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Abstract. Communities composed of small populations are predicted to be 9 

strongly influenced by stochastic demographic events and, thus, less affected 10 

by environmental selection than those composed of large populations. 11 

However, this prediction has only been tested with computer simulations, 12 

simplified controlled experiments, and limited observational data. Here, using 13 

multiple datasets on fish abundance in 541 streams we tested (1) if 14 

communities composed of small populations are more spatially variable and (2) 15 

if they are less related to the environment variation than communities composed 16 

of large populations. We used process-based simulations to identify β-diversity 17 

metrics and community-environment measures that were appropriate to 18 

investigate the role of assembly processes along a gradient of community size. 19 

We show that variation in species composition among small communities is 20 

higher than among large communities and that the strength of community-21 

environment relationships is weaker in small communities. Our results indicate 22 

that community size affects the strength of ecological drift and environmental 23 

selection in metacommunities. We thus suggest that further declines in the size 24 

of populations and ecosystems can make spatial variation in biodiversity more 25 

unpredictable.  26 

 27 
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Introduction 29 

 Small populations are relatively more prone to be affected by stochastic 30 

events than large populations (Otto and Whitlock 1997). While in larger 31 

populations stochastic demographic events tend to be balanced by the greater 32 

number of individuals, small populations have a higher probability to deviate 33 

from mean expectations (Melbourne 2012). For example, a small population 34 

can go locally extinct if all its individuals die before reproduction, an event that is 35 

less likely to occur in large populations. Thus, species relative abundance in 36 

communities composed of small populations tend to vary more in space and 37 

time independent of environmental variation – ecological drift (Vellend 2016). 38 

Although much progress has been made recently towards the robustness of 39 

these predictions, this has been made mainly through simulations (Orrock and 40 

Watling 2010), simplified experiments (Gilbert and Levine 2017), and the 41 

analysis of limited observational data (Siqueira et al. 2020). Here we expand 42 

previous findings by not only focusing on spatial variation in species 43 

composition, but also by investigating the role of the environmental factors as 44 

drivers of that variation (i.e., community-environment relationship) along a 45 

gradient of community size in multiple independent data sets from different 46 

regions of the world. 47 

 In general, we can assume that while environmental selection 48 

deterministically assemble species through density-dependent and independent 49 

mechanisms, ecological drift causes variation in local species relative 50 

abundance through demographic stochasticity (Vellend 2016). Ecologists are 51 

increasingly recognizing that stochastic and deterministic processes interact 52 

with each other in many ways to form multispecies communities. For example, 53 
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experimental research found that small plant communities showed high 54 

variation in species relative abundances and high levels of local extinction, 55 

resulting in lower local diversity and high variation in species composition 56 

(Gilbert and Levine 2017). Observational research found higher spatial variation 57 

in species composition among small communities of stream insects that 58 

resembled a stochastic model (Siqueira et al. 2020). These results are in line 59 

with model simulations that suggest that the effects of environmental selection 60 

can be overridden by the effects of ecological drift in small communities (Orrock 61 

and Watling 2010). 62 

 One prediction regarding the effects of ecological drift on communities 63 

that has received less attention concerns the decoupling of spatial variation in 64 

species composition and in environmental factors. If the role of ecological drift is 65 

strong in small communities, then community-environment relationships should 66 

be weak in metacommunities composed of small communities. That is, there 67 

should be a positive relationship between the strength of environmental 68 

selection and community size. This is not easy to test for various reasons, but 69 

mainly because of statistical issues, including lack of sufficient spatial 70 

replication (e.g., Siqueira et al. 2020) and zero-inflated data. The data required 71 

to test this hypothesis must include various replicated metacommunities from 72 

which individual measures of the strength of the community-environment 73 

relationship are estimated (e.g., Bini et al. 2014). Here, we used a global 74 

database of riverine fish abundances (Comte et al. 2020) to test the idea that 75 

community size mediates the roles of ecological drift and environmental 76 

selection in driving community spatial variation (β-diversity). Specifically, we 77 
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analyzed 32 metacommunities in four biogeographic realms (Australasia, 78 

Nearctic, Neotropics and Palearctic) that include 541 local communities. 79 

 First, we tested if spatial β-diversity was negatively related to community 80 

size. Our aim here was to test the generality of the findings by Siqueira et al. 81 

(2020) with more comprehensive data and considering recent advances in β-82 

diversity metrics. We expected that β-diversity would be higher among smaller 83 

communities and lower among larger communities, even after accounting for 84 

the potential effects of environmental heterogeneity and spatial extent. 85 

However, quantifying changes in β-diversity along a gradient of community size 86 

is challenging because almost all β-diversity metrics depend on both sampling 87 

effort and sample size. Thus, we must consider that community size itself can 88 

bias the estimates of β-diversity due to differences in the regional species pool 89 

size, species abundance distributions (SAD), and the number of individuals 90 

(Chase and Knight 2013, Engel et al. 2021). This is undesirable because a 91 

theoretically expected negative relationship between β-diversity and community 92 

size can be found simply because smaller communities are less likely to share 93 

species than larger communities due to sampling effects.  94 

To select a β-diversity metric that was not affected by sampling effects 95 

related to community size, we used a process-based simulation model to 96 

simulate metacommunities with the same SAD, richness, and number of 97 

communities. The simulated metacommunities differed only in their overall size 98 

and were assembled without any environmental filter. A null relationship 99 

between β-diversity of simulated metacommunities and community size would 100 

indicate that the β-diversity metric does not change with community size without 101 

invoking environmental selection.  102 
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Second, we tested the importance of community size as a mediator of 103 

the relative role of environmental selection versus demographic stochasticity by 104 

regressing a measure of the strength of the community-environment 105 

relationship within each metacommunity against the median community size. 106 

Here, we used community incidence data to measure the strength of the 107 

community-environment relationship instead of abundance data to avoid that 108 

the relationship could increase with community size simply because statistical 109 

power increases with abundance (Gwinn et al. 2016). According to previous 110 

research (Magurran and Henderson 2003, Coyle et al. 2013), we expected that 111 

infrequent and occasional species should have a weak association with the 112 

environmental conditions in the community. Thus, we selected the core species 113 

of each community to measure the strength of the community-environment 114 

relationship, since they are abundant and widespread, and are more likely to be 115 

affected by niche-selection (Magurran 2007).  We expected that the spatial 116 

variation in species composition of larger metacommunities would have a 117 

stronger relationship with the environment indicating the preponderance of 118 

deterministic environmental selection over demographic stochasticity in 119 

communities composed of larger populations. For this second prediction, we 120 

also used a process-based simulation model to investigate if the strength of the 121 

community-environment relationship would not increase with community size 122 

just because larger communities provide more statistical power to detect an 123 

association.  124 

 125 

Material and Methods 126 

Species data 127 
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We used publicly available fish abundance data sampled in riverine ecosystems 128 

in different continents, but mainly in Europe and North America (RivFishTIME – 129 

Comte et al. 2020). In the RivFishTIME database, sampling sites are organized 130 

within river basins. Each site we selected was assigned to a Strahler stream 131 

order within the HydroRIVERS network (Lehner and Grill 2013). We also 132 

performed a visual inspection of orders attributed to sites located more than 133 

1000m away from the network, changing to the appropriate order, if needed. 134 

Then, we defined a community as the set of species occurring in a site and a 135 

metacommunity as the set of sites within basin delineations according to 136 

HydroBASINS (level 7 - Lehner and Grill 2013). We just considered sites that 137 

included direct fish counts and selected the most recent sampling event for 138 

each metacommunity that included at least 10 communities in first to third-order 139 

streams, excluding basins with less than five species. These procedures 140 

resulted in 32 metacommunities. Data selection was made in R (version 4. 2. 1) 141 

using the packages mapview (Appelhans et al. 2021) raster (Hijmans 2021), 142 

rgdal (Bivand et al. 2021), sf (Pebesma 2018), sp (Pebesma and Bivand 2005, 143 

Bivand et al. 2013) and tidyverse (Wickham et al. 2019). 144 

 145 

Environmental data 146 

 For consistency and because local water variables (e.g., pH, 147 

temperature, dissolved oxygen) were not available, we obtained environmental 148 

variables relevant to freshwater ecosystems by snapping site geographic 149 

coordinates in two global remote-sensing datasets, HydroATLAS (Linke et al. 150 

2019) and free-flowing rivers (FFR) (Grill et al 2019). Both datasets consider a 151 

reach as the smallest unit in the hydrological network, being characterized as 152 
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the line segment between two confluences. Spatial data gathered by 153 

