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Abstract 

Anthropogenic changes such as land use and climate change affect species’ geographic 
ranges, causing range shifts, contractions, or expansions. However, data on range dynamics 
are insufficient, heterogeneous, and spatially and temporally biased in most regions. 
Integrated species distribution models (IDMs) offer a solution as they can complement good 
quality presence-absence data with opportunistically collected presence-only data, 
simultaneously accounting for heterogeneous sampling effort. However, these methods have 
seen limited use in the estimation of temporal change of geographic ranges and are not yet 
widespread as they have a steep learning curve. Here we present a generalisable model 
and case example to ease their adoption. Using data on presence-absence and presence-
only on the yaguarundí (Herpailurus yagouaroundi), we modelled the species distribution at 
two time periods (2000-2013 and 2014-2021) using a Bayesian model based on Poisson 
point process in JAGS. Our model integrates the different types of data while accounting for 
varying sampling effort and spatial effect. We predicted the species range at the two time 
periods and quantified their changes. We found that between the two time periods, the 
yaguarundí has contracted its southern and northern range limits towards the equator, but 
expanded its area of distribution over the entire species’ range. Also, our results show that 
modelled geographic range (either pre or post) is not entirely consistent with the current 
expert range map from IUCN. Our modelling approach provides a working example with the 
potential to address data gaps and biases in other taxa and regions. Given the increasing 
number of incidental data being generated by community-derived initiatives in Latin America, 
IDMs can become a valuable source for species distribution modelling in the region. To our 
knowledge, this is the first application of the IDM approach with temporal dimension and 
over the entire species’ geographic range. 
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Introduction 

Mapping the temporal change (kinetics) of species’ geographic ranges in today’s changing 
world (Cardinale et al., 2012; Urban, 2015) is a critical task for biogeography. To describe 
the dynamics of entire geographic ranges of species, we need both data over large and 
often heterogeneous regions, sometimes across entire continents or even the world, as well 
as data collected over a long-time period (Yoccoz et al., 2001). Despite increasing access to 
open data (Wüest et al., 2020), they are still sparse and spatially and temporally biased 
(Boakes et al., 2010; Maldonado et al., 2015; Meyer et al., 2016; Shirey et al., 2021). 
Moreover, the available data rarely come from a single large and standardised sampling 
effort (Ondei et al., 2018), but instead comprise a mix of local surveys that used different 
sampling methods (e.g., camera-traps, eDNA, or acoustic data loggers; Deiner et al., 2017; 
Gibb et al., 2019; Steenweg et al., 2017, as well as incidental occurrence records (e.g., 
derived from museum specimen collections and citizen-science records; Chandler et al., 
2017; Osawa, 2019). To solve the global challenges without any further delay, we must seek 
to improve species’ distribution models with the heterogeneous data that are available 
(Heberling et al., 2021). 

Integrated species distribution modelling (hereafter IDMs) comprises a recently developed 
family of parametric species distribution models that combine ecological information within 
multiple data types that were typically collected by different survey approaches (Isaac et al., 
2020; Kéry & Royle, 2021; Miller et al., 2019). IDMs capitalise on each data type’s strengths, 
i.e., standardised surveys can provide information on the local abundance of species but 
often only at a relatively small number of sites, while opportunistic occurrence records can 
cover larger geographic/environmental spaces and can inform on range boundaries. IDMs 
are usually hierarchical models that explicitly model the sampling process of each dataset to 
account for limitations including imperfect detection and sampling bias (Fithian et al., 2015; 
Fletcher & Fortin, 2018; K. Pacifici et al., 2017), as well as varying effort and area of surveys 
(Keil & Chase, 2019). A characteristic of most IDMs is that they assume a common 
underlying spatial point process that determines the spatial locations of individuals of a 
species (Dorazio, 2014; Fletcher Jr. et al., 2019; Miller et al., 2019). Following this 
assumption, parameters affecting the intensity (or density) of the resulting point pattern (e.g., 
land cover or climate) are estimated using the joint likelihood for all included data types 
(Fletcher Jr. et al., 2019). Most applications so far fit IDMs in a Bayesian framework (van de 
Schoot et al., 2021), which also helps propagate the uncertainties associated with each data 
type into the predictions and parameter estimates.  

