1 High compositional dissimilarity among small communities is decoupled

2 from environmental variation

- 3 Cristina Mariana Jacobi^{*}, Tadeu Siqueira
- 4 Institute of Biosciences, São Paulo State University (UNESP), Avenida 24 A
- 5 1515, Rio Claro, SP 13506-900, Brazil
- 6 *Corresponding author e-mail: jacobicris@gmail.com
- 7 ORCID iDs: 0000-0001-5660-7934; 0000-0001-5069-2904

Abstract. Communities composed of small populations are predicted to be 9 strongly influenced by stochastic demographic events and, thus, less affected 10 by environmental selection than those composed of large populations. 11 However, this prediction has only been tested with computer simulations, 12 13 simplified controlled experiments, and limited observational data. Here, using multiple datasets on fish abundance in 541 streams we tested (1) if 14 communities composed of small populations are more spatially variable and (2) 15 if they are less related to the environment variation than communities composed 16 of large populations. We used process-based simulations to identify β -diversity 17 18 metrics and community-environment measures that were appropriate to investigate the role of assembly processes along a gradient of community size. 19 We show that variation in species composition among small communities is 20 21 higher than among large communities and that the strength of communityenvironment relationships is weaker in small communities. Our results indicate 22 23 that community size affects the strength of ecological drift and environmental selection in metacommunities. We thus suggest that further declines in the size 24 25 of populations and ecosystems can make spatial variation in biodiversity more 26 unpredictable.

27

Keywords: β-diversity, community size, drift, metacommunity, niche selection

29 Introduction

Small populations are relatively more prone to be affected by stochastic 30 events than large populations (Otto and Whitlock 1997). While in larger 31 populations stochastic demographic events tend to be balanced by the greater 32 number of individuals, small populations have a higher probability to deviate 33 from mean expectations (Melbourne 2012). For example, a small population 34 can go locally extinct if all its individuals die before reproduction, an event that is 35 less likely to occur in large populations. Thus, species relative abundance in 36 communities composed of small populations tend to vary more in space and 37 38 time independent of environmental variation – ecological drift (Vellend 2016). Although much progress has been made recently towards the robustness of 39 these predictions, this has been made mainly through simulations (Orrock and 40 41 Watling 2010), simplified experiments (Gilbert and Levine 2017), and the analysis of limited observational data (Sigueira et al. 2020). Here we expand 42 previous findings by not only focusing on spatial variation in species 43 composition, but also by investigating the role of the environmental factors as 44 drivers of that variation (i.e., community-environment relationship) along a 45 46 gradient of community size in multiple independent data sets from different regions of the world. 47

In general, we can assume that while environmental selection deterministically assemble species through density-dependent and independent mechanisms, ecological drift causes variation in local species relative abundance through demographic stochasticity (Vellend 2016). Ecologists are increasingly recognizing that stochastic and deterministic processes interact with each other in many ways to form multispecies communities. For example,

experimental research found that small plant communities showed high 54 55 variation in species relative abundances and high levels of local extinction, resulting in lower local diversity and high variation in species composition 56 (Gilbert and Levine 2017). Observational research found higher spatial variation 57 in species composition among small communities of stream insects that 58 resembled a stochastic model (Sigueira et al. 2020). These results are in line 59 with model simulations that suggest that the effects of environmental selection 60 can be overridden by the effects of ecological drift in small communities (Orrock 61 and Watling 2010). 62

One prediction regarding the effects of ecological drift on communities 63 that has received less attention concerns the decoupling of spatial variation in 64 species composition and in environmental factors. If the role of ecological drift is 65 strong in small communities, then community-environment relationships should 66 be weak in metacommunities composed of small communities. That is, there 67 should be a positive relationship between the strength of environmental 68 selection and community size. This is not easy to test for various reasons, but 69 mainly because of statistical issues, including lack of sufficient spatial 70 71 replication (e.g., Sigueira et al. 2020) and zero-inflated data. The data required to test this hypothesis must include various replicated metacommunities from 72 which individual measures of the strength of the community-environment 73 74 relationship are estimated (e.g., Bini et al. 2014). Here, we used a global database of riverine fish abundances (Comte et al. 2020) to test the idea that 75 76 community size mediates the roles of ecological drift and environmental selection in driving community spatial variation (β -diversity). Specifically, we 77

analyzed 32 metacommunities in four biogeographic realms (Australasia,

79 Nearctic, Neotropics and Palearctic) that include 541 local communities.

First, we tested if spatial β -diversity was negatively related to community 80 size. Our aim here was to test the generality of the findings by Sigueira et al. 81 (2020) with more comprehensive data and considering recent advances in β -82 diversity metrics. We expected that β -diversity would be higher among smaller 83 communities and lower among larger communities, even after accounting for 84 the potential effects of environmental heterogeneity and spatial extent. 85 However, quantifying changes in β -diversity along a gradient of community size 86 87 is challenging because almost all β-diversity metrics depend on both sampling 88 effort and sample size. Thus, we must consider that community size itself can bias the estimates of β-diversity due to differences in the regional species pool 89 size, species abundance distributions (SAD), and the number of individuals 90 (Chase and Knight 2013, Engel et al. 2021). This is undesirable because a 91 92 theoretically expected negative relationship between β-diversity and community size can be found simply because smaller communities are less likely to share 93 94 species than larger communities due to sampling effects.

95 To select a β -diversity metric that was not affected by sampling effects related to community size, we used a process-based simulation model to 96 simulate metacommunities with the same SAD, richness, and number of 97 98 communities. The simulated metacommunities differed only in their overall size and were assembled without any environmental filter. A null relationship 99 100 between β-diversity of simulated metacommunities and community size would indicate that the β-diversity metric does not change with community size without 101 102 invoking environmental selection.

Second, we tested the importance of community size as a mediator of 103 104 the relative role of environmental selection versus demographic stochasticity by regressing a measure of the strength of the community-environment 105 relationship within each metacommunity against the median community size. 106 107 Here, we used community incidence data to measure the strength of the community-environment relationship instead of abundance data to avoid that 108 109 the relationship could increase with community size simply because statistical power increases with abundance (Gwinn et al. 2016). According to previous 110 research (Magurran and Henderson 2003, Coyle et al. 2013), we expected that 111 112 infrequent and occasional species should have a weak association with the environmental conditions in the community. Thus, we selected the core species 113 of each community to measure the strength of the community-environment 114 115 relationship, since they are abundant and widespread, and are more likely to be affected by niche-selection (Magurran 2007). We expected that the spatial 116 variation in species composition of larger metacommunities would have a 117 stronger relationship with the environment indicating the preponderance of 118 deterministic environmental selection over demographic stochasticity in 119 120 communities composed of larger populations. For this second prediction, we also used a process-based simulation model to investigate if the strength of the 121 community-environment relationship would not increase with community size 122 123 just because larger communities provide more statistical power to detect an association. 124

125

126 Material and Methods

127 Species data

We used publicly available fish abundance data sampled in riverine ecosystems 128 129 in different continents, but mainly in Europe and North America (RivFishTIME -Comte et al. 2020). In the RivFishTIME database, sampling sites are organized 130 within river basins. Each site we selected was assigned to a Strahler stream 131 order within the HydroRIVERS network (Lehner and Grill 2013). We also 132 performed a visual inspection of orders attributed to sites located more than 133 134 1000m away from the network, changing to the appropriate order, if needed. Then, we defined a community as the set of species occurring in a site and a 135 metacommunity as the set of sites within basin delineations according to 136 137 HydroBASINS (level 7 - Lehner and Grill 2013). We just considered sites that included direct fish counts and selected the most recent sampling event for 138 each metacommunity that included at least 10 communities in first to third-order 139 140 streams, excluding basins with less than five species. These procedures resulted in 32 metacommunities. Data selection was made in R (version 4. 2. 1) 141 using the packages mapview (Appelhans et al. 2021) raster (Hijmans 2021), 142 rgdal (Bivand et al. 2021), sf (Pebesma 2018), sp (Pebesma and Bivand 2005, 143 Bivand et al. 2013) and tidyverse (Wickham et al. 2019). 144

145

146 Environmental data

147 For consistency and because local water variables (e.g., pH,

temperature, dissolved oxygen) were not available, we obtained environmental

variables relevant to freshwater ecosystems by snapping site geographic

150 coordinates in two global remote-sensing datasets, HydroATLAS (Linke et al.

151 2019) and free-flowing rivers (FFR) (Grill et al 2019). Both datasets consider a

reach as the smallest unit in the hydrological network, being characterized as

the line segment between two confluences. Spatial data gathered by 153 154 HydroATLAS include mean annual natural discharge in m³/s (Döll et al 2003), average elevation (m) (Robinson et al. 2014), average annual air temperature 155 (°C), average annual precipitation (mm) (Hijmans et al. 2005), and average 156 human footprint index (Venter et al. 2016) within the local catchment that drains 157 directly into the reach. From the FFR dataset we obtained the connectivity 158 159 status index (CSI) that was calculated based on five pressure factors (river fragmentation, flow regulation, sediment trapping, water consumption and 160 infrastructure development). These factors are associated with the four 161 162 dimensions of freshwater connectivity (longitudinal, lateral, vertical and temporal). The CSI provides a characterization of connectivity to every 163 164 individual river reach, ranging from 0% to 100% connected. We also used a 165 categorical variable (CSI_FF2) based on CSI that indicates if a river reach belongs to a river with free-flowing, good connectivity or degraded status. 166 Together, data from HydroATLAS and FFR were used as our environmental 167 variables since they reflect hydrologic, physiographic, climatic and 168 anthropogenic features of the freshwater environment. These variables were 169 170 also selected in R using packages mapview, raster, rgdal, sf, sp and tidyverse. 171

172 **Community descriptors**

We measured the size of each community as the number of individuals by site and we called community size the median community size within each metacommunity. Thus, larger metacommunities were those formed by communities with more individuals and smaller metacommunities were those formed by communities with fewer individuals.

We used a process-based simulation model to select a β -diversity metric 178 179 that was not dependent on sampling effects or directly affected by community 180 size. To do this, we simulated spatially explicit metacommunities without the influence of environmental selection with the package mobsim (May et al. 2021. 181 Simulated metacommunities had the same species abundance distributions 182 (SAD, log-normal), richness, and the number of local communities, but differ in 183 184 terms of total size (taken from a uniform distribution that varied according to the range of number of individuals sampled in the empirical metacommunities, 185 Supporting Information Table S1). We also represented the intraspecific 186 187 aggregation caused by dispersal limitation considering that all communities 188 were equally likely to be colonized by the initial member of each species, but once they were, subsequent members of that species were more likely to 189 190 colonize surrounding locations. Metacommunities were simulated with different numbers of species and sites, according to values in the empirical data 191 (Supporting Information, Table S1). For each of these combinations, we 192 estimated different β -diversity metrics and regressed these β -diversity metrics 193 194 against community size. Among the many β -diversity metrics we tested, rank-195 abundance difference was the only one that was not affected by community size in a neutral-like simulation scenario, and thus it was the metric selected to be 196 used in this study. In the supporting information, we describe further metrics 197 198 that failed the tests (Supporting Information, Table S2).

To describe variation in species rank-abundance patterns for the empirical metacommunities, we measured the median rank difference of each metacommunity as the difference in the rank of species between all pairs of communities within a metacommunity and divided it by the number of unique

species in each pair. Rank difference values were bound between 0 and 0.5 203 204 (maximum rank change). The R package codyn (Hallett et al. 2020) was used to measure rank-abundance differences. We fitted a multiple linear Gaussian 205 model to describe the relationship between rank differences and community 206 size, including metacommunity environmental heterogeneity and spatial extent 207 as covariates (see Supporting Information Fig. S2 for model fit assumptions). 208 209 These covariates were added to take into account that larger regions could be more environmentally heterogeneous and have less connected communities 210 that could confound the effects of community size on β-diversity. We quantified 211 212 environmental heterogeneity within metacommunities using the standardized 213 environmental variables of each community in a distance-based analysis of homogeneity of multivariate dispersions (Euclidian distance). This was done 214 215 using the betadisper function from the vegan package (Oksanen et al. 2020). To measure the spatial extent of each metacommunity we calculated their 216 centroids and measured the average distance of each of their communities to it. 217 This analysis was also based on Euclidean distance calculated in meters with 218 219 the geosphere package (Hijmans, 2021).

