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Abstract 26 

Context: Maps of C3 and C4 plant abundance and stable carbon isotope values (δ13C) across 27 

terrestrial landscapes are valuable tools in ecology to investigate species distribution and 28 

carbon exchange. Australia has a predominance of C4-plants, thus monitoring change in 29 

C3:C4 cover and δ13C is essential to national management priorities. 30 

Objectives: We applied a novel combination of field surveys and remote sensing data to 31 

create maps of C3 and C4 abundance in Australia, and a vegetation δ13C isoscape for the 32 

continent.  33 

Methods: We used vegetation and land-use rasters to categorize grid-cells (100 m2) into 34 

woody (C3), native herbaceous, and herbaceous cropland (C3 and C4) cover. Field surveys 35 

and environmental factors were regressed to predict native C4 herbaceous cover. These layers 36 

were combined and a δ13C mixing model was used to calculate site-averaged δ13C values.  37 

Results: Seasonal rainfall, maximum summer temperature, and soil pH were the best 38 

predictors of C4 herbaceous cover. Comparisons between predicted and observed values at 39 

field sites indicated our approach reliably predicted generalised C3:C4 abundance. Southern 40 

Australia, which has cooler temperatures and winter rainfall, was dominated by C3 vegetation 41 

and low δ13C values. C4-dominated areas included northern savannahs and grasslands.  42 

Conclusions: Our isoscape approach is distinct because it incorporates remote sensing 43 

products that calculate cover beneath the canopy, the influence of local factors, and extensive 44 

validation, all of which are critical to accurate predictions. Our models can be used to predict 45 

C4:C3 abundance under climate change, which is expected to substantially alter current C4:C3 46 

abundance patterns.   47 
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Introduction 66 

The spatial patterns of stable carbon isotope ratios (δ13C) across terrestrial landscapes, also 67 

known as δ13C ‘isoscapes’, are used in a wide range of research applications (West et al. 68 

2009). Most commonly, δ13C isoscapes are used to study food web dynamics and animal 69 

migration (Hobson et al. 2010; Hobson and Wassenaar 2018; Vander Zanden et al. 2018). 70 

Animals tissues reflect the δ13C value of their diet (Ben-David and Flaherty 2012; Kelly 71 

2000; Tieszen et al. 1983). By comparing the carbon isotope ratios of an organism to its 72 

environment, we can deduce its likely place of origin (Flockhart et al. 2017; Hobson and 73 

Kardynal 2015; López-Calderón et al. 2017). Terrestrial δ13C ratios can also be used to 74 

unravel carbon biogeochemical fluxes (i.e. carbon exchange between the biosphere and 75 

atmosphere; Still and Rastogi 2017), fractional plant productivity (Powell et al. 2012) and 76 

water use efficiency (Cernusak 2020; Frank et al. 2015). Given their vast utility, creating 77 

isoscapes has become a high priority in environmental research.  78 

 79 

The primary determinant of average vegetation δ13C values across terrestrial landscapes is the 80 

relative abundance of C3 and C4 plants (Still et al. 2003). C3 plants include cool season 81 

grasses, most shrubs, and nearly all trees (Kellogg 2001; Sage 2016), whereas C4 plants 82 

include warm-season grasses, many sedges, and some forbs and shrubs (Sage et al. 2012). 83 

The distribution of C3 and C4 plants reflects their divergent responses to climate. In hot and 84 

dry environments, C3 plants experience increased rates of oxygen fixation by rubisco 85 

(photorespiration), a toxic and energetically expensive process, and diminishing returns in the 86 

trade-off between carbon uptake and water loss (Andrews and Lorimer 1987; Sage et al. 87 

2012). In contrast, C4 plants possess a unique set of adaptations that separate and concentrate 88 

CO2 with rubisco, eliminating photorespiration and increasing productivity in hot and dry 89 
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conditions (Kanai and Edwards 1999; Sage 2004). As a result, C3 plants are typically less 90 

competitive in warm, arid climates. C3 and C4 plants also have a unique range of δ13C values. 91 

Due to their distinct carbon fractionation processes during photosynthesis, the values of C3 92 

plants range from -37‰ to -20‰ δ13C (mean= ~-27‰), and the values of C4 plants range 93 

from -12‰ to -16‰ δ13C (mean=~-13‰; Kohn 2010; O'Leary 1988). Therefore, knowledge 94 

of C3 and C4 cover can be used to estimate average plant δ13C across terrestrial environments 95 

(Powell et al. 2012; Still and Powell 2010). 96 

 97 

Remote sensing capabilities can be used to approximate C3 and C4 cover at a continental 98 

scale (Griffith et al. 2019; Powell et al. 2012; Still and Powell 2010). Satellite imagery 99 

enables the separation of woody (predominantly C3) and herbaceous (mixed C3 and C4) plant 100 

cover. Climate masks or models can be used to predict the relative abundance of C4 and C3 101 

cover in the herbaceous layer, and the δ13C values of C3 and C4 plants can be applied to 102 

extrapolate the mean δ13C value of vegetation in a given area. Cropland cover must also be 103 

considered because the photosynthetic pathway of cropland is dictated by humans, not 104 

climate. This technique has been applied to create terrestrial δ13C isoscapes at the continental 105 

scale in Africa and America (Firmin 2016; Powell et al. 2012; Still and Powell 2010), 106 

although other continents undergoing profound land-use changes remain unassessed.  107 

 108 

Field surveys can greatly enhance the accuracy of δ13C isoscapes. Vegetation cover data from 109 

field surveys can be used to compare different C4 cover-climate models and determine what 110 

approach should be used to predict the relative abundance of C4 and C3 herbaceous cover. 111 

Numerous models have been proposed to predict relative C4 herbaceous cover, such as 112 

summer maximum temperatures (von Fischer et al. 2008) and seasonal rainfall patterns 113 
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(Murphy and Bowman 2007; Winslow et al. 2003). The most commonly employed approach 114 

is the physiological temperature crossover model (Collatz et al. 1998; Ehleringer 1978), 115 

which predicts C4 plants will be more abundant in areas where the mean monthly temperature 116 

is greater than 22°C. The best approach may vary between regions, therefore selecting the 117 

most appropriate model for a specific area is essential for accurate isoscape predictions. Field 118 

surveys can also be used to model the modifying effects of local edaphic factors on C4 cover 119 

(Griffith et al. 2015; Nippert and Knapp 2007), which is generally overlooked in large-scale 120 

analysis. They can be used to quantify the herbaceous cover under trees, which is often 121 

obscured, and thus excluded, from isoscapes built using standard remote sensing tools. 122 

Finally, but perhaps most crucially, field surveys can validate remote sensing predictions. 123 

