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Abstract: 1 

 2 

1. Tundra soils are one of the world’s largest organic carbon stores, yet this carbon is vulnerable 3 

to accelerated decomposition as climate warming progresses. We currently know very little 4 

about landscape-scale controls of litter decomposition in tundra ecosystems, which hinders our 5 

understanding of the global carbon cycle.  6 

2. Here, we examined how local-scale topography, surface air temperature, soil moisture and 7 

permafrost conditions influenced litter decomposition rates across a heterogeneous tundra 8 

landscape on Qikiqtaruk - Herschel Island, Yukon, Canada. 9 

3. We used the Tea Bag Index protocol to derive decomposition metrics, which we then compared 10 

across environmental gradients, including thermal sum surface temperature data derived from 11 

fine-resolution microclimate data modelled from drone derived topographic data. 12 

4. We found greater green tea litter mass loss and faster decomposition rates in wetter and warmer 13 

areas within the landscape, and to a lesser extent in areas with deeper permafrost active layer 14 

thickness. 15 

5. Spatially heterogeneous belowground conditions (soil moisture and active layer depth) 16 

explained variation in decomposition metrics at the landscape-scale (> 10 m) better than surface 17 

temperature. 18 

6. Surprisingly, there was no strong control of elevation or slope of litter decomposition. We also 19 

found higher decomposition rates on North-facing relative to South-facing aspects at microsites 20 

that were wetter rather than warmer. 21 

7. Synthesis: Our results show that there is scale-dependency in the environmental controls of 22 

tundra litter decomposition with moisture playing a greater role than microclimate at local 23 

“plot” scales. Our findings highlight the importance and complexity of microenvironmental 24 

controls on litter decomposition in estimates of carbon cycling in a rapidly warming tundra 25 

biome. 26 

 27 

 28 
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Introduction:  57 

 58 

Climate change could lead to heterogeneous ecosystem responses across microclimates 59 

Northern latitudes are warming at three times the rate of the global average, alongside increased 60 

precipitation and permafrost thaw (Bintanja & Andry, 2017; AMAP, 2021; IPCC, 2021; Kaufman et 61 

al., 2009; AMAP, 2017; Xue et al., 2016). In response, trees and woody shrubs are shifting their 62 

distributions northward, and vegetation, particularly in shrubs, grasses and sedges, is increasing across 63 

tundra landscapes (Chapin et al., 2005; Elmendorf, Henry, Hollister, Björk, Boulanger-Lapointe, et al., 64 

2012; Holtmeier & Broll, 2005; Myers-Smith, Forbes, et al., 2011; Myers-Smith & Hik, 2018). 65 

Warming temperatures are also contributing to increasing decomposition rates in the Arctic, and higher 66 

rates of carbon cycling (Aerts, 2006; Hobbie, 1996; Mekonnen et al., 2021). The rate and magnitude of 67 

both above and belowground ecosystem changes are heterogeneous across the tundra, and may partly 68 

be explained by local environmental variation, for example in soil moisture content (Ackerman et al., 69 

2017; Bjorkman et al., 2018; Elmendorf, Henry, Hollister, Björk, Bjorkman, et al., 2012; Myers-Smith 70 

et al., 2015; Scharn et al., 2021). However, despite a growing understanding of the diverse ecological 71 

responses to climate change, the role of microenvironments and microclimates in mediating tundra 72 

carbon cycling is not yet clear, and there are likely many interactions between vegetation community 73 

change and decomposition dynamics in cold environments (Aguirre et al., 2021; Björnsdóttir et al., 74 

2021; Kemppinen, Niittynen, le Roux, et al., 2021; Kemppinen et al., 2021). 75 

 76 

Climate change is altering the Arctic carbon cycle, but we don’t know the role of microclimate 77 

The Arctic tundra and boreal regions are some of the planet’s largest carbon stores, with approximately 78 

217±12 Pg of carbon stored in the top 30 cm of permafrost soils (Hugelius et al., 2014; Miner et al., 79 

2022; Schuur et al., 2009). On a global scale, climate warming is predicted to accelerate decomposition 80 

rates and in turn trigger greater release of carbon into the atmosphere (Bond-Lamberty & Thomson, 81 

2010; Crowther et al., 2016; Davidson & Janssens, 2006). With increased prevalence of leaf litter 82 

material available to decompose, there is potential for a positive feedback loop whereby increased 83 

decomposition will generate increased levels of carbon from this newly available leaf litter (Hobbie et 84 
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al., 2000). A negative feedback effect could occur whereby an increase in recalcitrant litter due to 85 

increasing shrub abundance, could lead to a net deceleration of decomposition and net increase in 86 

carbon storage across the tundra (Cornelissen et al., 2007a). Vegetation type - and thus litter quality, 87 

which we define as the litter’s quality as a resource for microbes - is a strong predictor of decomposition 88 

(Aerts, 2006; Aerts et al., 2012; Buckeridge et al., 2010; Thomas et al., in review). For example, 89 

graminoid species commonly produce more labile litter, while many shrub species often produce more 90 

recalcitrant woody litter (Cornelissen et al., 2007a; Shaver et al., 2006). However, landscape-scale 91 

variation in Arctic vegetation and permafrost disturbances are not reliably captured (more frequently 92 

underestimated) by macro-scale observations (Assmann et al., 2020; Berner et al., 2020; Myers-Smith 93 

et al., 2020; Siewert & Olofsson, 2020). We thus need to  quantify the heterogeneity of the relationship 94 

between local environmental conditions and litter decomposition metrics across the tundra to better 95 

estimate future carbon losses (Bradford et al., 2014). 96 

 97 

Info Box: Microclimate terminology & spatial scaling 98 

Spatial and temporal scales have long been considered a key issue for ecologists (Levin 1992). Field-99 

based monitoring methods are often used to derive our broad-scale ecological predictions based on 100 

observations from limited sample sizes, and narrow domains of scale. Local above- and below-ground 101 

climate conditions vary across space. However, limited field observations of these variables cannot 102 

capture potentially meaningful local heterogeneity across a landscape and through time, particularly 103 

when low-resolution gridded climate data does not represent the climatic conditions occurring at the 104 

scale of the biological processes of interest (Bütikofer et al., 2020). The relative importance of 105 

microclimate versus regional macroclimate as an abiotic driver of ecological processes is increasingly 106 

appreciated in the literature (e.g., Lembrechts & Nijs, 2020; Niittynen et al., 2020), with more and more 107 

studies collecting thorough abiotic measurements across spatially heterogeneous tundra landscapes 108 

(Lembrechts et al., 2022; Rixen et al., 2022). However, consistent definitions of microclimate and 109 

microenvironment are not widely used in terms of both scientific classification and spatial extent. Here, 110 

we define ‘microenvironment’ as an umbrella term for highly localised abiotic and biotic conditions, 111 

including ‘microtopography’ (highly localised elevation, slope and aspect), vegetation community, and 112 
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‘microclimate’ (highly localised above- and below-ground temperature and soil moisture conditions). 113 