HydroATLAS include mean annual natural discharge in m3/s (Döll et al 2003), 154 

average elevation (m) (Robinson et al. 2014), average annual air temperature 155 

(ºC), average annual precipitation (mm) (Hijmans et al. 2005), and average 156 

human footprint index (Venter et al. 2016) within the local catchment that drains 157 

directly into the reach. From the FFR dataset we obtained the connectivity 158 

status index (CSI) that was calculated based on five pressure factors (river 159 

fragmentation, flow regulation, sediment trapping, water consumption and 160 

infrastructure development). These factors are associated with the four 161 

dimensions of freshwater connectivity (longitudinal, lateral, vertical and 162 

temporal). The CSI provides a characterization of connectivity to every 163 

individual river reach, ranging from 0% to 100% connected. We also used a 164 

categorical variable (CSI_FF2) based on CSI that indicates if a river reach 165 

belongs to a river with free-flowing, good connectivity or degraded status. 166 

Together, data from HydroATLAS and FFR were used as our environmental 167 

variables since they reflect hydrologic, physiographic, climatic and 168 

anthropogenic features of the freshwater environment. These variables were 169 

also selected in R using packages mapview, raster, rgdal, sf, sp and tidyverse. 170 

 171 

Community descriptors 172 

We measured the size of each community as the number of individuals 173 

by site and we called community size the median community size within each 174 

metacommunity. Thus, larger metacommunities were those formed by 175 

communities with more individuals and smaller metacommunities were those 176 

formed by communities with fewer individuals.   177 
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We used a process-based simulation model to select a β-diversity metric 178 

that was not dependent on sampling effects or directly affected by community 179 

size. To do this, we simulated spatially explicit metacommunities without the 180 

influence of environmental selection with the package mobsim (May et al. 2021. 181 

Simulated metacommunities had the same species abundance distributions 182 

(SAD, log-normal), richness, and the number of local communities, but differ in 183 

terms of total size (taken from a uniform distribution that varied according to the 184 

range of number of individuals sampled in the empirical metacommunities, 185 

Supporting Information Table S1). We also represented the intraspecific 186 

aggregation caused by dispersal limitation considering that all communities 187 

were equally likely to be colonized by the initial member of each species, but 188 

once they were, subsequent members of that species were more likely to 189 

colonize surrounding locations. Metacommunities were simulated with different 190 

numbers of species and sites, according to values in the empirical data 191 

(Supporting Information, Table S1). For each of these combinations, we 192 

estimated different β-diversity metrics and regressed these β-diversity metrics 193 

against community size. Among the many β-diversity metrics we tested, rank-194 

abundance difference was the only one that was not affected by community size 195 

in a neutral-like simulation scenario, and thus it was the metric selected to be 196 

used in this study. In the supporting information, we describe further metrics 197 

that failed the tests (Supporting Information, Table S2). 198 

To describe variation in species rank-abundance patterns for the 199 

empirical metacommunities, we measured the median rank difference of each 200 

metacommunity as the difference in the rank of species between all pairs of 201 

communities within a metacommunity and divided it by the number of unique 202 
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species in each pair. Rank difference values were bound between 0 and 0.5 203 

(maximum rank change). The R package codyn (Hallett et al. 2020) was used to 204 

measure rank-abundance differences. We fitted a multiple linear Gaussian 205 

model to describe the relationship between rank differences and community 206 

size, including metacommunity environmental heterogeneity and spatial extent 207 

as covariates (see Supporting Information Fig. S2 for model fit assumptions). 208 

These covariates were added to take into account that larger regions could be 209 

more environmentally heterogeneous and have less connected communities 210 

that could confound the effects of community size on β-diversity. We quantified 211 

environmental heterogeneity within metacommunities using the standardized 212 

environmental variables of each community in a distance-based analysis of 213 

homogeneity of multivariate dispersions (Euclidian distance). This was done 214 

using the betadisper function from the vegan package (Oksanen et al. 2020). To 215 

measure the spatial extent of each metacommunity we calculated their 216 

centroids and measured the average distance of each of their communities to it. 217 

This analysis was also based on Euclidean distance calculated in meters with 218 

the geosphere package (Hijmans, 2021).  219 

 220 

Community-environment relationships 221 

To investigate the strength of the community-environment relationships 222 

within metacommunities and relate to the median community size we also first 223 

employed a process-based model to define which statistic would not be affected 224 

by community size itself. To do this, we simulated metacommunities that were 225 

equally affected by demographic stochasticity and environmental selection 226 

regardless of their size. The simulated metacommunities were colonized by 227 
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species with similar niche breadth (0.2) and that followed a Gaussian response 228 

to one environmental variable. Species environmental optimum ranges were 229 

taken from a uniform distribution ranging from 0 to 5. We simulated ecological 230 

drift by drawing the abundance of every species in each local community from a 231 

Poisson distribution whose mean was given by the deterministic influence of 232 

environmental selection. We assigned different sizes to the metacommunities 233 

estimating species expected abundance in optimum environments from a 234 

random interval. Then we modeled the strength of the community-environment 235 

relationship within metacommunities. An unbiased measure of the strength of 236 

community-environment relationships should not be related to community size. 237 

We tested a Generalized Linear Model (GLM) to relate the strength of the 238 

community-environment relationship with community size, but we found that the 239 

relationship increased with community size (Fig. S1a, Supporting Information), 240 

indicating that the GLM explanatory power increased with community size even 241 

for metacommunities assembled by equal contributions of drift and niche 242 

selection. Our second approach was to run a Hierarchical Modelling of Species 243 

Communities (HMSC) (Ovaskainen 2017), using the package HMSC (Tikhonov 244 

et al. 2021). HMSC is a powerful method as it can increase the predictive power 245 

identifying biotic interactions and the influence of missing environmental 246 

covariates (Tikhonov et al. 2020). The posterior distribution of the HMSC model 247 

was sampled with four Markov Chain Monte Carlo (MCMC) chains. Each chain 248 

was run for 150.000 iterations, of which the first 50.000 were removed as burn-249 

in. We obtained 1000 samples per chain that were recorded every 100:th step 250 

(thin=100) of the iterations. Then, we measured the explanatory power of the 251 

model obtaining a median coefficient of discrimination (Tjur R2) (Tjur 2009) for 252 
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each simulated metacommunity that was regressed against their community 253 

size. We did not find a relationship between the HMSC Tjur R2 and community 254 

size (Fig. S1b, Supporting information). Thus, we used the HMSC approach to 255 

answer our question using the same steps described above. We used a probit 256 

model to relate the response matrix, composed of the incidence of the core 257 

species of each community (10% most abundant), to the matrix of 258 

environmental variables. We also examined the MCMC convergence by 259 

examining the potential scale reduction factors (Gelman and Rubin 1992) of the 260 

model parameters. 261 

 262 

Results 263 

As expected, we found a negative relationship between rank-abundance 264 

difference and community size (Fig. 1a, Table 1). Neither environmental 265 

heterogeneity nor spatial extent were related to this β-diversity metric, indicating 266 

that 38.8% of the variation in rank-abundance difference was due uniquely to 267 

community size. These results indicate that fish composition in small 268 

communities was more different among each other within a metacommunity 269 

compared to metacommunities composed of larger communities.  270 

 271 

 272 

  273 
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 274 

Figure 1. Relationships between a) rank-abundance difference and median 275 

community size; and b) between the strength of the community-environment 276 

relationship within metacommunities against median community size. Gray 277 

bands represent the 95% confidence interval around the regression line. 278 

 279 

The MCMC convergence of the HMSC models was satisfactory, with the 280 

potential scale reduction factors for the β-parameters varying between 0.999 281 

and 1.014. The coefficient of determination (Tjur R2) varied between 0.10 and 282 