220

221 Community-environment relationships

To investigate the strength of the community-environment relationships within metacommunities and relate to the median community size we also first employed a process-based model to define which statistic would not be affected by community size itself. To do this, we simulated metacommunities that were equally affected by demographic stochasticity and environmental selection regardless of their size. The simulated metacommunities were colonized by

species with similar niche breadth (0.2) and that followed a Gaussian response 228 229 to one environmental variable. Species environmental optimum ranges were taken from a uniform distribution ranging from 0 to 5. We simulated ecological 230 drift by drawing the abundance of every species in each local community from a 231 Poisson distribution whose mean was given by the deterministic influence of 232 environmental selection. We assigned different sizes to the metacommunities 233 234 estimating species expected abundance in optimum environments from a random interval. Then we modeled the strength of the community-environment 235 relationship within metacommunities. An unbiased measure of the strength of 236 237 community-environment relationships should not be related to community size. 238 We tested a Generalized Linear Model (GLM) to relate the strength of the community-environment relationship with community size, but we found that the 239 240 relationship increased with community size (Fig. S1a, Supporting Information), indicating that the GLM explanatory power increased with community size even 241 242 for metacommunities assembled by equal contributions of drift and niche selection. Our second approach was to run a Hierarchical Modelling of Species 243 Communities (HMSC) (Ovaskainen 2017), using the package HMSC (Tikhonov 244 245 et al. 2021). HMSC is a powerful method as it can increase the predictive power identifying biotic interactions and the influence of missing environmental 246 covariates (Tikhonov et al. 2020). The posterior distribution of the HMSC model 247 248 was sampled with four Markov Chain Monte Carlo (MCMC) chains. Each chain was run for 150.000 iterations, of which the first 50.000 were removed as burn-249 250 in. We obtained 1000 samples per chain that were recorded every 100:th step (thin=100) of the iterations. Then, we measured the explanatory power of the 251 model obtaining a median coefficient of discrimination (Tjur R²) (Tjur 2009) for 252

each simulated metacommunity that was regressed against their community 253 size. We did not find a relationship between the HMSC Tiur R² and community 254 size (Fig. S1b, Supporting information). Thus, we used the HMSC approach to 255 256 answer our question using the same steps described above. We used a probit model to relate the response matrix, composed of the incidence of the core 257 258 species of each community (10% most abundant), to the matrix of 259 environmental variables. We also examined the MCMC convergence by examining the potential scale reduction factors (Gelman and Rubin 1992) of the 260 model parameters. 261

262

263 **Results**

264 As expected, we found a negative relationship between rank-abundance 265 difference and community size (Fig. 1a, Table 1). Neither environmental heterogeneity nor spatial extent were related to this β -diversity metric, indicating 266 267 that 38.8% of the variation in rank-abundance difference was due uniquely to community size. These results indicate that fish composition in small 268 communities was more different among each other within a metacommunity 269 270 compared to metacommunities composed of larger communities. 271 272

- 273

Figure 1. Relationships between a) rank-abundance difference and median community size; and b) between the strength of the community-environment relationship within metacommunities against median community size. Gray bands represent the 95% confidence interval around the regression line.

274

280 The MCMC convergence of the HMSC models was satisfactory, with the potential scale reduction factors for the β -parameters varying between 0.999 281 and 1.014. The coefficient of determination (Tjur R²) varied between 0.10 and 282 283 0.67 (median = 0.20; standard deviation [sd] = 0.14). Considering only the total amount of variance in species abundance explained by environmental 284 variables, average annual air temperature (median = 0.19; sd = 0.05), average 285 elevation (median = 0.18; sd = 0.05), and connectivity status index (CSI; 286 median = 0.16; sd = 0.07) explained the largest proportion of variance across all 287 species (Supporting Information; Table S3). The highest values of explained 288 variance, however, were found for mean annual natural discharge (0.47) and 289 average human footprint index (0.42; Table S3). As predicted, we found a 290 positive relationship between *Tiur* R² and community size (Fig. 1b; standardized 291 coefficient = 0.386, t-value = 2.29, $R^2 = 0.149$, p = 0.029), indicating that the 292

strength of the community-environment relationship was lower inmetacommunities composed of smaller communities.

295

296 **Discussion**

297 The persistence and stability of populations and metapopulations are positively related to their size (Otto and Whitlock 1997, Reed and Hobbs 2004, 298 299 Terui et al. 2018). Expanding on this perspective and on previous findings (Sigueira et al. 2020) our analyses of intercontinental data support the 300 prediction that spatial variation in species composition among small 301 302 communities is higher than among large communities. We found support for the 303 prediction that the strength of the relationship between species composition and 304 environmental variation is weak in metacommunities composed of small 305 communities. Taken together, these results indicate that community size mediates the role of ecological drift and environmental selection as drivers of 306 307 metacommunity spatial dynamics. More specifically, we suggest that ecological drift plays a substantial role in the spatial dynamics of small fish communities, 308 309 decoupling species-environment relationships. Such decoupling indicates that 310 further declines in the size of fish communities due to environmental change might add more stochasticity to their dynamics, making them less predictable in 311 the face of future environmental scenarios. 312

313 Spatial variation in species composition occurs due to changes in various 314 aspects of community structure such as abundance, evenness or richness 315 (Avolio et al. 2019). We found a negative relationship between changes in 316 species distribution abundance (rank-abundance differences) and median 317 community size. This result means that species switched positions in the rank-

abundance curve (from rarer to more common and vice-versa) more often in 318 319 metacommunities composed of small communities than in those composed of large communities. Spatial variation in species abundance within 320 metacommunities occur due to a combination of processes, including dispersal, 321 322 selection, and demographic stochasticity (Vellend 2016). Our results indicate that whereas changes in species abundance in large communities were mostly 323 324 because of environmental variation (mainly temperature, elevation, and discharge), changes in species abundance in small communities were mostly 325 326 caused by stochastic processes. In this sense, our work can be considered an 327 extension of previous work that identified a positive relationship between 328 population size and population stability (Reed and Hobbs 2004) and ecosystem size (and complexity) and metapopulation stability (Terui et al. 2018). Although 329 330 there have been suggestions of a relationship between spatial and temporal variation in biodiversity properties (e.g., spatial-temporal beta diversity, Steiner 331 and Leibold 2004), the degree to which such correlations are causal is still to be 332 resolved (Stegen et al. 2013). 333

334 Random and unpredicted changes in species composition can happen 335 entirely or partially due to demographic events that are independent of environmental selection (Shoemaker 2020, Vellend 2010). For example, smaller 336 communities are more likely to be affected by births and deaths, changing 337 338 species relative abundance independently of species fitness (Vellend 2010). Previous studies based on mechanistic simulation models suggested that when 339 340 random demographic events play a major role in community dynamics, species competitive differences become less important to shape community composition 341 and inferior competitors become increasingly represented in local communities 342

(Orrock and Waltling 2010, Orrock and Fletcher 2005). Sigueira et al. (2020) 343 344 also found that small insect communities exhibit higher variation in species 345 composition and that it was similar to a null expectation. As community size increases, the role of demographic events that are random regarding species 346 identity should decrease relative to deterministic assembly. In this situation, 347 metacommunity dynamics may be mainly governed by species sorting and 348 349 patch dynamics (Orrock and James 2010) leading to deterministic exclusion of the inferior competitors and lowering β -diversity in large metacommunities. 350 The positive relationship between the strength of community-351 352 environment coupling and community size indicates that environmental selection plays a minor role in the dynamics of small communities. This 353 354 relationship further suggests that environmental factors might have limited 355 power to predict species identity or species abundances in small communities. Evidence of weak relationships between species composition and 356 environmental factors is abundant in community ecology. For example, a 357 comprehensive analysis of stream invertebrate communities across the 358 continental United States showed that β-diversity was weakly related to 359 360 environmental distances in many of the ecoregions studied (Bini et al. 2014). Heino et al. (2015) also assessed the role of environmental factors in driving β -361 diversity in stream insect communities in different regions of the world and 362 363 found that environmental variables were poor predictors of species composition, explaining on average 13% of the variation in community spatial variation. 364 365 Although we did not re-analyze data from previous studies reporting weak community-environment relationships, our results suggest that, besides the 366 already known causes (e.g., "snapshot" sampling, lack of statistical power, 367

unaccounted legacy effects), ecological drift acting more strongly upon small
 communities might be an additional cause for such weak relationships.

As it is usually the case in observational, correlative studies, ours also 370 have limitations. Stream communities can be structured by many environmental 371 372 factors that vary at the local scale, such as nutrient concentration, turbidity, pH (Allan et al. 2021). The set of variables we used is not necessarily the best one 373 374 to represent community-environment relationships, as these variables were not measured at the same spatial scale used to sample communities. But, even 375 376 with such data, we detected a positive relationship between the strength of the 377 community-environment relationship and community size. We thus speculate 378 that the inclusion of additional local environmental variables could affect the observed relationship in two ways: (1) the model explanatory power will 379 380 increase for all metacommunities as more variables are added to it. In this case, the relationship would remain positive, with a similar slope but higher intercept. 381 (2) The role of stochasticity might be so strong in small communities that the 382 strength of the community-environment relationship would not increase for 383 384 them, but only for the large communities. In this case, the slope of the 385 regression line would change to a more positive relationship, while the intercept would remain the same. Despite these limitations, some of our models 386 explained more than 30% (and in some cases up to 60%) of the variance in 387 388 abundance. This result indicates that large scale variables such as average annual air temperature, mean annual natural discharge, and average human 389 390 footprint index can be used to explain variation in fish abundance (e.g., Chen and Olden 2020, Comte et al. 2021), especially for species in large 391 communities. Another issue to bear in mind is that by relying solely on the 392

median, we might have missed how other aspects of community size influence
β-diversity and community-environment relationships. For example, other
aspects of the distribution of population sizes within communities (e.g., range;
standard deviation) could represent different processes that interact with
demographic stochasticity – an issue that deserves further investigation.

Relying on a robust data set that spans 541 communities, across 32 river 398 399 basins in four biogeographic realms, and robust methods to quantify spatial variation in species composition, we provide evidence for a general pattern in 400 nature – species composition varies more among small communities than 401 402 among large communities. This pattern is likely driven by the stronger influence 403 of demographic stochastic events on small than on larger communities, as the 404 dynamics of small communities are weakly linked to spatial variation in 405 environmental factors. On the other hand, metacommunities composed of large communities seem to be assembled more deterministically as their species 406 407 composition were more related to environmental variation. As the effects of demographic stochasticity should manifest also, maybe even more strongly, on 408 409 community temporal dynamics, future studies should analyze the relationship 410 between temporal β -diversity and community size. We also suggest the prevalence of the relationships we describe here should be tested with data 411 from terrestrial metacommunities, where community size might be more directly 412 413 linked to ecosystem size. In a changing world where ecosystems have been fragmented and reduced, high variation in species composition among small 414 415 communities that decoupled from environmental variation points to further 416 challenges to ecosystem management.

417

418 **References**

419 Allan, J. D., Castillo, M. M. and Capps K. A. 2021. Stream Ecology: Structure and Function of Running Waters. Springer Nature Switzerland AG. 420 Appelhans, T., Detsch, F., Reudenbach, C. and Woullauer, S. 2021. mapview: 421 Interactive Viewing of Spatial Data in R. R package version 2.10.0. -422 https://CRAN.R-project.org/package=mapview>. 423 Avolio, M. L., Carroll, I. T., Collins, S. L., Houseman, G. R., Hallett, L. M., Isbell, 424 F., Koerner, S. E., Komatsu, K. J., Smith, M. D. and Wilcox, K. R. 2019. 425 A comprehensive approach to analyzing community dynamics using rank 426 427 abundance curves. Ecosphere, 10: e02881. Bini, L. M., Landeiro, V. L., Padial, A. A., Siqueira, T. and Heino, J. 2014. 428 Nutrient enrichment is related to two facets of beta diversity for stream 429 invertebrates across the United States. Ecology, 95: 1569-1578. 430 Bivand, R., Keitt, T. and Rowlingson, B. 2021. rgdal: Bindings for the 431 'Geospatial' Data Abstraction Library. R package version 1.5-23. -432 <https://CRAN.R-project.org/package=rgdal>. 433 Bivand, R., Pebesma, E. and Gomez-Rubio. 2013. Applied spatial data analysis 434 with R. Second edition, Springer, NY. < https://asdar-book.org/>. 435 Chase, J. M. and Knight, T. M. 2013. Scale-dependent effect sizes of ecological 436 drivers on biodiversity: Why standardised sampling is not enough. Ecol. 437 438 Lett., 16: 17-26. Chen, k., Olden, J. D. 2020. Threshold responses of riverine fish communities 439 to land use conversion across regions of the world. Glob. Change Biol., 440 26: 4952-4965. 441

442	Comte, L., Carvajal-Quintero, J., Tedesco, P. A., Giam, X., Brose, U., Erõs, T.,
443	Filipe, A. F., Fortin, M. J., Irving, K., Jacquet, C., Larsen, S., Sharma, S.,
444	Ruhi, A., Becker, F. G., Casatti, L., Castaldelli, G., Dala-Corte, R. B.,
445	Davenport, S. R., Franssen, N. R., García-Berthou, E., Gavioli, A., Gido,
446	K. B., Jimenez-Segura, L., Leitão, R. P., McLarney, B., Meador, J., Milardi,
447	M., Moffatt, D. B., Occhi, T. V. T., Pompeu, P. S., Propst, D. L., Pyron, M.,
448	Salvador, G. N., Stefferud, J. A., Sutela, T., Taylor, C., Terui, A., Urabe,
449	H., Vehanen, T., Vitule, J. R. S., Zeni, J. O. and Olden, J. D.
450	2020. RivFishTIME: A global database of fish time-series to study global
451	change ecology in riverine systems. Glob. Ecol. Biogeogr., 30: 38-50.
452	Comte, L., Olden, J. D., Tedesco, P. A., Ruhi, A. and Giam, X., 2021. Climate
453	and land-use changes interact to drive long-term reorganization of riverine
454	fish communities globally. Proc. Natl. Acad. Sci., 118: e2011639118.
455	Coyle, J. R., Hurlbert, A. H. and White, E. P. 2013. Opposing Mechanisms Drive
456	Richness Patterns of Core and Transient Bird Species. Am Nat., 181:4.
457	Döll, P., Kaspar, F. and Lehner, B. 2003. A global hydrological model for
458	deriving water availability indicators: model tuning and validation. J.
459	Hydrol., 270: 105-134.
460	Engel, T., Blowes, S. A., McGlinn, D. J., May, F., Gotelli, N. J., McGill, B. J. and
461	Chase, J. M. 2021. Using coverage-based rarefaction to infer non-
462	random species distributions. Ecosphere, 12:e03745.
463	Gelman, A. and Rubin, D. B. 1992. Inference from iterative simulation using
464	multiple sequences. Stat. Sci., 7: 457-472.
465	Gilbert, N. and Levine, J. M. 2017. Ecological drift and the distribution of
466	species diversity. Proc. R. S. B., 284: 20170507.