Studies have already shown the many advantages of model-based data integration. First, 
the increased sample size from making use of diverse data streams tends to increase the 
precision of parameter estimates (Farr et al., 2021; Zipkin et al., 2017) and the accuracy of 
the predictions (Zulian et al., 2021). Second, combining structured or semi-structured data 
with unstructured data helps to factor out spatial biases in the latter, and consequently helps 
to make better use of data streams coming from opportunistic citizen science events 
(Dorazio, 2014; Zulian et al., 2021). Finally, the greater geographic coverage achieved by 
data integration may lead to better sampling of environmental gradients and hence improve 
the accuracy and precision of the estimated effects of covariates such as land cover and 
climate (Bowler et al., 2019; Chevalier et al., 2021). 

Despite the great promise of IDMs, applications of them are still limited. Studies have used 
IDMs to address a wide range of data integration problems (e.g., (Martino et al., 2021; Rose 
et al., 2020; Schank et al., 2017; Zulian et al., 2021), but they have mostly been used over 
local (Farr et al., 2021) or nationwide (Hertzog et al., 2021) extents, and at fine grains, but 
not to model entire geographic ranges of species over coarse grains. As an exception, 
Zulian et al., (2021) used data integration to model the full geographic distribution of a parrot 
species endemic to the tropical South American Atlantic Forest. Further, with some 



exceptions (Doser et al., 2022; Hertzog et al., 2021; Pagel et al., 2014), IDMs have not been 
used to model temporal change of distributions, although this could be their obvious 
application, given the scarcity of temporally replicated data. Finally, IDMs can appear 
complex, with a lack of user-friendly tools available; thus, their implementation can be 
challenging, particularly for inexperienced users. Hence, the full potential of IDMs has yet to 
be realized and made accessible and there is a need for models that balance pragmatism 
and realism for combining the data typically available for large-scale distribution models. 

Here, we introduce an IDM that addresses these shortcomings and models the temporal 
dynamics of entire species’ geographic ranges by integrating two common data types: 
presence-only observations (e.g., as available in GBIF) and presence-absence surveys 
(e.g., from systematic surveys, in our case from camera traps). The model also accounts for 
common data problems such as local and regional variation in sampling effort and unequal 
area of surveys. The model can predict the temporal change of geographic distributions, 
change in range size, and the associated uncertainty, at any spatial resolution. Lastly, one of 
our important aims is to lower the learning threshold of IDMs for new users.  

The American tropics (the Neotropics) have been identified among the most important 
hotspots of biodiversity in the world (Antonelli et al., 2018; Morrone, 2017). At the same time, 
they are one of the areas where biodiversity is declining at higher rates (IPBES, 2019). 
Unfortunately, data challenges are particularly pronounced in this region (Meyer et al., 
2016), thus, the range dynamics of many species that occur there remain unknown. The 
available data are scattered and heterogeneous, typically coming from countries such as 
Colombia, Brazil, and Mexico and mainly from the birds’ group. As a test case for our IDM, 
we chose the yaguarundí (Herpailurus yagouaroundi) (Figure 1), which has a large 
distribution across Latin America but knowledge of it has been limited by the data. Evidence 
shows that carnivore species such as the yaguarundí, have been recently varying their 
geographic distribution, most often noted around range edges (Grattarola et al., 2016; 
Lombardi et al., 2022; Luengos Vidal et al., 2017), and their abundance, over their entire 
distribution range (Caso et al., 2015). However, whether these changes are a product of 
previous lack of monitoring efforts in the region or due to the expansion or contraction of this 
species’ range over time has not been quantitatively studied. Here, we develop an IDM to fill 
this knowledge gap. Moreover, we use our study design to provide a clear working example 
with R code, which can easily be copied, extended, and applied to model the range 
dynamics of other species.  