Further to these classifications, we define the ‘macro’ scale as encompassing > 10s of kilometres square, 114 

the ‘landscape’ scale as encompassing 0.1 - 10 kilometres square, and ‘micro’ scale as the highly local 115 

< 10 m square scale. We refer to the plot-scale to indicate variation within our spiral plots in this study, 116 

but acknowledge that the plot-scale will vary across studies according to the experimental design. 117 

 118 

Abiotic controls on decomposition rates may vary in importance across spatial scales 119 

At the macro scale (10s of kms), litter decomposition is strongly influenced by abiotic conditions. 120 

Among the different abiotic factors, air temperature is a key driver of decomposition, both globally and 121 

within tundra ecosystems, though surface temperatures operating at the scale of tundra plant organisms 122 

may be a stronger driver (Bütikofer et al., 2020; Hobbie, 1996; Sierra et al., 2015). Based on macro-123 

scale observations, we may therefore expect decomposition rates to increase across tundra regions 124 

parallel to climate warming (Aerts, 2006; Crowther et al., 2016; Davidson & Janssens, 2006). In 125 

contrast, at the landscape scale (0.1 - 10 kms) and at local scales (i.e., < 10 m), variables such as soil 126 

moisture and active layer depth are highly variable (Ackerman et al., 2017; Bjorkman et al., 2018; Yi 127 

et al., 2018; Zona et al., 2011) and may mediate decomposition rates. We do not know the extent to 128 

which different tundra litter types are controlled by soil conditions versus surface temperatures, or at 129 

which spatial thresholds an environmental variable becomes a reliable predictor of decomposition 130 

characteristics. 131 

 132 

The Tea Bag Index protocol reveals complexity of temperature and soil moisture as decomposition drivers 133 

Litter and substrate quality is also a key determinant of decomposition metrics (Cornwell et al., 2008). 134 

Attempts to segregate the influence of environmental variables on decomposition metrics are therefore 135 

often confounded by variation in substrate characteristics. One tool that has been used to address this 136 

issue is the Tea Bag Index - a standardised protocol in which rooibos and green teas are used as a proxy 137 

for naturally occurring recalcitrant and labile litter types, and their relative mass loss after a period of 138 

burial is used to calculate decomposition rates (Keuskamp et al., 2013). While the protocol involves 139 

using non-indigenous litter, it enables comparison across, and within, biomes, and experiments suggest 140 
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that the leaching of the tea bags are comparative between soil types, and are therefore reliable and stable 141 

proxies of local decomposition (Blume-Werry et al., 2021). In tundra environments, experiments using 142 

the Tea Bag Index (TBI) have indicated that soil temperature is the most accurate predictor of 143 

decomposition rates at the regional scale, but soil moisture conditions may actually be a stronger driver 144 

of litter decomposition on a site-b(Björnsdóttir et al., 2021)y-site basis (Thomas et al., in review; Walker 145 

et al., in prep).  146 

 147 

The TBI protocol has also been implemented with warming manipulations to further investigate the 148 

potentially interacting microenvironmental drivers of decomposition. Sarneel et al. (2020) found 149 

stabilisation rates (a proxy for the amount of undecomposed litter after a period of litter burial) were 150 

more strongly driven by soil moisture than warming treatments - indicating that moisture conditions 151 

could be inhibiting decomposition. Björnsdóttir et al. (2021) observed higher decomposition rates under 152 

experimental warming conditions. They found that areas with vegetation shifts associated with warming 153 

also had higher decomposition rates, indicating indirect long term effects of warming, potentially as a 154 

result of increased litter input and associated changes in localised microbial communities   (Björnsdóttir 155 

et al. 2021). The replicable nature of the TBI protocol, and its past success as a proxy of tundra 156 

decomposition traits, makes this an ideal tool for untangling the environmental drivers of decomposition 157 

across contrasting spatial scales. 158 

 159 

Microenvironmental conditions interact with each other, and with biotic controls on decomposition 160 

Abiotic conditions such as temperature and soil moisture and biotic variables such as vegetation types 161 

could likely interact with each-other to control decomposition. Decomposition rates are generally higher 162 

in wetter (though not saturated) soils, likely due to increased soil microbial and detritivore activity 163 

(Aerts, 2006; Buckeridge et al., 2010; Murphy et al., 1998; Rinnan et al., 2008; Swift et al., 1979; 164 

Thakur et al., 2018; Waring & Schlesinger, 1985; Thomas et al. in review; Walker et al., in prep). 165 

Experiments demonstrate greater decomposition with warming in tundra ecosystems with variation 166 

across vegetation types (Sarneel et al. 2020; Björnsdóttir et al. 2021). However, warming temperatures 167 

often lead to increased evapotranspiration in soils and therefore can also reduce rates of decomposition 168 
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(Rinnan et al., 2008; Sjögersten & Wookey, 2004), although this trend may be moderated in part by 169 

increased precipitation across northern latitudes (Sierra et al., 2015). Although labile litters, which are 170 

not as molecularly complex, decompose more rapidly (Davidson & Janssens, 2006), recalcitrant litters 171 

are also sensitive to soil moisture content and temperature (Suseela et al., 2013). To reliably predict 172 

future decomposition changes, it is important to consider the potentially interactive effects between 173 

these spatially variable drivers - and in particular disentangle the spatial scales at which these 174 

meaningful interactions operate to control long-term decomposition trends. 175 

 176 

Earth-system models do not capture variability across heterogeneous tundra landscapes 177 

Small adjustments to Earth-system models that simulate carbon balances can cause substantial changes 178 

in predicted future carbon storage and carbon losses (Carey et al., 2016; Crowther et al., 2016; Van 179 

Gestel et al., 2018). Local site-specific abiotic conditions explain ~73% of variation in global 180 

decomposition, while macroclimate data explain only ~28% (Bradford et al., 2014). As tundra 181 

ecosystems exhibit heterogeneity in both in vegetation patterning in above- and below-ground 182 

environmental conditions, we may expect to see variance in decomposition explained by regional 183 

macroclimate, and some explained by landscape-specific conditions (Ackerman et al., 2017; Bjorkman 184 

et al., 2018; Elmendorf, Henry, Hollister, Björk, Bjorkman, et al., 2012; Myers-Smith et al., 2015). A 185 

remaining question is therefore to what extent does decomposition, and thus carbon cycling, vary across 186 

landscapes that span multiple environmental gradients. 187 

 188 

In this study, we investigated the spatial patterning and drivers of litter decomposition across a 189 

heterogeneous tundra landscape, spanning above- and below-ground microenvironmental gradients. We 190 

derived comparable litter mass loss metrics across multiple plots on Qikiqtaruk - Herschel Island, 191 