467	Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu,
468	S., Borrelli, P., Cheng, L., Crochetiere, H., Macedo, H. E., Filgueiras, R.,
469	Goichot, M., Higgins, J., Hogan, Z., Lip, B.,, McClain, M. E., Meng, J.,
470	Mulligan, M., Nilsson, C., Olden, J. D., Opperman, J. J., Petry, P.,
471	Liermann, C. R., Sáenz, L., Salinas-Rodrpiguez, S., Schelle, P., Schmitt,
472	R. J. P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen,
473	A. and Zarfl, C. 2019. Mapping the world's free-flowing
474	rivers. <i>Nature,</i> 569: 215-221.
475	Gwinn, D. C., Allen, M. S., Bonvechio, K. I., Hoyer, M. V. and Beesley, L. S.
476	2016. Evaluating estimators of species richness: the importance of
477	considering statistical error rates. Methods Ecol Evol, 7: 294-302.
478	Hallett, L., Avolio, M. L., Carroll, I. T., Jones, S. K., MacDonald, A. A. M., Flynn,
479	D. F. B., Slaughter, P., Ripplinger, J., Collins, S. L., Gries, C. and Jones,
480	M. B. 2020. codyn: Community Dynamics Metrics. R package version
481	2.0.5.
482	Heino, J., Melo, A. S., Bini, L. M., Altermatt, F., Al-Shami, S. A., Angeler, D. G.,
483	Bonada, N., Brand, C., Callisto, M., Cottenie, K., Dangles, O., Dudgeon,
484	D., Encalada, A., Göthe, E., Grönroos, M., Hamada, N., Jacobsen, D.,
485	Landeiro, V. L., Ligeiro, R., Martins, R. T., Miserendino, M. L., Rawi, C.
486	S. Md., Rodrigues, M. E., Roque, F. O., Sandin, L., Schmera, D., Sgarbi,
487	L. F., Simaika, J. P., Siqueira, T., Thompson, R. M. and Townsend, C. R.
488	2015. A comparative analysis reveals weak relationships between
489	ecological factors and beta diversity of stream insect metacommunities at
490	two spatial levels. Ecol. Evol., 5: 1235-1248.

491	Hijmans, R. 2021geosphere: Spherical Trigonometry R package version
492	1.5-14, <https: cran.r-project.org="" package="geosphere">.</https:>
493	Hijmans, R.J. 2021. raster: Geographic Data Analysis and Modeling. R
494	package version 3.4-13.
495	Hijmans, R.J. et al. 2005. Very high resolution interpolated climate surfaces for
496	global land areas. Int. J. Climatol., 25: 1965-1978.
497	Lehner, B. and Grill, G. 2013. Global river hydrography and network routing:
498	baseline data and new approaches to study the world's large river
499	systems. Hydrol. Process., 27: 2171-2186.
500	Linke, S., Lehner, B., Dallaire, C. O., Ariwi, J., Gril, G., Anand, M., Beames, P.,
501	Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F. and Thieme, M.
502	2019. Global hydro-environmental sub-basin and river reach
503	characteristics at high spatial resolution. Sci. Data, 6: 283.
504	Magurran, A. and Henderson, P. 2003. Explaining the excess of rare species in
505	natural species abundance distributions. Nature, 422: 714-716.
506	Magurran, A. E. 2007. Species abundance distributions over time. Ecol.Lett.,
507	10: 347-354.
508	May, F. 2021. mobsim: Spatial Simulation and Scale-Dependent Analysis of
509	Biodiversity Changes. R package version 0.2.0,
510	<https: github.com="" mobiodiv="" mobsim="">.</https:>
511	Melbourne, B. A. 2012. Stochasticity, Demographic. Encyclopedia of
512	Theoretical Ecology, edited by Alan Hastings and Louis Gross, Berkeley:
513	University of California Press, 706-712.
514	Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P.,
515	O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour,

516	M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De
517	Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M.,
518	Furneaux, B., Hannigan Stier, A., Ter Braak, C. and Weedon, J. 2020.
519	vegan: Community Ecology Package. R package version 2: 5-7.
520	<https: cran.r-project.org="" package="vegan">.</https:>
521	Orrock, J. L. and Fletcher, R. J. Jr. 2005. Changes in community size affect the
522	outcome of competition. Am Nat., 166: 107-11.
523	Orrock, J. L. and Watling, J. I. 2010. Local community size mediates ecological
524	drift and competition in metacommunities. Proc. R. S. B., 277: 2185-
525	2191.
526	Otto, S. P. and Whitlock, M. C. 1997. Fixation of beneficial mutations in a
527	population of changing size. Genetics, 146: 723-733.
528	Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson,
529	D., Roslin, T. and Abrego, N. 2017 How to make more out of community
530	data? A conceptual framework and its implementation as models and
531	software. Ecol. Lett., 20: 561-576.
532	Pebesma, E. 2018. Simple Features for R: Standardized Support for Spatial
533	Vector Data. The R Journal, 10: 439-446.
534	Pebesma, E. J. and Bivand, R. S. 2005. Classes and methods for spatial data
535	in R. <i>R News</i> , 5: 9-13. <https: cran.r-project.org="" doc="" rnews=""></https:> .
536	Reed, D. H. and Hobbs, G. R. 2004. The relationship between population size
537	and temporal variability in population size. Anim. Conserv. forum., 7: 1-8.
538	Robinson, N., Regetz, J. and Guralnick, R. P. 2014. EarthEnv-DEM90: a
539	nearly-global, void-free, multi-scale smoothed, 90m digital elevation

540 model from fused ASTER and SRTM data. ISPRS J. *Photogramm.*541 *Remote. Sens.*, 87: 57-67.

542	Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J.,
543	Mayfield, M. M., Chase, J. M., Chu, C., Stanley Harpole, W., Huth, A.,
544	HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, Felix.,
545	Muthukrishnan, Satterlee, S., Taubert, F., Wang, X., Wiegand., Yang, Q.
546	and. Abbott, K. C. 2020. Integrating the underlying structure of
547	stochasticity into Community ecology. Ecology, 101: e02922.
548	Siqueira, T., Saito, V. S., Bini, L. M., Melo. A. S., Petsch, D. K., Landeiro, V. L.,
549	Tolonen, K. T., Jyrkänkallio-Mikkola, J., Soininen and Heino,
550	J. 2020. Community size can affect the signals of ecological drift and
551	niche selection on biodiversity. <i>Ecology</i> , 101: e03014.
552	Steiner, C. F. and Leibold, M. A. 2004. Cyclic assembly trajectories and scale-
553	dependent productivity-diversity relationships. Ecology, 85: 107-113.
554	Stegen, J. C., Freestone, A. L., Crist, T. O., Anderson, M. J., Chase, J. M.,
555	Comita, L. S., Cornell, H. V., Davies, K. F., Harrison, S. P., Hurlbert, A.
556	H., Inouye, B. D., Kraft, N. J. B., Myers, J. A., Sanders, N. J., Swenson,
557	N. G. and Vellend, M. 2013. Drivers of spatial and temporal turnover.
558	Glob. Ecol. Biogeogr., 22: 202-212.
559	Terui, A., Ishiyama, N., Urabe, H., Ono, S., Finlay, J. O. and Nakamura, F.
560	2018. Metapopulation stability in branching river networks. P. Natl. Acad.
561	<i>Sci. USA</i> , 115: E5963-E5969.
562	Tikhonov, G., Opedal, Ø.H., Abrego, L., Lehikoinen, A., de Jonge, M. M. J.,
563	Oksanen, J. and Ovaskainen, O. 2020. Joint species distribution
564	modelling with the R-package HMSC. Methods Ecol. Evol., 11: 442-447.

565	Tikhonov, G., Ovaskainen, O., Oksanen, J., de Jonge, M., Opedal, O. and
566	Dallas, T. 2021. hmsc: Hierarchical Model of Species Communities. R
567	package version 3.0-11. < https://CRAN.R-project.org/package=Hmsc>.
568	Tjur, T. 2009. Coefficients of determination in logistic regression models—A
569	new proposal: the coefficient of discrimination. Am. Stat., 63: 366-372.
570	Vellend, M. and Agrawal, A. 2010. Conceptual synthesis in community ecology.
571	Q. Rev. Biol., 85: 183-206.
572	Vellend, M. 2016. The theory of ecological communities. Mpb series: Edition 57.
573	Princeton University Press, Princeton, New Jersey, USA.
574	Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R.,
575	Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M.
576	A. and Watsom, J. E. M. 2016. Global terrestrial Human Footprint maps
577	for 1993 and 2009. Sci. Data, 3: 160067.
578	Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L.,
579	François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
580	Lin Pedersen, T., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson,
581	D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo,
582	K. and Yutani, H. 2019. Welcome to the tidyverse. J. of Open Source
583	Softw., 4: 1686.

585	Table 1. Model statistics of the relationship of rank-abundance difference with
586	community size (CS), environmental variation (EV) and spatial extent (SE) in
587	riverine fish metacommunities. SD coeff. = standardized regression coefficient;
588	R^2 and Adj. R^2 = coefficient of determination and adjusted coefficient of
589	determination, respectively.

Predictor	SD coeff.	t-value	p-value	R²	Adj R ²
CS	-0.657	-4.291	<0.001	0.388	0.368
EV	0.044	0.303	0.764		
SE	0.112	0.732	0.470		

591 Data Accessibility

592 R codes and data used here are publicly available on Zenodo:

593 https://doi.org/<u>10.5281/zenodo.6504817</u>

594

595 Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior-Brasil (CAPES) - Finance Code 001 for funding. C.M.J. is also grateful
to Luciano N. Lima for the support in spatial analysis. T.S. was supported by
grant #21/00619-7, São Paulo Research Foundation (FAPESP) and by grant
#309496/2021-7, Brazilian National Council for Scientific and Technological
Development (CNPq).

603 Supporting Information

604

605 **1. Material and methods**

- Table S1. General features of each dataset used in the empirical analyses at
- 607 both regional and local scales.

		Regional		Local					
Metacommunity ID) # sites	# individuals	γ-diversity	α-diversity	α-diversity	# individuals	# individuals		
				(mean)	(median)	(mean)	(median)		
2070021230	10	4538	12	7	6	454	471.5		
2070021360	15	5559	15	7	7	371	393		
2070469050	12	5398	19	5	2	450	238.5		
2070470930	10	15956	21	8	8	1596	293		
2070513970	29	4112	32	7	7	142	101		
5070070110	29	4340	31	9	8	150	113		
5070070390	12	3636	23	10	10	303	336		
5070070440	21	4307	30	9	8	205	194		
5070070450	13	3990	26	10	11	307	324		
5070468810	10	2087	14	5	4	209	91.5		
6070015200	22	2411	17	7	8	110	114		
6070709820	16	4374	27	9	8	273	113		
6070713620	22	3161	40	10	9	144	95.5		
7070042610	12	2633	44	18	18	219	201		
7070317870	11	3323	41	15	14	302	219		
7070327640	12	756	6	2	2	63	65		
7070360890	60890 31 2460		7 2		2	79	74		
7070415980	10	2971	33	10	8	297	117.5		
7070450470	13	1220	21	7	7	94	81		
7070451570	18	2882	27	9	9	160	147		
7070453370	32	3967	31	7	6	124	90.5		
7070620210	21	8395	47	20	20	400	306		
7070630060	11	5356	34	16	16	487	425		
7070642870	21	8429	36	14	15	401	352		
7070643030	11	2704	34	15	15	246	228		
7070647250	18	5814	46	16	17	323	262		
7070647350	14	3651	42	16	15	261	231		
7070648760	10	3928	44	18	18	393	424.5		
7070651920	12	1978	41	18	19	165	156.5		
7070656320	22	8021	43	16	16	365	341		
7070663220	23	10421	29	15	15	453	385		
7070684690	18	4501	48	17	16	250	169		

608

609 **1.1 Process-based simulation models**

610 **1.1.1 Spatial variation in species composition**

As our first goal was to investigate how spatial variation in species

612 composition within metacommunities varied along a gradient of median

community size, we needed to make sure that our metrics representing spatial
variation in species composition would not be affected by sampling effort and
sample size. For example, larger communities have a higher probability to
share more species and thus exhibit a lower variation in species composition
than smaller communities because they have more individuals, but not
necessarily because they are more similar.

619 So, using the package mobsim (May et al 2018), we simulated metacommunities with the same SAD (log-normal distribution), species richness 620 and number of communities. They were assembled without any environmental 621 622 filter and differed only in their overall size (taken from a uniform distribution that varied between 756 and 15956 individuals, according to the range of individuals 623 sampled in the empirical metacommunities (Table S1). We represented the 624 625 intraspecific aggregation caused by dispersal limitation considering that all communities were equally likely to be colonized by the initial member of each 626 species, but once they were, subsequent members of that species were more 627 likely to colonize surrounding locations. To investigate the potential effect of 628 629 metacommunity characteristics in the tested metrics, we varied the number of 630 species and sites in the simulations. The values of these parameters covered the range of variation of the empirical metacommunities (6-48 species and 10-631 632 32 sites, Table S1).