 

 

Figure 1. Individuals of yaguarundí (Herpailurus yagouaroundi) displaying the main two-coat 
colour variants. Left observed in Mexico by albamaya (CC-BY-NC) and right in Argentina by 
hhulsberg (CC-BY-NC). Photos from iNaturalist.org.  



Material and methods 

The data 

Occurrence records (i.e., presence-only data; Figure 2) were downloaded from GBIF 
(GBIF.org, 2021), filtering all records from Neotropical carnivores with geographic 
coordinates and with no spatial issues. Yaguarundí data were subset by removing records 
with coordinate precision smaller than three decimal places (i.e., 0.001), and coordinate 
uncertainty greater than 25,000 meters. Since we aimed to compare the distributional 
change in time, we divided the data into two time periods (pre: 2000-2013 and post: 2014-
2021), which were chosen since most of the data were collected from 2000 onwards and on 
average each period represented 50% of the data (presence-absence and presence-only). 
For each time period, we mapped the data to 100 x 100 km resolution grid-cells (Lambert 
azimuthal equal-area projection; centre latitude 0º S and centre longitude 73.125º W) 
covering the entire Neotropical region (i.e., from Mexico to the south of Argentina) - 100 km 
was chosen as a compromise between sufficiently coarse for computational efficiency and 
sufficiently fine to produce useful descriptions of a species’ range at a continental scale. In 
total, there were 261 occurrence records for the first time period and 242 records for the 
second period.  

 



Figure 2: Distribution of yaguarundí data from the two time periods: from 2000 to 2013 (pre) 
and from 2014 to 2021 (post). The top row shows occurrence records from GBIF.org (2021), 
and the bottom, camera-trap surveys from Nagy-Reis et al. (2020) with presences in a 
darker colour and absences in a lighter tone (i.e., blobs in which some carnivore species 
were reported, but not the yaguarundí). The geographic range distribution of the yaguarundí 
according to IUCN is shown in shaded grey for all maps (IUCN, 2022). 

 

Presence-absence data (Figure 2) were extracted from Nagy-Reis et al. (2020), a database 
of neotropical carnivores records. Data were cleaned by retaining surveys using camera 
traps (with detection and non-detection values), with geographic coordinates, with 
information about the study sampling area, with starting and ending month and year of the 
study, and with reported sampling effort (i.e., the number of active camera trap days). For 
each survey, a buffer polygon (hereafter ‘blob’) was created using the latitude and longitude 
as centroid and either the study area or the lat/long precision for the studies at the sampling 
level of “area” as the expected area of the blob (see Nagy-Reis et al. 2020 for details). 
Absences were generated from locations where there was a camera-trap study and the 
yaguarundí was not recorded. We used data from 8,346 surveys for our study period: 4,303 
for the first period and 4,043 for the second. The yaguarundí was recorded in 614 of the 
surveys. Overlapping surveys for each period were then combined in blobs (488 for the first 
period and 480 for the second) and for each one, we calculated the total surface area, the 
time span of the records, and the effort in camera trap days.  

Thinning variables. The real-world occurrences of the yaguarundí can be thought of as a 
point pattern (Baddeley et al., 2015), which is then sampled such that only some points are 
observed (thinned) and end up in GBIF, and ultimately in the presence-only dataset. To 
adjust the presence-only data for sampling effort (i.e., thinning) in each 100 x 100 km grid 
cell, we used data on accessibility from urban areas based on travel time (Weiss et al., 
2020). Based on many past studies (e.g., Geldmann et al., 2016), we expected that highly 
accessible grid cells will have more point records than inaccessible grid cells. In addition, for 
each grid cell, we also included the country of origin to account for differences among 
countries in data-sharing capacities and citizen-science levels of engagement. 

