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Abstract 9 

 10 

Gene regulatory networks (GRNs) are the core engine of organismal development. If we 11 

would like to understand the origin and diversification of phenotypes, it is necessary to 12 

consider the structure of GRNs in order to reconstruct the links between genetic 13 

mutations and phenotypic change. Much of the progress in evolutionary developmental 14 

biology, however, has occurred without a nuanced consideration of the evolution of 15 

functional relationships between genes, especially in the context of their broader 16 

network interactions. Characterizing and comparing GRNs across traits and species in a 17 

more detailed way will allow us to determine how network position influences what 18 

genes drive adaptive evolution. In this perspective paper, we consider the architecture 19 

of developmental GRNs and how positive selection strength may vary across a GRN. 20 

We then propose several testable models for these patterns of selection and 21 

experimental approaches to test these models.  22 
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1. Introduction 29 

 30 

Organisms assemble themselves through an orchestrated sequence of genes being 31 

expressed in different combinations, at different times, in different cells. The logic 32 

underlying this orchestration emerges largely from interactions between the genes 33 

themselves, and these interactions comprise vast and complex regulatory networks 34 

capable of allowing single cells to construct things like mushrooms or hedgehogs. 35 

Accordingly, in 2007 Wilkins [1] argued that a gene network-based approach was 36 

necessary to advance the field of evolutionary developmental biology. At that time, evo-37 

devo was largely focused on studies showing changes in the regulation of individual 38 

genes associated with the evolution, and often convergent evolution, of morphological 39 

traits [2–4]. While this is still largely the state of the field, a larger philosophical question 40 

continues to crystallize and become more urgent: Why do some genes seem to be more 41 

likely to facilitate morphological evolution than others? Drawing on concepts of gene 42 

regulatory networks (GRNs) [5], Stern and Orgogozo [6] proposed that these genes 43 

occupy unique positions within developmental networks such that they integrate many 44 

inputs and regulate many outputs. 45 

  46 



Few studies have explicitly tested this idea, however [7], and the evolutionary 47 

consequences of many other features of GRNs have also yet to be explored [5]. These 48 

include the idea that some highly essential subnetworks, or network ‘kernels’, are 49 

evolutionarily constrained, while other subnetworks that can be co-opted for different 50 

functions, or network ‘plug-ins’, are more evolutionarily labile [5]. The type of gene 51 

regulation circuitry could also indicate the degree of evolutionary constraint on different 52 

genes [8]. A larger body of evo-devo research has instead focused on other questions 53 

concerning the genetics of adaptation, such as whether adaptive evolution is occurring 54 

primarily in cis vs. trans sequences or via de novo mutations vs. standing variation [6,9]. 55 

The literature on adaptive trait evolution still remains relatively separate from the 56 

growing body of literature on network evolution in other fields of biology. These 57 

literatures include the study of network evolution in silico [10,11], as well as the wealth 58 

of information on protein-protein interaction (PPI) networks and the distribution of 59 

evolutionary rates across these PPI networks [12–14]. We propose that research in 60 

these fields can help inform our predictions for the evolution of GRNs. 61 

  62 

Over a decade after Wilkins’ essay [1], his proposed GRN-oriented reframing of evo-63 

devo still eludes us. The developmental GRNs for some traits have been described in 64 

great detail, such as the GRN for sea urchin embryogenesis, yet we still have little 65 

understanding of the role of selection in shaping such networks [15]. Some studies have 66 

begun to describe the distribution of selection using networks constructed from gene co-67 

expression correlation matrices [16]. However, the conclusions we can make from these 68 

types of transcriptomic studies are limited by our lack of knowledge of gene regulatory 69 



interactions. In this perspective paper, we will discuss patterns in GRN structure and 70 

key case studies of GRNs for adaptive traits before proposing several testable 71 

hypotheses for how positive selection pressure could vary across this GRN topology. 72 

We then consider how generalizable these predictions are across different types of 73 

GRNs and recommend approaches to test these predictions. 74 

 75 

2.          GRN structure and gene connectivity 76 

There are two primary ways a GRN can evolve. First, a network can gain or lose 77 

components, such as by cis-regulatory elements (CREs) gaining or losing new binding 78 

sites or proteins changing regulatory targets1. Second, the timing, location, or level of 79 

expression of genes within a network can evolve via changes to either component 80 

proteins or CREs. For example, a common hypothesis in studies of co-option is that 81 

complete or partial networks are simply re-activated and redeployed at a different time 82 

or location, without many changes to their components, to drive the development of new 83 

traits [19]. This evolution may occur at some positions in a network moreso than others, 84 

so to understand gene evolution we must first characterize the structure of a network.  85 

