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Abstract. Small communities are predicted to be strongly influenced by 10 

stochastic demographic events and, thus, less affected by environmental 11 

selection than large communities. However, this prediction has only been 12 

tested with computer simulations, simplified controlled experiments, and 13 

limited observational data. Using multicontinental data on riverine fish and 14 

considering recent advances in β-diversity metrics, we tested if communities 15 

composed of small populations are more spatially variable and more affected 16 

by ecological drift than communities composed of large populations. We show 17 

that variation in species composition among small communities was higher 18 

than among large communities and similar to stochastic assembly. We also 19 

show that the strength of species-environment relationships is weaker in 20 

small communities. Our results indicate that community size can affect the 21 

strength of ecological drift and environmental selection in metacommunities, 22 

and that further declines in the size of populations and ecosystems can make 23 

spatial variation in biodiversity more unpredictable.  24 

 25 
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 27 

Introduction 28 

 Small populations are relatively more prone to be affected by stochastic 29 

events than large populations [1]. For example, a small population can go 30 

locally extinct if all its individuals die before reproducing, an event that is less 31 

likely to occur in large populations. Thus, species relative abundance in 32 

communities composed of small populations tend to vary more in space and 33 

time independent of environmental variation – ecological drift [2]. Although 34 

much progress has been made recently towards the robustness of these 35 



predictions, this has been made mainly through simulations [3], simplified 36 

experiments [4], and the analysis of limited observational data [5]. Here we 37 

expand previous findings by not only focusing on spatial variation in species 38 

composition, but also by investigating the strength of community-39 

environment coupling along a gradient of community size in multiple 40 

independent data sets from different regions of the world. 41 

 In general, we can assume that while environmental selection 42 

deterministically assemble species together through density dependent and 43 

independent mechanisms, ecological drift causes variation in local species 44 

relative abundance through demographic stochasticity [2]. Ecologists are 45 

increasingly recognizing that stochastic and deterministic processes interact 46 

with each other in many ways to form multispecies communities. For 47 

example, experimental research found that small plant communities showed 48 

high variation in species relative abundances and high levels of local 49 

extinction, resulting in lower local diversity and high variation in species 50 

composition [4]. Observational research found higher spatial β-diversity 51 

among small communities of stream insects that was like a stochastic model 52 

[5]. These results are in line with model simulations that suggest that the 53 

effects of environmental selection can be override by the effects of ecological 54 

drift in small communities [3].  55 

 One prediction regarding the effects of ecological drift on communities 56 

that has received less attention concerns the decoupling of spatial variation 57 

in species composition and in environmental factors. If the role of ecological 58 

drift is strong in small communities, then community-environment 59 

relationships should be weak in metacommunities composed of small 60 

communities. That is, there should be a positive relationship between the 61 



strength of environmental selection and community size. This is not easy to 62 

test for various reasons, but mainly because of lack of statistical power [e.g., 63 