Environmental covariates. The yaguarundí has been reported to occur mainly in lowland 
areas (up to 3,200 m) (Caso et al., 2015) and in a variety of habitats, from dense tropical 
rainforest to open grassland, although in open areas it prefers patches of thick cover 
(Macdonald & Loveridge, 2010). To model its distribution, we chose a set of environmental 
covariates and assessed their relative importance for the species. For each grid cells in the 
100 x100 km grid, and for each blob, we extracted the 19 bioclimatic variables and elevation 
(SRTM) from WorldClim V2.1 (Fick & Hijmans, 2017), land cover at 500m/yearly resolution 
(MCD12Q1) (Friedl & Sulla-Menashe, 2019), net primary production (NPP) 500m/yearly 
resolution (M*D17A3HGF) (Running & Zhao, 2019), percentage of tree cover and 
percentage of non-tree vegetation 250m/yearly resolution (MOD44B) (DiMiceli et al., 2015), 
from NASA MODIS Terra.  

Covariate selection. Using all these covariates would lead to convergence problems due to 
collinearities, so we narrowed down the scope of the covariates for the final integrated 
model. Yet, doing a formal stepwise variable selection in the IDM setting is challenging 
because of computationally intensive MCMC sampling; similarly, Bayesian variable selection 
(O’Hara & Sillanpää, 2009) led to convergence problems. We thus manually selected a 
subset of covariates using (i) published descriptions of yagouarundí’s habitat requirements 
(Caso et al., 2015; Macdonald & Loveridge, 2010), (ii) Pearson correlations among 
covariates (we aimed at minimising them), (iii) findings from simple tree-based machine 
learning (boosted trees, random forests) with the raw presence/absence as a response, and 
all the covariates as predictors. We ended up selecting bio7 (temperature annual range: 



maximum temperature of the warmest month - minimum temperature of the coldest month), 
bio15 (precipitation seasonality), elevation, and NPP (Net Primary Production) (see Figure 
S1 in Supporting Information). 

Covariate extraction to grids and blobs. Continuous covariate data were matched to the 
occurrence data by averaging values within the 100 x 100 km grid cells and to the presence-
absence data by averaging values within blobs. For the land cover (categorical covariate), 
we assigned the mode value (i.e. the most common value) for each grid cell and blob. We 
used the ‘rnaturalearth’ package (South 2022) to obtain Latin American countries’ spatial 
polygons at a large scale. Spatial data analyses were done using ‘sf’ (Pebesma  et al. 2022) 
and ‘terra’ packages (Hijmans et al. 2022). MODIS data were downloaded using ‘MODIStsp’ 
(Busetto et al. 2021).  

The model 

Understanding Bayesian IDMs can be challenging. We thus urge readers to pay close 
attention to our model’s code (https://github.com/bienflorencia/yaguarundi_IDM). It comes 
with a glossary of terms, extensive comments, and further explanations, all aimed at 
providing material that readers can reuse in their own projects.  

Approach to integration. The model assumes that yaguarundí’s distribution can be 
described by a continuous point pattern intensity (equations 1-2 below) across Latin 
America. This intensity is then integrated across blobs to calculate the likelihood of the 
presence-absence (PA) data (eq. 4) or across 100 x 100 km grid cells to calculate the 
likelihood of the counts of presence-only (PO) records within the cells (eq. 8). Both 
likelihoods are then used jointly (Miller et al., 2019) to estimate parameter values. 

Modelling time. A key feature of our model is that it allows for different probability of 
occurrence at each location between the pre- and post- 2013 periods. To understand this, 
let’s point out the parts of the model that are constant in time, and parts that change. We 
model the following model components to be constant in time (identical in pre- and post-
2013): (i) the relationship between point process intensity and environmental covariates, (ii) 
the relationship between accessibility and point process thinning, (iii) the random effects of 
countries on point process thinning, and (iv) the relationship between sampling effort and 
presences/absence data. The only components that change in time are the autocorrelated 
spline surfaces, one for pre-, and the other for post-2013. These capture any time-
dependent spatial structure in the yaguarundí’s occurrence that is not captured by 
(temporally constant) environmental covariates. 