Yet, systematic and comparable field surveys that span an entire continent are rare, and 124 

existing large-scale isoscapes have been largely constructed without the benefits of ground 125 

observations or extensive validation.  126 

 127 

Australia is a continent with abundant C4 vegetation due to the large expanses of C4 128 

grasslands, shrublands and savannahs (Hattersley 1983; Murphy and Bowman 2007; Sage 129 

2016). Therefore, monitoring and predicting trends in C4 abundance and δ13C is important to 130 

national management priorities, such as fire modelling (Prober et al. 2007) and projecting 131 

changes in C3 and C4 abundance due to climate change (Corlett and Westcott 2013; 132 

Hasegawa et al. 2018). Despite this, no large-scale estimates of C3 or C4 vegetation cover or 133 

δ13C values are available. This represents a significant gap in national research capacity. The 134 

Australian Terrestrial Ecosystem Research Network (TERN) is an environmental monitoring 135 

program funded through the Australian Government National Collaborative Research 136 

Infrastructure Strategy (NCRIS) that observes, records, and measures terrestrial ecosystem 137 

parameters and conditions for Australia over time. TERN has developed numerous remote 138 
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sensing layers that estimate the relative distribution of vegetation cover across the country 139 

(see www.tern.org). TERN has also conducted over 700, one ha plot-based vegetation 140 

surveys across all major biomes and dryland habitats. These combined resources provide a 141 

novel opportunity to advance and validate remote sensing strategies for building large 142 

terrestrial isoscapes, and for the first time develop a δ13C isoscape for Australia.  143 

 144 

The goals of this paper were to create mapping products that represent the distribution of C3 145 

and C4 vegetation in Australia, and construct a site-averaged vegetation δ13C isoscape for the 146 

continent (including Tasmania) using a unique combination of field surveys and remote 147 

sensing tools. To create a terrestrial vegetation δ13C isoscape, we adapted the methodology 148 

pioneered by Still and Powell (2010) and Powell et al. (2012), with key modifications that 149 

benefit from Australian ground survey data and advancements in remote sensing. To predict 150 

the relative cover of C3 and C4 vegetation, we used vegetation and climate rasters to (1) 151 

categorize grid-cells (100 m2) into woody (C3) and herbaceous (C3 and C4) components, (2) 152 

determine the extent of Australian cropland and assign each crop a photosynthetic type (i.e. 153 

C3 or C4), and (3) apply a % herbaceous C4 cover~climate and edaphic model to predict 154 

proportional (%) C3 and C4 herbaceous cover. In contrast to other large-scale isoscapes, 155 

TERN remote sensing data and field surveys were used to account for the ground cover 156 

fraction beneath the vegetation canopy, and the influence of local-scale factors on C4 157 

abundance. Once relative C3 and C4 vegetation cover layers were generated, we used a δ13C 158 

mixing model to determine the average vegetation δ13C value in each grid-cell. We also 159 

conducted novel accuracy assessments of our final predictions across major vegetation 160 

groups and demonstrate the research potential of these data layers with an example of C4-161 

landscape analysis across all bioregions in Australia. Our results provide an alternative 162 

approach to constructing terrestrial δ13C isoscapes that may better incorporate local-scale 163 

http://www.tern.org/
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controls on C3:C4 abundance and enables the prediction of future changes in C3 and C4 164 

distribution under various climate change scenarios. This is a critical feature of our 165 

methodology, as climate change is anticipated to drastically shift the competitive advantage 166 

of C3 and C4 plants across the continent.  167 

 168 

Methods 169 

Step 1: Estimate % woody and % herbaceous cover  170 

Our Australian δ13C vegetation isoscape was constructed using remote sensing vegetation 171 

data primarily sourced for the year 2015. Climate conditions in 2015 for Australia were 172 

considered average (i.e. not dry or wet), and fire occurrence and intensity were relatively low. 173 

This was also one of the most recent years for which exhaustive vegetation data were 174 

available. Thus, a 2015 isoscape should be a good representation of modern average 175 

conditions in Australia.  176 

 177 

To create the isoscape, we adapted the methodology of Still and Powell (2010) and Powell et 178 

al. (2012) and partitioned Australian vegetation cover into C3 and C4 cover layers (Fig. 1). 179 

The % woody cover layer was generated from the Seasonal Persistent Green Cover product 180 

for Australia (Gill et al. 2017; Gill et al. 2015). This product is derived from Landsat 5 TM, 181 

Landsat 7 ETM+ and Landsat 8 OLI images acquired from the United States Geological 182 

Survey (USGS) and estimates the proportion (%) of green fractional cover (i.e. the fraction of 183 

ground covered by green vegetation) that does not entirely deteriorate within a year (see 184 

Supplemental Methods Table 1 for synopsis of all datasets). This primarily consists of woody 185 

vegetation (i.e. trees and shrubs). Estimates for Seasonal Persistent Green Cover and 186 

projected woody foliage cover (2000-2010) have been validated with field-measurements, 187 
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providing an R2 of 0.918 and a root mean square error (RMSE) of 0.070. The overall 188 

classification accuracy of the woody vegetation extent is 81.9%. Based on these results, we 189 

treated % woody cover as the most accurate estimate for any cover product in our analysis.  190 

 191 

The % herbaceous cover layer was generated from the Seasonal Fractional Ground Cover 192 

product for Australia (Trevithick et al. 2014). The Seasonal Fractional Ground Cover product 193 

is derived from the Seasonal Fractional Cover time series and the Seasonal Persistent Green 194 

Cover product. It consists of three components, (1) % vegetated green (photosynthetically 195 

active) ground cover, (2) % vegetated non-green (i.e. non-photosynthetic) ground cover 196 

(primarily dead vegetation), and (3) % bare ground. These three components sum to 100%. 197 

The Seasonal Fractional Ground Cover is distinct from other remote sensing measures of 198 

fractional ground cover because it accounts for vegetation layering. The Seasonal Fractional 199 

Ground Cover includes the ground cover fraction that is visible to the satellite (i.e. viewed 200 

from above), but also applies a model to account for the ground cover fraction that may grow 201 

beneath the vegetation canopy. Essentially, the Seasonal Fractional Ground Cover predicts 202 

the ground cover under the canopy that is normally obscured from the view of the satellite. 203 

This provides a potentially more accurate representation of ‘true’ ground cover compared to 204 

other remote sensing data. Vegetated green and vegetated non-green ground cover were 205 

combined to estimate the total % herbaceous cover in each grid-cell. Vegetated non-green 206 

ground cover was included in % herbaceous cover to account for Australia’s highly arid 207 

climate and ensure that wide spread senescent vegetation was incorporated into our 208 

calculations. Both % woody and % herbaceous cover predicts vegetation cover at medium 209 

resolution (30 m) for each calendar season (3 months) and are freely available from the 210 