Yukon Canada. We collected local belowground micro-environmental data (soil moisture and active 192 

layer thickness). We used unoccupied aerial vehicle (hereafter drones) surveys to collect fine-resolution 193 

topographic data to model and analyse the varying effects of aboveground (surface microclimate) 194 

drivers on litter decomposition. We asked the following research questions: (1) How do microclimate, 195 

microtopography and soil conditions vary spatially across a tundra landscape? (2) How does 196 
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microtopography, microclimate, soil moisture and active layer thickness relate to litter 197 

decomposition? And, (3) do surface microclimate and below-ground microenvironment drivers 198 

interact to influence litter decomposition?. We tested the following hypotheses. 1) Mass loss is 199 

greater, and decomposition rates faster, in warmer and wetter areas and where permafrost active layers 200 

were deeper. And, 2) litter decomposition is greater at lower elevations in wetter soils, and on warmer 201 

south-facing slopes. Finally, we investigated the spatial patterning of both decomposition metrics and 202 

these environmental variables to determine whether the relationships between heterogeneous above- 203 

and below-ground environmental variables and carbon cycling are scale-dependent.  204 

 205 

Methods & Materials: 206 

 207 

We conducted our experiment on Qikiqtaruk - Herschel Island (69.6°N, -138.9°E) on the Arctic coast 208 

of the Yukon Territory, Canada. The undulating terrain and heterogeneous land cover at this site were 209 

ideally suited to test our research questions. 210 

 211 

Study site 212 

Qikiqtaruk has a maximum elevation of 183 m above sea level and is underlain entirely by ice-rich 213 

permafrost (Burn & Zhang, 2009). The general vegetation type is moist acidic shrub tundra (Myers-214 

Smith & Hik, 2013), with two dominant vegetation communities across the island: ‘Herschel’ 215 

vegetation type, characterised by Eriophorum vaginatum tussocks and Salix pulchra canopies, and 216 

‘Komakuk’ vegetation type, characterised by forb species (e.g., Lupinus arcticus), mosses, grasses, the 217 

willow species Salix arctica and Salix glauca, and Dryas integrifolia (Myers-Smith, Hik, et al., 2011). 218 

The spatial patterning of these vegetation communities is controlled by topography, soil conditions and 219 

physical disturbance (Obu et al., 2017). The vegetation across the island is sensitive to climate warming 220 

- canopy cover and plant heights have increased over the past two decades due to both community 221 

turnover and individual phenotypic responses (Myers‐Smith et al., 2019). These changes correspond 222 

with trends observed across the surrounding western Canadian Arctic and more widely across the tundra 223 
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biome (Tape et al., 2006). The variable terrain and vegetation cover create heterogeneous 224 

microenvironmental conditions across the 1.5 km study transect (Fig. 1). 225 

 226 

 227 

Figure 1: 20 x Green and Rooibos tea bag pairs were buried across eight spiral plots (a). The white dots (b & c) 228 

indicate the distribution of tea bag pairs within the spirals (1 x Green tea bag, 1 x Rooibos tea bag), and the red 229 

lines (a-c) represent the spiral design of each of the plots.  230 

 231 

Tea bag Index 232 

We used the Tea Bag Index protocol (Keuskamp et al., 2013) to investigate litter decomposition 233 

characteristics at Qikiqtaruk - Herschel Island (hereafter Qikiqtaruk) across a range of 234 

microenvironmental gradients. This protocol offers a standardised method to calculate the mass loss of 235 

specific green and rooibos tea mixes, which can be obtained globally, and allow for the protocol to be 236 

replicated across multiple biomes (Keuskamp et al., 2013). The green tea is a more labile litter with a 237 

lower carbon:nitrogen ratio than the more recalcitrant rooibos tea litter. The two tea types therefore 238 

provide a homogeneous decomposition substrate that have mass loss characteristics that correspond 239 
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well to tundra species (Thomas et al., in review), and can easily be compared to Tea Bag Index data 240 

collected globally.  241 

 242 

Experimental design 243 

In the summer of 2017, we buried 160 pairs of green and rooibos tea bags (320 tea bags in total) in 244 

spiral patterns to capture a range of environmental gradients and to explore similarities between samples 245 

at close vs distant proximity We established eight distinct plots along a 3 km east-west transect at 246 

Qikiqtaruk (Fig. 1). The landscape is relatively planar, with an elevation range of 72.58 m across teabag 247 

sample points, but the transect crosses a variety of soil moisture, permafrost, and vegetational gradients 248 

with differential microtopographic patterning. We planted pairs of tea bags at 2 cm depth in the soil and 249 

geolocated them using a survey grade RTK GNSS instrument accurate to ca. 3 cm. We measured the 250 

dry weight of tea bags on 11th July 2017 prior to the date of burial on 13th July 2017, and extracted the 251 

tea bags on the 9th August 2017, after 28 days left undisturbed to decompose over the course of the 252 

tundra growing season. We then dried the bags at 70°C before weighing the tea bags to establish mass 253 

loss. 254 

 255 

Microenvironmental variables 256 

In positioning the teabag pairs across multiple plots and in a spiral pattern, we aimed to sample different 257 

micro environmental conditions including microclimates, microtopographies, and soil properties (i.e., 258 

soil moisture content and active layer thickness). At the burial site of each of the 160 litter pairs, we 259 

recorded soil moisture and active layer thickness (observations x 160) on the 13th July when the tea 260 

bags were buried, and once again on the 9th August when the tea bag pairs were recovered. We used a 261 

Hydrosense moisture metre (Campbell Scientific, Hyde Park, NSW, Australia) to record soil moisture, 262 

and measured active layer thickness by probing the soil with a thin metal stake and measuring the 263 

vertical distance from soil surface to the top of the permafrost layer. These belowground 264 

microenvironmental variables were then matched to the correct derived microclimate and terrain 265 

estimates and tea bag index metrics for subsequent analysis.  266 

 267 
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Drone survey 268 

We carried out topographic surveys using three drone platforms to collect RGB multispectral data at a 269 

fine (3 cm) spatial resolution: DJI Phantom 4 Pro and Advanced (multicopter), and Phantom FX-61 270 

(fixed wing). We used photogrammetry and structure from motion with multiview steriopsis to obtain 271 

a fine-grain 10 cm spatial resolution digital surface model and orthomosaic as described in Cunliffe et 272 

al. (2019a, 2019b). 273 

 274 

Microclimate and terrain estimates 275 

We used the microclima package in R (Kearney et al., 2020; Maclean et al., 2019) to model surface air 276 

temperature at a 1-m spatial grain. Using our fine resolution DSM, we modelled mean surface 277 

temperatures at the study site for each day spanning the teabag burial period of 13th July to 9th August 278 

2017. The microclima model incorporates local daily climate, radiation, cloud cover and coastal 279 

exposure data from gridded global datasets derived from RCNEP (Kemp et al., 2012). We summed the 280 