5]. The data required to test this hypothesis must be composed of various 64 

replicated metacommunities from which individual measures of the strength 65 

of community-environment relationship is estimated [e.g., 6]. 66 

 Here, we test the hypothesis that community size mediates the roles 67 

of ecological drift and environmental selection in driving community spatial 68 

variation in metacommunities. To reach our goal we used a global database 69 

of riverine fish abundances [7]. Specifically, we analyzed 2332 local 70 

communities, across 113 river basins in four biogeographic realms 71 

(Australasia, Nearctic, Neotropics and Palearctic).  72 

 First, we tested if spatial β-diversity was negatively related to 73 

community size. Our aim here was to test the generality of the findings by 74 

Siqueira et al. [5] with more compressive data and considering recent 75 

advances in β-diversity metrics. To do this, we regressed β-diversity values 76 

against metacommunity size. We expected that β-diversity would be higher 77 

among smaller communities and lower among larger communities. As we 78 

used data gathered from different studies, which had different goals and 79 

sampling methods, we calculated two metrics of β-diversity (β-Shannon and 80 

β-Jaccard-Chao) that are less affected by undersampling and γ-dependence 81 

than other indices, making them a better option to compare β-diversity across 82 

metacommunities in different regions [8]. In addition, we estimated how 83 

evenness, richness and species rank-abundance differed among communities 84 

and regressed them with community size. These metrics quantify how 85 

communities vary in space in their species relative abundance and the 86 

number of species and thus can be useful to elucidate β-diversity. We also 87 



expected a greater variability of evenness, richness, and rank-abundance 88 

among smaller communities. 89 

 Second, we tested if observed relationships between β-diversity and 90 

community size were like those expected under ecological drift. To do this, 91 

we simulated β-diversity values in a null model entirely based on a scenario 92 

of ecological drift. We expected that the deviation of observed to simulated 93 

β-diversity would be closer to zero among smaller communities than among 94 

larger communities, indicating greater similarity to random assembly. Third, 95 

we tested the role of community size as a mediator of the relative role of 96 

environmental selection versus demographic stochasticity by regressing a 97 

measure of the strength of the community-environment relationship within 98 

each metacommunity against community size. We expected that larger 99 

metacommunities would have a stronger relationship with the environment 100 

indicating the preponderance of deterministic environmental selection over 101 

demographic stochasticity in communities composed of larger populations.  102 

 103 

Material and Methods 104 

Species data 105 

We used publicly available fish abundance data sampled in riverine 106 

ecosystems in different continents, but mainly Europe and North America 107 

(RivFishTIME [7]). In the RivFishTIME data base, sampling sites are organized 108 

within river basins. Each site we selected was assigned to a Strahler stream 109 

order within the HydroRIVERS network [9]. We also performed a visual 110 

inspection of orders attributed to sites located more than 1000m away from 111 

the network, changing to the appropriate order, if needed. Then, we defined 112 

a community as the set of species occurring in a site and a metacommunity 113 



as the set of sites within basin delineations according to HydroBASINS (level 114 

7 [9]). We selected the most recent sampling event for each metacommunity 115 

that included at least 10 communities in first to third-order streams, 116 

excluding basins with less than five species. These procedures resulted in 113 117 

metacommunities, being 81 with density data (individuals/100 m2) and 32 118 

with count data. All analyzes described below were ran separately for these 119 

different abundance types. Data selection was made in R [version 1.4.1717; 120 

10] using the packages mapview [11] raster [12], rgdal [13], sf [14], sp [15, 121 

16] and tidyverse [17] 122 

 123 

Environmental data 124 

 For consistency and because local water variables (e.g., pH, 125 

temperature, dissolved oxygen) were not available, we obtained 126 

environmental variables relevant to freshwater ecosystems by snapping site 127 

geographic coordinates in two global remote-sensing datasets, HydroATLAS 128 

[18] and free-flowing rivers (FFR) [19]. Both datasets consider a reach as the 129 

smallest unit in the hydrological network, being characterized as the line 130 

segment between two confluences. Spatial data gathered by HydroATLAS 131 

include mean annual natural discharge in m3/s [20], average of elevation (m) 132 

[21], average of annual air temperature (ºC), average of annual precipitation 133 

(mm) [22], and average of the human footprint index [23] within the local 134 

catchment that drains directly into the reach. From the FFR dataset we 135 

obtained the connectivity status index (CSI) that was calculated based in five 136 

pressure factors (river fragmentation, flow regulation, sediment trapping, 137 

water consumption and infrastructure development). These factors are 138 

associated with the four dimensions of freshwater connectivity (longitudinal, 139 



lateral, vertical and temporal). The CSI provides a characterization of 140 

connectivity to every individual river reach, ranging from 0% to 100% 141 

connected. We also used a categorical variable (CSI_FF2) based on CSI that 142 

indicates if a river reach belongs to a river with free-flowing, good 143 

connectivity or degraded status. Together, data from HydroATLAS and FFR 144 

were used as our environmental variables since they reflect hydrologic, 145 

physiographic, climatic and anthropogenic features of the freshwater 146 

environment. These variables were also selected in R using packages 147 

mapview, raster, rgdal, sf, sp and tidyverse. 148 

 149 

Community descriptors 150 

We defined community size as the total number of individuals sampled 151 

in a site and metacommunity size as the median of all community sizes within 152 

a metacommunity. So, metacommunities with larger communities were those 153 

with more individuals per site.  154 

 To measure β-diversity we considered that the sites were sampled with 155 

different methods or with different sampling effort. Not considering this can 156 