0.67 (median = 0.20; standard deviation [sd] = 0.14). Considering only the total 283 

amount of variance in species abundance explained by environmental 284 

variables, average annual air temperature (median = 0.19; sd = 0.05), average 285 

elevation (median = 0.18; sd = 0.05), and connectivity status index (CSI; 286 

median = 0.16; sd = 0.07) explained the largest proportion of variance across all 287 

species (Supporting Information; Table S3). The highest values of explained 288 

variance, however, were found for mean annual natural discharge (0.47) and 289 

average human footprint index (0.42; Table S3). As predicted, we found a 290 

positive relationship between Tjur R2 and community size (Fig. 1b; standardized 291 

coefficient = 0.386, t-value = 2.29, R2 = 0.149, p = 0.029), indicating that the 292 
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strength of the community-environment relationship was lower in 293 

metacommunities composed of smaller communities.  294 

 295 

Discussion 296 

The persistence and stability of populations and metapopulations are 297 

positively related to their size (Otto and Whitlock 1997, Reed and Hobbs 2004, 298 

Terui et al. 2018). Expanding on this perspective and on previous findings 299 

(Siqueira et al. 2020) our analyses of intercontinental data support the 300 

prediction that spatial variation in species composition among small 301 

communities is higher than among large communities. We found support for the 302 

prediction that the strength of the relationship between species composition and 303 

environmental variation is weak in metacommunities composed of small 304 

communities. Taken together, these results indicate that community size 305 

mediates the role of ecological drift and environmental selection as drivers of 306 

metacommunity spatial dynamics. More specifically, we suggest that ecological 307 

drift plays a substantial role in the spatial dynamics of small fish communities, 308 

decoupling species-environment relationships. Such decoupling indicates that 309 

further declines in the size of fish communities due to environmental change 310 

might add more stochasticity to their dynamics, making them less predictable in 311 

the face of future environmental scenarios.  312 

 Spatial variation in species composition occurs due to changes in various 313 

aspects of community structure such as abundance, evenness or richness 314 

(Avolio et al. 2019). We found a negative relationship between changes in 315 

species distribution abundance (rank-abundance differences) and median 316 

community size. This result means that species switched positions in the rank-317 
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abundance curve (from rarer to more common and vice-versa) more often in 318 

metacommunities composed of small communities than in those composed of 319 

large communities. Spatial variation in species abundance within 320 

metacommunities occur due to a combination of processes, including dispersal, 321 

selection, and demographic stochasticity (Vellend 2016). Our results indicate 322 

that whereas changes in species abundance in large communities were mostly 323 

because of environmental variation (mainly temperature, elevation, and 324 

discharge), changes in species abundance in small communities were mostly 325 

caused by stochastic processes. In this sense, our work can be considered an 326 

extension of previous work that identified a positive relationship between 327 

population size and population stability (Reed and Hobbs 2004) and ecosystem 328 

size (and complexity) and metapopulation stability (Terui et al. 2018). Although 329 

there have been suggestions of a relationship between spatial and temporal 330 

variation in biodiversity properties (e.g., spatial-temporal beta diversity, Steiner 331 

and Leibold 2004), the degree to which such correlations are causal is still to be 332 

resolved (Stegen et al. 2013). 333 

Random and unpredicted changes in species composition can happen 334 

entirely or partially due to demographic events that are independent of 335 

environmental selection (Shoemaker 2020, Vellend 2010). For example, smaller 336 

communities are more likely to be affected by births and deaths, changing 337 

species relative abundance independently of species fitness (Vellend 2010). 338 

Previous studies based on mechanistic simulation models suggested that when 339 

random demographic events play a major role in community dynamics, species 340 

competitive differences become less important to shape community composition 341 

and inferior competitors become increasingly represented in local communities 342 
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(Orrock and Waltling 2010, Orrock and Fletcher 2005). Siqueira et al. (2020) 343 

also found that small insect communities exhibit higher variation in species 344 

composition and that it was similar to a null expectation. As community size 345 

increases, the role of demographic events that are random regarding species 346 

identity should decrease relative to deterministic assembly. In this situation, 347 

metacommunity dynamics may be mainly governed by species sorting and 348 

patch dynamics (Orrock and James 2010) leading to deterministic exclusion of 349 

the inferior competitors and lowering β-diversity in large metacommunities. 350 

 The positive relationship between the strength of community-351 

environment coupling and community size indicates that environmental 352 

selection plays a minor role in the dynamics of small communities. This 353 

relationship further suggests that environmental factors might have limited 354 

power to predict species identity or species abundances in small communities. 355 

Evidence of weak relationships between species composition and 356 

environmental factors is abundant in community ecology. For example, a 357 

comprehensive analysis of stream invertebrate communities across the 358 

continental United States showed that β-diversity was weakly related to 359 

environmental distances in many of the ecoregions studied (Bini et al. 2014). 360 

Heino et al. (2015) also assessed the role of environmental factors in driving β-361 

diversity in stream insect communities in different regions of the world and 362 

found that environmental variables were poor predictors of species composition, 363 

explaining on average 13% of the variation in community spatial variation. 364 

Although we did not re-analyze data from previous studies reporting weak 365 

community-environment relationships, our results suggest that, besides the 366 

already known causes (e.g., “snapshot” sampling, lack of statistical power, 367 
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unaccounted legacy effects), ecological drift acting more strongly upon small 368 

communities might be an additional cause for such weak relationships.  369 

 As it is usually the case in observational, correlative studies, ours also 370 

have limitations. Stream communities can be structured by many environmental 371 

factors that vary at the local scale, such as nutrient concentration, turbidity, pH 372 

(Allan et al. 2021). The set of variables we used is not necessarily the best one 373 

to represent community-environment relationships, as these variables were not 374 

measured at the same spatial scale used to sample communities. But, even 375 

with such data, we detected a positive relationship between the strength of the 376 

community-environment relationship and community size. We thus speculate 377 

that the inclusion of additional local environmental variables could affect the 378 

observed relationship in two ways: (1) the model explanatory power will 379 

increase for all metacommunities as more variables are added to it. In this case, 380 

the relationship would remain positive, with a similar slope but higher intercept. 381 

(2) The role of stochasticity might be so strong in small communities that the 382 

strength of the community-environment relationship would not increase for 383 

them, but only for the large communities. In this case, the slope of the 384 

regression line would change to a more positive relationship, while the intercept 385 

would remain the same. Despite these limitations, some of our models 386 

explained more than 30% (and in some cases up to 60%) of the variance in 387 

abundance. This result indicates that large scale variables such as average 388 

annual air temperature, mean annual natural discharge, and average human 389 

footprint index can be used to explain variation in fish abundance (e.g., Chen 390 

and Olden 2020, Comte et al. 2021), especially for species in large 391 

communities. Another issue to bear in mind is that by relying solely on the 392 
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median, we might have missed how other aspects of community size influence 393 

β-diversity and community-environment relationships. For example, other 394 

aspects of the distribution of population sizes within communities (e.g., range; 395 

standard deviation) could represent different processes that interact with 396 

demographic stochasticity – an issue that deserves further investigation. 397 

 Relying on a robust data set that spans 541 communities, across 32 river 398 

basins in four biogeographic realms, and robust methods to quantify spatial 399 

variation in species composition, we provide evidence for a general pattern in 400 

nature – species composition varies more among small communities than 401 

among large communities. This pattern is likely driven by the stronger influence 402 

of demographic stochastic events on small than on larger communities, as the 403 

dynamics of small communities are weakly linked to spatial variation in 404 

environmental factors. On the other hand, metacommunities composed of large 405 

communities seem to be assembled more deterministically as their species 406 

composition were more related to environmental variation. As the effects of 407 

demographic stochasticity should manifest also, maybe even more strongly, on 408 

community temporal dynamics, future studies should analyze the relationship 409 

between temporal β-diversity and community size. We also suggest the 410 

prevalence of the relationships we describe here should be tested with data 411 

from terrestrial metacommunities, where community size might be more directly 412 

linked to ecosystem size. In a changing world where ecosystems have been 413 

fragmented and reduced, high variation in species composition among small 414 

communities that decoupled from environmental variation points to further 415 

challenges to ecosystem management.  416 

  417 
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Table 1. Model statistics of the relationship of rank-abundance difference with 585 

community size (CS), environmental variation (EV) and spatial extent (SE) in 586 

riverine fish metacommunities. SD coeff. = standardized regression coefficient; 587 