28 TIF files produced through this modelling technique to produce a 28-day thermal sum variable - a 281 

metric which captures the overall heating of the ground surface over the course of the experiment. We 282 

used the precise geolocation of each tea bag pair and extracted specific topography data (elevation above 283 

sea level, slope and aspect extracted using the “starsExtra” v.0.2.7 package in R [Dorman 2021]) from 284 

the DSM. We classified the aspect of each pixel by a range into the cardinal aspects of north, south, east 285 

and west. We aggregated the DSM file from a 10 x 10 cm resolution to a 1 x 1m resolution to match 286 

the microclimate TIF, and surface temperature thermal sum (our microclimate variable) at 1 m 287 

resolution from the modelled microclimate maps.  288 

 289 

Decomposition metrics 290 

We calculated mass loss and decomposition characteristics following the Tea Bag Index protocol 291 

(Keuskamp et al., 2013). Using the before- and after- burial weights of the tea bags, we calculated 292 

percentage mass loss for each individual tea bag. Using tea bag pairs, we also calculated the stabilisation 293 

factor (S) for each burial point - a factor expressing the difference between the observed and the 294 

expected decomposition of tea bags. This metric indicates the amount of remaining undecomposed litter 295 
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after the period of burial, and therefore acts as a proxy for environmental inhibition to decomposition. 296 

This metric is calculated using labile green tea and was calculated as follows: 297 

 298 

Equation 1: 299 

  300 

!	 = 	1	 −	('()() 301 

!"	 = %!&&	'(&&	()	"*++,	-+!	 302 

."	 = ℎ01*('0&!2'+	)*!3-4(,	()	"*++,	-+!	 = 	0.842	 303 

 304 

We also calculated the decomposition rate (k), a factor expressing the rate at which the decomposable 305 

fraction of litter is lost, and hence acts as a proxy for the speed of decomposition. This metric is 306 

calculated using recalcitrant rooibos tea, and was calculated as follows: 307 

 308 

Equation 2: 309 

 310 

+	 = 	,-( !"
#$(")	(	!")	. )$ 311 

 312 

!*	 = 	1+3(%:(&!2'+	)*!3-4(,	()	*((42(&	-+! 313 

.*	 = 	0.552	 = 	ℎ01*('0&!2'+	)*!3-4(,	()	*((42(&	-+! 314 

< = 	*((42(&	-+!	%!&&	!-	-4%+	:(4,-	- 315 

 316 

'/	 = 	)/	.	(1	 − 	!) 317 

= = 	&-!24'4&!-4(,	)!3-(* 318 

 319 

 320 
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Spatial statistics 321 

To investigate the spatial patterning and scaling of both the decomposition metrics and thermal sum and 322 

the observed microenvironmental variables (soil moisture content and active layer thickness), we 323 

produced variograms using gstat v. 2.0-5 package in R (Pebesma, 2006). We allowed the package’s 324 

algorithm to select an appropriate best fit model from the options: spherical, matern and exponential. 325 

These plots and accompanying statistics characterise any spatial autocorrelation present in the dataset, 326 

and represent varying levels of similarity between data points both within spiral plots and across the 327 

landscape.  328 

 329 

Principal components analysis 330 

We conducted Principal Components Analysis (PCA) using the FactoMineR package in R (Lê et al., 331 

2008) to investigate spatial patterning of the modelled and observed environmental variables and 332 

decomposition metrics across the landscape. We plotted the first and second component axes to identify 333 

potential spatial patterning and clustering of our derived (thermal sum, teabag mass loss, decomposition 334 

rate, stabilisation factor) and observed variables (elevation, slope, aspect, soil moisture, active layer 335 

thickness), and to explore the extent to which any clustering was controlled by spatial patterning. Using 336 

these two forms of spatial analysis, we investigated spatial heterogeneity within the above- and below-337 

ground conditions at the study site, and whether this heterogeneity is reflected in the spatial patterning 338 

of the decomposition metrics.  339 

 340 

Hierarchical models 341 

We used Bayesian linear models to run two sets of models: one set estimating soil and surface 342 

environmental controls on decomposition characteristics, and one set exploring the topographical 343 

controls (elevation, slope and aspect) of decomposition characteristics. Each of the two sets of models 344 

included a separate model featuring one of the following decomposition metrics as the response 345 

variable; green tea mass loss, rooibos tea mass loss, stabilisation factor (S) and decomposition rate (k).  346 

 347 
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For the soil and surface influences models, we fitted the model with each decomposition characteristic 348 

as the response variable, and surface temperature thermal sum, active layer thickness and soil moisture 349 

content as fixed effects. We also ran models in which we fitted the interaction between the thermal sum 350 

and active layer thickness, and the interaction between the thermal sum and soil moisture % content to 351 

investigate potential interactive effects between above- and below-ground conditions. For the 352 

topography models, we fitted the model with each of the decomposition characteristics as the response 353 

variable, and elevation, slope and aspect as fixed effects. For each of our models, we included ‘plot ID' 354 

as a random effect, and did not use random slopes in our analysis due to non-convergence in each of 355 

the models.  356 

 357 

We completed this analysis using the brms package (Bürkner, 2017), using weakly informative priors 358 

for all models, two chains, 8000 iterations and a warmup value of 2000. We conducted all analyses in 359 

R version 3.6.3 (R Core Team, 2013). The code and data used for this study can be downloaded here: 360 

https://github.com/ShrubHub/MicroTeaHub and https://doi.org/10.5281/zenodo.6411321. The 361 

processing reports and workflow for the drone data can be found in the respective methodologies of 362 

Cunliffe et al., 2019(a) and Cunliffe et al., 2019(b). 363 

 364 

Results: 365 

 366 

(1) How do microclimate, microtopography and soil conditions vary spatially across a tundra 367 

landscape? 368 

 369 

Microclimates varied with topography across the study area 370 

Modelled microclimate was highly variable across Qikiqtaruk. Our modelled thermal sum map 371 

represented the range of mean surface temperatures 10 cm from the surface over the burial period in 372 

summer 2017 (Fig. 2). The thermal sum across the landscape and over the study period ranged from 373 

121-140°C. Surface temperature was negatively correlated with elevation (Pearson’s -0.88, p < 0.05). 374 
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Predicted microclimates were coldest on north-west facing slopes and warmest in valley bottoms and 375 

south-east facing slopes. 376 

 377 

Topography affects microclimate, but does not directly affect decomposition 378 

We found minimal influence of elevation, slope and aspect on decomposition patterns (Fig. 2). We 379 

found no significant relationship between elevation or slope and any of the decomposition metrics 380 

(Table S1), although we acknowledge that elevation does not vary dramatically across the study site. 381 

We found a low magnitude and highly uncertain negative relationship between green tea mass loss and 382 

both elevation and slope, but no relationship between decomposition rate (k) and both elevation and 383 

slope. Contrary to our predictions, our results indicated that green tea mass loss was significantly higher 384 