be problematic because any comparisons among metacommunities may be 157 

affected by undersampling and regional diversity dependence (γ-dependence 158 

[24]). For this reason, null-models have been frequently used to account for 159 

γ-dependence of β-diversity metrics [25, 26]. However, using simulated and 160 

empirical data, Cao et al. [8] showed that undersampling corrections using 161 

diversity accumulation curves are more effective to remove γ-dependence. 162 

They found that the corrected β-Shannon diversity index was least dependent 163 

on y-diversity and that the corrected Jaccard-Chao index applied to null model 164 

removed y-dependence more effectively than either the correction alone or 165 



the null model alone. So, to deal with undersampling and regional diversity 166 

dependence we used two approaches: first, we calculated the corrected β-167 

Shannon diversity using a diversity accumulation curve by asymptotically 168 

estimating both true α– and γ-Shannon diversity [8, 27]. The second 169 

approach was based on the corrected Jaccard–Chao index. The β-Shannon 170 

and β-Jaccard-Chao indexes were calculated for count (β-Shannoncount, β-171 

Jaccard-Chaocount) and density (β-Shannondens, β-Jaccard-Chaodens) data. 172 

Thus, we obtained one β-diversity value of each index for each 173 

metacommunity and regressed these values against community size.  174 

 To get a complementary understanding of how species composition 175 

differed within metacommunities, we also estimated how Simpson’s 176 

evenness, species richness and rank-abundance differed among communities 177 

[28] within metacommunities and regressed these estimates against 178 

community size. We measured evenness for each community and then we 179 

calculated the median evenness within each metacommunity, that could 180 

range from 0 (uneven community) to 1 (perfectly even community). Richness 181 

difference was calculated comparing the difference of the number of species 182 

between all pairs of communities inside a metacommunity divided by the 183 

number of unique species in each pair. From these pairwise values we 184 

calculated the median richness difference of each metacommunity, where 185 

larger values indicate greater changes in species richness among 186 

communities. Rank-abundance difference measures how species relative 187 

abundances change among communities relative to each other. We calculated 188 

this metric measuring the difference of the rank of species between all pairs 189 

of communities within a metacommunity divided by the number of unique 190 

species in each pair. Rank-abundance difference values were bound between 191 



0 and 0.5 (maximum rank change). The package entropart [29] was used to 192 

estimate β-Shannon index while the β-Jaccard-Chao index was estimated 193 

with vegan [30]. The package codyn [31] was used to estimate differences 194 

in evenness, richness, and rank-abundance.  195 

 196 

Null models 197 

We complemented the analysis of β-diversity metrics based on 198 

observed data with null models to investigate whether observed β-diversity 199 

resembled to values generated by a stochastic assembly process. The null 200 

model generated communities with random species composition but with the 201 

same number of individuals and species richness observed in each real 202 

community and with the same species pool in each metacommunity. Then, 203 

we calculated the corrected β-Shannon and β-Jaccard-Chao index for these 204 

new species compositions. This was repeated 1000 times to obtain a 205 

distribution of values for each metacommunity. The difference between the 206 

observed β-diversity and the mean β-diversity obtained in the null model was 207 

divided by the standard deviation of the simulated β-diversity values. So, 208 

there was a standardized β-deviation value for each metacommunity, where 209 

values close to zero indicate greater similarity with the random species 210 

composition generated by the null model, while higher values indicate greater 211 

dissimilarity with the null model. We regressed deviation values of each 212 

metric (Shannon β-deviationcount; Shannon β-deviationdens; Jaccard-Chao β-213 

deviationcount; Jaccard-Chao β-deviationdens) with community size. We used 214 

the permatfull function in vegan package to simulate null communities.  215 

 216 

 217 



Community-environment relationships 218 

To investigate the strength of community-environment relationships 219 

within metacommunities we used Hierarchical Modelling of Species 220 

Communities (HMSC [32]) to model how the occurrences and abundances of 221 

each species in each community were related to environmental variables. We 222 

fitted a HMSC model with both count (HMSCcount) and density (HMSCdens) data, 223 

using the package HMSC in R [33]. We sampled the posterior distribution with 224 

two Markov Chain Monte Carlo (MCMC) chains. Each chain was run for 15000 225 

iterations, of which the first 5000 were removed as burn-in. We obtained 226 

1000 samples per chain that were recorded every 10:th step (thin=10) of the 227 

iterations. We examined MCMC convergence by examining the potential scale 228 

reduction factors [34] of the model parameters. Then, we measured the 229 

predictive power of the models through the coefficient of discrimination (Tjur 230 