R2 and Adj. R2 = coefficient of determination and adjusted coefficient of 588 

determination, respectively. 589 

Predictor SD coeff. t-value p-value R2  Adj R2 

CS -0.657 -4.291 <0.001 0.388 0.368 

EV 0.044 0.303 0.764   

SE 0.112 0.732 0.470   
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Supporting Information 603 

 604 

1. Material and methods 605 

Table S1. General features of each dataset used in the empirical analyses at 606 

both regional and local scales. 607 

  Regional Local 

Metacommunity ID # sites # individuals γ-diversity α-diversity 

(mean) 

α-diversity 

(median) 

# individuals 
(mean) 

# individuals 
(median) 

2070021230 10 4538 12 7 6 454 471.5 

2070021360 15 5559 15 7 7 371 393 

2070469050 12 5398 19 5 2 450 238.5 

2070470930 10 15956 21 8 8 1596 293 

2070513970 29 4112 32 7 7 142 101 

5070070110 29 4340 31 9 8 150 113 

5070070390 12 3636 23 10 10 303 336 

5070070440 21 4307 30 9 8 205 194 

5070070450 13 3990 26 10 11 307 324 

5070468810 10 2087 14 5 4 209 91.5 

6070015200 22 2411 17 7 8 110 114 

6070709820 16 4374 27 9 8 273 113 

6070713620 22 3161 40 10 9 144 95.5 

7070042610 12 2633 44 18 18 219 201 

7070317870 11 3323 41 15 14 302 219 

7070327640 12 756 6 2 2 63 65 

7070360890 31 2460 7 2 2 79 74 

7070415980 10 2971 33 10 8 297 117.5 

7070450470 13 1220 21 7 7 94 81 

7070451570 18 2882 27 9 9 160 147 

7070453370 32 3967 31 7 6 124 90.5 

7070620210 21 8395 47 20 20 400 306 

7070630060 11 5356 34 16 16 487 425 

7070642870 21 8429 36 14 15 401 352 

7070643030 11 2704 34 15 15 246 228 

7070647250 18 5814 46 16 17 323 262 

7070647350 14 3651 42 16 15 261 231 

7070648760 10 3928 44 18 18 393 424.5 

7070651920 12 1978 41 18 19 165 156.5 

7070656320 22 8021 43 16 16 365 341 

7070663220 23 10421 29 15 15 453 385 

7070684690 18 4501 48 17 16 250 169 

  608 

1.1 Process-based simulation models 609 

1.1.1 Spatial variation in species composition  610 

As our first goal was to investigate how spatial variation in species 611 

composition within metacommunities varied along a gradient of median 612 
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community size, we needed to make sure that our metrics representing spatial 613 

variation in species composition would not be affected by sampling effort and 614 

sample size. For example, larger communities have a higher probability to 615 

share more species and thus exhibit a lower variation in species composition 616 

than smaller communities because they have more individuals, but not 617 

necessarily because they are more similar.  618 

So, using the package mobsim (May et al 2018), we simulated 619 

metacommunities with the same SAD (log-normal distribution), species richness 620 

and number of communities. They were assembled without any environmental 621 

filter and differed only in their overall size (taken from a uniform distribution that 622 

varied between 756 and 15956 individuals, according to the range of individuals 623 

sampled in the empirical metacommunities (Table S1). We represented the 624 

intraspecific aggregation caused by dispersal limitation considering that all 625 

communities were equally likely to be colonized by the initial member of each 626 

species, but once they were, subsequent members of that species were more 627 

likely to colonize surrounding locations. To investigate the potential effect of 628 

metacommunity characteristics in the tested metrics, we varied the number of 629 

species and sites in the simulations. The values of these parameters covered 630 

the range of variation of the empirical metacommunities (6-48 species and 10-631 

32 sites, Table S1). 632 

We then measured six β-diversity metrics within each simulated 633 

metacommunity and regressed β-diversity values against the median 634 

community size of the simulated metacommunities. Because we hypothesized 635 

that environmental selection should be stronger in larger communities and 636 

ecological drift should be stronger in smaller communities, we expected that an 637 
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unbiased β-diversity metric would have no relationship with community size in 638 

the simulation, as environmental selection played no role in community 639 

assembly. 640 

Our first candidate β-diversity metric was Baselga’s (2010) multiple-site 641 

Total Beta Diversity based on presence-absence data. This metric accounts 642 

both for the spatial turnover and the nestedness components of β-diversity. It 643 

was carried out in R with the function beta.multi (Baselga et al. 2022), using 644 

Jaccard dissimilarity. The second candidate β-diversity metric was C-score 645 

(Stone & Roberts 1990), which provides an average measure of co-occurrence 646 

for all species pairs. Higher C-score values indicate fewer co-occurrence 647 

between species in the matrix. The C-score was measured with the package 648 

bipartite (Dormann et al. 2008) in R. Next, we used two β-diversity metrics that 649 

could be corrected for under-sampling: the Jaccard-Chao and the Shannon. 650 

The correction applied to these metrics uses accumulation curves and should 651 

be more effective than the original metrics to remove γ-dependence (Cao et al 652 

2021). The fifth candidate metric was a recently developed metric called βc 653 

(Engel et al 2021), which was developed to represent differences in species 654 

composition even when there are differences in the size of the species pool and 655 

associated sampling effects. 656 

Finally, as changes in species relative abundances are a good predictor 657 

of community change (Dornelas et al. 2014, Jones et al. 2017, Avolio et al. 658 

2019), we measured how the rank-abundance of communities varied among 659 

each other within each metacommunity, and regressed their median against 660 

median community size. 661 

 662 
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1.1.2 Community-environment relationship 663 

To investigate our second prediction, we had to be sure that a measure 664 

of the strength of the community-environment relationship would not itself be a 665 

statistical consequence of community size. For example, it is possible that a 666 

strong community-environment relationship emerges in large communities 667 

simply because it might be easier to model more individuals than a matrix full of 668 

zeros, irrespective of the underlying assembly process. Thus, we used a 669 

second process-based simulation in which metacommunities of different sizes 670 

were assembled by the same amount of demographic stochasticity and 671 

environmental selection. Now, we simulated metacommunities composed of 672 

species that followed a Gaussian response to a single environmental variable. 673 

They had the same niche breadth (0.2) but differed in their environmental 674 

optima (i.e., niche position; taken from a uniform distribution ranging from 0 to 675 

5). We simulated ecological drift by drawing the abundance of every species in 676 

each local community from a Poisson distribution which mean was given by the 677 

deterministic influence of environmental selection. We assigned different sizes 678 

to the metacommunities estimating species expected abundance in optimum 679 

environments from a random interval.  680 

We estimated the strength of the community-environment relationship, 681 

but only considering the incidence of the 10% most abundant species of each 682 

community. We tested two modeling approaches to estimate the strength of the 683 

community-environment relationship. First, we used a generalized linear model 684 

(GLM) and pseudo R2 values as a measure of the strength of the community-685 

environment relationship. We then used Hierarchical Modeling of Species 686 

Communities (HMSC) (Ovaskainen 2017) and Tjur R2 values as a measure of 687 
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the strength of the community-environment relationship. An appropriate 688 

measure of community-environment relationship would show no relationship 689 

with community size in simulated metacommunities under equal contribution of 690 

drift and selection. 691 

 692 

2. Results 693 

2.1 Spatial variation in species composition 694 

We found that the first five (except rank-abundance difference) β-695 

diversity metrics were related (varying from negative to positive) to median 696 

community size (Table S2).  These results indicate that these five β-diversity 697 

metrics are affected by median community size independently of the underlying 698 

assembly process.  699 

We observed no relationship between rank-abundance difference and 700 

community size for the range of parameter values in our simulations (Table S2). 701 

So, as the lack of relationship was consistent, we concluded that rank difference 702 

was the most appropriate β-diversity metric that we could use in our study to 703 

investigate the relationship between variation in species composition and 704 

community size.  705 

Table S2. Model statistics of the relationships between β-diversity metrics 706 

(Jaccard, C-score, Jaccard-Chao, Shannon, βc and rank difference) and 707 

community size for 30 simulated metacommunities covering the range of 708 

variation of species and sites from the empirical metacommunities. SD coeff. = 709 

standardized regression coefficient; R2 and Adj. R2 = coefficient of 710 

determination and adjusted coefficient of determination, respectively. Some 711 
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metrics were not calculated when the number of species and sites were small 712 

(empty lines). 713 

 714 

β-diversity 

metric 

SD 
coeff. 