TERN Landscape Monitoring’s Remote Sensing Data Facility. To bring cover data to a scale 211 

consistent with the other data products, we resampled all vegetation raster layers to a 212 
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resolution of 100 m x 100 m per pixel (1 ha). Values from each season were combined to 213 

calculate the annual mean % woody and % herbaceous cover (Fig. 2). 214 

Estimates of Seasonal Fractional Ground Cover were restricted to areas of < 60 % woody 215 

cover because the model used to estimate the herbaceous cover under trees is not effective in 216 

dense forests. TERN plot data indicated in areas where tree cover was > 60%, herbaceous 217 

cover was limited and ranged from 0 to 25% (Supplemental Methods Figure 1). This is 218 

consistent with other work demonstrating increased canopy cover can reduce herbaceous 219 

cover due to reduced light availability in the understory (Cole and Weltzin 2005; Dormann et 220 

al. 2020). Therefore, in grid cells with > 60% woody cover, % herbaceous cover was 221 

presumed to be minimal and set to zero (see Supplemental Methods for full justification).  222 

 223 

The % woody cover layer was designated 100% C3 vegetation. This introduces a potential 224 

source of error because some groups of shrubs, in particular chenopods, may use either C3 or 225 

C4 photosynthesis (Akhani et al. 1997; Munroe et al. 2020b). However, chenopods are mostly 226 

evergreen and are likely largely incorporated into the % woody cover fraction (Scarth, 227 

personal communication). We were unable to identify an accurate way to distinguish and 228 

model C4 chenopod shrub cover from other woody cover across Australia. Remote sensing 229 

does not relate well to chenopod vegetation (O'Neill 1996; Sparrow et al. 1997), and 230 

statistical analysis of TERN field plot found proportional C4 chenopod distribution (relative 231 

to C3) is not closely associated with climate in Australia (Munroe et al. in review). 232 

Consequently, we made the simplifying assumption that all woody cover is C3. 233 

 234 

Step 2: Incorporate agro-ecosystems 235 



 

 11 

The photosynthetic pathway of cropland is determined by what type of crop is planted in each 236 

area. Therefore, the photosynthetic pathway of crops must be evaluated separately to natural 237 

vegetation. To accomplish this, we partitioned % herbaceous cover into % natural 238 

herbaceous cover and % herbaceous crop cover layers. This was achieved using the 239 

Catchment Scale Land Use of Australia (CLUM) dataset. The CLUM dataset is the most 240 

current, nationally consistent compilation of catchment scale land use data for Australia 241 

(current as of December 2018). It is a seamless raster dataset that combines land use data for 242 

all state and territory jurisdictions at a resolution of 50 metres. The CLUM dataset indicates a 243 

single dominant land use type for each grid-cell. Land use is classified according to 244 

the Australian Land Use and Management (ALUM) Classification version 8 (ABARES 245 

2016). This dataset identifies cropping land across the country, and includes information on 246 

specific commodities (e.g. sugar, rice, cereals). Using CLUM, we determined the 247 

geographical extent of herbaceous cropland areas. We assumed that in cropland grid-cells, 248 

100% of the % herbaceous cover was crops. Based on this assumption, % herbaceous cover 249 

was divided into % natural herbaceous cover and % herbaceous crop cover layers (Fig 3). 250 

Using the CLUM dataset, we then determined the likely commodity and photosynthetic type 251 

planted at each grid-cell in the % herbaceous crop cover layer.  252 

 253 

Most identified crops in Australia were C3 (e.g. wheat, barley, rice). The only specifically 254 

identified C4 commodity was sugarcane. However, the generic ALUM classifications ‘cereal 255 

crops’ and ‘crops’, which were the most common and extensive crop designations in the 256 

CLUM dataset, may be C3 or C4 grain. To assess the likelihood of ‘cereal crops’ and ‘crops’ 257 

being C3 or C4, we consulted the Australian Bureau of Statistics (ABS), which conducts 258 

detailed agricultural censuses that quantify crop area, commodity type, production, and yield 259 

data for Australia, each state/territory, and sub-state regions. The most recent relevant 260 
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agriculture census was for 2015/16 (ABS 2016). According to ABS (2016), the most 261 

common C4 grain crops in Australia are sorghum and maize. Together, sorghum and maize 262 

only equalled approximately 2% of the total cropping area (ha) in Australia in 2015. Most 263 

sorghum and maize were grown in the so-called ‘sorghum belt’, which stretches across the 264 

southern cropping regions of Queensland and the northern cropping areas of New South 265 

Wales. Within this area, sorghum and maize represent less than 15% of the cropping area. In 266 

addition, sorghum is often seasonally rotated with wheat. Without more specific information 267 

on the cropping locations for sorghum and maize, and given its likely limited land cover in 268 

2015, we determined that unspecified cropland should be assigned 100% C3. Using these 269 

finalised C3 and C4 cropland assignments, % herbaceous crop cover was subdivided into % 270 

herbaceous C3 crop cover and % herbaceous C4 crop cover layers. 271 

 272 

Step 3: Assign % natural herbaceaous cover layer proprotional C3 and C4 values  273 

% natural herbaceous cover includes a mix of C3 and C4 plants whose relative abundance is 274 

dictated by climate and local environmental conditions. Therefore, to estimate the relative 275 

cover of C3 and C4 plants in each grid-cell of the % natural herbaceous cover layer, we 276 

applied a statistical model that accounts for their divergent responses to climate and edaphic 277 

factors. We used TERN vegetation survey data to compare various environmental models to 278 

identify the most accurate method for predicting proportional (%) herbaceous C4 vegetation 279 

across Australia.  280 

 281 

Step 3a. Create a model to predict proportional (%) herbaceous C4 vegetation cover 282 

We calculated proportional (%) herbaceous C4 vegetation cover (relative to herbaceous C3 283 

and C4 cover) at 700 one-hectare plots systemically surveyed using a point-intercept method 284 

by TERN between 2011 and 2019. A full description of TERN plot survey protocols is 285 
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detailed in the TERN AusPlots Rangeland manual (Sparrow et al. 2020; White et al. 2012). 286 

The protocols most relevant to our analysis are documented in the Supplemental methods. 287 

TERN plot data were analysed in the R statistical environment (R Core Team 2019) and 288 

imported using the ‘ausplotsR’ package (Guerin et al. 2020; Munroe et al. 2020a), a package 289 

which enables the import and analysis TERN plot survey data. Herbaceous species cover (%) 290 

was calculated at each TERN plot using the species_table function. Species were assigned a 291 

photosynthetic pathway using Munroe et al. (2020b). Herbaceous species included the growth 292 

forms 'Forb', 'Hummock grass', 'Rush', 'Sedge', and 'Tussock grass'. Proportional herbaceous 293 