R2[35]) for each species in the metacommunity and then we calculated a 231 

median Tjur R2 value of all species for each metacommunity that was 232 

regressed against community size.  233 

 234 

Results 235 

Community descriptors 236 

As expected, we found a negative relationship between β-Shannoncount 237 

and community size (figure 1a; std. coeff. = -0.63, R2 = 0.39, electronic 238 

supplementary material, table S1), β-Shannondens and community size (figure 239 

1b; std. coeff. = -0.21, R2 = 0.04, electronic supplementary material, table 240 

S1), and between β-Jaccard-Chaocount and community size (figure 1c; std. 241 

coeff. = -0.72, R2 = 0.52, electronic supplementary material, table S1). There 242 

was also a weak evidence of a negative relationship between β-Jaccard-243 



Chaodens and community size (figure 1d; std. coeff. = -0.18, R2 = 0.03, 244 

electronic supplementary material, table S1). We also found Evennesscount 245 

(electronic supplementary material, figure S1a; std. coeff. = -0.48, R2 = 0.23, 246 

electronic supplementary material, table S2), Evennessdens (electronic 247 

supplementary material, figure S1b; std. coeff. = -0.55, R2 = 0.30, electronic 248 

supplementary material, table S2) and Rank diffcount (electronic 249 

supplementary material, figure S1e; std. coeff. = -0.62, R2 = 0.38, electronic 250 

supplementary material, table S2) were negatively related to community size. 251 

There was no evidence of relationship between community size and Rank 252 

diffdens (electronic supplementary material, figure S1f; electronic 253 

supplementary material, table S2) and richness difference (electronic 254 

supplementary material, figure S1c, d; electronic supplementary material, 255 

table S2). Taken together, these relationships suggest that fish composition 256 

in small communities were more different among each other within a 257 

metacommunity, compared to metacommunities formed by larger 258 

communities.  259 



 260 

Figure 1. Relationships between β-diversity metrics and community size in riverine 261 

fish metacommunities. a) count data (β-Shannoncount), b) density data (β-262 

Shannondens), c) count data (β-Jaccard-Chaocount) and d) density data (β-Jaccard-263 

Chaodens). Gray bands represent the 95% confidence interval around the regression 264 

line. 265 

 266 

β-diversity null models 267 

As expected, Shannon β-deviationdens (figure 2b; std. coeff. = 0.73, R2 268 

= 0.53, electronic supplementary material, table S1), Jaccard-Chao β-269 

deviationcount (figure 2c; std. coeff. = 0.71, R2 = 0.50; electronic 270 

supplementary material, table S1) and Jaccard-Chao β-deviationdens (figure 271 



2d; std. coeff. = 0.46, R2 = 0.21, electronic supplementary material, table 272 

S1) were positively related to community size, indicating that in small 273 

communities, β-deviation values were closer to zero than in larger 274 

communities. There was only weak evidence of relationship between Shannon 275 

β-deviationcount and community size (figure 2a; std. coeff. = 0.33, R2 = 0.11, 276 

electronic supplementary material, table S1).  277 

 278 

Figure 2. β-deviation relationships with community size in riverine fish 279 

metacommunities for Shannon β-deviation: a) count data and b) density data, and 280 