F-statistic p-value R2 Adj R2 

Metacommunities simulated with 6 species and sites   

Jaccard - Baselga      

C-score      

Jaccard-Chao      

Shannon -0.316  3.114 0.088 0.100 0.068 

Βc      

Rank difference -0.152 0.664 0.422 0.023 -0.012 

Metacommunities simulated with 10 species and sites   

Jaccard - Baselga -0.749 35.7 <0.001 0.560  0.545 

C-score      

Jaccard-Chao -0.617 17.17 <0.001 0.380 0.358 

Shannon -0.176 0.894 0.352 0.031 -0.004 

Βc -0.583 11.85 0.002 0.34 0.311 

Rank difference 0.073 0.150 0.702 0.005 -0.030 

Metacommunities simulated with 20 species and sites  

Jaccard - Baselga -0.857 77.17 <0.001 0.734 0.724 

C-score 0.350  3.903 0.058 0.122 0.091 

Jaccard-Chao -0.706 27.88 <0.001 0.499 0.481 

Shannon -0.346 3.82 0.061 0.120 0.089 

Βc -0.642 19.68 <0.001 0.413 0.3918 

Rank difference 0.221 1.434 0.241 0.049 0.015 

Metacommunities simulated with 30 species and sites  

Jaccard - Baselga -0.927  171.3 <0.001 0.859 0.854 

C-score -0.819 56.95 <0.001 0.670 0.659 

Jaccard-Chao -0.919 152.1 <0.001 0.844 0.839 

Shannon -0.737  33.21 <0.001 0.543 0.526 

Βc -0.226  1.513 0.229 0.052 0.017 

Rank difference 0.252 1.894 0.180 0.063 0.030 

Metacommunities simulated with 40 species and sites  

Jaccard - Baselga -0.954 282.3 <0.001 0.910 0.906 

C-score -0.895 112.2 <0.001 0.800 0.793 

Jaccard-Chao -0.938 204.4 <0.001 0.879 0.875 

Shannon -0.674 23.26 <0.001 0.454 0.434 

Βc 0.513 9.996 0.004 0.263 0.237 

Rank difference 0.144 0.595 0.447 0.021 -0.014 

Metacommunities simulated with 48 species and sites  

Jaccard - Baselga -0.929 175.7 <0.001 0.863 0.858 
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β-diversity 

metric 

SD 
coeff. 

F-statistic p-value R2 Adj R2 

C-score -0.870 87.57 <0.001 0.758 0.749 

Jaccard-Chao -0.930 179.2 <0.001 0.865 0.860 

Shannon -0.783  44.38 <0.001 0.613 0.599 

Βc 0.569 11.47 0.002 0.323 0.295 

Rank difference -0.069 0.136 0.715 0.005 -0.031 

 715 

2.2 Community-environment relationships 716 

We found that the GLM pseudo-R2 increased with community size (SD. 717 

coeff. = 0.678, R2 = 0.459, p = <0.001, Fig. S1a), whereas there was no 718 

evidence of a relationship between HMSC Tjur R2 and community size (SD. 719 

coeff. = 0.247, R2 = 0.061, p = 0.188, Fig. S1b). So, we decided to use the 720 

HMSC to test our second prediction.  721 

 722 

 723 

Figure S1. Relationship of the strength of the community-environment 724 

relationships within simulated metacommunities measured with a Generalized 725 

Linear Model (GLM) (a) and with Hierarchical Modelling of Species 726 

Communities (HMSC) (b) against median community size. Gray bands 727 

represent the 95% confidence interval around the regression line. 728 

 729 
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2.3 Model fit assumptions 730 

 731 

Figure S2. Model fit assumptions of the multiple linear model used to describe 732 

rank difference values as a function of community size, environmental 733 

heterogeneity and spatial extent of the metacommunities. All plots were done 734 

using the performance package (Lüdecke et al. 2021) in R. 735 

736 
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2.4 Relative importance of each environmental variable to explain 737 

community composition 738 

Table S3. Partitioning species' variance explained by the environmental 739 

variables across all metacommunities, considering the 10% most abundant 740 

species of each community. Environmental variables: discharge (Dis), elevation 741 

(Ele), temperature (Tmp), precipitation (Pre), human footprint (hft), connectivity 742 

status index (csi) and a measure that indicates if a river reach belongs to a river 743 

with free-flowing, good connectivity or degraded status (csiff2). 744 

Species Dis Ele Tmp Pre hft csi csiff2 

Metacommunity ID 2070021230        

Cottus gobio 0.151 0.206 0.220 0.113 0.223 0.086 0.000 

Salmo trutta 0.119 0.164 0.194 0.130 0.274 0.119 0.000 

Phoxinus phoxinus 0.168 0.215 0.276 0.104 0.156 0.081 0.000 

Metacommunity ID 2070021360               

Salmo trutta 0.335 0.106 0.162 0.069 0.056 0.235 0.037 

Cottus gobio 0.209 0.134 0.159 0.061 0.134 0.239 0.065 

Phoxinus phoxinus 0.183 0.195 0.185 0.090 0.111 0.178 0.058 

Barbatula barbatula 0.146 0.140 0.307 0.144 0.072 0.141 0.049 

Perca fluviatilis 0.155 0.142 0.191 0.146 0.103 0.203 0.061 

Metacommunity ID 2070469050               

Salmo trutta 0.171 0.182 0.193 0.168 0.141 0.112 0.033 

Salmo salar 0.119 0.194 0.193 0.142 0.130 0.188 0.035 

Cottus gobio 0.171 0.204 0.165 0.173 0.138 0.109 0.040 

Barbatula barbatula 0.110 0.197 0.206 0.152 0.112 0.183 0.038 

Squalius cephalus 0.168 0.186 0.173 0.164 0.141 0.103 0.064 

Metacommunity ID 2070470930               

Cottus gobio 0.291 0.145 0.183 0.123 0.132 0.081 0.044 

Phoxinus phoxinus 0.327 0.118 0.168 0.151 0.122 0.077 0.036 

Barbatula barbatula 0.243 0.148 0.154 0.176 0.148 0.090 0.041 

Perca fluviatilis 0.200 0.164 0.164 0.156 0.136 0.129 0.051 

Squalius cephalus 0.187 0.161 0.176 0.161 0.123 0.146 0.047 

Metacommunity ID 2070513970               

Barbatula barbatula 0.154 0.277 0.286 0.134 0.075 0.074 0.000 

Gobio gobio 0.105 0.239 0.245 0.127 0.118 0.166 0.000 

Phoxinus phoxinus 0.137 0.281 0.281 0.129 0.080 0.092 0.000 

Rutilus rutilus 0.054 0.247 0.215 0.157 0.239 0.087 0.000 

Squalius cephalus 0.118 0.236 0.247 0.117 0.109 0.173 0.000 

Rhodeus sericeus 0.085 0.210 0.317 0.111 0.195 0.081 0.000 

Alburnus alburnus 0.166 0.200 0.200 0.155 0.109 0.170 0.000 
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Abramis brama 0.105 0.221 0.207 0.177 0.111 0.178 0.000 