C4 cover at TERN plots (Fig 4) was then calculated as a proportion of C3 and C4 herbaceous 294 

species cover by:  295 

Eq 1                    Proportional herbaceous C4 cover = C4 herbaceous species cover/ 296 

(C4 herbaceous species cover + C3 herbaceous species cover) 297 
 298 
 299 

We then compiled a dataset of climatic and edaphic variables (Supplemental Methods Table 300 

3) that are considered potential drivers of C4 plant distribution (Griffith et al. 2015; Pau et al. 301 

2013; Sage 2004). Climate data layers were sourced from Williams et al. (2010) and edaphic 302 

data from Gallant et al. (2018). We also considered the Collatz et al. (1998) crossover 303 

temperature model for comparison (Collatz et al. 1998; Ehleringer 1978). Using this 304 

approach, a particular month is determined to favour C4 growth when the mean daytime 305 

temperature was > 22 °C and precipitation is ≥ 25 mm, while a particular month is 306 

determined to favour C3 growth when the mean daytime temperature was ≤ 22 °C and 307 

precipitation is ≥ 25 mm. However, because large areas of Australia receive < 25 mm of 308 

precipitation per month, a traditional crossover approach may not be accurate (Murphy and 309 

Bowman 2007). Therefore, to apply the crossover temperature model consistently across the 310 

country, we regressed proportional C4 herbaceous cover against the mean annual proportion 311 
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of C4 favoured months (> 22 °C and ≥ 25 mm rainfall), instead of the absolute number of C4 312 

favoured months (Munroe et al. in review). Climate data for the crossover approach were 313 

calculated using 1970–2018 records from the Australian Gridded Climate Data set (Bureau of 314 

Meteorology). Australian Gridded Climate Data were required to calculate monthly values 315 

for the crossover temperature model because unlike Williams et al. (2010), it provides daily 316 

data.  317 

 318 

To relate proportional herbaceous C4 cover at each plot to climate and soil data, we used a 319 

generalised additive model (GAM) approach. GAMs were chosen because they can 320 

accommodate non-linear effects (Wood 2006; Wood 2017) and can be specified to account 321 

for high spatial autocorrelation (see discussion below; Zuur et al. 2009). Because C4 plot 322 

cover data was proportional with ‘true’ values of 0 and 1, we used a logistic error structure 323 

(Douma and Weedon 2019). The smooth functions of each variable were limited to five 324 

degrees of freedom. This allowed for nonlinearity in the data while avoiding overfitting. 325 

Models were limited to variables that had Pearson pairwise correlations < 0.8 and interaction 326 

terms were not included. Models were compared using a step-wise, forward-selection 327 

procedure and Akaike information criterion (AIC). Model fit was measured using R2. Models 328 

were constructed using the gamm function in the mgcv package (Wood 2021). 329 

 330 

Moran's I tests confirmed the presence of spatial autocorrelation in preliminary GAM 331 

residuals (Matthews et al. 2019). Spatial autocorrelation can reduce model precision and 332 

predictive power (Guélat and Kéry 2018; Mets et al. 2017). Spatial autocorrelation can be 333 

alleviated by either (a) including spatial coordinates (i.e. longitude, latitude) in the model as 334 

covariates, or by (b) accounting for spatial autocorrelation in model residuals. The former can 335 
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be problematic because spatial coordinates typically co-vary with environmental variables. 336 

Therefore, we incorporated a correlation structure in the model residuals.  337 

 338 

Step3b. Extrapolate proportional herbaceous C4 and C3 cover  339 

Model AIC comparisons indicated the best model to predict proportional herbaceous C4 cover 340 

included the ratio (log) of summer (Dec-Jan-Feb) to winter (Jun-Jul-Aug) rainfall (slrain1), 341 

the maximum temperature of the hottest month (maxtx), and soil pH-CaCl2 (PHC), sand 342 

content (%; SND), and available water capacity (%; AWC) as variables (R2=0.7; 343 

Supplemental Results Table 4). As maxtx, slrain1 and PHC increased (i.e. pH becomes more 344 

alkaline), proportional herbaceous C4 cover generally increased (Fig 5 a,b,c). The effects of 345 

sand content and AWC were nonlinear (Fig 5 e,f), where proportional herbaceous C4 cover 346 

was predicted to be higher in plots where both soil sand content and AWC exhibited more 347 

extreme values. However, these nonlinear trends may have been driven by the relative 348 

paucity of data in areas with low sand content (<40%) and AWC (<12%). The resulting 349 

GAM was extrapolated across the Australian continent (Fig 6) and used to predict 350 

proportional herbaceous C4 cover in each grid-cell of the % natural herbaceous cover layer 351 

and generate a % natural herbaceous C4 cover layer. A % natural herbaceous C3 cover layer 352 

was calculated by subtracting the % natural herbaceous C4 cover layer from the original % 353 

natural herbaceous cover layer. 354 

 355 

Step 4: Create final C3 and C4 vegetation layers  356 

To finalise the C3 and C4 cover vegetation layers, all C3 vegetation layers were summed to 357 

create a single % C3 cover layer (Fig 7a).  358 

 359 
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Eq 2  % C3 crop cover + % natural herbaceous C3 cover + % woody vegetation =% C3 cover  360 

 361 

Similarly, C4 vegetation layers were summed to create a single % C4 cover layer (Fig 7b). 362 

Eq 3  % C4 crop cover + % natural herbaceous C4 cover = % C4 cover  363 

 364 

Finally, both % C3 and C4 cover layers were converted from % cover to % vegetation. This is 365 

because many areas will have a high percentage of bare ground that is irrelevant to 366 

calculating the final isoscape. The % vegetation was calculated as:  367 

. 368 

Eq 4   % vegetation = % cover of vegetation type / % total vegetation cover. 369 

 370 

This resulted in the final two layers, % C3 vegetation and % C4 vegetation (Fig 7c,d) 371 

 372 

Step 5: Calculate site-averaged vegetation δ13C using a two end-member mixing model 373 

The average vegetation δ13C value for each grid-cell was calculated based on the final % C3 374 

vegetation and % C4 vegetation layers and a δ13C mixing model. End-members were derived 375 

from the literature. Previous work has indicated that understory plants in closed canopy 376 

environments have lower δ13C values than open forests (Cheesman et al. 2020; Powell et al. 377 