Jaccard-Chao β-deviation: c) count data and d) density data. Gray bands represent 281 

the 95% confidence interval around the regression line. 282 

 283 

 284 



Community-environment relationships 285 

The MCMC convergence of the HMSC models was satisfactory, with the 286 

potential scale reduction factors for the β-parameters varying between 1.0 287 

and 1.05. As predicted, we found a positive relationship between the 288 

coefficient of discrimination (Tjur R2) obtained between HMSCcount and 289 

community size (figure 3a; SD. coeff. = 0.41, F1,30 = 6.08, R2 = 0.16, p = 290 

0.01), indicating that the strength of community-environment relationship 291 

was lower in metacommunities composed of smaller communities. On the 292 

other hand, there was no evidence of relationship between strength of 293 

community-environment relationship and community size for HMSCdens 294 

(figure 3b; F1,79 = 2.89, R2 = 0.03, p = 0.09).  295 

 296 

Figure 3. Strength of community-environment relationships within riverine fish 297 

metacommunities regressed against community size using: a) count (TjurR2 - 298 

HMSCcount) and b) density (TjurR2 - HMSCdens) data. The gray band represents the 299 

95% confidence interval around the regression line. 300 

 301 

 302 



Discussion 303 

Our analyses of intercontinental data support the prediction that spatial 304 

variation in species composition among small communities is higher than 305 

among large communities and similar to the dynamics expected under 306 

stochastic assembly. We also found moderate support for the prediction that 307 

the strength of the relationship between species composition and 308 

environmental variation is weak in metacommunities composed of small 309 

communities. Taken together, these results indicate that community size 310 

mediate the role of ecological drift and environmental selection as drivers of 311 

metacommunity spatial dynamics. More specifically, we suggest that 312 

ecological drift plays a substantial role in the spatial dynamics of small fish 313 

communities, decoupling species-environment forcing. Such decoupling 314 

implies that further declines in the size of fish communities due to 315 

environmental change can add more stochasticity to their dynamics, making 316 

them less predictable in the face of future environmental scenarios.  317 

 The negative relationship between observed β-diversity and 318 

community size, both for β-Shannon and β-Jaccard-Chao indices, indicates 319 

that species composition varies more among small communities than among 320 

large communities. Spatial variation in species composition can occur due to 321 

changes in various aspects of community structure [28]. For example, 322 

previous research has shown that high temporal beta diversity can occur 323 

despite no decrease in species richness [36, 37, 38], suggesting that changes 324 

in species relative abundances might be a better indicator of community 325 

change. This match with our findings, as we found that the negative 326 

relationship between β-diversity and community size seemed to be a result 327 



of mechanisms changing species relative abundance, but not species 328 

richness.  329 

A negative relationship between β-diversity and community size alone 330 

does not provide strong evidence for the role of stochasticity in small 331 

communities. But we also found that β-diversity among small communities 332 

was similar to β-diversity of communities simulated under a purely stochastic 333 

process. This is in line with the results reported by Siqueira et al. [5] for 334 

stream insect communities in the neotropics. Random and unpredicted 335 

changes in species composition can happen in small communities entirely or 336 

partially due to demographic events that are independent of environmental 337 

selection [39, 40]. For example, smaller communities are more likely to be 338 

affected by births and deaths, changing species relative abundance 339 

independently of species fitness [40]. Thus, if such demographic events play 340 

a major role in community dynamics, species competitive differences become 341 

less important to shape community composition [3, 41]. As community size 342 

increases, the role of demographic events that are random regarding species 343 

identity should decrease relative to deterministic assembly, as indicated by 344 

the higher β-deviation values we found among larger communities, which 345 

indicate that observed β-diversity was different from stochastic assembly 346 

expectations. 347 

 The positive relationship between the strength of community-348 

environment coupling and community size indicates that environmental 349 

selection plays a minor role in the dynamics of small communities. This 350 

relationship further suggests that environmental factors might have limit 351 

power to predict species identity or species abundances in small communities. 352 

Weak relationships between species composition and environment factors are 353 



abundant in community ecology [6, 42, 43]. For example, a comprehensive 354 

analysis of stream invertebrate communities across the continental United 355 

States showed that β-diversity was weakly related to environmental distances 356 

in many of the ecoregions studied. Heino et al. [43] also assessed the role of 357 

environmental factors in driving β-diversity in stream insect communities in 358 

different regions of the world and found that environmental variables were 359 

poor predictors of species composition, explaining on average 13% of the 360 

variation in community spatial variation. Although we did not re-analyze data 361 