 86 

As discussed in the introduction, so-called input-output genes are well-known for their 87 

proposed role in driving morphological evolution due to their distinct network positions 88 

[20]. Input-output genes are identified as switch genes in a GRN, where they integrate 89 

the inputs of many upstream patterning genes to control the activation of many 90 

downstream cell differentiation genes. Many input-outputs are characterized by their 91 

 
1 GRNs can also expand in other ways, see: [17,18] for examples of how gene duplication and 
transposable element domestication can also drive GRN evolution. 



strong phenotypic effects, where they are both necessary and sufficient for determining 92 

a trait of interest. For example, changes to any single known gene downstream of the 93 

input-output gene shavenbaby (svb) are not sufficient to promote or inhibit trichome 94 

development, but changes to svb expression itself are sufficient to alter trichome 95 

development [21]. svb is also necessary for trichome development [21]. To understand 96 

the network context such input-output genes inhabit, and the common properties of 97 

these networks, we can draw from research on other biological networks. 98 

  99 

The condition of some genes having more interactions than other genes, just as the 100 

input-output gene is connected to many more genes than others, has been well-101 

explored in other areas of network biology. Many networks in biology are considered 102 

using the graph model of the scale-free network [22]. These networks are composed of 103 

nodes (in this case, genes) and edges (regulatory connections between genes). A few 104 

nodes are connected to many other nodes (‘hubs’), while most nodes have few 105 

interactions. This distribution of connections can be described by the power law 106 

function.  107 

  108 

Recent work from Ouma et al. [23] using GRNs derived from protein-DNA interaction 109 

databases across four organisms found that these global GRNs fit the scale-free model. 110 

They found that most transcription factors only interacted with a few genes, while only a 111 

few transcription factors interacted with many genes, following the predicted power law 112 

distribution with different scaling exponents for different species. While they found that 113 



subnetworks of these GRNs also fit the scale-free model, it remains to be tested 114 

whether specific developmental GRNs are truly scale-free [24].  115 

  116 

This general principle of a few genes with many connections and many genes with few 117 

connections will likely hold true. Research on PPI networks can help us assess this 118 

prediction and its implications. There are typically a few high-connectivity proteins and 119 

many low-connectivity proteins in a network, with connectivity defined as the number of 120 

interactions per protein. These few high connectivity proteins are more likely to interact 121 

with low connectivity proteins and less likely to interact with each other than expected 122 

by chance, forming networks that have many peripheral interacting genes and a few 123 

central genes with many interactions [25]. Networks with this asymmetric distribution of 124 

connectivity are generally highly robust to random errors but are extremely vulnerable to 125 

the removal of the high connectivity nodes [26]. Consistent with this predicted 126 

robustness, evolved protein interaction networks are more resilient to the removal of 127 

random nodes than randomized networks [27].  128 

  129 

One network structure that can account for this variation in connectivity is the bow-tie 130 

structure. A bow-tie refers to a structure where there are two layers composed of many 131 

nodes and an intermediate layer that is composed of very few nodes that connects 132 

these two layers [28]. This central layer forms the core or ‘knot’ of the bow-tie (Fig. 1). 133 

The nodes at the core of the bow-tie have the highest number of connections 134 

[10].  Many types of networks, including metabolic and signaling pathways, can be 135 

characterized by this bow-tie structure [28]. Bow-ties are thought to be common across 136 



biological systems because they facilitate both robustness and evolvability of the 137 

system [10]. 138 

  139 

A directed bow-tie structure is composed of many inputs which are integrated by the few 140 

nodes at the central core. These core nodes then regulate many outputs. This concept 141 

can also be applied to developmental GRNs, where many upstream genes are inputs to 142 

the input-output gene(s), which then targets many downstream genes to regulate 143 

cellular differentiation [6,7]. Bow-tie networks can be distinguished from the hierarchical 144 

null model by demonstrating that a gene (or genes) is connected to more genes both 145 

upstream and downstream than others [28].   146 

  147 

  148 

3.          The evolution of GRNs for rapidly-evolving morphological traits 149 

  150 

3.1 Two case studies 151 

  152 

The svb GRN fits the bow-tie architecture [7]. This GRN controlling larval trichome 153 

pattern in Drosophila is composed of many upstream gene inputs, an input-output gene 154 