(Slope 0.121, CI: 0.052-0.021) - and stabilisation factor lower (Slope: -0.095, CI: 0.041–0.174) on 385 

north-facing slopes compared to south-facing slopes (Fig. 2; Table S1). 386 

 387 

 388 

Figure 2: Green tea mass loss and decomposition rates were lower at higher elevations (a, c). Green tea mass loss was higher 389 

on north-facing slopes (b, d). The trend lines (a,c) and error bars (b,d) are Bayesian model fits with ribbons showing 95% 390 

credible intervals. Full outputs can be found in Supplementary materials (Table S1). Map of surface temperature thermal sum 391 

at 10 cm height generated using the microclima package (Maclean, 2020) representing conditions in July and August 2017 at 392 

Qikiqtaruk - each black dot represents a teabag burial pair (e).  393 

 394 
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Microclimates varied at larger spatial scales than soil moisture and active layer, but decomposition was highly 395 

variable across the study area 396 

 397 

Surface temperature thermal sum varied between, but not within plots, whereas soil moisture and active 398 

layer thickness was highly heterogeneous within plots (wide range of soil moisture % within each plot) 399 

(Fig. 3). Semivariance, the degree of a correlative relationship between spatial points, of active layer 400 

thickness had a range of ~ 30 m between pixel pairs (nugget: 56.2 mm; sill: 114.8 mm), and similarly 401 

semi-variance of soil moisture content had a range of 34.7 m between pixel pairs, but did not plateau 402 

for thermal sum (Fig. 3). The unexplained spatial variability was low for the active layer thickness, soil 403 

moisture content and thermal sum models. Semi-variance did not plateau for green tea mass loss (semi-404 

variance: 20.77%; range: 0 m). See supplementary Table 1 for variogram statistics.  405 

 406 
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 407 

Figure 3: We found high among-plot spatial heterogeneity for rooibos tea mass loss (a), active layer thickness (b) 408 

and soil moisture % (c), in contrast to more within-splot variation in both green tea mass loss (d) and thermal sum 409 

(e). Semivariance plateaus were ~30 m for active layer thickness and < 100 m for soil moisture content, but did 410 

not plateau for surface mean temperature and green tea mass loss. Eastings and Northings are in the spatial 411 

reference system NAD83 UTM 7N (EPSG: 26907). 412 

 413 

(2) How does microtopography, microclimate, soil moisture and active layer thickness influence 414 

litter decomposition? 415 
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 416 

The controls on decomposition varied across plots along the study transect 417 

 418 

We found significant spatial clustering of decomposition and environmental metrics on the plot-by-plot 419 

scale, based on our PCA analysis. Eigenvalue analysis showed that respectively, the first three principal 420 

component axes explained 28.4%, 23.2% and 17.9% of the overall variance in the data (Fig. 4). PC1 421 

was more strongly associated with green tea mass loss, stabilisation factor and elevation, whereas PC2 422 

was more strongly associated with thermal sum (Fig. 4). Further, while decomposition correlates best 423 

with PC3, stabilisation factor correlates best with PC1. Collison Head (Komakuk vegetation 424 

community) and Collison Head (Herschel vegetation community) were more strongly characterised by 425 

elevation and aspect. In contrast, the Orca Floodplain plot, the wettest plot with the deepest active layer, 426 

was more strongly characterised by soil moisture and active layer conditions. The Flower Plot, East 427 

Creek North and East Creek South plots were more strongly associated with thermal sum and slope. 428 

Overall, the microclimate variables and elevation contributed much more to the clustering of 429 

observations than soil moisture content, active layer thickness, aspect and slope. These findings reflect 430 

the within-plot variation of each of the observed environmental variables (Fig. 4). 431 
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 432 

Figure 4: Plots were characterised by microclimate and elevation, while soil conditions were more spatially heterogeneous. 433 

Top panel: Principal Components Analysis (PCA) shows clustering of spiral plots by microenvironmental and decomposition 434 

variables. Microclimate and decomposition metrics contributed more to this spatial clustering than soil conditions or 435 

topography. Ellipses represent 95% confidence intervals of group clustering. Bottom Panel: mean surface temperature and 436 

elevation show low plot-specific variability, while soil moisture content and active layer thickness varies substantially within 437 

each spiral plot.  438 

 439 

(3) Do surface microclimate and below-ground microenvironment drivers influence litter 440 

decomposition? 441 

 442 

Soil moisture and active layer thickness influenced decomposition 443 

 444 
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We found that mass loss in labile green tea was significantly greater in wetter versus drier plots. With 445 

each increase in 10% soil moisture content, we found an additional 5.2% green tea mass loss, with a 446 

narrow margin of error (CI: -3.1 – 7.2; Fig. 5). Green tea mass loss increased to a slightly greater 447 

magnitude with higher mean surface air temperatures, though with a very wide margin of error (Slope: 448 

3.4, CI: -20.8 – 35.9; Fig.5). The differences in soil moisture content and surface air temperature 449 

between spiral plots accounted for 22% of variance within the data. We found non-significant negative 450 

trends for the effects of these variables on the stabilisation factor (S) (Fig. 5, Table S1).  451 

 452 

We also found that every increase in 10 cm active layer thickness corresponded to a 3% significant 453 

increase in green tea litter mass loss (Slope: 2.9, CI: 0.29-5.53). We found significant inverse trends for 454 

the effects of active layer thickness on green tea mass loss (Slope: -0.06, CI: -0.115--0.004). We 455 

identified no significant relationships between the environmental variables (thermal sum, soil moisture, 456 

active layer thickness), and rooibos tea mass loss or decomposition rate (k) (Fig. 5, Table S1). 457 

 458 

Weak Interactions were found between temperature and soil conditions  459 

With increasing soil moisture content and mean surface air temperatures, the stabilisation factor (S) 460 

decreased, indicating smaller amounts of remaining undecomposed litter after the period of burial (Fig. 461 

S1, Table S3). In contrast, we found no relationship between decomposition rate (k) and either soil 462 

moisture content and thermal sum. There was no strong interaction between thermal sum and active 463 

layer thickness. Our results did, however, indicate that decomposition was faster where the active layer 464 

was deeper in cooler microclimates with wetter soils, and slower in areas with deeper active layers but 465 

warmer surface temperatures and drier soils (Fig. S1, Table S3). 466 

 467 

Controls on litter mass loss are scale dependent 468 

 469 

The relationships between mean surface temperature, soil moisture and active layer thickness were 470 

positive on the whole-landscape (or ‘across-plots’) scale, but they varied on a plot-by-plot (or ‘within-471 

plots’) scale (Fig. 5; Tables S1 and S2). For example, while the relationship between mean surface 472 
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temperature and active layer depth was only slightly positive at the landscape scale, it was strongly 473 

positive at the Flower Plots. Likewise, the strongest driver of decomposition on the landscape-scale was 474 

soil moisture, but the plot-scale trends differed considerably, with four plots exhibiting negative trends, 475 

three plots exhibiting positive trends, and one plot exhibiting no discernable trend. These results 476 

highlight not only the spatial heterogeneity of below-ground conditions across the landscape (Fig.3) but 477 

also the spatial heterogeneity of the corresponding decomposition responses (Fig.5).  478 