Leucaspius delineatus 0.136 0.203 0.198 0.142 0.184 0.138 0.000 

Umbra krameri 0.111 0.246 0.251 0.128 0.130 0.134 0.000 

Metacommunity ID 5070070110               

Gobiomorphus australis 0.134 0.152 0.167 0.063 0.117 0.307 0.059 

Hypseleotris compressa 0.150 0.392 0.090 0.174 0.058 0.093 0.043 

Gambusia holbrooki 0.214 0.227 0.115 0.054 0.095 0.211 0.084 

Retropinna semoni 0.134 0.122 0.224 0.055 0.068 0.340 0.056 

Mugil cephalus 0.160 0.125 0.175 0.071 0.097 0.301 0.071 

Hypseleotris galii 0.196 0.137 0.157 0.080 0.073 0.286 0.072 

Pseudomugil signifer 0.157 0.173 0.139 0.090 0.064 0.307 0.070 

Hypseleotris klunzingeri 0.146 0.186 0.145 0.078 0.072 0.300 0.072 

Melanotaenia duboulayi 0.135 0.097 0.177 0.104 0.168 0.254 0.064 

Anguilla reinhardtii 0.166 0.123 0.136 0.094 0.092 0.316 0.072 

Mogurnda adspersa 0.135 0.125 0.133 0.105 0.061 0.339 0.102 

Metacommunity ID 5070070390               

Xiphophorus maculatus 0.118 0.161 0.139 0.098 0.140 0.213 0.132 

Gambusia holbrooki 0.130 0.152 0.139 0.062 0.094 0.388 0.035 

Oreochromis mossambicus 0.264 0.168 0.139 0.083 0.120 0.138 0.089 

Hypseleotris klunzingeri 0.144 0.171 0.142 0.078 0.141 0.234 0.091 

Mogurnda adspersa 0.151 0.180 0.150 0.131 0.139 0.120 0.128 

Hypseleotris compressa 0.106 0.170 0.120 0.076 0.144 0.284 0.099 

Melanotaenia duboulayi 0.153 0.168 0.133 0.127 0.121 0.215 0.083 

Metacommunity ID 5070070440               

Philypnodon grandiceps 0.139 0.164 0.193 0.091 0.125 0.233 0.055 

Retropinna semoni 0.137 0.161 0.217 0.055 0.284 0.093 0.054 

Gambusia holbrooki 0.182 0.185 0.159 0.096 0.096 0.261 0.021 

Pseudomugil signifer 0.136 0.179 0.167 0.068 0.100 0.303 0.046 

Melanotaenia duboulayi 0.152 0.148 0.165 0.111 0.181 0.204 0.039 

Hypseleotris klunzingeri 0.127 0.176 0.175 0.074 0.125 0.248 0.074 

Trachystoma petardi 0.136 0.182 0.175 0.081 0.112 0.261 0.052 

Anguilla reinhardtii 0.154 0.158 0.214 0.061 0.116 0.240 0.058 

Hypseleotris compressa 0.168 0.206 0.180 0.066 0.091 0.255 0.034 

Xiphophorus hellerii 0.160 0.170 0.168 0.067 0.107 0.278 0.050 

Metacommunity ID 5070070450               

Retropinna semoni 0.141 0.192 0.200 0.052 0.169 0.216 0.030 

Gambusia holbrooki 0.152 0.202 0.180 0.110 0.184 0.137 0.034 

Hypseleotris compressa 0.158 0.175 0.164 0.171 0.142 0.157 0.034 

Hypseleotris klunzingeri 0.191 0.182 0.179 0.092 0.137 0.164 0.056 

Hypseleotris galii 0.173 0.192 0.176 0.096 0.147 0.179 0.037 

Melanotaenia duboulayi 0.176 0.214 0.196 0.081 0.136 0.155 0.042 

Metacommunity ID 5070468810               

Mogurnda adspersa 0.092 0.141 0.139 0.156 0.419 0.054 0.000 

Hypseleotris galii 0.162 0.123 0.120 0.206 0.293 0.095 0.000 

Gambusia holbrooki 0.148 0.227 0.226 0.109 0.130 0.160 0.000 

Metacommunity ID 6070015200               
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Rineloricaria aequalicuspis 0.087 0.265 0.271 0.228 0.084 0.065 0.000 