We then measured six β-diversity metrics within each simulated
metacommunity and regressed β-diversity values against the median
community size of the simulated metacommunities. Because we hypothesized
that environmental selection should be stronger in larger communities and
ecological drift should be stronger in smaller communities, we expected that an

unbiased β-diversity metric would have no relationship with community size in
the simulation, as environmental selection played no role in community
assembly.

Our first candidate β -diversity metric was Baselga's (2010) multiple-site 641 Total Beta Diversity based on presence-absence data. This metric accounts 642 both for the spatial turnover and the nestedness components of β -diversity. It 643 644 was carried out in R with the function beta.multi (Baselga et al. 2022), using Jaccard dissimilarity. The second candidate β-diversity metric was C-score 645 646 (Stone & Roberts 1990), which provides an average measure of co-occurrence 647 for all species pairs. Higher C-score values indicate fewer co-occurrence between species in the matrix. The C-score was measured with the package 648 bipartite (Dormann et al. 2008) in R. Next, we used two β-diversity metrics that 649 650 could be corrected for under-sampling: the Jaccard-Chao and the Shannon. The correction applied to these metrics uses accumulation curves and should 651 be more effective than the original metrics to remove y-dependence (Cao et al 652 2021). The fifth candidate metric was a recently developed metric called βc 653 654 (Engel et al 2021), which was developed to represent differences in species 655 composition even when there are differences in the size of the species pool and associated sampling effects. 656

Finally, as changes in species relative abundances are a good predictor of community change (Dornelas et al. 2014, Jones et al. 2017, Avolio et al. 2019), we measured how the rank-abundance of communities varied among each other within each metacommunity, and regressed their median against median community size.

662

663 **1.1.2 Community-environment relationship**

To investigate our second prediction, we had to be sure that a measure 664 665 of the strength of the community-environment relationship would not itself be a statistical consequence of community size. For example, it is possible that a 666 strong community-environment relationship emerges in large communities 667 simply because it might be easier to model more individuals than a matrix full of 668 669 zeros, irrespective of the underlying assembly process. Thus, we used a second process-based simulation in which metacommunities of different sizes 670 were assembled by the same amount of demographic stochasticity and 671 672 environmental selection. Now, we simulated metacommunities composed of 673 species that followed a Gaussian response to a single environmental variable. They had the same niche breadth (0.2) but differed in their environmental 674 675 optima (i.e., niche position; taken from a uniform distribution ranging from 0 to 5). We simulated ecological drift by drawing the abundance of every species in 676 677 each local community from a Poisson distribution which mean was given by the deterministic influence of environmental selection. We assigned different sizes 678 679 to the metacommunities estimating species expected abundance in optimum 680 environments from a random interval.

We estimated the strength of the community-environment relationship, but only considering the incidence of the 10% most abundant species of each community. We tested two modeling approaches to estimate the strength of the community-environment relationship. First, we used a generalized linear model (GLM) and pseudo R² values as a measure of the strength of the communityenvironment relationship. We then used Hierarchical Modeling of Species Communities (HMSC) (Ovaskainen 2017) and Tjur R² values as a measure of

the strength of the community-environment relationship. An appropriate

689 measure of community-environment relationship would show no relationship

690 with community size in simulated metacommunities under equal contribution of

691 drift and selection.

692

693 **2. Results**

694 **2.1 Spatial variation in species composition**

695 We found that the first five (except rank-abundance difference) β-696 diversity metrics were related (varying from negative to positive) to median 697 community size (Table S2). These results indicate that these five β-diversity 698 metrics are affected by median community size independently of the underlying 699 assembly process.

We observed no relationship between rank-abundance difference and community size for the range of parameter values in our simulations (Table S2). So, as the lack of relationship was consistent, we concluded that rank difference was the most appropriate β -diversity metric that we could use in our study to investigate the relationship between variation in species composition and community size.

Table S2. Model statistics of the relationships between β-diversity metrics

707 (Jaccard, C-score, Jaccard-Chao, Shannon, βc and rank difference) and

community size for 30 simulated metacommunities covering the range of

variation of species and sites from the empirical metacommunities. SD coeff. =

standardized regression coefficient; R^2 and Adj. R^2 = coefficient of

determination and adjusted coefficient of determination, respectively. Some

712 metrics were not calculated when the number of species and sites were small

713 (empty lines).

β-diversity metric	SD coeff.	F-statistic	F-statistic p-value					
Metacommunities simulated with 6 species and sites								
Jaccard - Baselga								
C-score								
Jaccard-Chao								
Shannon	-0.316	3.114	0.088	0.100	0.068			
Bc				_				
Rank difference	-0.152	0.664	0.422	0.023	-0.012			
Metacommunities simu	lated with	10 species and	d sites					
Jaccard - Baselga	-0.749	35.7	<0.001	0.560	0.545			
C-score								
Jaccard-Chao	-0.617	17.17	<0.001	0.380	0.358			
Shannon	-0.176	0.894	0.352	0.031	-0.004			
Bc	-0.583	11.85	0.002	0.34	0.311			
Rank difference	0.073	0.150	0.702	0.005	-0.030			
Metacommunities simu	lated with	20 species and	d sites					
Jaccard - Baselga	-0.857	77.17	<0.001	0.734	0.724			
C-score	0.350	3.903	0.058	0.122	0.091			
Jaccard-Chao	-0.706	27.88	<0.001	0.499	0.481			
Shannon	-0.346	3.82	0.061	0.120	0.089			
Bc	-0.642	19.68	<0.001	0.413	0.3918			
Rank difference	0.221	1.434	0.241	0.049	0.015			
Metacommunities simu	lated with	30 species and	d sites					
Jaccard - Baselga	-0.927	171.3	<0.001	0.859	0.854			
C-score	-0.819	56.95	<0.001	0.670	0.659			
Jaccard-Chao	-0.919	152.1	<0.001	0.844	0.839			
Shannon	-0.737	33.21	<0.001	0.543	0.526			
Bc	-0.226	1.513	0.229	0.052	0.017			
Rank difference	0.252	1.894	0.180	0.063	0.030			
Metacommunities simu	lated with	40 species and	d sites					
Jaccard - Baselga	-0.954	282.3	<0.001	0.910	0.906			
C-score	-0.895	112.2	<0.001	0.800	0.793			
Jaccard-Chao	-0.938	204.4	<0.001	0.879	0.875			
Shannon	-0.674	23.26	<0.001	0.454	0.434			
Bc	0.513	9.996	0.004	0.263	0.237			
Rank difference 0.144 0.595 0.447 0.021 -0.4								
Metacommunities simulated with 48 species and sites								
Jaccard - Baselga	-0.929	175.7	<0.001	0.863	0.858			

β-diversity SD metric coeff.		F-statistic	p-value	R²	Adj R ²
C-score	-0.870	87.57	<0.001	0.758	0.749
Jaccard-Chao	-0.930	179.2	<0.001	0.865	0.860
Shannon	-0.783	44.38	<0.001	0.613	0.599
Bc	0.569	11.47	0.002	0.323	0.295
Rank difference	-0.069	0.136	0.715	0.005	-0.031

716 **2.2 Community-environment relationships**

We found that the GLM pseudo-R2 increased with community size (SD.

coeff. = 0.678, R^2 = 0.459, p = <0.001, Fig. S1a), whereas there was no

evidence of a relationship between HMSC Tjur R² and community size (SD.

coeff. = 0.247, R^2 = 0.061, p = 0.188, Fig. S1b). So, we decided to use the

- 721 HMSC to test our second prediction.
- 722

723

relationships within simulated metacommunities measured with a Generalized

Linear Model (GLM) (a) and with Hierarchical Modelling of Species

727 Communities (HMSC) (b) against median community size. Gray bands

represent the 95% confidence interval around the regression line.

730 2.3 Model fit assumptions

- Figure S2. Model fit assumptions of the multiple linear model used to describe
- rank difference values as a function of community size, environmental
- heterogeneity and spatial extent of the metacommunities. All plots were done
- using the performance package (Lüdecke et al. 2021) in R.

736

737 **2.4 Relative importance of each environmental variable to explain**

738 community composition

Table S3. Partitioning species' variance explained by the environmental

- variables across all metacommunities, considering the 10% most abundant
- species of each community. Environmental variables: discharge (Dis), elevation
- (Ele), temperature (Tmp), precipitation (Pre), human footprint (hft), connectivity
- status index (csi) and a measure that indicates if a river reach belongs to a river

with free-flowing, good connectivity or degraded status (csiff2).

Species	Dis	Ele	Tmp	Pre	hft	csi	csiff2
Metacommunity ID 2070021230							
Cottus gobio	0.151	0.206	0.220	0.113	0.223	0.086	0.000
Salmo trutta	0.119	0.164	0.194	0.130	0.274	0.119	0.000
Phoxinus phoxinus	0.168	0.215	0.276	0.104	0.156	0.081	0.000
Metacommunity ID 2070021360							
Salmo trutta	0.335	0.106	0.162	0.069	0.056	0.235	0.037
Cottus gobio	0.209	0.134	0.159	0.061	0.134	0.239	0.065
Phoxinus phoxinus	0.183	0.195	0.185	0.090	0.111	0.178	0.058
Barbatula barbatula	0.146	0.140	0.307	0.144	0.072	0.141	0.049
Perca fluviatilis	0.155	0.142	0.191	0.146	0.103	0.203	0.061
Metacommunity ID 2070469050							
Salmo trutta	0.171	0.182	0.193	0.168	0.141	0.112	0.033
Salmo salar	0.119	0.194	0.193	0.142	0.130	0.188	0.035
Cottus gobio	0.171	0.204	0.165	0.173	0.138	0.109	0.040
Barbatula barbatula	0.110	0.197	0.206	0.152	0.112	0.183	0.038
Squalius cephalus	0.168	0.186	0.173	0.164	0.141	0.103	0.064
Metacommunity ID 2070470930							
Cottus gobio	0.291	0.145	0.183	0.123	0.132	0.081	0.044
Phoxinus phoxinus	0.327	0.118	0.168	0.151	0.122	0.077	0.036
Barbatula barbatula	0.243	0.148	0.154	0.176	0.148	0.090	0.041
Perca fluviatilis	0.200	0.164	0.164	0.156	0.136	0.129	0.051
Squalius cephalus	0.187	0.161	0.176	0.161	0.123	0.146	0.047
Metacommunity ID 2070513970							
Barbatula barbatula	0.154	0.277	0.286	0.134	0.075	0.074	0.000
Gobio gobio	0.105	0.239	0.245	0.127	0.118	0.166	0.000
Phoxinus phoxinus	0.137	0.281	0.281	0.129	0.080	0.092	0.000
Rutilus rutilus	0.054	0.247	0.215	0.157	0.239	0.087	0.000
Squalius cephalus	0.118	0.236	0.247	0.117	0.109	0.173	0.000
Rhodeus sericeus	0.085	0.210	0.317	0.111	0.195	0.081	0.000
Alburnus alburnus	0.166	0.200	0.200	0.155	0.109	0.170	0.000