 479 

Figure 5: While there was a positive trend between mean surface temperature, soil moisture and active layer 480 

thickness on green tea mass loss, the plot-scale trends varied considerably. For example, the relationship between 481 

active layer thickness and green tea mass loss was positive at the Flower Plot plot, while the relationships between 482 

both mean surface temperature and soil moisture with green tea mass loss was anomalously negative. Plots a-c 483 

represent individual tea-bag pair relationships, plots d-f represent averaged plot-scale relationships. Coloured 484 

trend lines (a-c) represent plot-scale trends, and grey trend lines represent landscape-scale trends (a-f). Increased 485 
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soil moisture, active layer thickness and thermal sum surface temperatures corresponded with higher green tea 486 

mass loss (g-i). The trend lines for (g-i) are Bayesian model fits with ribbons showing 95% credible intervals, 487 

while the trend lines for (a-f) are linear model fits with ribbons showing 95% confidence intervals. Full outputs 488 

can be found in Table S1. 489 

 490 

When we ran models without the plot random effect, we found that scale dependency of these 491 

relationships - whereby some variables better explained decomposition across plots, while some better 492 

explained decomposition within plots (Table S2). For example, green tea mass loss was slightly better 493 

explained by soil moisture averaged across plots, versus within plots, although there was little difference 494 

in the within-plot versus across-plot trends for decomposition rate or stabilisation factor. Likewise, 495 

green tea mass loss was slightly better explained by active layer thickness averaged across plots, versus 496 

within plots, while decomposition rates were slightly better explained by active layer depth within plots 497 

(Table S2). 498 

 499 

Discussion: 500 

How do microclimate and soil conditions vary spatially across a tundra landscape? 501 

 502 

Soil moisture and active layer depths varied more across the landscape compared to modelled 503 

temperature 504 

Overall, we found that soil moisture and active layer thickness better explained variation in litter mass 505 

loss relative to temperatures. With each increase in 10% soil moisture content, we found an additional 506 

5.2% green tea mass loss, with a narrow margin of error (CI: -3.1 – 7.2; Fig. 5), and with every increase 507 

in 10 cm active layer thickness corresponded to a 3% significant increase in green tea litter mass loss 508 

(Slope: 2.9, CI: 0.29-5.53), while the relationship between thermal sum and green tea mass loss was 509 

negligible. We found that variation in soil moisture and active layer thickness best explained litter mass 510 

loss within-plots (< 30 m) versus among plots across the landscape (‘across plots’, > 30 m, Fig. 4). 511 

Despite these scaling dependencies, the relationship between the belowground variables and 512 
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decomposition metrics varied considerably among plots (Fig.6; Table S1). Green tea litter mass loss 513 

was greatest at 52.74% at the East Creek North plot and lowest at 19.28% at the Flower Plots site. We 514 

theorise that, during peak summer season, soil moisture and active layer depth explain variation in 515 

decomposition across the landscape better than surface temperature. However, at other times of year, in 516 

particular during springtime soil thawing and autumn active layer thickening, temperature-permafrost 517 

dynamics may have a stronger control over decomposition. Further research could help delineate the 518 

seasonal dynamics of the decomposition-temperature relationship.  519 

 520 

While modelled surface temperature appears to be an accurate predictor of decomposition on a regional 521 

scale (Walker et al. [in prep]; Thomas et al. [in review]; Davidson & Janssens, 2006; Keuskamp et al., 522 

2013), it may well be the case that below-ground conditions better explain variation across finer 523 

landscape scales. For example, Bradford et al. (2014) found that local plot-specific conditions explained 524 

over three times the variation in global decomposition than macroclimate data. Walker et al. [in prep] 525 

found evidence that soil moisture manipulations and an elevational gradient influenced decomposition 526 

below and above treeline in the Southern Yukon. These findings suggest that regional macroclimate as 527 

a driver of decomposition may be modulated by highly heterogeneous microenvironmental and below-528 

ground conditions (Bütikofer et al., 2020; Duffy et al., 2021). As such, Earth-system models, which use 529 

coarse gridded climate data to model decomposition globally have inherently limited representations of 530 

carbon cycling (Fig. 6). 531 

 532 
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 533 
 534 

Figure 6: Map of estimated summertime green tea litter mass loss hotspots (green), using predicted slopes 535 

extracted from our Bayesian analyses (Table S1) using the microclima basemaps, and a topography wetness index 536 

map generated using the ‘Dynatopmodel’ package in R (Metcalfe et al., 2015). While decomposition patterns vary 537 

heterogeneously across microclimates, we expect to observe greater decomposition in ‘floodplain’ environments 538 

following natural drainage. Black points represent tea-bag pairs within spiral plots. We list recommendations for 539 

Earth-system modellers based on our findings.  540 

 541 

How does microtopography, microclimate, soil moisture and active layer thickness influence 542 

litter decomposition? 543 

 544 

Decomposition was poorly explained by variation in topography and aspect 545 

On Qikiqtaruk, where we conducted our study, belowground microenvironmental effects appear to 546 

outweigh the temperature and topography effects on decomposition. We initially predicted that 547 

decomposition would decrease with elevation due to warmer microclimates, more optimal drainage and 548 

reduced exposure. We found slight decreases in mass loss with increasing elevation in our data, but also 549 

slightly greater decomposition on north-facing slopes (Fig. 2). It should be noted that the study has 550 

undulating terrain, so is not entirely comparable with studies investigating the links between elevation, 551 
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slope and aspect and decomposition. In alpine tundra, studies often find that mass loss decreases with 552 

increased altitude, corresponding with lower soil temperatures at higher altitudes (Speed et al., 2015; 553 

Sveinbjörnsson et al., 1995). However, other studies have reported faster decomposition rates with 554 

increasing elevations, corresponding with moister soils at high elevations (Walker et al., [in prep]; 555 

(Murphy et al., 1998). Overall, elevation was not a major driver of decomposition at Qikiqtaruk.  556 

 557 

Soil moisture rather than surface temperature controlled decomposition across the landscape  558 

We observed greater mass loss and faster decomposition rates in wetter areas, and to a lesser extent 559 

areas with deeper active layers, across the landscape on Qikiqtaruk (Fig. 5). Many studies report air 560 

temperature as the primary control of decomposition rates, both globally and in tundra ecosystems (e.g. 561 

Hobbie, 1996; Sierra et al., 2015). However, we found that green tea mass loss at Qikiqtaruk was more 562 

sensitive to soil moisture content, suggesting soil moisture conditions may actually be a better predictor 563 

of litter decomposition in the Arctic tundra (Thomas et al. [in review], Walker et al. [in prep]; Aerts, 564 