2012); however, the bulk of leaf mass resides in the upper canopy. Moreover, this effect is 378 

typically most exagerated in dense rainforest habitats, which represent a minute porportion of 379 

the total land area in Australia. Therefore, we opted not to apply a canopy cover correction to 380 

average vegetation δ13C values because (a) there was enough data to calculate a reliable 381 

correction value, and  (b) such a correction was not deemed useful at this resolution. Previous 382 

work has also applied different end-member δ13C values for herbacous and woody C3 383 

vegetation (Firmin 2016). However work by Pate et al. (1998) and data from Munroe et al. 384 
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(2020b) did not indentify significant differences in δ13C between C3 herbaceous and C3 385 

woody species. Thus, for simplicity, using values from Munroe et al. (2020b), we calculated 386 

the mean ± sd δ13C values for C4 and C3 (herbacous and woody) endmembers. The mean ± sd 387 

of δ13C values for C4 herbaceous plants was -13.8±1.1‰ (n=119), and for C3 388 

herbaceous/woody plants was -27.7 ± 2.3‰ (n=420). 389 

 390 

 The site-averaged vegetation δ13C isoscape was then calculated using a Monte Carlo method 391 

and a simple mixing model: 392 

 393 
Eq 5        δ13Cleaf = f C4veg * (δ13CC4veg) + f C3veg *(δ13CC3veg) 394 
 395 
                  f C4veg= % C4 vegetation 396 
                  f C3veg =% C3 vegetation 397 
 398 

Different possible values of δ13CC4veg and δ13CC3veg from the range of possible δ13C values 399 

(mean ± 2 * sd) determined from Munroe et al. (2020b) were randomly substituted into Eq 5 400 

for 1000 iterations. The results were averaged to produce the final vegetation δ13C isoscape. 401 

A standard deviation raster was created by calculating the standard deviation of the 1000 402 

iterations of each grid cell (Fig. 8). 403 

 404 

Step 6. Validation  405 

To validate model outcomes and the final vegetation δ13C isoscape, we calculated the root 406 

mean squared error (RMSE) of competing % herbaceous C4 cover ~ climate models (Bataille 407 

et al. 2018). The RMSE of each model was calculated using 10-fold cross-validation where 408 

the original dataset was randomly split ten times between a training data set (90% of plots) 409 

and a testing dataset (10% of plots). To assess the accuracy of the final % C4 vegetation layer, 410 

we compared the predicted % C4 vegetation layer outputs to the proportional % C4 vegetation 411 
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cover observed at all TERN plots. We used a linear regression to quantify relationships 412 

between predicted and observed % C4 vegetation values. We also compared the residual 413 

values of predicted and observed % C4 vegetation in different major vegetation groups 414 

(MVG), as determined by onsite evaluations by TERN survey teams.  415 

 416 

Finally, we compared predicted leaf-δ13C values to soil organic matter (SOM) δ13C values 417 

determined samples collected at TERN plots. SOM δ13C values were provided from two 418 

separate projects. Soil samples were collected at 19 TERN plots between 2011 and 2013 and 419 

analysed in 2019 as part of a project testing different isotopic tools to predict % C4 abundance 420 

(Atkins 2020). These plots are located along a North to South transect through central 421 

Australia (Supplemental Methods Figure 4). For this project, a single soil sample was 422 

collected from the top 3 cm of the soil profile at the same location in each plot. Additional 423 

SOM δ13C values were provided from 32 TERN plots located along the Adelaide 424 

Geosyncline in South Australia as part of a project examining the relationship between soil 425 

isotopic composition and aridity (Farrell, unpublished data). In April and May 2016, 20 soil 426 

samples were taken at random within each plot from the 0-10 cm layer; the 20 samples were 427 

composited and homogenised in the field to yield a single representative 0-10 cm soil sample 428 

for each plot. Atkins (2020) 0-3 cm depth SOM δ13C values were adjusted by 0.5‰ and 429 

Farrell 0-10 cm depth SOM δ13C values by 1‰ to account for 13C enrichment during 430 

decomposition in SOM (Krull and Bray 2005). Like % C4 vegetation comparisons, we 431 

calculated the residuals for SOM-adjusted and predicted leaf δ13C values and used a linear 432 

regression to compare predicted and measured results.  433 

 434 

Applications 435 
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To demonstrate the analytical potential for landscape research with these vegetation data 436 

layers, we used the % C4 and C3 vegetation cover layers and leaf-δ13C isoscape to calculate 437 

the mean C4 and C3 cover and leaf-δ13C values of 86 different continental Australian 438 

bioregions, as described by the interim Biogeographic Regionalisation for Australia version 7 439 

(IBRA 7.0; Department of Agriculture, Water and the Environment, 2020). Bioregions are 440 

large, geographically distinct areas that share common characteristics such as climate, 441 

landform patterns, and plant and animal communities. These regions are used to help identify 442 

unique ecosystems within Australia. Thus, understanding differences in C3 and C4 cover 443 

between these regions is critical to identifying their unique attributes and vulnerabilities. Here 444 

we compared mean proportional C3 and C4 cover and leaf-δ13C in each bioregion to trends 445 

slrain1 and % woody and herbaceous cover. 446 

 447 

Results  448 

Geographic distribution of vegetation δ13C in Australia  449 

Our stepwise procedures produced 9 data layers representing C4 and C3 distribution in both 450 

agricultural and native environments. Predicted % C3 and C4 vegetation maps and the δ13C 451 

leaf isoscape followed expected trends in C3 and C4 vegetation (Fig 7 and 8). Southern areas 452 

of the country, which are characterised by cooler temperatures and high winter rainfall, were 453 

dominated by large areas of C3 cropland and woody vegetation, and thus had the most 454 

negative δ13C values. Mid-western and eastern coastal regions also have a large proportion of 455 

C3 vegetation, including a mix of forests, cropland, and herbaceous vegetation, and have 456 

correspondingly low δ13C values. C4-dominated and isotopically 13C-enriched areas 457 

predominately included northern savannahs and grasslands. 458 

 459 
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The south to north transition from C3 to C4 dominated areas, and more negative to less 460 

negative δ13C values, was abrupt. The clear demarcation between C3 and C4 habitats is 461 

consistent with the relatively rapid transition from winter to summer dominated rainfall 462 

patterns across the country. Central areas of Australia are arid and receive sporadic rainfall 463 

with high inter-annual variability. As a result, there is relatively low and sparse woody cover 464 

and conditions do not support most C3 herbaceous plants. The apparent exception to this is 465 

the Simpson Desert, located in central Australia across South Australia and the Northern 466 

Territory. Although C3 cover in the Simpson Desert was low and consistent with surrounding 467 

areas, this region has notably lower C4 herbaceous cover compared to other nearby 468 

environments, leading to lower proportional C4 vegetation cover and δ13C values. This due to 469 

the extremely dry conditions (< 50 mm rainfall/year) in the desert which make it difficult for 470 

any herbaceous plants to grow. 471 

 472 

Validation  473 

As previously described, the best model to predict proportional herbaceous C4 cover included 474 

slrain1, maxtx, PHC, SND, and AWC as variables. The proportional herbaceous C4~climate 475 