Leucaspius delineatus Umbra krameri 0.136 0.203 0.198 0.142 0.134 0.100 Metacommunity ID 5070070110 Gobiomorphus australis 0.134 0.152 0.167 0.063 0.117 0.307 0.059 Hypseleotris compressa 0.150 0.392 0.090 0.174 0.058 0.093 0.443 Gambusia holbrooki 0.214 0.227 0.115 0.054 0.095 0.211 0.084 Retropinna semoni 0.134 0.122 0.224 0.055 0.068 0.340 0.056 Mugil cephalus 0.160 0.125 0.175 0.071 0.097 0.301 0.071 Hypseleotris galii 0.196 0.137 0.135 0.071 0.097 0.301 0.071 Hypseleotris klunzingeri 0.146 0.186 0.145 0.078 0.072 Magi 0.072 Melanotaenia duboulayi 0.135 0.120 0.133 0.120 0.138 0.120 0.138 0.024 0.024 0.024	Abramis brama	0.105	0.221	0.207	0.177	0.111	0.178	0.000
Umbra krameri 0.111 0.246 0.251 0.128 0.134 0.000 Metacommunity ID 5070070110 Gobiomorphus australis 0.134 0.152 0.167 0.063 0.117 0.307 0.059 Hypseleotris compressa 0.150 0.392 0.090 0.174 0.058 0.093 0.041 Gambusia holbrooki 0.214 0.227 0.115 0.054 0.090 0.017 0.097 0.301 0.071 Hypseleotris galii 0.196 0.137 0.175 0.080 0.072 0.300 0.072 Pseudomugii signifer 0.156 0.175 0.173 0.139 0.090 0.64 0.307 0.072 Melanctaenia duboulayi 0.135 0.097 0.177 0.146 0.146 0.145 0.078 0.072 0.300 0.072 Melanctaenia duboulayi 0.135 0.125 0.133 0.080 0.140 0.213 0.132 0.39 0.102 0.061 0.39 0.120 0.134 0.39 </td <td>Leucaspius delineatus</td> <td>0.136</td> <td>0.203</td> <td>0.198</td> <td>0.142</td> <td>0.184</td> <td>0.138</td> <td>0.000</td>	Leucaspius delineatus	0.136	0.203	0.198	0.142	0.184	0.138	0.000
Metacommunity ID 5070070110 Gobiomorphus australis 0.134 0.152 0.167 0.063 0.117 0.307 0.059 Hypseleotris compressa 0.150 0.392 0.090 0.174 0.025 0.068 0.340 0.056 Mugil cephalus 0.160 0.125 0.175 0.071 0.097 0.301 0.071 Hypseleotris galii 0.196 0.137 0.157 0.070 0.090 0.064 0.070 0.070 Hypseleotris klunzingeri 0.146 0.186 0.145 0.078 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.071 Melanotaenia duboulayi 0.135 0.072 0.072 0.061 0.339 0.102 0.168 0.170 0.104 0.161 0.139 0.062 0.091 0.339 0.102 Melanotaenia duboulayi 0.135 0.139 0.162 0.139 0.162 0.139 0.141 0.234 0.091 <	Umbra krameri	0.111	0.246	0.251	0.128	0.130	0.134	0.000
Gobiomorphus australis 0.134 0.152 0.167 0.063 0.117 0.030 0.059 Hypseleotris compressa 0.150 0.232 0.090 0.174 0.055 0.083 0.043 Gambusia holbrooki 0.214 0.227 0.115 0.054 0.095 0.201 0.084 Retropinna semoni 0.134 0.122 0.224 0.075 0.066 0.301 0.071 Hypseleotris galii 0.196 0.137 0.157 0.070 0.009 0.064 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.000 0.072 0.001 0.012 0.012 0.128 0.072 0.000 0.010 0.012 0.128 0.021 0.012 0.128 0.021 0.125 0.301 0.120 0.128 0.021 0.125 <t< td=""><td>Metacommunity ID 5070070110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Metacommunity ID 5070070110							
Hypseleotris compressa 0.150 0.392 0.090 0.174 0.058 0.093 0.043 Gambusia holbrooki 0.214 0.227 0.115 0.055 0.068 0.300 0.056 Mugil cephalus 0.160 0.125 0.077 0.097 0.301 0.071 Hypseleotris galii 0.196 0.137 0.177 0.080 0.073 0.286 0.072 Pseudomugil signifer 0.157 0.170 0.176 0.072 0.300 0.072 Melanotaenia duboulayi 0.135 0.072 0.072 0.002 0.316 0.072 Melanotaenia duboulayi 0.135 0.125 0.133 0.102 0.161 0.339 0.02 0.316 0.072 Mogurnda adspersa 0.118 0.161 0.139 0.083 0.120 0.138 0.039 0.120 0.138 0.039 0.120 0.138 0.039 0.120 0.138 0.039 0.120 0.138 0.139 0.120 0.131 0.130 </td <td>Gobiomorphus australis</td> <td>0.134</td> <td>0.152</td> <td>0.167</td> <td>0.063</td> <td>0.117</td> <td>0.307</td> <td>0.059</td>	Gobiomorphus australis	0.134	0.152	0.167	0.063	0.117	0.307	0.059
Gambusia holbrooki 0.214 0.227 0.115 0.095 0.211 0.084 Retropinna semoni 0.134 0.122 0.224 0.055 0.066 0.301 0.056 Mugil cephalus 0.160 0.175 0.071 0.097 0.301 0.071 Hypseleotris galii 0.196 0.137 0.137 0.090 0.064 0.307 0.070 Hypseleotris galii 0.156 0.173 0.136 0.094 0.092 0.316 0.072 Melanotaenia duboulayi 0.135 0.027 0.177 0.104 0.186 0.254 0.064 Anguilla reinhardtii 0.166 0.123 0.135 0.097 0.175 0.0161 0.339 0.021 0.132 0.135 0.161 0.339 0.021 0.121 0.121 0.123 0.132 Metacommunity ID 5070070390 0.144 0.170 0.122 0.076 0.144 0.234 0.091 M.23 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.132 0.125 0.233 0.125 0.13	Hypseleotris compressa	0.150	0.392	0.090	0.174	0.058	0.093	0.043
Retropinna semoni 0.134 0.122 0.224 0.055 0.068 0.340 0.056 Mugil cephalus 0.160 0.125 0.175 0.071 0.097 0.301 0.071 Hypseleotris galii 0.167 0.177 0.173 0.127 0.080 0.064 0.307 0.072 Pseudomugil signifer 0.145 0.186 0.145 0.072 0.300 0.072 Melanotaenia duboulayi 0.146 0.186 0.145 0.072 0.300 0.072 Mogurnda adspersa 0.135 0.097 0.177 0.104 0.168 0.254 0.064 Metacommunity ID 5070070390 Xiphophorus maculatus 0.118 0.161 0.139 0.082 0.140 0.213 0.132 0.138 0.039 Metacommunity ID 5070070400 0.144 0.171 0.142 0.76 0.144 0.244 0.131 0.139 0.124 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241	Gambusia holbrooki	0.214	0.227	0.115	0.054	0.095	0.211	0.084
Mugil cephalus 0.160 0.125 0.175 0.071 0.097 0.301 0.071 Hypseleotris galii 0.196 0.137 0.157 0.080 0.073 0.286 0.072 Pseudomugil signifer 0.157 0.173 0.139 0.090 0.064 0.307 0.072 Melanotaenia duboulayi 0.135 0.097 0.177 0.104 0.168 0.254 0.064 Anguilla reinhardtii 0.166 0.123 0.136 0.094 0.022 0.316 0.072 Metacommunity ID 5070070390 Xiphophorus maculatus 0.118 0.112 0.139 0.026 0.094 0.388 0.035 Oreochromis mossambicus 0.164 0.171 0.142 0.076 0.144 0.24 0.091 Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.128 Hypseleotris compressa 0.161 0.170 0.120 0.076 0.144 0.284 0.099 Melanotaenia duboula	Retropinna semoni	0.134	0.122	0.224	0.055	0.068	0.340	0.056
Hypseleotris galii0.1960.1370.1570.0800.0730.2860.072Pseudomugil signifer0.1570.1730.1390.0900.0640.3070.070Hypseleotris klunzingeri0.1460.1860.1450.0720.0020.072Melanotaenia duboulayi0.1350.0970.1770.1040.1680.2540.064Anguilla reinhardtii0.1660.1230.1360.0940.0920.3160.072Mogurnda adspersa0.1350.1250.1330.1050.0610.3390.102Metacommunity ID 5070070390Xiphophorus maculatus0.1180.1610.1390.0830.1200.1380.039Oreochromis mossambicus0.2640.1680.1390.0830.1200.1380.039Hypseleotris klunzingeri0.1440.1710.1420.0760.1440.2840.091Mogurnda adspersa0.1610.1700.1200.0760.1440.2840.091Melanotaenia duboulayi0.1530.1680.1330.1270.1210.2150.83Metacommunity ID 50700704400.1540.1750.1740.1250.2330.055Retropinna semoni0.1370.1610.2170.0550.2840.0910.054Melanotaenia duboulayi0.1520.1480.1750.0740.1250.2480.072Pseudomugil signifer0.1360.1750.1750.0740.1250.248<	Mugil cephalus	0.160	0.125	0.175	0.071	0.097	0.301	0.071
Pseudomugil signifer 0.157 0.173 0.139 0.090 0.064 0.307 0.070 Hypseleotris klunzingeri 0.146 0.186 0.145 0.078 0.072 0.300 0.072 Melanotaenia duboulayi 0.135 0.097 0.177 0.104 0.168 0.254 0.064 Anguilla reinhardtii 0.166 0.123 0.133 0.105 0.094 0.092 0.316 0.072 Metacommunity ID 5070070300 Xiphophorus maculatus 0.118 0.161 0.139 0.022 0.138 0.088 0.120 0.138 0.089 Mypseleotris klunzingeri 0.144 0.171 0.142 0.078 0.141 0.234 0.091 Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.126 0.233 0.021 0.120 0.121 0.215 0.233 0.055 Mogurnda adspersa 0.150 0.150 0.131 0.139 0.120 0.076 0.141 0.224	Hypseleotris galii	0.196	0.137	0.157	0.080	0.073	0.286	0.072
Hypseleotris klunzingeri0.1460.1860.1450.0780.0720.3000.072Melanotaenia duboulayi0.1350.0970.1770.1040.1680.2540.064Anguilla reinhardtii0.1660.1230.1350.0940.0920.3160.072Mogurnda adspersa0.1350.1250.1330.1050.0610.3390.102Metacommunity ID 5070070390Xiphophorus maculatus0.1180.1610.1390.0830.1200.3880.035Oreochromis mossambicus0.2640.1680.1390.0830.1200.1380.089Hypseleotris klunzingeri0.1440.1710.1420.0760.1440.2840.091Mogurnda adspersa0.1510.1800.1500.1310.1390.1200.128Hypseleotris compressa0.1660.1700.1200.0760.1440.2840.099Melanotaenia duboulayi0.1530.1640.1330.1270.1250.833Metacommunity ID 50700704000.1640.1700.0650.2840.0930.054Gambusia holbrooki0.1820.1750.0740.1250.2480.074Pseudomugil signifer0.1260.1760.1750.0740.1250.2480.074Metacommunity ID 507007040400.1560.1700.1680.0660.9910.2550.034Metacommunity ID 507007040400.1680.1750.0610.1160.240	Pseudomugil signifer	0.157	0.173	0.139	0.090	0.064	0.307	0.070
Melanotaenia duboulayi 0.135 0.097 0.177 0.104 0.168 0.254 0.064 Anguilla reinhardtii 0.166 0.123 0.133 0.105 0.061 0.339 0.102 Metacommunity ID 5070070390 Xiphophorus maculatus 0.118 0.161 0.139 0.002 0.041 0.213 0.132 Gambusia holbrooki 0.130 0.152 0.139 0.062 0.094 0.388 0.035 Oreochromis mossambicus 0.264 0.168 0.139 0.083 0.120 0.138 0.089 Hypseleotris klunzingeri 0.144 0.171 0.142 0.076 0.141 0.234 0.091 Melanotaenia duboulayi 0.153 0.168 0.133 0.017 0.121 0.125 0.233 0.055 Retropinna semoni 0.137 0.161 0.217 0.055 0.284 0.099 0.046 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.033 0.046 Metacommunity ID 5070070440 125 <td< td=""><td>Hypseleotris klunzingeri</td><td>0.146</td><td>0.186</td><td>0.145</td><td>0.078</td><td>0.072</td><td>0.300</td><td>0.072</td></td<>	Hypseleotris klunzingeri	0.146	0.186	0.145	0.078	0.072	0.300	0.072
Anguilla reinhardtii 0.166 0.123 0.136 0.094 0.092 0.316 0.072 Mogurnda adspersa 0.135 0.125 0.133 0.105 0.061 0.339 0.102 Metacommunity ID 5070070390 Xiphophorus maculatus 0.118 0.161 0.139 0.062 0.094 0.88 0.035 Oreochromis mossambicus 0.264 0.168 0.139 0.062 0.094 0.388 0.035 Oreochromis mossambicus 0.264 0.168 0.130 0.120 0.138 0.091 Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.128 Hypseleotris compressa 0.106 0.170 0.120 0.125 0.233 0.055 Retropinna semoni 0.137 0.164 0.193 0.091 0.125 0.248 0.093 Metacommunity ID 5070070440 Pseudomugil signifer 0.136 0.179 0.055 0.284 0.033 0.046 Melanotaenia duboulayi 0	Melanotaenia duboulayi	0.135	0.097	0.177	0.104	0.168	0.254	0.064
Mogurnda adspersa 0.135 0.125 0.133 0.105 0.061 0.339 0.102 Metacommunity ID 5070070390 Xiphophorus maculatus 0.118 0.161 0.139 0.098 0.140 0.213 0.132 Gambusia holbrooki 0.130 0.152 0.139 0.062 0.094 0.388 0.035 Oreochromis mossambicus 0.264 0.168 0.139 0.120 0.138 0.089 Hypseleotris klunzingeri 0.144 0.171 0.142 0.076 0.144 0.284 0.099 Melanotaenia duboulayi 0.153 0.166 0.130 0.127 0.121 0.215 0.083 Metacommunity ID 5070070440 0.137 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.182 0.185 0.159 0.096 0.296 0.261 0.021 Philypnodon grandiceps 0.137 0.167 0.167 0.068 0.100 0.303 0.064 Metacommu	Anguilla reinhardtii	0.166	0.123	0.136	0.094	0.092	0.316	0.072
Metacommunity ID 5070070390 Xiphophorus maculatus 0.118 0.113 0.139 0.098 0.140 0.213 0.132 Gambusia holbrooki 0.130 0.152 0.139 0.062 0.094 0.388 0.035 Oreochromis mossambicus 0.264 0.168 0.139 0.083 0.120 0.138 0.089 Hypseleotris klunzingeri 0.144 0.171 0.142 0.076 0.144 0.212 0.128 Mypseleotris compressa 0.166 0.170 0.120 0.076 0.144 0.284 0.099 Metacommunity ID 5070070440 0.153 0.168 0.133 0.125 0.233 0.055 Retropinna semoni 0.137 0.161 0.217 0.055 0.284 0.093 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.033 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.033	Mogurnda adspersa	0.135	0.125	0.133	0.105	0.061	0.339	0.102
Xiphophorus maculatus 0.118 0.118 0.119 0.098 0.140 0.213 0.132 Gambusia holbrooki 0.130 0.152 0.139 0.062 0.094 0.388 0.035 Oreochromis mossambicus 0.264 0.168 0.139 0.083 0.120 0.138 0.089 Hypseleotris klunzingeri 0.144 0.171 0.142 0.076 0.141 0.234 0.091 Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.128 Hypseleotris compressa 0.106 0.170 0.120 0.076 0.144 0.284 0.099 Metacommunity ID 5070070440 0.153 0.168 0.133 0.127 0.125 0.233 0.055 Retropinna semoni 0.137 0.161 0.217 0.055 0.284 0.093 0.044 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.033 Hypseleotris klunzingeri 0.127 0.167 0.074 0.125 0.248 0.074 M	Metacommunity ID 5070070390							
Gambusia holbrooki 0.130 0.152 0.139 0.062 0.094 0.388 0.035 Oreochromis mossambicus 0.264 0.168 0.139 0.083 0.120 0.138 0.089 Hypseleotris klunzingeri 0.144 0.171 0.142 0.076 0.141 0.234 0.091 Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.076 0.144 0.284 0.099 Melanotaenia duboulayi 0.153 0.168 0.133 0.127 0.121 0.215 0.033 Metacommunity ID 5070070440 0.137 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.132 0.161 0.217 0.055 0.284 0.004 0.024 0.033 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.033 0.046 Melanotaenia duboulayi 0.152 0.148 0.161 0.1	Xiphophorus maculatus	0.118	0.161	0.139	0.098	0.140	0.213	0.132
Oreochromis mossambicus 0.264 0.168 0.139 0.083 0.120 0.138 0.089 Hypseleotris klunzingeri 0.144 0.171 0.142 0.078 0.141 0.234 0.091 Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.121 0.121 0.125 0.083 Metacommunity ID 5070070440 0.139 0.164 0.193 0.091 0.125 0.233 0.054 Gambusia holbrooki 0.137 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.132 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.132 0.161 0.217 0.056 0.096 0.261 0.021 Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.052 <t< td=""><td>Gambusia holbrooki</td><td>0.130</td><td>0.152</td><td>0.139</td><td>0.062</td><td>0.094</td><td>0.388</td><td>0.035</td></t<>	Gambusia holbrooki	0.130	0.152	0.139	0.062	0.094	0.388	0.035