(svb), and many output genes2. Evolutionary divergence at the CREs controlling 155 

expression of svb has repeatedly driven morphological change [7]. The higher 156 

substitution rate in the svb regulatory region compared to neighboring regions indicates 157 

 
2 This structure is also commonly described as an hourglass-shaped network [7]. Here we refer to it as a 
bow-tie structure to connect this concept from GRN studies with the literature on other types of biological 
networks [28] and to avoid confusion with the developmental hourglass model [29]. 



that it is the target of positive selection or is under relaxed constraint [30]. These CRE 158 

mutations have resulted in parallel losses of trichomes in multiple Drosophila species 159 

[2]. Thus, svb is considered a hotspot gene for morphological evolution. 160 

  161 

Another example of a hotspot gene for morphological evolution is optix, which is a 162 

proposed input-output gene for wing patterning across butterflies [31]. There are many 163 

known downstream genes of optix, as well as many candidate upstream genes [31–34]. 164 

Therefore, the optix butterfly wing color pattern GRN most likely fits the bow-tie 165 

structure (Fig. 2). The adaptive convergent evolution of red wing color pattern mimicry in 166 

Heliconius butterflies is due to selection on optix CREs [4,35,36]. We have evidence 167 

that GRNs for rapidly-evolving morphological traits are evolving primarily by positive 168 

selection acting on the CREs of the input-output genes from the svb and optix networks. 169 

We still have little information, however, on how positive selection acts on the broader 170 

networks that host these genes.   171 

  172 

A recent study on the optix GRN was able to shed some light on the distribution of 173 

selection throughout downstream elements of the network. Lewis et al. [34] combined 174 

methods to detect selective sweeps with molecular approaches to characterize genes 175 

regulated by optix in order to identify genes under selection in the optix GRN that may 176 

also be involved in adaptive wing pattern evolution. By identifying binding sites of the 177 

optix protein, and then determining which genes optix-bound CREs were regulating, 178 

they were able to identify numerous direct targets of optix. Notably, optix-bound CREs 179 

showed significantly elevated signals of selection compared to randomly-selected 180 



CREs, although, interestingly, few of these genes showed nearly as great a signal of 181 

selection as optix itself. This suggests that these directly downstream genes are targets 182 

of positive selection but are less strongly selected upon than the regulatory region of the 183 

input-output gene itself. 184 

  185 

  186 

3.2 GRN structure and the strength of positive selection 187 

  188 

Using the optix GRN as a case study (Fig. 2), we can predict how different levels within 189 

a GRN for a rapidly-evolving adaptive trait may be more or less likely to be targets of 190 

positive selection. 191 

  192 

3.2.1 Key predictions for the evolution of different levels of GRNs  193 

  194 

Prediction I:   CREs of input-output genes are more likely to be under strong 195 

positive selection than CREs of other genes in a GRN, while input-output gene 196 

protein-coding regions are more likely to be constrained. 197 

  198 

An important prediction in modern evo-devo is that CRE sequences should drive trait 199 

evolution more frequently than coding regions because they make up a much larger 200 

percentage of the genome, and expected to have more trait-specific (and less 201 

pleiotropic) effects on phenotypes [8,20]. Following this, we would further predict that 202 

input-output gene CREs are more likely to be under positive selection than genes at 203 



other positions in a GRN because the handful of input-output gene case studies, such 204 

as optix, show these loci can have strong signatures of selection and population 205 

structure compared to the rest of the genome.  206 

 207 

Conversely, the protein-coding regions for input-output genes may be more constrained 208 

due to these transcription factors’ involvement in other more ancestral developmental 209 

processes. For example, svb is required for the production of all trichomes of Drosophila 210 

larvae and adults, and an isoform of svb is required for oogenesis [6,37], and optix is 211 

known to be essential for eye morphogenesis in Drosophila and may have been co-212 

opted to regulate red color pattern in butterflies relatively recently [31,38]. There is 213 

considerable study on how proteins with a higher number of interaction partners are 214 

more constrained and more likely to be under negative selection [13,39,40]. In contrast, 215 

the idea that the protein-coding sequence for a gene connected to more genes through 216 

cis- interactions is more constrained is, to our knowledge, largely untested. One study 217 

investigated this question by measuring natural variation in gene expression level in the 218 

plant Capsella grandiflora to infer gene co-expression networks [16]. This study 219 

determined gene connectivity by measuring the sum of correlations with other genes, 220 

weighted by the strengths of correlations. The genes with higher connectivity scores 221 

were more likely to be under negative selection, but the level of gene connectivity had 222 

