2000–09; 2010–19. 

These are a subset of the “date-classes” used by the BSBI to organise their data, and roughly 

designate multi-year periods within which specific national recording projects occurred (Preston et 

al., 2002). For example, recording and data digitisation for the Perring & Walters (1962) Atlas mainly 

occurred within the 1930–69 period, whereas the 1987–99 period relates to the New Atlas of 

Preston et al. (2002). The period 1970–86 is excluded because there was no national project during 

this period, and the data are considered to be heavily biased in terms of the relative recording 

attention paid to different species (a key assumption of Frescalo is that species are recorded in 

proportion to their true frequency, even if overall effort varies; Hill, 2012). Outputs from the 

Frescalo model include per species estimates of mean relative occupancy and the standard 

deviations of these for each time period.  
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An RStudio project containing all of the code and data required to reproduce the figures presented 

in this paper is available at https://doi.org/10.5281/zenodo.6474925 

https://doi.org/10.5281/zenodo.6474925