Hypseleotris klunzingeri Mogurnda adspersa0.1440.1710.1420.0780.1410.2340.091Mogurnda adspersa0.1510.1800.1500.1310.1390.1200.128Hypseleotris compressa0.1060.1700.1200.0760.1440.2840.099Melanotaenia duboulayi0.1530.1680.1330.1270.1210.2150.083Metacommunity ID 5070070440Philypnodon grandiceps0.1390.1640.1930.0910.1250.2330.054Gambusia holbrooki0.1820.1850.1590.0960.0960.2610.021Pseudomugil signifer0.1360.1790.1670.0680.1000.3030.046Melanotaenia duboulayi0.1520.1480.1550.1110.1120.2240.039Hypseleotris klunzingeri0.1270.1760.1750.0740.1250.2480.074Trachystoma petardi0.1580.1820.1750.0810.1120.2610.052Anguilla reinhardtii0.1540.1580.2140.0610.1160.2400.058Hypseleotris compressa0.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1580.1750.1640.1710.1440.1370.34Hypseleotris compressa0.1410.1920.2000.0520.1690.2160.030Metacommunity ID 50704688100.1580.175 </td <td>Oreochromis mossambicus</td> <td>0.264</td> <td>0.168</td> <td>0.139</td> <td>0.083</td> <td>0.120</td> <td>0.138</td> <td>0.089</td>	Oreochromis mossambicus	0.264	0.168	0.139	0.083	0.120	0.138	0.089
Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.128 Hypseleotris compressa 0.106 0.170 0.120 0.076 0.144 0.284 0.099 Melanotaenia duboulayi 0.153 0.168 0.133 0.127 0.121 0.215 0.083 Metacommunity ID 5070070440 Philypnodon grandiceps 0.139 0.164 0.193 0.091 0.125 0.233 0.054 Gambusia holbrooki 0.132 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.182 0.185 0.159 0.096 0.261 0.021 Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.240 0.039 Hypseleotris klunzingeri 0.154 0.158 0.175 0.041 0.112 0.246 0.030 Metacommunity ID 5070070450	Hypseleotris klunzingeri	0.144	0.171	0.142	0.078	0.141	0.234	0.091
Hypseleotris compressa Melanotaenia duboulayi0.1060.1700.1200.0760.1440.2840.099Metacommunity ID 50700704400.1530.1680.1330.1270.1210.2150.083Metacommunity ID 5070070440Philypnodon grandiceps Retropinna semoni0.1370.1610.2170.0550.2840.0930.054Gambusia holbrooki0.1820.1850.1590.0960.0960.2610.021Pseudomugil signifer0.1360.1790.1670.0680.1000.3030.046Melanotaenia duboulayi0.1520.1480.1650.1110.1810.2040.039Hypseleotris klunzingeri0.1270.1760.1750.0740.1250.2480.074Trachystoma petardi0.1540.1820.1750.0810.1120.2610.052Anguilla reinhardtii0.1540.1580.2140.0660.0910.2550.034Xiphophorus hellerii0.1600.1700.1680.0670.1070.2780.050Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2140.1920.1760.1440.1370.034Hypseleotris galii0.1730.1920.1760.1420.1570.034Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.176 <td>Mogurnda adspersa</td> <td>0.151</td> <td>0.180</td> <td>0.150</td> <td>0.131</td> <td>0.139</td> <td>0.120</td> <td>0.128</td>	Mogurnda adspersa	0.151	0.180	0.150	0.131	0.139	0.120	0.128
Melanotaenia duboulayi0.1530.1680.1330.1270.1210.2150.083Metacommunity ID 5070070440Philypnodon grandiceps0.1390.1640.1930.0910.1250.2330.055Retropinna semoni0.1370.1610.2170.0550.2840.0930.054Gambusia holbrooki0.1820.1850.1590.0960.2960.2210.021Pseudomugil signifer0.1360.1790.1670.0680.1000.3030.046Melanotaenia duboulayi0.1520.1480.1650.1110.1810.2040.039Hypseleotris klunzingeri0.1270.1760.1750.0740.1250.2480.074Trachystoma petardi0.1580.1820.1750.0660.0910.2550.034Mypseleotris compressa0.1680.2060.1800.0660.0910.2550.034Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1580.1750.1640.1710.1420.1570.034Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.081 <td>Hypseleotris compressa</td> <td>0.106</td> <td>0.170</td> <td>0.120</td> <td>0.076</td> <td>0.144</td> <td>0.284</td> <td>0.099</td>	Hypseleotris compressa	0.106	0.170	0.120	0.076	0.144	0.284	0.099
Metacommunity ID 5070070440 Philypnodon grandiceps 0.139 0.164 0.193 0.091 0.125 0.233 0.055 Retropinna semoni 0.137 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.182 0.185 0.159 0.096 0.261 0.021 Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.039 Hypseleotris klunzingeri 0.127 0.176 0.175 0.074 0.125 0.248 0.074 Trachystoma petardi 0.168 0.206 0.180 0.066 0.091 0.255 0.034 Mypseleotris compressa 0.168 0.206 0.180 0.066 0.091 0.276 0.030 Metacommunity ID 5070070450 0.141 0.192 0.200 0.052 0.169 0.216 0.030 Gambusia	Melanotaenia duboulayi	0.153	0.168	0.133	0.127	0.121	0.215	0.083
Philypnodon grandiceps 0.139 0.164 0.193 0.091 0.125 0.233 0.055 Retropinna semoni 0.137 0.161 0.217 0.055 0.284 0.093 0.054 Gambusia holbrooki 0.182 0.185 0.159 0.096 0.096 0.261 0.021 Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.039 Hypseleotris klunzingeri 0.127 0.176 0.175 0.074 0.125 0.248 0.074 Trachystoma petardi 0.136 0.182 0.175 0.081 0.112 0.261 0.052 Anguilla reinhardtii 0.154 0.158 0.214 0.066 0.091 0.255 0.034 Xiphophorus hellerii 0.160 0.170 0.168 0.067 0.107 0.278 0.050 Metacommunity ID 507070450 0.141 0.192 0.200 0.052 0.169 0.216 0.034 <t< td=""><td>Metacommunity ID 5070070440</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Metacommunity ID 5070070440							
Retropinna semoni0.1370.1610.2170.0550.2840.0930.054Gambusia holbrooki0.1820.1850.1590.0960.0960.2610.021Pseudomugil signifer0.1360.1790.1670.0680.1000.3030.046Melanotaenia duboulayi0.1520.1480.1650.1110.1810.2040.039Hypseleotris klunzingeri0.1270.1760.1750.0740.1250.2480.074Trachystoma petardi0.1360.1820.1750.0810.1120.2610.052Anguilla reinhardtii0.1540.1580.2140.0610.1160.2400.058Hypseleotris compressa0.1600.1700.1680.0670.1070.2780.050Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2140.1900.1640.1710.1420.1570.034Hypseleotris compressa0.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1580.1750.1640.1710.1420.1570.034Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.419 <td< td=""><td>Philypnodon grandiceps</td><td>0.139</td><td>0.164</td><td>0.193</td><td>0.091</td><td>0.125</td><td>0.233</td><td>0.055</td></td<>	Philypnodon grandiceps	0.139	0.164	0.193	0.091	0.125	0.233	0.055
Gambusia holbrooki 0.182 0.185 0.159 0.096 0.261 0.021 Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.039 Hypseleotris klunzingeri 0.127 0.176 0.175 0.074 0.125 0.248 0.074 Trachystoma petardi 0.136 0.182 0.175 0.081 0.112 0.261 0.052 Anguilla reinhardtii 0.154 0.158 0.214 0.061 0.116 0.240 0.058 Hypseleotris compressa 0.160 0.170 0.168 0.067 0.107 0.278 0.050 Metacommunity ID 5070070450 Retropinna semoni 0.141 0.192 0.200 0.052 0.169 0.216 0.030 Gambusia holbrooki 0.152 0.202 0.180 0.110 0.184 0.137 0.034 Hypseleotris galii 0.173 0.192 0.176 0.096 0.147 0.179 0.037	Retropinna semoni	0.137	0.161	0.217	0.055	0.284	0.093	0.054
Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.039 Hypseleotris klunzingeri 0.127 0.176 0.175 0.074 0.125 0.248 0.074 Trachystoma petardi 0.136 0.182 0.175 0.081 0.112 0.261 0.052 Anguilla reinhardtii 0.154 0.158 0.214 0.066 0.091 0.255 0.034 Mypseleotris compressa 0.160 0.170 0.168 0.067 0.107 0.278 0.050 Metacommunity ID 5070070450 0.141 0.192 0.200 0.052 0.169 0.216 0.030 Gambusia holbrooki 0.152 0.202 0.180 0.110 0.184 0.137 0.034 Hypseleotris klunzingeri 0.141 0.192 0.200 0.052 0.169 0.216 0.030 Gambusia holbrooki 0.152 0.202 0.180 0.110 0.184 0.137 0.034	Gambusia holbrooki	0.182	0.185	0.159	0.096	0.096	0.261	0.021
Melanotaenia duboulayi0.1520.1480.1650.1110.1810.2040.039Hypseleotris klunzingeri0.1270.1760.1750.0740.1250.2480.074Trachystoma petardi0.1360.1820.1750.0810.1120.2610.052Anguilla reinhardtii0.1540.1580.2140.0610.1160.2400.058Hypseleotris compressa0.1680.2060.1800.0660.0910.2550.034Xiphophorus hellerii0.1600.1700.1680.0670.1070.2780.050Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Metacommunity ID 50704688100.1480.2270.2260.1090.1300.1	Pseudomugil signifer	0.136	0.179	0.167	0.068	0.100	0.303	0.046
Hypseleotris klunzingeri Trachystoma petardi Anguilla reinhardtii0.1270.1760.1750.0740.1250.2480.074Anguilla reinhardtii Hypseleotris compressa Xiphophorus hellerii0.1540.1580.2140.0610.1160.2400.058Metacommunity ID 5070070450 Gambusia holbrooki0.1600.1700.1680.0670.1070.2780.050Metacotris compressa Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki Hypseleotris galii0.1580.1750.1640.1100.1440.1370.034Metacommunity ID 50700704500.1580.1750.1640.1710.1420.1570.034Metacommunity ID 50700704500.1520.2020.1800.1100.1840.1370.034Mypseleotris compressa Hypseleotris galii0.1750.1640.1710.1420.1570.034Metacommunity ID 50704688100.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Mypseleotris galii Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Melanotaenia duboulayi	0.152	0.148	0.165	0.111	0.181	0.204	0.039
Trachystoma petardi0.1360.1820.1750.0810.1120.2610.052Anguilla reinhardtii0.1540.1580.2140.0610.1160.2400.058Hypseleotris compressa0.1680.2060.1800.0660.0910.2550.034Xiphophorus hellerii0.1600.1700.1680.0670.1070.2780.050Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Hypseleotris galii0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Mogurnda adspersa0.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Metacommunity ID 50704688100.1480.2270.2260.1090.1300.1600.000	Hypseleotris klunzingeri	0.127	0.176	0.175	0.074	0.125	0.248	0.074
Anguilla reinhardtii0.1540.1580.2140.0610.1160.2400.058Hypseleotris compressa0.1680.2060.1800.0660.0910.2550.034Xiphophorus hellerii0.1600.1700.1680.0670.1070.2780.050Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Hypseleotris galii0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Hypseleotris galii0.1480.2270.2260.1090.1300.1600.000	Trachystoma petardi	0.136	0.182	0.175	0.081	0.112	0.261	0.052
Hypseleotris compressa Xiphophorus hellerii0.1680.2060.1800.0660.0910.2550.034Metacommunity ID 50700704500.1600.1700.1680.0670.1070.2780.050Metacommunity ID 50700704500.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Mogurnda adspersa0.1480.2270.2260.1090.1300.1600.000	Anguilla reinhardtii	0.154	0.158	0.214	0.061	0.116	0.240	0.058
Xiphophorus hellerii0.1600.1700.1680.0670.1070.2780.050Metacommunity ID 5070070450Retropinna semoni0.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Hypseleotris compressa	0.168	0.206	0.180	0.066	0.091	0.255	0.034
Metacommunity ID 5070070450 Retropinna semoni 0.141 0.192 0.200 0.052 0.169 0.216 0.030 Gambusia holbrooki 0.152 0.202 0.180 0.110 0.184 0.137 0.034 Hypseleotris compressa 0.158 0.175 0.164 0.171 0.142 0.157 0.034 Hypseleotris klunzingeri 0.191 0.182 0.179 0.092 0.137 0.164 0.056 Hypseleotris galii 0.173 0.192 0.176 0.096 0.147 0.179 0.037 Melanotaenia duboulayi 0.176 0.214 0.196 0.081 0.136 0.155 0.042 Metacommunity ID 5070468810 0.092 0.141 0.139 0.156 0.419 0.054 0.000 Hypseleotris galii 0.162 0.123 0.120 0.206 0.293 0.095 0.000	Xiphophorus hellerii	0.160	0.170	0.168	0.067	0.107	0.278	0.050
Retropinna semoni0.1410.1920.2000.0520.1690.2160.030Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Metacommunity ID 5070070450							
Gambusia holbrooki0.1520.2020.1800.1100.1840.1370.034Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Retropinna semoni	0.141	0.192	0.200	0.052	0.169	0.216	0.030
Hypseleotris compressa0.1580.1750.1640.1710.1420.1570.034Hypseleotris klunzingeri0.1910.1820.1790.0920.1370.1640.056Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Gambusia holbrooki	0.152	0.202	0.180	0.110	0.184	0.137	0.034
Hypseleotris klunzingeri Hypseleotris galii0.1910.1820.1790.0920.1370.1640.056Melanotaenia duboulayi0.1730.1920.1760.0960.1470.1790.037Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Mogurnda adspersa0.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Hypseleotris compressa	0.158	0.175	0.164	0.171	0.142	0.157	0.034
Hypseleotris galii0.1730.1920.1760.0960.1470.1790.037Melanotaenia duboulayi0.1760.2140.1960.0810.1360.1550.042Metacommunity ID 50704688100.0920.1410.1390.1560.4190.0540.000Mogurnda adspersa0.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Hypseleotris klunzingeri	0.191	0.182	0.179	0.092	0.137	0.164	0.056
Melanotaenia duboulayi 0.176 0.214 0.196 0.081 0.136 0.155 0.042 Metacommunity ID 5070468810 0.092 0.141 0.139 0.156 0.419 0.054 0.000 Mogurnda adspersa 0.092 0.141 0.139 0.156 0.419 0.054 0.000 Hypseleotris galii 0.162 0.123 0.120 0.206 0.293 0.095 0.000 Gambusia holbrooki 0.148 0.227 0.226 0.109 0.130 0.160 0.000	Hypseleotris galii	0.173	0.192	0.176	0.096	0.147	0.179	0.037
Metacommunity ID 5070468810 0.092 0.141 0.139 0.156 0.419 0.054 0.000 Mogurnda adspersa 0.162 0.123 0.120 0.206 0.293 0.095 0.000 Hypseleotris galii 0.148 0.227 0.226 0.109 0.130 0.160 0.000	Melanotaenia duboulayi	0.176	0.214	0.196	0.081	0.136	0.155	0.042
Mogurnda adspersa0.0920.1410.1390.1560.4190.0540.000Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Metacommunity ID 5070468810							
Hypseleotris galii0.1620.1230.1200.2060.2930.0950.000Gambusia holbrooki0.1480.2270.2260.1090.1300.1600.000	Mogurnda adspersa	0.092	0.141	0.139	0.156	0.419	0.054	0.000
Gambusia holbrooki 0.148 0.227 0.226 0.109 0.130 0.160 0.000	Hypseleotris galii	0.162	0.123	0.120	0.206	0.293	0.095	0.000
	Gambusia holbrooki	0.148	0.227	0.226	0.109	0.130	0.160	0.000