Cyanocharax itaimbe 0.096 0.244 0.226 0.245 0.089 0.100 0.000 

Pareiorhaphis hypselurus 0.084 0.274 0.274 0.229 0.073 0.066 0.000 

Pareiorhaphis nudulus 0.176 0.249 0.266 0.206 0.056 0.047 0.000 

Epactionotus bilineatus 0.099 0.219 0.232 0.212 0.139 0.099 0.000 

Metacommunity ID 6070709820               

Poecilia reticulata 0.467 0.163 0.072 0.103 0.118 0.078 0.000 

Knodus moenkhausii 0.238 0.198 0.050 0.097 0.129 0.288 0.000 

Hypostomus ancistroides 0.333 0.154 0.095 0.184 0.138 0.096 0.000 

Astyanax lacustris 0.373 0.149 0.124 0.105 0.175 0.075 0.000 

Aspidoras fuscoguttatus 0.275 0.156 0.094 0.154 0.137 0.185 0.000 

Gymnotus sylvius 0.282 0.170 0.107 0.113 0.118 0.211 0.000 

Moenkhausia sanctaefilomenae 0.295 0.183 0.101 0.104 0.122 0.196 0.000 

Serrapinnus notomelas 0.260 0.256 0.096 0.116 0.156 0.116 0.000 

Metacommunity ID 6070713620               

Piabina argentea 0.134 0.151 0.156 0.162 0.221 0.176 0.000 

Hypostomus ancistroides 0.147 0.160 0.187 0.188 0.195 0.123 0.000 

Knodus moenkhausii 0.265 0.164 0.233 0.192 0.072 0.074 0.000 

Corydoras aeneus 0.162 0.153 0.222 0.154 0.131 0.177 0.000 

Astyanax lacustris 0.099 0.163 0.249 0.202 0.192 0.095 0.000 

Poecilia reticulata 0.092 0.142 0.129 0.150 0.288 0.199 0.000 

Oligosarcus pintoi 0.196 0.163 0.155 0.150 0.144 0.192 0.000 

Gymnotus sylvius 0.130 0.156 0.238 0.158 0.130 0.187 0.000 

Serrapinnus notomelas 0.125 0.255 0.141 0.188 0.128 0.163 0.000 

Hemigrammus marginatus 0.158 0.159 0.162 0.185 0.126 0.210 0.000 

Imparfinis schubarti 0.125 0.135 0.110 0.184 0.214 0.233 0.000 

Metacommunity ID 7070042610               

Luxilus albeolus 0.093 0.134 0.208 0.342 0.089 0.134 0.000 

Etheostoma nigrum 0.121 0.172 0.201 0.250 0.136 0.120 0.000 

Nocomis leptocephalus 0.096 0.272 0.190 0.253 0.089 0.099 0.000 

Notropis altipinnis 0.111 0.143 0.201 0.271 0.110 0.163 0.000 

Lepomis auritus 0.087 0.173 0.192 0.223 0.135 0.190 0.000 

Etheostoma olmstedi 0.214 0.142 0.180 0.173 0.120 0.173 0.000 

Anguilla rostrata 0.216 0.160 0.194 0.161 0.104 0.166 0.000 

Lythrurus matutinus 0.165 0.202 0.178 0.220 0.089 0.145 0.000 

Noturus insignis 0.124 0.155 0.206 0.236 0.123 0.156 0.000 

Notropis procne 0.094 0.149 0.192 0.295 0.088 0.182 0.000 

Cyprinella analostana 0.103 0.166 0.193 0.254 0.104 0.180 0.000 

Enneacanthus gloriosus 0.114 0.153 0.248 0.155 0.125 0.204 0.000 

Metacommunity ID 7070317870               

Percina maculata 0.204 0.065 0.080 0.147 0.338 0.113 0.052 

Notropis dorsalis 0.191 0.093 0.130 0.176 0.178 0.118 0.115 

Etheostoma nigrum 0.219 0.110 0.097 0.133 0.125 0.197 0.120 

Margariscus margarita 0.205 0.068 0.143 0.150 0.144 0.209 0.082 

Luxilus cornutus 0.219 0.077 0.071 0.197 0.156 0.215 0.065 

Notropis volucellus 0.204 0.092 0.115 0.171 0.130 0.168 0.120 



38 
 

Notemigonus crysoleucas 0.199 0.075 0.111 0.125 0.152 0.220 0.116 

Chrosomus eos 0.205 0.104 0.075 0.145 0.173 0.215 0.083 

Metacommunity ID 7070327640               

Oncorhynchus clarkii 0.120 0.274 0.232 0.092 0.204 0.079 0.000 

Salvelinus confluentus 0.133 0.217 0.171 0.102 0.287 0.091 0.000 

Salmo trutta 0.171 0.244 0.186 0.107 0.182 0.111 0.000 

Salvelinus fontinalis 0.238 0.229 0.174 0.113 0.125 0.121 0.000 

Metacommunity ID 7070360890               

Prosopium williamsoni 0.106 0.234 0.282 0.177 0.086 0.115 0.000 

Oncorhynchus clarkii 0.109 0.175 0.194 0.076 0.229 0.217 0.000 

Salmo trutta 0.058 0.188 0.201 0.156 0.240 0.157 0.000 

Salvelinus confluentus 0.125 0.203 0.186 0.154 0.168 0.164 0.000 

Salvelinus fontinalis 0.144 0.171 0.247 0.077 0.144 0.217 0.000 

Oncorhynchus mykiss 0.098 0.255 0.314 0.135 0.101 0.098 0.000 

Metacommunity ID 7070415980               

Rhinichthys atratulus 0.176 0.108 0.104 0.112 0.234 0.266 0.000 

Campostoma anomalum 0.102 0.126 0.153 0.140 0.202 0.276 0.000 

Notropis stramineus 0.105 0.127 0.148 0.141 0.207 0.271 0.000 

Pimephales promelas 0.103 0.143 0.128 0.216 0.164 0.246 0.000 

Notropis dorsalis 0.157 0.157 0.099 0.252 0.136 0.199 0.000 

Semotilus atromaculatus 0.162 0.140 0.096 0.142 0.227 0.234 0.000 

Hybognathus hankinsoni 0.213 0.140 0.102 0.171 0.152 0.222 0.000 

Catostomus commersonii 0.209 0.126 0.114 0.179 0.154 0.218 0.000 

Culaea inconstans 0.142 0.184 0.111 0.153 0.152 0.258 0.000 

Umbra limi 0.172 0.140 0.109 0.173 0.171 0.235 0.000 

Lepomis cyanellus 0.170 0.128 0.123 0.180 0.163 0.236 0.000 

Metacommunity ID 7070450470               

Etheostoma olmstedi 0.084 0.198 0.226 0.208 0.145 0.138 0.000 

Etheostoma nigrum 0.089 0.197 0.212 0.219 0.146 0.137 0.000 

Semotilus atromaculatus 0.048 0.206 0.233 0.237 0.139 0.138 0.000 

Cottus bairdii 0.105 0.183 0.204 0.210 0.159 0.138 0.000 

Rhinichthys cataractae 0.151 0.186 0.167 0.163 0.198 0.135 0.000 

Rhinichthys obtusus 0.067 0.175 0.178 0.179 0.228 0.173 0.000 

Metacommunity ID 7070451570               

Campostoma anomalum 0.118 0.249 0.200 0.263 0.090 0.080 0.000 

Etheostoma caeruleum 0.085 0.244 0.200 0.269 0.100 0.102 0.000 

Semotilus atromaculatus 0.130 0.249 0.254 0.226 0.073 0.068 0.000 

Catostomus commersonii 0.127 0.220 0.221 0.213 0.130 0.089 0.000 

Rhinichthys obtusus 0.168 0.247 0.243 0.194 0.094 0.055 0.000 

Rhinichthys cataractae 0.182 0.208 0.208 0.163 0.092 0.148 0.000 

Metacommunity ID 7070453370               

Catostomus commersonii 0.092 0.171 0.190 0.227 0.179 0.104 0.038 

Rhinichthys cataractae 0.137 0.237 0.243 0.162 0.067 0.132 0.022 

Semotilus atromaculatus 0.192 0.179 0.221 0.267 0.064 0.059 0.018 

Pimephales promelas 0.214 0.195 0.229 0.138 0.115 0.083 0.026 

Lepomis cyanellus 0.211 0.196 0.217 0.145 0.120 0.084 0.027 
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Notropis atherinoides 0.140 0.211 0.226 0.200 0.079 0.115 0.029 

Rhinichthys obtusus 0.213 0.196 0.205 0.090 0.069 0.203 0.025 

Pimephales notatus 0.085 0.161 0.169 0.155 0.155 0.253 0.023 

Etheostoma nigrum 0.203 0.153 0.180 0.100 0.123 0.218 0.023 

Cottus bairdii 0.206 0.181 0.225 0.109 0.079 0.174 0.026 

Salvelinus fontinalis 0.132 0.206 0.242 0.116 0.112 0.164 0.028 

Metacommunity ID 7070620210               

Noturus insignis 0.082 0.279 0.200 0.251 0.092 0.065 0.031 

Nocomis leptocephalus 0.086 0.282 0.226 0.257 0.064 0.062 0.023 

Etheostoma flabellare 0.177 0.216 0.244 0.228 0.062 0.052 0.021 

Notropis chiliticus 0.116 0.213 0.198 0.229 0.083 0.126 0.035 

Luxilus cerasinus 0.087 0.237 0.239 0.258 0.086 0.068 0.025 

Notropis procne 0.077 0.257 0.255 0.251 0.059 0.072 0.029 

Lepomis auritus 0.088 0.233 0.276 0.248 0.064 0.067 0.024 

Lepomis cyanellus 0.127 0.217 0.224 0.243 0.085 0.072 0.034 

Etheostoma nigrum 0.097 0.238 0.191 0.258 0.081 0.102 0.034 

Cyprinella analostana 0.099 0.257 0.252 0.256 0.046 0.067 0.024 

Lepomis macrochirus 0.109 0.227 0.240 0.230 0.092 0.070 0.031 

Metacommunity ID 7070630060               

Notropis chiliticus 0.310 0.146 0.091 0.170 0.091 0.177 0.014 

Nocomis leptocephalus 0.144 0.224 0.223 0.113 0.102 0.177 0.016 

Luxilus coccogenis 0.227 0.157 0.141 0.146 0.135 0.171 0.024 

Clinostomus funduloides 0.195 0.169 0.123 0.218 0.147 0.120 0.029 

Noturus insignis 0.126 0.167 0.126 0.101 0.221 0.236 0.023 

Metacommunity ID 7070642870               

Cottus bairdii 0.099 0.170 0.106 0.157 0.104 0.284 0.081 

Nocomis micropogon 0.078 0.145 0.211 0.214 0.104 0.192 0.057 

Rhinichthys atratulus 0.127 0.216 0.133 0.132 0.107 0.185 0.100 

Luxilus coccogenis 0.114 0.248 0.183 0.100 0.127 0.131 0.097 

Notropis lutipinnis 0.171 0.164 0.143 0.134 0.134 0.196 0.058 

Rhinichthys cataractae 0.143 0.226 0.143 0.190 0.107 0.095 0.095 

Percina evides 0.105 0.267 0.128 0.135 0.187 0.107 0.071 

Campostoma anomalum 0.115 0.194 0.141 0.167 0.130 0.106 0.147 

Notropis leuciodus 0.149 0.216 0.190 0.130 0.133 0.120 0.062 

Metacommunity ID 7070643030               

Nocomis leptocephalus 0.146 0.194 0.285 0.240 0.054 0.080 0.000 

Clinostomus funduloides 0.132 0.172 0.270 0.185 0.114 0.126 0.000 

Lepomis auritus 0.064 0.203 0.170 0.191 0.155 0.218 0.000 

Etheostoma olmstedi 0.249 0.189 0.182 0.168 0.085 0.127 0.000 

Lepomis macrochirus 0.190 0.214 0.187 0.179 0.139 0.090 0.000 

Cyprinella pyrrhomelas 0.260 0.152 0.201 0.182 0.109 0.096 0.000 

Notropis chiliticus 0.194 0.189 0.233 0.170 0.091 0.122 0.000 

Metacommunity ID 77070647250               

Nocomis leptocephalus 0.390 0.078 0.060 0.083 0.052 0.303 0.033 

Luxilus albeolus 0.304 0.137 0.107 0.114 0.111 0.167 0.059 

Lepomis auritus 0.176 0.099 0.225 0.164 0.137 0.148 0.050 
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Luxilus cerasinus 0.341 0.101 0.088 0.109 0.127 0.182 0.054 