no detectable correlation with rate of fixations driven by positive selection. However, 223 

interpretation of this result is limited by the fact that it is based on networks inferred from 224 

gene expression and not functionally validated regulatory relationships. 225 

  226 



Prediction II: Input gene protein-coding sequences are more likely to be under 227 

stronger stabilizing selection due to pleiotropy than those of output genes. 228 

  229 

Proteins that are on the periphery of a PPI network, with the fewest interaction partners, 230 

are more likely to be targets of positive selection [13,14]. We may predict a similar 231 

pattern for genes with fewer connections to other genes in a network. Similar to input-232 

output genes, upstream transcription factors are more likely to be involved in essential 233 

developmental processes and to be more constrained than peripheral genes [8]. We 234 

may expect an increase in pleiotropy in a protein’s function to correlate with an increase 235 

in constraint on the amino acid sequence. Likewise, this constraint does not necessarily 236 

extend to the CREs of these genes [41].  237 

 238 

This pleiotropy may also potentiate adaptive evolution in other ways. More pleiotropic 239 

proteins could have more binding domains and more opportunities to interact with new 240 

partners, so we might expect stronger positive selection on their regulation than less 241 

pleiotropic proteins, although this prediction has not been tested. In other cases, we 242 

might expect more pleiotropic genes to be regulated by more pleiotropic CREs, so the 243 

evolution of these CREs may or may not also be constrained [8,42]. Therefore, unlike 244 

for protein-coding sequences, it is difficult to predict whether there is a difference in 245 

selection strength on upstream vs. downstream gene CREs. Future work on cis-246 

regulatory grammar and interaction dynamics will help resolve this [43,44]. 247 

 248 



Prediction III: Traits evolving rapidly under positive selection are controlled by 249 

more fragile GRNs. 250 

 251 

For a robust GRN, mutations and genetic variation will generate less phenotypic 252 

variation that can be subject to selection. By contrast, we might expect traits that are 253 

rapidly-evolving under positive selection to be controlled by more fragile networks. In 254 

this case, fragility meaning that minor mutations, such as in individual CREs, are likely 255 

to have substantive phenotypic effects [35]. A trade-off between robustness and 256 

innovation has been predicted on short time scales, and recent empirical work shows 257 

GRNs for rapidly-evolving adaptive traits are more fragile than previously thought 258 

[35,45]. However, the extent of this trade-off is still an active area of investigation. 259 

Robustness can also increase later opportunities for selection on a GRN in the long-260 

term [45].  261 

 262 

Prediction IV: Evolutionary drift is likely to be more prominent than positive 263 

selection in robust GRNs. 264 

 265 

Often, networks that are observed to be under developmental systems drift (DSD) – the 266 

process by which homologous traits diverge in their genetic mechanism via neutral 267 

evolution – are thought to be more robust [46]. This is because this drift suggests that 268 

there is some level of functional redundancy among nodes in the network. DSD can 269 

occur at different positions in a network. Nahmad et al. [47] found that neutral evolution 270 

in the regulation of genes at different positions in the GRN that controls ant wing 271 



polyphenism can result in similar effects in wing size. It is still unclear, however, if there 272 

is any predictability in how robustness and redundancy are distributed across different 273 

aspects of GRNs. Robustness can be an emergent property under long periods of 274 

stabilizing selection or it can be selected for when there are many perturbations to a trait 275 

[48,49]. Whatever the origin of robustness may be, we would expect GRNs for older 276 

homologous traits and early developmental stages to be more robust than younger and 277 

later-acting GRNs. This idea is supported by gene expression and modeling data 278 

comparing early and late networks [50]. Furthermore, older traits also simply have had 279 

longer to evolve robustness, and therefore, by extension, we would expect DSD to 280 

occur more often in older GRNs. 281 

 282 

            283 

3.2.2 Models for strength of positive selection across a GRN 284 

  285 

Given the predictions above, we can construct several models of positive selection 286 

pressure across a GRN. These models are neither comprehensive nor mutually 287 

exclusive, but they provide several testable hypotheses for how network positionality 288 

can affect the rate of fixation driven by positive selection in genes and CREs at different 289 

levels of the network. 290 

 291 

Based on the case studies of svb and optix, all models for cis-regulatory evolution 292 

assume strong positive selection at the input-output genes [30,35,36]. Beyond this, one 293 

possible model is that whether a gene is upstream or downstream of the input-output 294 



gene has little effect on the rate and strength of positive selection on that gene’s CREs 295 