Metacommunity ID 6070015200

Rineloricaria aequalicuspis	0.087	0.265	0.271	0.228	0.084	0.065	0.000
Cyanocharax itaimbe	0.096	0.244	0.226	0.245	0.089	0.100	0.000
Pareiorhaphis hypselurus	0.084	0.274	0.274	0.229	0.073	0.066	0.000
Pareiorhaphis nudulus	0.176	0.249	0.266	0.206	0.056	0.047	0.000
Epactionotus bilineatus	0.099	0.219	0.232	0.212	0.139	0.099	0.000
Metacommunity ID 6070709820							
Poecilia reticulata	0.467	0.163	0.072	0.103	0.118	0.078	0.000
Knodus moenkhausii	0.238	0.198	0.050	0.097	0.129	0.288	0.000
Hypostomus ancistroides	0.333	0.154	0.095	0.184	0.138	0.096	0.000
Astyanax lacustris	0.373	0.149	0.124	0.105	0.175	0.075	0.000
Aspidoras fuscoguttatus	0.275	0.156	0.094	0.154	0.137	0.185	0.000
Gymnotus sylvius	0.282	0.170	0.107	0.113	0.118	0.211	0.000
Moenkhausia sanctaefilomenae	0.295	0.183	0.101	0.104	0.122	0.196	0.000
Serrapinnus notomelas	0.260	0.256	0.096	0.116	0.156	0.116	0.000
Metacommunity ID 6070713620							
Piabina argentea	0.134	0.151	0.156	0.162	0.221	0.176	0.000
Hypostomus ancistroides	0.147	0.160	0.187	0.188	0.195	0.123	0.000
Knodus moenkhausii	0.265	0.164	0.233	0.192	0.072	0.074	0.000
Corydoras aeneus	0.162	0.153	0.222	0.154	0.131	0.177	0.000
Astvanax lacustris	0.099	0.163	0.249	0.202	0.192	0.095	0.000
Poecilia reticulata	0.092	0.142	0.129	0.150	0.288	0.199	0.000
Oligosarcus pintoi	0.196	0.163	0.155	0.150	0.144	0.192	0.000
Gymnotus sylvius	0.130	0.156	0.238	0.158	0.130	0.187	0.000
Serrapinnus notomelas	0.125	0.255	0.141	0.188	0.128	0.163	0.000
Hemigrammus marginatus	0.158	0.159	0.162	0.185	0.126	0.210	0.000
Imparfinis schubarti	0.125	0.135	0.110	0.184	0.214	0.233	0.000
Metacommunity ID 7070042610	00				0.2	0.200	0.000
Luxilus albeolus	0.093	0.134	0.208	0.342	0.089	0.134	0.000
Etheostoma nigrum	0.121	0.172	0.201	0.250	0.136	0.120	0.000
Nocomis leptocephalus	0.096	0.272	0.190	0.253	0.089	0.099	0.000
Notropis altipinnis	0.111	0.143	0.201	0.271	0.110	0.163	0.000
Lepomis auritus	0.087	0 173	0 192	0.223	0 135	0.190	0.000
Etheostoma olmstedi	0.214	0 142	0.180	0.173	0.120	0.173	0.000
Anguilla rostrata	0.216	0 160	0 194	0 161	0 104	0 166	0.000
l vthrurus matutinus	0.165	0.202	0 178	0.220	0.089	0 145	0.000
Noturus insignis	0 124	0.155	0.206	0.236	0.000	0 156	0.000
Notropis proche	0.094	0 149	0.192	0.295	0.088	0.182	0.000
Cyprinella analostana	0.001	0 166	0.193	0.254	0 104	0.180	0.000
Enneacanthus dioriosus	0.100	0.100	0.100	0.204	0.104	0.100	0.000
Metacommunity ID 7070317870	0.111	0.100	0.2.10	0.100	0.120	0.201	0.000
Percina maculata	0 204	0.065	0 080	0 147	0.338	0 113	0.052
Notronis dorsalis	0.191	0.093	0.130	0.176	0.178	0.118	0.115
Etheostoma nigrum	0.219	0.110	0.097	0.133	0.125	0.197	0.120
Margariscus margarita	0.205	890.0	0.143	0.150	0 144	0.200	0.082
	0.210	0.077	0.071	0.100	0 156	0.215	0.065
Notronis volucellus	0.204	0.007	0 115	0 171	0.130	0.168	0.120
	0.204	0.002	0.110	0.171	0.100	0.100	0.120

Notemigonus crysoleucas	0.199	0.075	0.111	0.125	0.152	0.220	0.116
Chrosomus eos	0.205	0.104	0.075	0.145	0.173	0.215	0.083
Metacommunity ID 7070327640							
Oncorhynchus clarkii	0.120	0.274	0.232	0.092	0.204	0.079	0.000
Salvelinus confluentus	0.133	0.217	0.171	0.102	0.287	0.091	0.000
Salmo trutta	0.171	0.244	0.186	0.107	0.182	0.111	0.000
Salvelinus fontinalis	0.238	0.229	0.174	0.113	0.125	0.121	0.000
Metacommunity ID 7070360890							
Prosopium williamsoni	0.106	0.234	0.282	0.177	0.086	0.115	0.000
Oncorhynchus clarkii	0.109	0.175	0.194	0.076	0.229	0.217	0.000
Salmo trutta	0.058	0.188	0.201	0.156	0.240	0.157	0.000
Salvelinus confluentus	0.125	0.203	0.186	0.154	0.168	0.164	0.000
Salvelinus fontinalis	0.144	0.171	0.247	0.077	0.144	0.217	0.000
Oncorhynchus mykiss	0.098	0.255	0.314	0.135	0.101	0.098	0.000
Metacommunity ID 7070415980							
Rhinichthys atratulus	0.176	0.108	0.104	0.112	0.234	0.266	0.000
Campostoma anomalum	0.102	0.126	0.153	0.140	0.202	0.276	0.000
Notropis stramineus	0.105	0.127	0.148	0.141	0.207	0.271	0.000
Pimephales promelas	0.103	0.143	0.128	0.216	0.164	0.246	0.000
Notropis dorsalis	0.157	0.157	0.099	0.252	0.136	0.199	0.000
Semotilus atromaculatus	0.162	0.140	0.096	0.142	0.227	0.234	0.000
Hybognathus hankinsoni	0.213	0.140	0.102	0.171	0.152	0.222	0.000
Catostomus commersonii	0.209	0.126	0.114	0.179	0.154	0.218	0.000
Culaea inconstans	0.142	0.184	0.111	0.153	0.152	0.258	0.000
Umbra limi	0.172	0.140	0.109	0.173	0.171	0.235	0.000
Lepomis cyanellus	0.170	0.128	0.123	0.180	0.163	0.236	0.000
Metacommunity ID 7070450470							
Etheostoma olmstedi	0.084	0.198	0.226	0.208	0.145	0.138	0.000
Etheostoma nigrum	0.089	0.197	0.212	0.219	0.146	0.137	0.000
Semotilus atromaculatus	0.048	0.206	0.233	0.237	0.139	0.138	0.000
Cottus bairdii	0.105	0.183	0.204	0.210	0.159	0.138	0.000
Rhinichthys cataractae	0.151	0.186	0.167	0.163	0.198	0.135	0.000
Rhinichthys obtusus	0.067	0.175	0.178	0.179	0.228	0.173	0.000
Metacommunity ID 7070451570							
Campostoma anomalum	0.118	0.249	0.200	0.263	0.090	0.080	0.000
Etheostoma caeruleum	0.085	0.244	0.200	0.269	0.100	0.102	0.000
Semotilus atromaculatus	0.130	0.249	0.254	0.226	0.073	0.068	0.000
Catostomus commersonii	0.127	0.220	0.221	0.213	0.130	0.089	0.000
Rhinichthys obtusus	0.168	0.247	0.243	0.194	0.094	0.055	0.000
Rhinichthys cataractae	0.182	0.208	0.208	0.163	0.092	0.148	0.000
Metacommunity ID 7070453370							
Catostomus commersonii	0.092	0.171	0.190	0.227	0.179	0.104	0.038
Rhinichthys cataractae	0.137	0.237	0.243	0.162	0.067	0.132	0.022
Semotilus atromaculatus	0.192	0.179	0.221	0.267	0.064	0.059	0.018
Pimephales promelas	0.214	0.195	0.229	0.138	0.115	0.083	0.026
Lepomis cyanellus	0.211	0.196	0.217	0.145	0.120	0.084	0.027