Fundulus rathbuni 0.205 0.169 0.119 0.119 0.077 0.253 0.058 

Semotilus atromaculatus 0.300 0.171 0.109 0.123 0.099 0.135 0.062 

Gambusia holbrooki 0.290 0.122 0.186 0.115 0.088 0.151 0.046 

Etheostoma olmstedi 0.363 0.120 0.079 0.175 0.061 0.148 0.054 

Notropis procne 0.218 0.118 0.145 0.132 0.179 0.159 0.050 

Lepomis macrochirus 0.229 0.153 0.094 0.116 0.177 0.185 0.046 

Notropis hudsonius 0.235 0.145 0.134 0.146 0.090 0.192 0.058 

Lythrurus ardens 0.229 0.147 0.133 0.143 0.088 0.205 0.055 

Notropis altipinnis 0.250 0.129 0.115 0.130 0.143 0.172 0.060 

Metacommunity ID 7070647350               

Etheostoma olmstedi 0.071 0.177 0.115 0.170 0.128 0.339 0.000 

Erimyzon oblongus 0.094 0.138 0.148 0.111 0.226 0.284 0.000 

Nocomis leptocephalus 0.108 0.156 0.176 0.089 0.193 0.277 0.000 

Notropis altipinnis 0.063 0.129 0.082 0.249 0.202 0.275 0.000 

Lepomis auritus 0.100 0.184 0.136 0.108 0.172 0.300 0.000 

Notropis alborus 0.078 0.143 0.220 0.143 0.166 0.251 0.000 

Lepomis macrochirus 0.300 0.141 0.185 0.100 0.146 0.129 0.000 

Lepomis cyanellus 0.095 0.171 0.132 0.178 0.134 0.290 0.000 

Gambusia holbrooki 0.134 0.181 0.171 0.137 0.163 0.213 0.000 

Metacommunity ID 7070648760               

Lepomis macrochirus 0.313 0.136 0.149 0.090 0.127 0.131 0.053 

Lepomis auritus 0.271 0.107 0.146 0.133 0.166 0.131 0.046 

Nocomis leptocephalus 0.278 0.171 0.256 0.067 0.074 0.118 0.036 

Noturus insignis 0.273 0.130 0.225 0.077 0.087 0.143 0.066 

Luxilus albeolus 0.319 0.153 0.139 0.072 0.117 0.140 0.060 

Etheostoma flabellare 0.241 0.130 0.174 0.114 0.116 0.161 0.065 

Nocomis raneyi 0.222 0.177 0.143 0.096 0.096 0.190 0.078 

Cyprinella analostana 0.217 0.242 0.133 0.128 0.084 0.133 0.063 

Notropis procne 0.209 0.250 0.138 0.127 0.081 0.134 0.059 

Metacommunity ID 7070651920               

Notropis cummingsae 0.053 0.114 0.294 0.135 0.117 0.287 0.000 

Etheostoma olmstedi 0.130 0.168 0.174 0.157 0.126 0.245 0.000 

Notemigonus crysoleucas 0.099 0.148 0.202 0.157 0.128 0.266 0.000 

Lepomis auritus 0.081 0.138 0.303 0.102 0.108 0.268 0.000 

Gambusia holbrooki 0.123 0.138 0.222 0.160 0.248 0.109 0.000 

Lepomis macrochirus 0.133 0.121 0.221 0.148 0.140 0.236 0.000 

Noturus insignis 0.108 0.183 0.182 0.145 0.128 0.253 0.000 

Anguilla rostrata 0.151 0.149 0.166 0.139 0.179 0.216 0.000 

Notropis altipinnis 0.096 0.202 0.191 0.145 0.145 0.222 0.000 

Metacommunity ID 7070656320               

Luxilus coccogenis 0.106 0.203 0.279 0.156 0.155 0.101 0.000 

Lepomis auritus 0.084 0.224 0.220 0.246 0.149 0.078 0.000 

Nocomis leptocephalus 0.049 0.224 0.238 0.330 0.083 0.076 0.000 

Semotilus atromaculatus 0.130 0.223 0.183 0.199 0.173 0.093 0.000 

Campostoma anomalum 0.323 0.156 0.221 0.159 0.077 0.063 0.000 
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Cyprinella chloristia 0.117 0.311 0.240 0.165 0.084 0.083 0.000 

Fundulus rathbuni 0.104 0.232 0.255 0.235 0.071 0.104 0.000 

Etheostoma olmstedi 0.151 0.244 0.197 0.203 0.103 0.102 0.000 

Lepomis macrochirus 0.189 0.228 0.211 0.174 0.112 0.086 0.000 

Notropis chlorocephalus 0.062 0.183 0.196 0.383 0.119 0.056 0.000 

Clinostomus funduloides 0.186 0.206 0.193 0.157 0.113 0.145 0.000 

Metacommunity ID 7070663220               

Nocomis leptocephalus 0.236 0.226 0.248 0.085 0.079 0.127 0.000 

Etheostoma brevispinum 0.085 0.320 0.241 0.162 0.112 0.079 0.000 

Cyprinella chloristia 0.077 0.309 0.198 0.105 0.220 0.091 0.000 

Cyprinella pyrrhomelas 0.094 0.197 0.236 0.145 0.265 0.063 0.000 

Hybopsis hypsinotus 0.095 0.220 0.202 0.106 0.185 0.191 0.000 

Semotilus atromaculatus 0.110 0.313 0.230 0.151 0.114 0.082 0.000 

Lepomis auritus 0.112 0.255 0.208 0.239 0.120 0.066 0.000 

Notropis scepticus 0.082 0.280 0.222 0.163 0.169 0.083 0.000 

Metacommunity ID 7070684690               

Semotilus atromaculatus 0.128 0.196 0.237 0.086 0.102 0.214 0.038 

Nocomis leptocephalus 0.067 0.276 0.127 0.042 0.081 0.393 0.014 

Notropis chiliticus 0.125 0.323 0.127 0.041 0.034 0.336 0.014 

Notropis altipinnis 0.163 0.211 0.157 0.090 0.088 0.253 0.039 

Etheostoma olmstedi 0.073 0.235 0.261 0.114 0.059 0.233 0.024 

Lepomis auritus 0.186 0.186 0.206 0.048 0.076 0.273 0.025 

Perca flavescens 0.119 0.236 0.227 0.085 0.156 0.121 0.056 

Noturus insignis 0.123 0.234 0.220 0.085 0.156 0.125 0.057 

Lepomis marginatus 0.126 0.199 0.224 0.104 0.055 0.253 0.040 

Semotilus lumbee 0.172 0.171 0.195 0.083 0.140 0.201 0.039 

Notropis cummingsae 0.158 0.191 0.237 0.071 0.065 0.241 0.038 

Lepomis macrochirus 0.105 0.158 0.208 0.110 0.160 0.221 0.036 

Aphredoderus sayanus 0.112 0.149 0.201 0.121 0.173 0.207 0.037 
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