(Fig. 3a). Changes in both upstream and downstream gene CREs may result in 296 

expression in a new spatiotemporal domain and changes in the trait. For one well-297 

studied trait – abdominal pigmentation in Drosophila – it appears there is change 298 

occurring both upstream and downstream in the network that can explain pigmentation 299 

variation within and between species [51]. These genes also show some evidence of 300 

selection [52,53]. It is challenging, however, to differentiate which genes may truly be 301 

input-output genes until the network is better characterized. Abdominal pigmentation is 302 

an excellent target for future work given the many genes associated with variation in this 303 

trait that can be evaluated further to compare the frequency of selective sweeps on 304 

different types of genes [54].  305 

  306 

Another model is that CREs of upstream genes are under pleiotropic constraint while 307 

CREs of downstream genes are under positive selection (Fig. 3b). This model may be 308 

more likely if the input genes’ CREs are all also shared (possibly through co-option) as 309 

part of more ancient, essential GRNs [8,55]. We may expect that input genes are more 310 

likely to be involved in network kernels that have dense circuitry. These input genes’ 311 

CREs are thus more likely to be constrained, such as by requiring a precise order of 312 

cooperatively-binding transcription factors to activate an essential function [55]. How 313 

widespread this type of constraint is on the regulation of upstream genes is unclear. 314 

Some ancient CREs have been found to drive adaptive trait evolution, and some 315 

upstream genes with constrained CREs can also gain new, possibly more evolutionarily 316 



labile CREs [35,56]. More research is needed to determine whether the regulation of 317 

upstream genes is more often constrained than downstream genes.  318 

  319 

A third alternative model posits that some traits may be evolving rapidly, primarily by 320 

changes in upstream patterning, so the CREs of upstream genes may be under positive 321 

selection while the regulatory architecture of the downstream genes is functionally 322 

conserved (Fig. 3c). We expect this to occur in cases where a GRN was co-opted to 323 

reproduce a structure at a new location or timepoint. For example, the development of 324 

the novel adult male-specific posterior lobe in Drosophila melanogaster is driven by a 325 

GRN co-opted from the development of the larval posterior spiracle. This co-opted GRN 326 

shares many of its downstream genes and enhancers with its ancestral GRN [57]. The 327 

origin of the novel trait is most likely due to changes in upstream patterning. 328 

Downstream terminal effectors may also be highly conserved such that upstream genes 329 

are evolving more by contrast. An interesting observation consistent with this model 330 

comes out of the many studies of adaptive wing patterning evolution in Lepidoptera, 331 

where selection on a pigmentation gene has never been found to be the primary driver 332 

of wing color pattern evolution in nature, even for simple color switches [4,58,59].  333 

   334 

In terms of selection on protein sequences, downstream proteins may be the least 335 

constrained and most likely to be under positive selection (Fig. 3d). There are many 336 

examples of downstream protein structural changes involved in adaptive evolution of 337 

melanism, for example [60–62]. Interestingly, these genes tend to be receptors or 338 

signaling proteins in the melanin pathway, not the terminal effectors. It has been 339 



proposed that further downstream genes evolve more slowly because they occupy a 340 

more stable cellular environment [63]. These cases suggest that the downstream 341 

proteins for this melanic trait are generally much more evolutionarily labile than 342 

upstream transcription factors. This is consistent with the research on PPIs that proteins 343 

on the periphery of a network should be under the strongest positive selection 344 

compared to other proteins, but we need more comprehensive and comparative studies 345 

to determine whether selection is indeed mainly targeting coding regions of these 346 

downstream genes [13].  347 

   348 

We could also observe positive selection on an upstream gene or genes (Fig. 3e). While 349 

we would expect upstream transcription factors to be more evolutionarily constrained 350 

due to pleiotropy, there could be positive selection for transcription factor modularity by 351 

evolving additional DNA binding or protein binding domains [64]. We might expect this 352 

for younger transcription factors that do not have many essential roles and are less 353 

constrained in their structure. This upstream protein evolution could also occur after a 354 

gene duplication event, which could release this gene from constraint and allow for the 355 

duplicate gene to diverge and gain a new role in regulating the input-output gene or 356 

other upstream genes [65].  357 

  358 

It is also worth considering that a cofactor for the input-output gene could be under 359 

positive selection to interact with the input-output gene and activate different suites of 360 

genes (Fig. 3f). Cofactors can increase the capacity for the network core to activate 361 

modules of differentiation genes in specific spatial contexts and are critical for the 362 



development of specific tissues and cell types [66]. We also expect core proteins to be 363 

evolutionarily constrained because changes to their binding domains would affect many 364 

processes at once. However, the less conserved regions of the protein structure can 365 

evolve more easily and allow new protein-protein interactions. This can avoid the 366 

potential pleiotropic costs of changes to the binding domains themselves [67].  367 