Notropis atherinoides	0.140	0.211	0.226	0.200	0.079	0.115	0.029
Rhinichthys obtusus	0.213	0.196	0.205	0.090	0.069	0.203	0.025
Pimephales notatus	0.085	0.161	0.169	0.155	0.155	0.253	0.023
Etheostoma nigrum	0.203	0.153	0.180	0.100	0.123	0.218	0.023
Cottus bairdii	0.206	0.181	0.225	0.109	0.079	0.174	0.026
Salvelinus fontinalis	0.132	0.206	0.242	0.116	0.112	0.164	0.028
Metacommunity ID 7070620210							
Noturus insignis	0.082	0.279	0.200	0.251	0.092	0.065	0.031
Nocomis leptocephalus	0.086	0.282	0.226	0.257	0.064	0.062	0.023
Etheostoma flabellare	0.177	0.216	0.244	0.228	0.062	0.052	0.021
Notropis chiliticus	0.116	0.213	0.198	0.229	0.083	0.126	0.035
Luxilus cerasinus	0.087	0.237	0.239	0.258	0.086	0.068	0.025
Notropis procne	0.077	0.257	0.255	0.251	0.059	0.072	0.029
Lepomis auritus	0.088	0.233	0.276	0.248	0.064	0.067	0.024
Lepomis cyanellus	0.127	0.217	0.224	0.243	0.085	0.072	0.034
Etheostoma nigrum	0.097	0.238	0.191	0.258	0.081	0.102	0.034
Cyprinella analostana	0.099	0.257	0.252	0.256	0.046	0.067	0.024
Lepomis macrochirus	0.109	0.227	0.240	0.230	0.092	0.070	0.031
Metacommunity ID 7070630060							
Notropis chiliticus	0.310	0.146	0.091	0.170	0.091	0.177	0.014
Nocomis leptocephalus	0.144	0.224	0.223	0.113	0.102	0.177	0.016
Luxilus coccogenis	0.227	0.157	0.141	0.146	0.135	0.171	0.024
Clinostomus funduloides	0.195	0.169	0.123	0.218	0.147	0.120	0.029
Noturus insignis	0.126	0.167	0.126	0.101	0.221	0.236	0.023
Metacommunity ID 7070642870							
Cottus bairdii	0.099	0.170	0.106	0.157	0.104	0.284	0.081
Nocomis micropogon	0.078	0.145	0.211	0.214	0.104	0.192	0.057
Rhinichthys atratulus	0.127	0.216	0.133	0.132	0.107	0.185	0.100
Luxilus coccogenis	0.114	0.248	0.183	0.100	0.127	0.131	0.097
Notropis lutipinnis	0.171	0.164	0.143	0.134	0.134	0.196	0.058
Rhinichthys cataractae	0.143	0.226	0.143	0.190	0.107	0.095	0.095
Percina evides	0.105	0.267	0.128	0.135	0.187	0.107	0.071
Campostoma anomalum	0.115	0.194	0.141	0.167	0.130	0.106	0.147
Notropis leuciodus	0.149	0.216	0.190	0.130	0.133	0.120	0.062
Metacommunity ID 7070643030							
Nocomis leptocephalus	0.146	0.194	0.285	0.240	0.054	0.080	0.000
Clinostomus funduloides	0.132	0.172	0.270	0.185	0.114	0.126	0.000
Lepomis auritus	0.064	0.203	0.170	0.191	0.155	0.218	0.000
Etheostoma olmstedi	0.249	0.189	0.182	0.168	0.085	0.127	0.000
Lepomis macrochirus	0.190	0.214	0.187	0.179	0.139	0.090	0.000
Cyprinella pyrrhomelas	0.260	0.152	0.201	0.182	0.109	0.096	0.000
Notropis chiliticus	0.194	0.189	0.233	0.170	0.091	0.122	0.000
Metacommunity ID 77070647250							
Nocomis leptocephalus	0.390	0.078	0.060	0.083	0.052	0.303	0.033
Luxilus albeolus	0.304	0.137	0.107	0.114	0.111	0.167	0.059
Lepomis auritus	0.176	0.099	0.225	0.164	0.137	0.148	0.050

Luxilus cerasinus	0.341	0.101	0.088	0.109	0.127	0.182	0.054
Fundulus rathbuni	0.205	0.169	0.119	0.119	0.077	0.253	0.058
Semotilus atromaculatus	0.300	0.171	0.109	0.123	0.099	0.135	0.062
Gambusia holbrooki	0.290	0.122	0.186	0.115	0.088	0.151	0.046
Etheostoma olmstedi	0.363	0.120	0.079	0.175	0.061	0.148	0.054
Notropis procne	0.218	0.118	0.145	0.132	0.179	0.159	0.050
Lepomis macrochirus	0.229	0.153	0.094	0.116	0.177	0.185	0.046
Notropis hudsonius	0.235	0.145	0.134	0.146	0.090	0.192	0.058
Lythrurus ardens	0.229	0.147	0.133	0.143	0.088	0.205	0.055
Notropis altipinnis	0.250	0.129	0.115	0.130	0.143	0.172	0.060
Metacommunity ID 7070647350							
Etheostoma olmstedi	0.071	0.177	0.115	0.170	0.128	0.339	0.000
Erimyzon oblongus	0.094	0.138	0.148	0.111	0.226	0.284	0.000
Nocomis leptocephalus	0.108	0.156	0.176	0.089	0.193	0.277	0.000
Notropis altipinnis	0.063	0.129	0.082	0.249	0.202	0.275	0.000
Lepomis auritus	0.100	0.184	0.136	0.108	0.172	0.300	0.000
Notropis alborus	0.078	0.143	0.220	0.143	0.166	0.251	0.000
Lepomis macrochirus	0.300	0.141	0.185	0.100	0.146	0.129	0.000
Lepomis cyanellus	0.095	0.171	0.132	0.178	0.134	0.290	0.000
Gambusia holbrooki	0.134	0.181	0.171	0.137	0.163	0.213	0.000
Metacommunity ID 7070648760							
Lepomis macrochirus	0.313	0.136	0.149	0.090	0.127	0.131	0.053
Lepomis auritus	0.271	0.107	0.146	0.133	0.166	0.131	0.046
Nocomis leptocephalus	0.278	0.171	0.256	0.067	0.074	0.118	0.036
Noturus insignis	0.273	0.130	0.225	0.077	0.087	0.143	0.066
Luxilus albeolus	0.319	0.153	0.139	0.072	0.117	0.140	0.060
Etheostoma flabellare	0.241	0.130	0.174	0.114	0.116	0.161	0.065
Nocomis raneyi	0.222	0.177	0.143	0.096	0.096	0.190	0.078
Cyprinella analostana	0.217	0.242	0.133	0.128	0.084	0.133	0.063
Notropis procne	0.209	0.250	0.138	0.127	0.081	0.134	0.059
Metacommunity ID 7070651920							
Notropis cummingsae	0.053	0.114	0.294	0.135	0.117	0.287	0.000
Etheostoma olmstedi	0.130	0.168	0.174	0.157	0.126	0.245	0.000
Notemigonus crysoleucas	0.099	0.148	0.202	0.157	0.128	0.266	0.000
Lepomis auritus	0.081	0.138	0.303	0.102	0.108	0.268	0.000
Gambusia holbrooki	0.123	0.138	0.222	0.160	0.248	0.109	0.000
Lepomis macrochirus	0.133	0.121	0.221	0.148	0.140	0.236	0.000
Noturus insignis	0.108	0.183	0.182	0.145	0.128	0.253	0.000
Anguilla rostrata	0.151	0.149	0.166	0.139	0.179	0.216	0.000
Notropis altipinnis	0.096	0.202	0.191	0.145	0.145	0.222	0.000
Metacommunity ID 7070656320							
Luxilus coccogenis	0.106	0.203	0.279	0.156	0.155	0.101	0.000
Lepomis auritus	0.084	0.224	0.220	0.246	0.149	0.078	0.000
Nocomis leptocephalus	0.049	0.224	0.238	0.330	0.083	0.076	0.000
Semotilus atromaculatus	0.130	0.223	0.183	0.199	0.173	0.093	0.000
Campostoma anomalum	0.323	0.156	0.221	0.159	0.077	0.063	0.000

Cyprinella chloristia	0.117	0.311	0.240	0.165	0.084	0.083	0.000
Fundulus rathbuni	0.104	0.232	0.255	0.235	0.071	0.104	0.000
Etheostoma olmstedi	0.151	0.244	0.197	0.203	0.103	0.102	0.000
Lepomis macrochirus	0.189	0.228	0.211	0.174	0.112	0.086	0.000
Notropis chlorocephalus	0.062	0.183	0.196	0.383	0.119	0.056	0.000
Clinostomus funduloides	0.186	0.206	0.193	0.157	0.113	0.145	0.000
Metacommunity ID 7070663220							
Nocomis leptocephalus	0.236	0.226	0.248	0.085	0.079	0.127	0.000
Etheostoma brevispinum	0.085	0.320	0.241	0.162	0.112	0.079	0.000
Cyprinella chloristia	0.077	0.309	0.198	0.105	0.220	0.091	0.000
Cyprinella pyrrhomelas	0.094	0.197	0.236	0.145	0.265	0.063	0.000
Hybopsis hypsinotus	0.095	0.220	0.202	0.106	0.185	0.191	0.000
Semotilus atromaculatus	0.110	0.313	0.230	0.151	0.114	0.082	0.000
Lepomis auritus	0.112	0.255	0.208	0.239	0.120	0.066	0.000
Notropis scepticus	0.082	0.280	0.222	0.163	0.169	0.083	0.000
Metacommunity ID 7070684690							
Semotilus atromaculatus	0.128	0.196	0.237	0.086	0.102	0.214	0.038
Nocomis leptocephalus	0.067	0.276	0.127	0.042	0.081	0.393	0.014
Notropis chiliticus	0.125	0.323	0.127	0.041	0.034	0.336	0.014
Notropis altipinnis	0.163	0.211	0.157	0.090	0.088	0.253	0.039
Etheostoma olmstedi	0.073	0.235	0.261	0.114	0.059	0.233	0.024
Lepomis auritus	0.186	0.186	0.206	0.048	0.076	0.273	0.025
Perca flavescens	0.119	0.236	0.227	0.085	0.156	0.121	0.056
Noturus insignis	0.123	0.234	0.220	0.085	0.156	0.125	0.057
Lepomis marginatus	0.126	0.199	0.224	0.104	0.055	0.253	0.040
Semotilus lumbee	0.172	0.171	0.195	0.083	0.140	0.201	0.039
Notropis cummingsae	0.158	0.191	0.237	0.071	0.065	0.241	0.038
Lepomis macrochirus	0.105	0.158	0.208	0.110	0.160	0.221	0.036
Aphredoderus sayanus	0.112	0.149	0.201	0.121	0.173	0.207	0.037

746 **References**

- Avolio, M. L, Carroll, I. T., Collins, S. L., Houseman, G. R., Hallett, L. M., Isbell,
- F., Koerner, S. E., Komatsu, K. J., Smith, M. D. and Wilcox, K. R. 2019.
- A comprehensive approach to analyzing community dynamics using rank abundance curves. *Ecosphere*, 10: e02881.
- Baselga, A. 2010. Partitioning the turnover and nestedness components of beta
 diversity. *Glob. Ecol. Biogeogr.*, 19: 134-143.
- 753 Baselga, A., Orme, D., Villeger, S., De Bortoli, J., Leprieur, F. and Logez, M.
- 754 2022._betapart: Partitioning Beta Diversity into Turnover and Nestedness
- 755 Components_. R package version 1.5.6. <https://CRAN.R-
- 756 project.org/package=betapart>.
- 757 Cao, K., Svenning, J. -C., Yan, C., Zhang, J., Mi, X. and Ma,
- 758 K. 2021. Undersampling correction methods to control γ-dependence for

comparing β -diversity between regions. *Ecology*, 102: 9.

- Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C. and
- 761 Magurran, A. E. 2014. Assemblage time series reveal biodiversity
- change but not systematic loss. *Science*, 344: 296-9.
- Dormann, C. F., Gruber, B. and Fruend, J. 2008. Introducing the bipartite
- Package: Analysing Ecological Networks. R news Vol 8/2, 8-11.
- Engel, T., Blowes, S. A., McGlinn, D. J., May, F., Gotelli, N. J., McGill, B. J. and
- Chase, J. 2021. Using coverage-based rarefaction to infer non-random
 species distributions. *Ecosphere*, 12:e03745.
- Jones, S. K., Ripplinger, J. and Collins, S. L. 2017. Species reordering, not
- changes in richness, drives long-term dynamics in grassland
- communities. *Ecol. Lett.*, 20: 1556-1565.

771	Lüdecke, D., Mattan, S., Ben-Shachar, Patil, I., Waggoner, P. and Makowski, D.
772	2021. performance: An R Package for Assessment, Comparison and
773	Testing of Statistical Models. J. Open Source Software, 6(60): 3139.
774	May, F., Gerstner, K., McGlinn, D. J., Xiao, X. and Chase, J. M. 2018. mobsim:
775	An R package for the simulation and measurement of biodiversity across
776	spatial scales. Methods Ecol Evol., 9: 1401-1408.
777	Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L.,
778	Dunson, D., Roslin, T. and Abrego, N. 2017. How to make more out of
779	community data? A conceptual framework and its implementation as
780	models and software. Ecol. Lett., 20: 561-576.
781	Stone, L. and Roberts, A. 1990. The checkerboard score and species
782	distributions. Oecologia 85: 74–79.