GAM used to predict C4 cover had a mean RMSE of 27.8% ± 2.0. Linear regression analysis 476 

comparing predicted and observed proportional herbaceous C4 vegetation cover resulted in an 477 

adjusted-R2 of 0.54 (Fig 9a). Comparisons between predicted and observed % C4 vegetation 478 

(including woody cover) at TERN plots returned residuals ranging from -63.4 to 73.4% 479 

(mean ± sd = 9.1 ± 24.5) and a RMSE of 26.1%. This suggests that, on average, our approach 480 

overestimates relative C4 cover. Linear regression analysis comparing predicted and observed 481 

proportional C4 vegetation cover resulted in an adjusted-R2 of 0.44 (Fig 9b).  482 

 483 
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Most TERN plots were located in Eucalypt woodlands, followed by Tussock grasslands, 484 

Chenopod shrublands, and Acacia woodlands. Comparisons of residuals between major 485 

vegetation group classifications revealed that residuals were smallest in heathlands, Eucalypt 486 

woodlands and forests, and tussock grasses, but were largest in Acacia- and Melaleuca- 487 

dominated habitats (Supplemental Results Table 2; Fig 10). The spread in the residuals for 488 

each MVG indicated that C4 cover was generally overestimated in most habitats but was 489 

underestimated in grasslands. 490 

 491 

Comparisons between predicted leaf and soil δ13C isotope values returned a RMSE of 2.1‰. 492 

Residuals ranged from -5.40‰ to 5.44‰ with a mean value of 0.26‰ (±2.12). The line of 493 

best fit between these variables had a slope of 0.74, an intercept of -6.0, and an adjusted-R2 of 494 

0.71 (Fig 9c). These results indicate that on average the isoscape overestimated mean leaf 495 

δ13C values (i.e. were less negative), which is consistent with comparisons between predicted 496 

and observed % C4 vegetation.  497 

 498 

IBRA Analysis 499 

Bioregions with the greatest proportional C3 cover were located Tasmania, southern 500 

Australia, and the Australian Alps (100% C3 cover; Supplemental Results, IBRA Analysis). 501 

Bioregions with the greatest C4 cover included the Central Kimberly, Mitchell Grass Downs, 502 

and Gulf Plains (> 75% C4 cover). Across all bioregions, we found an increasing trend of 503 

proportional C3 cover with increased % woody cover (Fig. 11a), but no relationship between 504 

increased herbaceous cover and proportional C4 cover (Fig. 11b). There was also a clear non-505 

linear relationship between slrain1 and mean proportional C3 cover; where slrain1 increased, 506 

there was a rapid decline in % C3 cover (Fig. 11c). This is mirrored by an increase in mean 507 

predicted leaf-δ13C with increased slrainl. 508 
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Discussion 509 

We leveraged a novel combination of field surveys and remote sensing data to create national 510 

C3 and C4 vegetation maps and a δ13C vegetation isoscape for Australia. The good agreement 511 

between our predictions and observed values indicates our approach can provide valuable 512 

generalized depictions of C4 and δ13C-leaf variation across diverse landscapes at large scales. 513 

Our approach benefits from recent advancements in remote sensing by being the first to 514 

incorporate vegetation layering, which is critical to accurate representations of C3:C4 trends. 515 

Our work also demonstrates the value of extensive field surveys when constructing and 516 

validating isoscape projections in different regions, by providing the unique ability to 517 

incorporate edaphic variables into large-scale models. This is particularly impressive 518 

considering the ground survey vegetation data used to construct the final outputs were 519 

collected by TERN over a period of 9 years, both before and after the 2015 remote sensing 520 

time-slice used to create the isoscape. Most of these plots have only been surveyed once and 521 

thus describe a snap-shot in time from a single season. Therefore, an average error rate of 522 

~25% represents a significant level of overall accuracy. Comparisons between predicted leaf-523 

δ13C values to measured δ13C soil values achieved a stronger correlation than comparisons to 524 

ground surveys. The stronger correlation may be because soil δ13C represents long-term 525 

averages in relative C4 vegetation cover. Our δ13C validation results are consistent with the 526 

level of accuracy achieved by other δ13C isoscapes developed using remote sensing 527 

techniques in North and South America (Powell et al. 2012, Firmin 2016). Overall, the 528 

relatively high level of accuracy in our C4 and δ13C predictions demonstrates remote sensing 529 

combined with field surveys can provide useful, generalized C4 maps and δ13C isoscapes, and 530 

informative estimations on C3:C4 vegetation cover over diverse landscapes in areas where 531 

data is limited. 532 

 533 
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Modelling herbaceous C4 and C3 distribution  534 

The best model for predicting proportional C4 herbaceous cover included maximum summer 535 

temperature and seasonal rainfall ratios as climate variables. This is consistent with previous 536 

work indicating both C4 grass and sedge cover is predominantly correlated with January 537 

temperatures and proportional summer rainfall (Murphy and Bowman 2007; von Fischer et 538 

al. 2008). Interestingly, the crossover temperature model was one of the least accurate climate 539 

models and was difficult to apply consistently across Australia. These findings are consistent 540 

with Munroe et al (2022) and Xie et al (2022), who also found that seasonal rainfall ratios 541 

and summer temperatures were better predictors of C4 grass abundance than the crossover 542 

temperature model. Although we acknowledge that the crossover approach was never 543 

intended to delineate fine-scale distribution patterns, our results demonstrate this approach is 544 

not the best method to determine C4 distribution in Australia.  545 

 546 

Local edaphic factors were also selected in the best fit model. Previous work has 547 

demonstrated local environmental factors can significantly modify herbaceous C4 distribution 548 

(Griffith et al. 2015; Nippert and Knapp 2007; Wang et al. 2020). Our work suggests pH has 549 

a significant positive influence on relative C4 herbaceous cover and should be considered 550 

even in continental models. The influence of alkaline-stress on C4 versus C3 plants is not well 551 

understood, but C4 plants are thought to be more resistant to stress and therefore more 552 

tolerant to alkaline soil (Bromham et al. 2013; Sage 2004; Saslis-Lagoudakis et al. 2014). 553 

However, pH is often related or correlated with other climate and soil conditions like salinity 554 

and rainfall, thus the observed effect of pH may reflect underlying factors not included in our 555 

analysis (James et al. 2005; Saslis-Lagoudakis et al. 2014). Isolating the impacts of available 556 

water capacity and sand content is more difficult given its apparent nonlinear relationship to 557 

C4 cover, but together they may indicate a significant impact of changes in local moisture 558 
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availability, which can affect competitive dynamics between C3 and C4 species (Nippert and 559 

Knapp 2007; Sage 2004). 560 

 561 

Limitations and Uncertainty  562 

The proportional herbaceous C4 cover model tended to underestimate C4 cover in areas with 563 

high observed values, and overestimate cover in areas with low or zero measured herbaceous 564 