2006; Hicks Pries et al., 2013; Murphy et al., 1998). Soil moisture content may be the major limiting 565 

factor of decomposition in Arctic tundra ecosystems because wetter soils promote enhanced microbial 566 

and detritivore activity (Aerts, 2006; Murphy et al., 1998; Rinnan et al., 2008; Swift et al., 1979; Thakur 567 

et al., 2018; Waring & Schlesinger, 1985). Where waterlogged soils create anoxic belowground 568 

conditions, we may expect to see reduced decomposition (Davidson & Janssens, 2006), although the 569 

soil moisture measured in our study did not exceed the saturation threshold at most tea bag locations. 570 

In the case of Qikiqtaruk, soil moisture had a range of 60.4% suggesting highly heterogeneous 571 

decomposition trends across the landscape driven, at least in part, by variable soil moisture conditions. 572 

Our findings support previous studies highlighting the importance of soil moisture as a control over 573 

decomposition in tundra ecosystems. 574 

 575 

Do surface microclimate and below-ground microenvironment drivers interact to 576 

influence litter decomposition? 577 

 578 
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Interactive effects among microenvironment and temperature on decomposition were weak 579 

Although we did observe consistently greater mass loss in wetter plots with deeper active layers, 580 

interaction effects were weak (Fig. S1; Table S3). Our results support the idea that large-scale variation 581 

in litter decomposition can be explained by climate (Davidson & Janssens, 2006; Keuskamp et al., 2013; 582 

Swift et al., 1979; Waring & Schlesinger, 1985), but suggest that at the landscape-scale variation in 583 

microenvironmental conditions such as soil moisture and active layer play a greater role. Soil moisture, 584 

active layer thaw depths and surface temperature should be considered in the modelling of future 585 

decomposition trends, because warmer summers may contribute to drought conditions and increased 586 

drainage in tundra soils due to thaw (Hicks Pries et al., 2013). This feedback response may be further 587 

complicated by a predicted increase in precipitation in northern latitudes (Sierra et al., 2015). Our study 588 

did not investigate the presence of soil fauna or microbial activity, but there is evidence to suggest that 589 

soil fauna presence (which increases litter decomposition) is globally driven by both soil moisture 590 

content (García-Palacios et al., 2013; Thakur et al., 2018) and global temperature patterns (Wall et al., 591 

2008). We did however, observe fungal biomass in soils during the extraction of our tea bags at some 592 

plots, suggesting that the below-ground biotic environment could be an important factor explaining 593 

litter decomposition across this study system. Future decomposition studies should investigate the 594 

importance of below-ground heterogeneity in soil fauna presence, microbial and fungal activity and 595 

diversity of the below-ground community on decomposition across the tundra. 596 

 597 

Active layer depth altered decomposition-temperature relationships 598 

We found limited influence of active layer thickness alone on decomposition characteristics (Table S1; 599 

Fig. 5). Although the interactive effects between microclimate and active layer thickness were not 600 

statistically significant, we found that the decomposition – temperature relationship was positive for 601 

deeper active layers and negative for shallower active layers. Decomposition rates were slower in areas 602 

with deeper active layers and warmer surface microclimates, but faster in areas with deeper active layers 603 

but colder surface microclimates. Conversely, decomposition rates were faster in areas with shallow 604 

active layers and warmer surface microclimates, but slower in areas with shallow active layers and 605 

colder surface microclimates. This finding contradicts the hypothesis that warming soils (with 606 
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deepening active layers) will promote faster decomposition and therefore enhance carbon losses. Active 607 

layer depth was weakly correlated with soil moisture, so part of this effect could be attributable in part 608 

to soil moisture variation among different plots across the study plot. The process of climate warming 609 

and the subsequent thawing of permafrost has previously been shown to increase the rate of microbial-610 

driven decomposition and the exposure of these microbes to substantial quantities of ancient buried 611 

carbon (Nowinski et al., 2010; Xue et al., 2016). However, our experimental test of near-surface 612 

decomposition may demonstrate the influence of active layer depths on surface soil conditions including 613 

soil temperature and moisture. These potential interactive effects between shallow versus deep active 614 

layers and near-surface soil conditions on decomposition rates complicates our ability to predict carbon 615 

cycling based solely on permafrost dynamics or air temperatures. 616 

 617 

Decomposition is likely influenced by the lability of litter inputs across tundra landscapes 618 

Litter type, and thus quality, is widely considered to be one of the most important predictors of 619 

decomposition (Bradford et al., 2014; Cornwell et al., 2008; Hobbie, 1996; Sundqvist et al., 2011). We 620 

found greater mass loss for labile green tea relative to recalcitrant rooibos tea bags, both of which show 621 

similar decomposition characteristics to plant species common in Arctic tundra landscapes (Thomas et 622 

al., [in prep]). Vegetation change is widespread across tundra ecosystems, particularly as shrub 623 

communities, with generally more recalcitrant woody litter, are becoming more dominant (Elmendorf 624 

et al., 2012a; Myers-Smith, Forbes, et al., 2011). These widespread ‘shrubification’ trends may lead to 625 

a biome-wide negative feedback response whereby more recalcitrant shrub litter becomes increasingly 626 

dominant and moderates carbon cycling (Cornelissen et al., 2007), although these vegetation shifts may 627 

lag somewhat behind climatic change (Bjorkman et al., 2018). However, many tundra species produce 628 

abundant leaf litter that is quite labile (Cornelissen et al., 2007b; Shaver et al., 2006), and graminoid 629 

and other vegetation types are increasing in many tundra ecosystems (Elmendorf et al. 2012). Thus, the 630 

direction of vegetation-decomposition feedbacks with warming remain unclear.  631 

 632 

Future decomposition in tundra ecosystems will be influenced by vegetation change 633 
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Our results demonstrate differential decomposition rates between litter types, an observation which 634 

supports the idea that future vegetation change will impact litter mass loss dynamics in a warming 635 

Arctic. Vegetation community responses to climate warming are highly variable among vegetation 636 

communities and tundra plots (Myers-Smith et al., 2020; Elmendorf et al., 2012b), and as such the 637 

composition of plant litter will likely also shift in a spatially heterogeneous way. We may expect to see 638 

local-scale shifts in plant community composition driven strongly by microenvironmental variation 639 

such as for example snow melt, soil moisture and soil temperatures (Niittynen et al., 2020). Changing 640 

vegetation patterns may also lead to further plant-driven microenvironmental changes, such as shifts in 641 

localised surface albedo (Sturm et al., 2005), or snow-trapping from taller shrubs (DeMarco et al., 642 

2014). We also expect future tundra vegetation community change along elevational gradients (Myers-643 

Smith, Forbes, et al., 2011), which may indirectly induce changes in litter decomposition rates due to 644 

decomposition being strongly sensitive to litter quality (e.g. Aerts, 2006; Buckeridge et al., 2010; 645 

Hobbie, 1996). While we have shown decomposition to be sensitive to belowground 646 

microenvironments, projections of future tundra carbon cycling must also account for potential 647 

vegetation community change across scales. 648 

 649 

There is a fundamental mismatch between macro-scale predictions of biological processes based on 650 

gridded datasets, and micro-scale predictions based on high-resolution site specific observations 651 