Point pattern intensity. To create the point pattern intensity of yaguarundí occurrences, we 
used design matrices (XPA and XPO) that contained as many columns as the fitted model has 
parameters; in our case 21: an intercept, environmental covariates (elevation, NPP, bio7, 
bio15) and the spline bases. When the design matrices are multiplied by the vector of 
parametric effects (b), they yield the linear predictors (ηPA and ηPO), i.e., the expected point 
pattern intensity, given the values of all explanatory variables in the model:  

ηPA = XPA × b      (1) 

ηPO = XPO × b      (2)  

For the environmental variables, we used weakly informative priors br∼𝖭𝗈𝗋𝗆𝖺𝗅(0,10). Note 

here that b is the same in both eqs. 1 and 2; this is the central part of the model which 
connects the PO and PA data and allows calculation of the joint likelihood. 

Smoothing splines. We used thin plate regression splines (Wood, 2003) to model the 
spatial structure in the distribution that was not accounted for by the environmental 

https://github.com/bienflorencia/yaguarundi_ISDM


covariates. We first generated k=9 spline basis variables prior to the model fitting, using the 
jagam function from the ‘mgcv’ package (Wood, 2017). These variables are then part of the 
XPA and XPO matrices, and they have their own corresponding coefficients in the b vector. 
These coefficients have their own multivariate normal prior, specified using smoothing 
penalty matrices and smoothing parameters; for the sake of simplicity we don’t present the 
complex mathematical definition here; we refer readers to the help of the jagam R function. 
We selected k=9 as it was the highest value that still gave good convergence of the MCMC, 
and also provided sufficiently flexible surfaces to model large-scale geographic range. 

Modelling presence-absence data. Letting yPAi refer to the observed presence (1) or 
absence (0) value in each i-th blob for pre- or post- period, we modelled the blob-specific 
probability of presence (ψi) as a function of the fixed effects of the presence-absence linear 
predictor (ηPAi) and sampling effort (efforti, i.e., number of camera trap days), and the 
logarithm of the area of each blob in m2 (areaPAi) as an offset term. 

cloglog(ψi) = ηPAi + log(areaPAi) + β × log(efforti) (3) 

where the index i identifies blobs.  

The state of this variable follows a Bernoulli distribution with mean ψi:  

yPAi ~ Bernoulli(ψi)     (4) 

Prior distribution of β was β∼𝖭𝗈𝗋𝗆𝖺𝗅(0, 10). 

Modelling presence-only data. We assume that the spatial distribution of individuals may 
be modelled using a Poisson point process. In our model, the true intensity (i.e., mean 
number of points per grid-cell) for the species in each grid-cell j is denoted as νj. We 
modelled it as a function of the exponential of the presence-only linear predictor (ηPOj) by the 
area of each grid-cell in m2 (areaPOj).  

νj = areaPOj × expηPOj     (5) 

where j denotes a grid-cell. 

To model the thinning of the true intensity, we calculated the cell-specific probability of 
retaining/observing a point (ρretj) as a decaying exponential function with a random intercept 
for each country (α0countryj) and a fixed slope for grid-cell accessibility (α1×accej): 

Pretj = α0countryj × exp−α1×accej    (6) 

With prior distributions of α0 and α1 defined as α0c∼𝖡𝖾𝗍𝖺(1, 1) where c∈1:ncntr, and 

α1∼𝖦𝖺𝗆𝗆𝖺(0.5, 0.05). 

Finally, we calculated the thinned intensity per grid-cell (λj) as the product of the true 
intensity (νj) times the probability of retaining a point per grid-cell (ρretj): 

 λj = νj × ρretj       (7) 

The state of this variable follows a Poisson distribution with mean λ,j  where YPO is the 
observed data 

YPOj ∼ Poisson(λtj)     (8) 



Predictions. To predict the probability of occurrence of the species in the two time periods, 
with the linear predictor ηpred, as  

ηpred = XPO × b      (9) 

The detection probability (ρpredj) was modelled for each grid-cell j with area (areaPOj) as an 
offset term. 

cloglog(Ppredj) = ηpredj + log(areaPOj)   (10)  