 368 

  369 

4.          How generalizable are these predictions across developmental GRNs? 370 

 371 

Our predictions – and much of our understanding of GRNs – come from study of the 372 

development of rapidly-evolving, adaptive morphological traits. However, GRNs can be 373 

considered at many spatial and temporal scales, from the set of genes that underlies an 374 

entire developmental stage to the set of genes responsible for a specific discrete trait. 375 

Whether our predictions can be applied across developmental GRNs is unclear. There 376 

are some cases where GRNs are not under positive selection. These may include 377 

highly-conserved, essential GRNs [5]. There are also some specific developmental 378 

stages where the networks are much more constrained given the high degree of 379 

conservation across taxa, such as the genes underlying the midembryogenesis period 380 

of development [8,29,68].  381 

 382 

Further, we assume that the networks controlling the development of these 383 

morphological traits fit a bow-tie structure, with a distinct input-output gene or genes that 384 

are much more connected to other genes than these other genes are connected to each 385 



other in the network. This assumption has not been rigorously tested. With more 386 

research on gene regulatory relationships, we can better model the structures of GRNs 387 

and how these structures can vary. Perhaps, for example, bow-tie GRNs are more 388 

commonly seen as a feature of more rapidly-evolving traits (e.g. color patterns), while 389 

more deeply conserved traits (e.g. embryonic patterning) tend towards different 390 

structures. Presently, however, we cannot say how generalizable these ideas are 391 

beyond that they are almost certainly not universally applicable – there are simply too 392 

few case studies. 393 

 394 

  395 

5. Experimental methods for GRN evolution 396 

 397 

5.1 Inferring networks and patterns of selection 398 

 399 

To test whether the proposed models (or, more likely, combinations of models) of 400 

positive selection across GRNs hold for adaptive morphological traits, and whether 401 

these patterns are found more broadly across developmental GRNs, we need two types 402 

of information. We need first to characterize the GRN for traits of interest, and then we 403 

need to determine the patterns of selection across the genome. Experimental methods 404 

for the latter have been well-developed: We know that the selection across genomes is 405 

not evenly distributed, and many studies have extensively investigated individual loci 406 

that show strong signals of selection and are involved in morphological evolution [7,69]. 407 

Our knowledge of developmental GRNs is comparatively lacking. Most GRNs are 408 



inferred from co-expression correlation matrices generated from bulk RNA-seq data. 409 

While these data can be very informative, the actual regulatory relationships between 410 

genes remain unknown [70]. Here, we discuss first how these networks can be 411 

described in more detail, and then how these data can be integrated with tests for 412 

selective sweeps to relate network position to gene evolution.  413 

 414 

 5.1.1 Characterizing GRNs 415 

 416 

There are many tools that can help improve our understanding of regulatory interactions 417 

and confirm causality between interactions. One of the most critical pieces of 418 

information is to understand where key transcription factors are binding in the genome, 419 

and to infer their target genes. Analyzing transcription factor genes that have been 420 

associated with trait evolution by using chromatin immunoprecipitation and sequencing 421 

(ChIP-seq), or similar methods, is a key step in characterizing GRNs [71]. For binding 422 

sites that are not located at the promoter of a gene, the target gene can be identified 423 

using chromosome conformation capture methods (e.g., Hi-C, 4C, etc.) to determine 424 

whether the bound DNA region physically interacts with the promoter of a gene [72]. 425 

These inferences can be further supported using gene expression data [72,73]. Many 426 

methods have been developed for network inference from single cell RNA sequencing 427 

(scRNA-seq) data that leverage analysis across cell types and timepoints [74]. scRNA-428 

seq data can also be integrated with analysis of chromatin accessibility [72]. For 429 

humans, yeast, and other organisms with large amounts of pre-existing molecular data, 430 