from previous studies reporting weak community-environment relationships, 362 

our results suggest that, besides the already known causes (e.g., “snapshot” 363 

sampling, lack of statistical power, unaccounted legacy effects), ecological 364 

drift acting more strongly upon small communities might be an additional 365 

cause for such weak relationships.  366 

 As it is usually the case in observational studies, ours also have 367 

limitations. Stream communities can be structured by many environmental 368 

variables, such as nutrient concentration, turbidity, pH [44] and the ones that 369 

we used to relate with community composition (e.g., air temperature, 370 

precipitation) are not necessarily the best variables to represent community-371 

environment relationships, as they were not measured at the same spatial 372 

scale used to sample communities. However, even with such data, we 373 

detected a positive relationship between the strength of community-374 

environment relationship and community size. Thus, the inclusion of local 375 

environmental variables would likely make this relationship stronger, 376 

providing better support for our hypothesis.  377 

 Relying on a robust data set that spans 2332 communities, across 113 378 

river basins in four biogeographic realms, and robust methods to quantify 379 



beta diversity, we provide evidence for a general pattern in nature – species 380 

composition vary more among small communities than among large 381 

communities. This pattern seems to be driven by the stronger influence of 382 

demographic stochastic events on small communities, as their dynamics are 383 

weakly linked to spatial variation in environmental factors. As the effects of 384 

demographic stochasticity should manifest also, maybe more strongly, on 385 

community temporal dynamics, our next steps will concentrate on analyzing 386 

the relationship between temporal beta diversity and community size. We 387 

also suggest that further studies should test the prevalence of the 388 

relationships we describe here in terrestrial metacommunities, where 389 

community size might be more directly linked to ecosystem size. In a 390 

changing world where ecosystems have been fragmented and reduced, and 391 

species overexploited, managers might need to put a major focus on actions 392 

that increase population size as, for example, species reintroductions [45]. 393 

   394 
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Supplemental Material 567 

 568 

 569 

Figure S1. Relationships between community compositional differences and 570 

community size in riverine fish metacommunities for count data: a) evenness, 571 

c) richness difference, e) rank difference; and for density data b) evenness, 572 

d) richness difference, f) rank difference. The gray bands represent the 95% 573 

confidence interval around the regression line. 574 



Table S1. Summary statistics describing the relationship between β-diversity 575 

and β-deviation indices (β-Shannon and β-Jaccard-Chao) with community 576 

size for count and density data. SD coeff. = standardized regression 577 

coefficient; R2 and Adj. R2 = coefficient of determination and adjusted 578 

coefficient of determination of the regressions, respectively. 579 

 580 

Response variable SD coeff. R2 Adj R2 F-statistic p-value 

β-Shannoncount -0.63 0.39 0.37 19.78 0.0001 

β-Shannondens -0.21 0.04 0.03 3.79 0.055 

β-Jaccard-Chaocount -0.72 0.52 0.50 32.65 <0.0001 

β-Jaccard-Chaodens -0.18 0.03 0.02 2.9 0.0921 

Shannon β-deviationcount 0.33 0.11 0.08 3.47 0.0734 

Shannon β-deviationdens 0.73 0.53 0.53 91.82 <0.0001 

Jaccard-Chao β-deviationcount 0.71 0.50 0.48 30.7 <0.0001 

Jaccard-Chao β-deviationdens 0.46 0.21 0.20 18.26 <0.0001 

 581 

 582 

Table S2. Summary statistics describing the relationship between community 583 

compositional difference (evenness, richness difference and rank difference) 584 

and community size for count and density data. SD coeff. = standardized 585 

regression coefficient; R2 and Adj. R2 = coefficient of determination and 586 

adjusted coefficient of determination of the regressions, respectively. 587 

 588 

Response variable SD coeff. R2 Adj R2 F-statistic p-value 

Evennesscount -0.48 0.23 0.20 8.99 0.005 

Evennessdens -0.55 0.30 0.29 35.14 <0.0001 

Richness diffcount -0.09 0.009 -0.02 0.27 0.6011 

Richness diffdens -0.19 0.03 0.02 3.16 0.0793 

Rank diffcount -0.62 0.38 0.36 19.03 0.0001 

Rank diffdens -0.16 0.02 0.01 2.24 0.1381 

 589 