Derived Quantities. Finally, as derived outputs of the model, we calculated the area of the 
species range for the first period (Apre) and the second period (Apost),  

Apre = ∑Ppredj where j ∈ 1:(nPO/2)   (11) 

Apos = ∑Ppredj where j ∈ nPO/(2:nPO)   (12) 

 and the difference in the area (in number of 100x100km grid-cells) for both time periods 
(ΔA):  

ΔA = Apost − Apre     (13) 

The model was run in JAGS (Plummer, 2003) with the package ‘R2jags’ (Su & Yajima, 2020) 
and using 3 chains, 100,000 iterations per chain, 10,000 burning length and 10 as thinning 
rate. To check for convergence, we controlled “Rhat” statistics and traceplots (see more on 
model diagnostics in the GitHub repository) using the ‘ggmcmc’ package (Fernández-i-
Marín, 2016). All analyses were performed in R 4.0.5 (R Core Team, 2021). The model and 
the model definitions can be accessed at: https://github.com/bienflorencia/yaguarundi_IDM. 

 

Results and Discussion 

We successfully fitted an IDM to study the dynamics of the geographic range of the 
yaguarundí in Latin America over the last two decades. Good convergence values (Rhat < 
1.1) were reached for all model parameters. Data integration enabled us to increase the 
sample size, the geographic extent, and environmental scope for each time period, taking 
advantage of the complementary information and sampling locations in different data 
streams (see Table S4). As the open data revolution continues, and citizen science 
contributes ever increasing amounts of data, we expect IDMs will become a standard tool for 
ecologists, provided that the tools become available. To our knowledge, we present the first 
application of the IDM approach with a temporal dimension and over the entire geographic 
range of a species. 

 

https://github.com/bienflorencia/yaguarundi_IDM


 

Figure 3: Maps of the yaguraundí’s range distribution at the two time periods (a) Rangepre 
from 2000 to 2013, (b) Rangepost from 2014 to 2021, and (c) their difference (Rangepost - 
Rangepre). Shown overlapped in (a) and (b) as a grey outline is the IUCN range map (IUCN, 
2022).  

 

Most up-to-date knowledge of the species range: Expert range maps have played 
important roles in both research and policy by providing information on species distributions 
where there are data gaps. However, expert range maps are unsurprisingly coarse and 
infrequently updated, which means that they rapidly become out-of-date and have been less 
useful for studying range change. Using all the data available (open-access) for the species 
from 2000 to 2021, our modelled geographic range (pre and post) is not entirely consistent 
with the current expert range map from IUCN (Figure 3a, b; grey outline). Specifically, in the 
southern range limit in Argentina and Uruguay and in the Sertão region of north-eastern 
Brazil, where our model predicted a low probability of occurrence, or in the border of Mexico 
with Guatemala and the northern Andes where it predicted a high probability. Thus, we have 
updated the knowledge presented by the IUCN expert’s range map. 

 



 

Figure 4 (a) Boxplot of posterior densities of the predicted area in both time periods: Apre 
from 2000 to 2013 and Apost from 2014 to 2021. (b) Posterior distribution of range change 
(𝛥Area), dashed line = no range change. 

 

Temporal change. The main innovation of our IDM is the estimation of temporal change in 
species’ geographic range, which was possible even over a relatively short time span. We 
found that between the pre- and post-2013 periods, the yaguarundí has contracted its 
southern and northern range limits towards the equator but expanded its area of distribution 
over the entire species’ range (Figure 3, Rangepost - Rangepre; Figure 4). We attribute this to 
the species being rarer close to its environmental niche limits. Yet, at least in the southern 
limit, major land conversions have taken place in the recent decades as a result of 
agriculture expansion, (mainly soybean Baldi & Paruelo, 2008; Song et al., 2021), where the 
species also occurs at relatively low densities (Giordano, 2016; Luengos Vidal et al., 2017). 
The yaguarundí can also be shifting its distribution as a response to changes in 
environmental variables such as increasing temperatures and precipitation anomalies 
(Magrin et al., 2014), or due to the influence of the distribution of other species, e.g., 
competitive exclusion with Leopardus pardalis due to what is known as “the ocelot effect” (de 
Oliveira et al., 2010).  