C4 cover. There are several possible explanations for this pattern. Analysis revealed most 565 

TERN plots were dominated by either C3 or C4 herbaceous cover. Because mixed C3-C4 566 

herbaceous environments were less common, they were invariably harder to predict. Lastly, 567 

most climate data were centred on the year 1990, which may be less applicable for more 568 

recent plots, leading to higher overall error rates. Most importantly, although we considered a 569 

range of local factors in our C4 cover models, models did not include other factors which may 570 

also modify C4 patterns but cannot currently be extrapolated at large scales, such as local 571 

disturbance, soil salinity, and competition between native and alien species (Griffith et al. 572 

2015; Sage et al. 1999).  573 

 574 

A critical source of potential error in our final vegetation maps was the % woody vegetation 575 

layer, generated using the Seasonal Persistent Green Cover product (Gill et al. 2017; Gill et 576 

al. 2015). While the overall accuracy of the Seasonal Persistent Green Cover product is 577 

impressive, Gill et al. (2017) noted that accuracy varied significantly between habitat types. 578 

This was evident when comparing C4 cover model accuracy between different major 579 

vegetation groups. We found our C4 estimates were least accurate in Acacia-dominated 580 

habitats. These higher error rates are consistent with Gill et al. (2017), who found most areas 581 

identified as Acacia forests, woodlands, and open woodlands were not mapped as forest. 582 

Instead, they were incorrectly classed as having very low or no woody cover. Gill et al. 583 
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(2017) suggested several explanations for this issue; vegetation cover in Acacia-dominated 584 

habitats can be sparse, which can make woody cover more difficult to detect. At thresholds of 585 

<10% woody cover it was difficult to distinguish woody and non-woody vegetation (Gill et 586 

al. 2017). Therefore, it can be more difficult to accurately assess woody cover, and 587 

proportional C3 vegetation cover, in sparse areas. Some Acacia also have narrow, needle-like 588 

leaves which are harder to detect via satellite, whereas other Acacia species are known to 589 

drop their leaves in very dry conditions, resulting in a low minimum green cover-fraction 590 

over the course of the year. Finally, the understory is often visible through the sparse Acacia 591 

canopy. When the understory greens-up in response to rainfall, this can give the appearance 592 

of a highly variable time series in green cover for Acacia foliage, leading to its 593 

misclassification as non-woody. Unsurprisingly, the difficulties associated with measuring 594 

Acacia woody cover in Australia using remote sensing led to a high degree of variation C3 595 

and C4 cover estimates in Acacia-dominated habitats.   596 

 597 

C3:C4 estimates were also less accurate in chenopod shrublands. Accurately estimating C4 598 

cover in these environments may be more difficult because chenopod shrublands are often 599 

sparsely vegetated (Gill et al. 2017). Our approach also assumed all shrub cover had a C3 600 

pathway. But as previously discussed, C4 chenopods can be locally common in Australian 601 

shrublands. As a result, our approach may underestimate C4 cover in these habitats. However, 602 

our model residuals indicate C4 cover is more likely to be overestimated in chenopod 603 

shrublands, which suggests our assumption that all shrubs are C3 is not the main source of 604 

error in these habitats. More likely, it is the difficulty associated with accurately assessing 605 

woody cover in these sparse environments.  606 

 607 
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Other potential sources of error include the high degree of variation in δ13C values between 608 

different C3 species and environmental conditions (Kohn 2010). For example, rainfall, soil 609 

pH, and leaf nitrogen area are all significant drivers of variation in global C3 δ
13C values 610 

(Cornwell et al. 2018). Variation in δ13C values within the canopy will also affect the overall 611 

accuracy of δ13C isoscapes (Cheesman et al. 2020), however it is difficult to effectively 612 

quantify and model these different sources of variation across Australia at this time. 613 

Unsurprisingly, areas with the greatest standard deviation in δ13C values were areas 614 

dominated by C3 vegetation reflecting the greater variability in the carbon isotopic 615 

composition among C3 plants. 616 

Future Improvements  617 

The accuracy of the δ13C isoscape hinges on three main components; (1) estimates of woody 618 

and herbaceous cover, (2) the C3:C4 herbaceous cover model, and (3) the endmember values 619 

in the δ13C-leaf mixing model. Gill et al. (2017) outlines multiple ways to improve estimates 620 

of woody cover. The proportional herbaceous C4 cover ~ climate model could be improved as 621 

TERN increases its plot network and environmental representation. For example, establishing 622 

plots in Tasmania or increasing the number of plots with more equal C3:C4 ratios would 623 

improve model outcomes by increasing the amount of data from cool climates and 624 

transitional habitats. TERN has also begun to regularly revisit existing plots to monitor 625 

change over time. Revisits could be used to calculate average C4 cover over multiple years 626 

and seasons, which would make the plot data a more appropriate validation tool for average 627 

C4 vegetation and isoscape projections. This would also enable the creation of more 628 

seasonally specific isoscapes, rather than a static annual average. More specific information 629 

on crop commodities, namely the location of maize and sorghum, would also improve the 630 

accuracy of C3 and C4 vegetation layers.  631 

 632 
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The δ13C endmembers were based on δ13C values from Munroe et al. (2020b). These values 633 

were measured from species collected at TERN plots, making them a useful metric with 634 

which to calculate Australian vegetation δ13C endmembers. However, the plants measured by 635 

Munroe et al. (2020b) were not necessarily dominant or wide spread. Measuring the δ13C of 636 

the most common plants in TERN plots, and incorporating a wider range of herbaceous and 637 

woody species, may help create endmembers that are better representations of dominant 638 

Australian plant δ13C values. Testing specimens that were collected under different 639 

conditions (e.g. rainfall or soil pH) would enable expansion of the current mixing model to 640 

account for different climate conditions when predicting δ13C values, particularly in C3 641 

species (Cornwell et al. 2018).  642 

 643 

Applications 644 

The terrestrial carbon isoscape and C3 and C4 maps presented here have numerous valuable 645 

applications. As demonstrated in this study, C3, C4 and δ
13C maps can be used to quantify and 646 

compare C3 and C4 distribution across different bioregions at a landscape scale. Such analysis 647 

would not be possible without these data. Isoscapes are also enormously useful in the study of 648 

food web dynamics and animal migration (Hobson et al. 2010; Vander Zanden et al. 2018; 649 