GRNs can be predicted by integrating known protein-protein interactions, gene 431 



expression, and binding motif data [75,76].  These data can further expand our 432 

knowledge of upstream and downstream genes in the network that can be later 433 

confirmed using functional tests.   434 

  435 

Functional tests of candidate genes can confirm not only that the gene is involved in the 436 

trait of interest, but also the direction of regulation. We can knock out, knock down, or 437 

drive expression of a key transcription factor and assay for changes in the expression of 438 

candidate downstream genes. Alternatively, we can use genetic tools to manipulate the 439 

expression of multiple genes in a hypothesized network to test whether they are in the 440 

same network and to determine the relative position of these genes. Reporter 441 

constructs can also assist in validating the role of particular CREs in driving expression 442 

in a particular region. CRISPR/Cas9 technology has made all of these approaches 443 

much more accessible in emerging model systems [77]. 444 

 445 

While inferring GRNs requires a lot of experiments, some of this work has already been 446 

completed in a handful of study systems. We suggest that GRNs that have been studied 447 

in depth in various model systems are ripe to be used in comparative evolutionary 448 

studies by extending work into related species. Comparative analysis of these GRNs 449 

could then shed light on the patterns in evolution across different levels of the network. 450 

For example, comparative work on neural crest cell development in other vertebrates in 451 

addition to chicks has illuminated the evolution of the cranial neural crest by successive 452 

additions of components to the network from an ancestral trunk-like lineage [78]. 453 

Another recent study compared the well-characterized sea urchin endomesoderm GRN 454 



with a newly constructed sea star GRN for the same trait, finding both shared and 455 

unique modules [79]. Thus, there are quite a few promising systems for exploring GRN 456 

evolution.  457 

 458 

5.1.2 Detecting positive selection  459 

 460 

It will be exciting to combine functional GRN models with tests for signals of positive 461 

selection. There are a number of methods to detect positive selection using variation 462 

within and between species [80–82]. Since selection can be tested at both micro- and 463 

macroevolutionary scales, we can also compare the patterns of selection across 464 

networks that may emerge at different time scales. Testing for positive selection can 465 

also be useful for building the GRN for a particular trait since regions under selection 466 

will have some functional role in a phenotype.  467 

 468 

Many tests for selection on genes are based on the ratio of the rate of nonsynonymous 469 

substitutions to the rate of synonymous substitutions (dN/dS). There is no equivalent to 470 

this statistic for CREs. Positive selection in CREs has been identified using tests for 471 

selective sweeps and divergence in substitution rate in specific regions across taxa 472 

[36,83,84]. In principle, future work on CRE evolution could also leverage analysis of 473 

motif composition in a similar way to synonymous and nonsynonymous changes to 474 

genes. These tests would require a sophisticated understanding of what affects a 475 

motif’s affinity for specific transcription factors and how transcription factors’ binding 476 

sites differ from their canonical motifs in different taxa. Despite these complications, it is 477 



worthwhile to analyze the motifs of a CRE in the event that transcription factor binding is 478 

conserved despite sequence divergence. These functionally-conserved CREs have 479 

been identified at deep evolutionary time scales [85]. Understanding what changes to 480 

CREs are meaningful and are more likely to be the result of positive selection and what 481 

changes are due to drift can be aided by characterizing motifs.  482 

 483 

5.2 Limitations and challenges 484 

 485 

There are several common limitations and biases to studies of the type mentioned 486 

above. The main challenge moving forward will be scaling up experiments to sufficiently 487 

characterize a GRN, or many GRNs, to answer questions of network position and 488 

selection. Choosing a few transcription factors that are well-described and known to be 489 

under strong selection can help focus this research, but it also introduces bias in the 490 

description of the network’s structure. This streetlight effect is unavoidable unless we 491 

endeavor to describe every unknown gene that is associated with a trait.  492 

 493 

Necessarily, any description of a network for a specific character involves decisions of 494 

what is and is not included as part of the network. No GRN is an island: The 495 

development of a late-acting GRN for a trait will often be contingent upon proper early 496 

development of the organism. How we should make these decisions of what is and is 497 

not considered part of a trait’s underlying network is an open question. Some suggest 498 

that every gene expressed in the cells that give rise to a trait should be considered part 499 

of the GRN for that trait – a viewpoint growing in popularity with respect to disease 500 



states [86]. Most evo-devo studies include genes in the network for a trait if they have 501 

functional or other molecular evidence to support its inclusion. More data on the gene 502 

regulatory networks underlying traits will help us understand how best to characterize 503 

them and whether the bow-tie model fits or if a different structure is more 504 

representative.  505 

 506 

It is also important to consider that often a gene may be located at different network 507 

positions depending on the trait or network scale considered. For example, different 508 

strains of Drosophila melanogaster have different patterns of trichomes on the legs. 509 

Initially, it seemed surprising that these differences were not facilitated by changes in 510 