However, we note that even though our model can model temporal change of species 
ranges, it does not directly test causal hypotheses about drivers of the change. This is 
because we modelled temporal change solely using the different spline surfaces in pre- and 
post-2013 periods, while the environmental covariates in the model were long-term 
averages. In a way, our model thus predicts range kinetics (i.e. temporal change) rather than 
dynamics (i.e. temporal change and its causes). Here we see a clear opportunity for 
extensions of our IDM to directly assess causal drivers of the change. A simple approach 
can be to relate the predicted change of Ppred to an observed change of environment directly 
within the model (specifically, in the “predicted quantities” part). Environmental covariates 
could be decomposed into both the spatial long-term means as well as the temporal 
anomalies (Oedekoven et al., 2017). A more sophisticated approach could involve velocity 
(i.e., magnitude and spatial direction) of both the range and environment (Loarie et al., 2009) 
or modelling co-occurrence effects (Ovaskainen et al., 2017).  

Ecological inference. An advantage of our parametric IDM (over, e.g., a machine learning 
such as random forest) is that it can also be used for ecological inference. According to the 



coefficients for the environmental covariates (Figure 5), the yaguarundí prefers productive 
green areas with good vegetation cover, likely where it can hide (positive effect of NPP in 
Figure 5); it avoids deserts and semi-arid areas such as the Atacama or the Brazilian 
Northeast (negative effect of annual temperature range, or “bio7”); it prefers areas with 
seasonal precipitation, which is most of Latin America except for the deserts, high Andes, 
and extremely humid Colombian forests (positive effect of precipitation seasonality, or 
“bio15”). Finally, we found a positive effect of elevation (but it was also weak, relatively to the 
effect of other covariates, Figure 5). This indicates that the yaguarundí may not be restricted 
to lowlands, as described by Caso et al., (2015). This is in line with several observations 
from higher elevations in our data (presence-only records in Figure 2). Hence our model 
suggests that if an area offers enough vegetation cover and suitable climatic conditions, 
yaguarundí will likely be present, irrespectively of altitude. This insight would be impossible if 
a presence-absence approach to species distribution modelling were used, as these data 
miss the occurrence of yaguarundí in the northern Andes (Figure 2), unlike the presence-
only data. 

 

 

Figure 5. Effect of the environmental covariates on the intensity of the point process. Thick 
lines represent 90% of the highest posterior densities of the parameters and thin lines 
represent 95%. 

 

Inference about sampling effort - the thinning function. A notable feature of our model is 
how we considered the probability of an observation being made if the species was present 
(i.e., the thinning process; equation 6). We made it dependent on the grid-cell accessibility 
since this is a known variable associated with the density of presence-only records and 
reflects the effect of the number of possible observers and their tendency to observe species 
near where they live. Moreover, we allowed its effect to vary among countries, allowing for 
differences in capacities to observe and report species observations. Our results revealed 
that, for the predicted species range distribution (Figure 3), countries such as Argentina, 
French Guiana, and Suriname have reasonable levels of records for the species in 
accessible areas (see Figure S2). However, most countries show low observation-retention 
probability (Pret<0.25 when accessibility is maximum; see Figure S2), which means that even 



areas that are easy to reach only get less than 25% of observations. We expected that 
countries such as Colombia had better levels of sampling effort for the species, as this is one 
of the countries in Latin America with the highest numbers of records in GBIF (GBIF 
Secretariat, 2022). However, the low levels of sampling found there can be related to the 
high abundance (point intensity) of the species in the area. Regardless, some particular 
regions of the species distribution range, as seen by the uncertainty of the estimates, need 
more sampling effort (see Figure S3). 