Wunder 2010). These maps could also be used to calculate fractional productivity of different 650 

photosynthetic pathways (Powell et al. 2012).  651 

 652 

TERN’s expansive plot network provides the opportunity to not only identify, but also 653 

quantify discrepancies between predicted and observed C4 and C3 cover. Indeed, our work 654 

has already demonstrated the importance of some edaphic factors in controlling C4 655 

distribution. As more data becomes available, further comparisons across a wider range of 656 

factors will be possible. Similarly, differences in predicted δ13C values and local vegetation 657 
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can be used to examine the influence of local factors, such as water stress or drought, on δ13C 658 

values (Ehleringer 1993; Mårtensson et al. 2017; Tieszen 1991).  659 

 660 

Climate change is anticipated to drastically shift the competitive advantage of C3 and C4 661 

plants in Australia and globally, leading to substantial changes in species distribution (Corlett 662 

and Westcott 2013; Hasegawa et al. 2018). This will likely drive significant bottom-up 663 

changes to the structure and diversity of faunal communities (Haddad et al. 2009; Haveles et 664 

al. 2019; Warne et al. 2010). Using our underlying climate models, C3 and C4 abundance can 665 

be extrapolated under future conditions and areas that are most vulnerable to extreme changes 666 

in C3 and C4 cover can be identified. Our models identified maximum temperature and 667 

seasonal water availability as the two most significant climate factors driving C3 and C4 668 

herbaceous cover in Australia. Based on these findings, we would expect to see considerable 669 

expansion of C4 suitable climate-zones in southern Australia. Historically, southern Australia 670 

has a Mediterranean climate, with dry summers and higher winter rainfall. However, the 671 

climate in southern Australia is expected to become increasingly dry, with hotter 672 

temperatures and more frequent heatwaves (Keywood et al. 2017; Suppiah et al. 2006), 673 

conditions that are better suited to C4 species. These models will also improve our ability to 674 

quantify potentially improved conditions for invasive species, such as the invasive C4 buffel 675 

grass, Cenchrus ciliaris L. (de Albuquerque et al. 2019; Lawson et al. 2004). Forecasting 676 

native C3 and C4 abundance can also enable proactive environmental management in 677 

Australia’s changing climate, such as identifying suitable locations for future C4 and C3 crops 678 

(Cullen et al. 2009) or important refuge areas for native plant communities (Graham et al. 679 

2019; Selwood and Zimmer 2020). 680 

 681 

Conclusion  682 
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We have applied a novel combination of detailed ground survey, climate, and remote sensing 683 

data to create and evaluate the first Australian vegetation δ13C isoscape. These results have a 684 

wide range of applications, including the study of animal migration, food web patterns, 685 

spatial and temporal variation in plant productivity and habitat structure, carbon exchange, 686 

and the impact of water stress on plant communities. Our continued ability to test and 687 

validate these models as new TERN plots and isotope data become available provides a 688 

unique opportunity to develop future improvements. The C3, C4 and isoscape maps presented 689 

here were created to support the study of Australian ecosystems and have enormous value to 690 

broader ecological research. It is our intention to curate and update these outputs where 691 

possible as new TERN plots and isotope data become available.  692 

  693 
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Figures 916 

 917 

 918 

Fig 1. Conceptual diagram of the procedures used to create each C3 and C4 vegetation cover 919 
layer. Grey boxes specify generic vegetation layers, blue boxes specify steps in the 920 
methodology, orange ovals are the resulting C3 vegetation cover layers, purple ovals are C4 921 

vegetation cover layers. All C3 and C4 layers were summed to create a total ‘% C4 cover’ and 922 
‘% C3 cover’ layer 923 

 924 
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 925 

926 
Fig. 2. Mean Australian (a) % woody cover (tree and shrub) and (b) % herbaceous cover in 927 
2015 928 

 929 
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 930 

931 
Fig. 3. Australian % herbaceous crop cover as of December 2018 932 

 933 
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 934 

 935 

Fig. 4. Proportional (%) herbaceous C4 cover (relative to herbaceous C3 and C4 cover) at 936 

TERN plots 937 

 938 



 

 44 

 939 

Fig. 5. Predicted proportional herbaceous C4 Cover (relative to herbaceous C3 and C4 940 

herbaceous cover) against the explanatory variables (a) slrain1 (The ratio (log) of summer 941 
(Dec-Jan-Feb) to winter (Jun-Jul-Aug) rainfall totals) (b) maxtx (Maximum temperature 942 
hottest month (°C) , (c) PHC (Soil pH-CaCl2) (d) AWC (soil available water capacity %), 943 
and (e) SND (soil sand content %) derived from a GAM model constructed using TERN 944 
vegetation survey plot data. Blue lines are predicted outcomes of the model. Rugs were 945 

drawn to indicate observations with positive residuals (top of the plot) or negative residuals 946 
(bottom of the plot). Independent variables not depicted on the x-axis are held constant at 947 
their median value 948 

 949 
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950 
Fig 6. Predicted proportional (%) herbaceous C4 cover (relative to herbaceous C3 and C4 951 
herbaceous cover) extrapolated across Australia  952 

 953 
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 954 

Fig. 7. % (a) C4 and (b) C3 cover, and proportional (c) C4 and (d) C3 vegetation cover 955 

(proportional to total vegetation) in 2015 956 

 957 
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 958 

Fig. 8. a) Vegetation δ13C isoscape of Australia corresponding to the year 2015 and b) 959 

weighted mean standard deviation of site-averaged δ13C values  960 

 961 

 962 
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 963 

Fig 9. (a) Scatter plot of observed versus predicted relative % herbaceous C4 Cover (relative 964 
to herbaceous C3 cover) at TERN plots from 10-fold cross validation testing dataset, (b) 965 

predicted and observed relative C4 vegetation cover (including woody cover) at all TERN 966 
plots, c) predicted leaf-δ13C and measured Soil Organic Matter δ13C at select TERN plots967 
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 968 

 969 

 970 

Fig. 10 Residuals of predicted and observed % C4 vegetation cover (relative to total cover and including woody cover) at all TERN plots in 971 
major vegetation group (MVG) classifications. The box defines the second and third quartiles (likely range of variation), the vertical lines are the 972 
upper and lower quartiles. The black bands are the median residual values, the black X is the mean residual value for each classification.  973 
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 974 

Fig. 11. (a) Scatterplot of predicted mean proportional C3 Cover versus mean % woody cover 975 
(tree and shrub) across 86 different continental Australian bioregions, as described by the 976 

interim Biogeographic Regionalisation for Australia version 7 (IBRA 7.0; Department of 977 
Agriculture, Water and the Environment, 2020);  (b) Scatterplot of predicted mean 978 
proportional C4 Cover versus mean % herbaceous cover in different IBRA 7.0 ; (c) 979 

Scatterplot of predicted mean proportional C3 cover versus mean slrain1 (The ratio (log) of 980 

summer (Dec-Jan-Feb) to winter (Jun-Jul-Aug) rainfall totals) across IBRA 7.0  981 
 982 

 983 
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