CREs regulating svb expression, as was found for larval trichome pattern. Instead, 511 

differences in leg trichomes were mediated by changes to the CREs of a different gene, 512 

miR-92a. This finding could be explained by differences between the larval and leg 513 

trichome GRNs [87]. Thus, the selective pressure on any individual gene or CRE can be 514 

affected by its different network positions and roles for different traits. Further, even 515 

within the network for the same trait, a gene can also play multiple roles and occupy 516 

different network positions, such as both regulating (upstream of) and being regulated 517 

by (downstream of) the input-output gene.  518 

 519 

Generally, to identify genes that underlie adaptive morphological evolution, they must 520 

meet two conditions: i) they have detectable effects on phenotype and ii) they have 521 

detectable signatures of selection. The literature reviewed in this paper is thus biased to 522 

focus on large- and intermediate-effect size genes with evidence of recent divergence. 523 



These examples demonstrate that large- and intermediate-effect genes do in fact drive 524 

adaptation, as can be predicted under some evolutionary scenarios [88]. However, 525 

these data are likely not representative of the entire spectrum of genetic variation 526 

underlying trait evolution including all minor effect genes, especially for complex 527 

developmental traits [89]. More research aimed at detecting polygenic selection across 528 

networks can reveal whether gene network position is less important in this evolutionary 529 

regime [82].  530 

 531 

Finally, complete knowledge of every GRN and every gene’s regulation and function is 532 

still probably not sufficient to predict gene evolutionary rates at different network 533 

positions due to the potential effects of population size and structure [90]. In small 534 

populations, mutations that have a larger effect on the network structure may be more 535 

likely to be fixed, whereas in larger populations, we might expect this to occur less 536 

often. This is because small populations tend to accumulate deleterious mutations, and 537 

a mutation that significantly changes gene interactions is more likely to be deleterious 538 

compared to a mutation that slightly alters expression of a downstream gene [90].  539 

 540 

6.          Conclusion 541 

  542 

Characterizing GRNs and patterns of selection across them is clearly not a small task, 543 

but it can lend great insight into the evolution of adaptive traits. Positionality within a 544 

network has long been proposed as an important factor in the evolution of genes within 545 

a regulatory network, and many studies have tested for similar patterns of selection 546 



across different components of signaling and metabolic pathways [28]. Due to the 547 

paucity of thoroughly characterized developmental GRNs, especially for rapidly 548 

adapting traits, this question has still not been addressed. Open questions include 549 

whether evolution at the CREs of input-output genes is the primary driver of 550 

morphological evolution and whether there are common patterns in how selection varies 551 

across GRNs. We are well-positioned with molecular techniques available today to 552 

address these network-related gene evolution questions. As GRNs are the bridge 553 

between genotype and phenotype, the better we can understand regulatory networks, 554 

the better we can understand the mechanisms of adaptation. 555 

 556 
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 812 

Figure 1: The bow-tie GRN consists of an input-output gene that is functionally connected to 813 

many genes upstream and downstream. The upstream and downstream genes can also be 814 

connected to other genes but not to nearly as many. Some developmental GRNs may fit the null 815 

hierarchal model, where there is little appreciable difference in connectivity between genes in the 816 

network.  817 

  818 



 819 

Figure 2: Levels of the optix GRN regulating wing color pattern in Heliconius butterflies. The 820 

GRN for wing color pattern is modeled as a bow-tie structure, with optix acting as the input-output 821 

gene. optix is likely directly regulated by many upstream genes (inputs) and is known to directly 822 

target many downstream genes (outputs). Direct targets of optix include (a) intermediate factors that 823 

initiate downstream cascades that can be turned on or off, such as dome/wash as well as (b) 824 

directly-targeted terminal effectors, such as the pigmentation enzyme ebony. The optix network 825 

contains more regulatory relationships than shown here, and the number of inputs and outputs 826 

involved in this GRN is likely much higher than illustrated [34,35]. 827 
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 829 

Figure 3: Distribution models of relative positive selection pressure across a bow-tie GRN. 830 

Patterns of positive selection on CREs (A-C) and protein-coding genes (D-F) at different positions in 831 

a bow-tie GRN. Highlighted sections indicate the position within the network of the CRE(s) or 832 

protein-coding gene(s) that selection is acting on and are not intended to indicate the number of 833 

genes under selection (e.g. for a trait GRN to fit model A, CREs for genes upstream and 834 

downstream are under selection, but not necessarily all CREs within the network).  835 
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