Limitations and potential extensions. Like with any other model, our IDM has clear 
limitations and scope for improvements. First, the model predicts a high probability of 
yagouarundí’s occurrence in Chile around 20°S parallel, even though the species has never 
been observed in the area; we attribute this to the insufficient flexibility of the spline surface, 
which should in theory be able to account for the problem; specifically, increasing the 
number of bases functions (k) could solve this, although it can lead to convergence 
problems. Second, since it is implemented in JAGS, the model can be extended in various 
ways. Accounting for imperfect detection (Dorazio, 2014; Koshkina et al., 2017), modelling 
multiple species in a joint species distribution models (Doser et al., 2022; Ovaskainen & 
Abrego, 2020), e.g., to share information on the thinning process (Fithian et al., 2015), or 
accounting for false positives (Kéry & Royle, 2021) are some of the potential extensions that 
have recently been tested in the IDM framework (Doser et al., 2022), although not over large 
geographic extents. 

Practical applications and challenges. Jumping from classic statistics to full Bayesian 
statistical inference comes with some hurdles. There are conceptual barriers/obstacles, new 
terms/definitions and much statistical rethinking McElreath (2020). There are also no pre-
made R functions to choose from and users must design and code on their own. This 
requires a greater knowledge of the inner workings of the models, and their ecological 
interpretation. Bayesian methods can be computationally intensive; in our case, it took 230 
minutes in a 16GB RAM 3.2Ghz 8-core laptop to run MCMC with 100,000 iterations. We 
used JAGS (an implementation of BUGS; Lunn et al., 2000) to specify and fit the model, 
since it is more flexible than e.g., INLA (Rue et al., 2009), and also more didactical than e.g., 
STAN (Stan Development Team, 2022). Spatial splines can be a particular challenge to 
code for JAGS, but the jagam function in the “mgcv” R package is enormously helpful for 
this. For more advanced users, however, the latter two may be more computationally 
efficient alternatives. Fortunately, code and data sharing are becoming more and more 
common. From our experience, designing and implementing an IDM from scratch can take 
months to a year. Thus, new users would greatly benefit from collaborating with people that 
have used them before. Hopefully, our analysis, together with the commented code and the 
data (https://github.com/bienflorencia/yaguarundi_IDM) will help to overcome these hurdles. 
In this respect, we also recommend the excellent tutorials by Kéry (2010) and Kéry & Royle 
(2021) and McElreath (2020) together with the course 
(https://github.com/rmcelreath/stat_rethinking_2022).  

Outlook 

In the tropics and the global South, lack of temporal data has always limited understanding 
of how species change their geographic ranges through time (Antonelli et al., 2018; Hortal et 
al., 2015). Most recent studies have focus on the temperate global North (i.e., North 
America, Europe, and Australia-New Zealand) (Chen et al., 2011). Even studies on the 
global scale, such as those based on the BioTime (Dornelas et al., 2018) or the Living Planet 
databases (Loh et al., 2005), have severe data gaps in the tropics. If there are any studies 
that cover the entire world (M. Pacifici et al., 2020), they rely on static geographic ranges 
(e.g., IUCN range maps), which in many regions tend to misrepresent actual species 
distributions (Hughes et al., 2021). Fortunately, unsystematic records from citizen, or 

https://github.com/bienflorencia/yaguarundi_IDM
https://github.com/rmcelreath/stat_rethinking_2022


community-based, science platforms are a growing source of presence-only data. Global 
initiatives such as iNaturalist (www.inaturalist.org) have become popular in Latin America, 
with national nodes in Argentina, Chile, Colombia, Costa Rica, Ecuador, Guatemala, 
Panama, Mexico and Uruguay, now counting more than 2.6 million research-grade 
observations (GBIF.org, 2022). These data have been deemed particularly problematic in 
the estimation of temporal trends of biodiversity and species geographic distributions 
(Peterson et al., 2011). However, with the type of IDMs that we present here, they can 
become a potentially valuable source for species distribution modelling in the region.  

Data availability statement 

All data and extensively commented code used in this paper are openly available at 
https://github.com/bienflorencia/yaguarundi_IDM under CC-BY licence.  
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