(Bütikofer et al., 2020). The magnitude and direction of carbon cycling trends in the Arctic are 652 

contingent not only on climate warming and future precipitation trends, but also on future vegetation 653 

change. Tundra vegetation change is strongly controlled by local abiotic factors (Chapin et al., 2005; 654 

Elmendorf et al., 2012a; Myers-Smith, Forbes, et al., 2011; Myers-Smith & Hik, 2018). Our results 655 

show that litter mass loss was more strongly controlled by heterogeneous microenvironmental factors 656 

such as soil moisture content. The discrepancy between macro and micro-scale predictions may account 657 

for variability in the modelling of soil CO2 emissions and the estimation of current carbon stocks within 658 

the tundra (De Deyn et al., 2008; Del Grosso et al., 2005; Sierra et al., 2015). We acknowledge that 659 

biome-scale, and global-scale carbon cycling models cannot incorporate the fine-grain resolution that 660 

we can explore in site-specific studies. However, we call for more consideration of scale-dependency 661 



29 

when predicting future carbon storage and losses, for example including meso-scale estimates of soil 662 

moisture conditions into earth systems models, or adding uncertainty to models to account for spatial 663 

variability, and process uncertainty relating to above-belowground feedbacks. 664 

 665 

Conclusion 666 

 667 

In this study, we found that litter mass loss was greater in areas with greater soil moisture content, 668 

deeper active layer, and broadly in areas with warmer microclimates. Additionally, we found that 669 

elevation, slope and aspect were not accurate predictors of decomposition metrics at our study site. 670 

Notably, we found that the environmental controls on decomposition were highly scale dependent. We 671 

found that belowground conditions better explain variation in decomposition than temperature at the 672 

landscape-scale (> 30 m). Earth-system models predict future carbon cycling through the use of coarse 673 

gridded climate datasets and a mechanistic understanding of macro-scale correlations between 674 

environmental drivers and tundra decomposition rates (Carey et al., 2016; Crowther et al., 2016; Van 675 

Gestel et al., 2018). Our study has highlighted that heterogeneous microenvironmental conditions in the 676 

Arctic tundra influence decomposition. As such, we argue that the predictive power of biome-wide 677 

carbon cycling estimates are compromised by a strong macroclimate focus. Capturing and accounting 678 

for scale-dependency of ecological processes such as decomposition with climate change remains a 679 

major and timely challenge for the field of global change ecology. 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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SUPPLEMENTARY MATERIALS: 997 

 998 

Supplementary List 1: List of analyses by research question 999 

1) How do microclimate, microtopography and soil conditions vary spatially across a tundra landscape?  1000 
 1001 

● Bayesian model for each decomposition metric: decomposition_metric_scaled ~ elevation_scaled, slope_scaled, aspect_class + (1|Plot) 1002 
● Bayesian model without Plot random effect for each decomposition metric: decomposition_metric_scaled ~ elevation_scaled, slope_scaled, 1003 

aspect_class  1004 
● Semi-variograms or each decomposition metric, thermal sum, active layer thickness and soil moisture 1005 

 1006 
(2) How does microtopography, microclimate, soil moisture and active layer thickness influence litter decomposition? 1007 
 1008 

● PCA using decomposition metrics, thermal sum, active layer thickness, soil moisture, elevation, slope and aspect as classification variables. ‘Plot’ was 1009 
used as a clustering variable. 1010 

 1011 
(3) Do surface microclimate and below-ground microenvironment drivers influence litter decomposition? 1012 
 1013 

● Soil moisture Bayesian model for each decomposition metric: decomposition_metric_scaled ~ soilmoisture_scaled + thermalsum_scaled + (1|Plot) 1014 
● Active layer Bayesian model for each decomposition metric: decomposition_metric_scaled ~ activelayer_scaled + thermalsum_scaled + (1|Plot) 1015 
● Bayesian model without Plot random effect for each decomposition metric: decomposition_metric_scaled ~ activelayer_scaled OR soilmoisture_scaled 1016 

+ thermalsum_scaled 1017 
 1018 

 1019 

 1020 

 1021 
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Supplementary Table 1: Semivariogram Output - dimensions of variogram analysis in gstat 1022 

Semivariogram ID: Variogram type Nugget Sill Range 

Thermal Sum °C Exp (Values have been log-transformed) 0.44 7.54 10.50 

Active Layer Thickness (mm)  Sph 56.28 114.87 28.51 

Soil Moisture % Mat 69.75 131.55 34.79 

Green Tea Mass Loss % Sph 20.78 39.37 0.00 

Rooibos Tea Mass Loss % Exp 0 8.20 10.43 

 1023 
 1024 
 1025 
 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 
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Supplementary Table 2: Full Model Output (no interactions) 1036 

Model Name Term Estimate Std. error Lower 
95% CI 

Upper 95% CI 

Soil moisture and thermal sum 
vs Green Tea Mass Loss 

bIntercept 0.771 0.37 -0.1 1.417 

 bSoilmoistscaled 0.138 0.028 0.083 0.192 
 bthermscaled 0.092 0.371 -0.557 0.963 
 sdPlotIntercept 0.029 0.021 0.001 0.081 
 sigma 0.117 0.007 0.104 0.133 
 rPlot[CHHE,Intercept] 0.002 0.028 -0.051 0.069 
 rPlot[CHKO,Intercept] 0.009 0.026 -0.038 0.072 
 rPlot[DG,Intercept] -0.02 0.03 -0.094 0.023 
 rPlot[ECN,Intercept] -0.001 0.021 -0.044 0.043 
 rPlot[ECS,Intercept] 0.018 0.024 -0.019 0.074 
 rPlot[ECW,Intercept] -0.021 0.026 -0.082 0.018 
 rPlot[FO,Intercept] 0.015 0.024 -0.025 0.071 
 rPlot[FP,Intercept] -0.002 0.023 -0.054 0.044 
Soil moisture and thermal sum 

vs Rooibos Tea Mass Loss 
bIntercept 0.495 0.602 -0.775 1.667 

 bSoilmoistscaled 0.096 0.05 -0.005 0.193 
 bthermscaled 0.386 0.605 -0.776 1.679 
 sdPlotIntercept 0.067 0.04 0.007 0.163 
 sigma 0.165 0.011 0.146 0.188 
 rPlot[CHHE,Intercept] -0.031 0.054 -0.146 0.072 
 rPlot[CHKO,Intercept] 0.021 0.049 -0.07 0.131 
 rPlot[DG,Intercept] -0.044 0.054 -0.17 0.042 
 rPlot[ECN,Intercept] 0.045 0.043 -0.028 0.14 
 rPlot[ECS,Intercept] -0.003 0.04 -0.088 0.078 
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 rPlot[ECW,Intercept] 0.014 0.042 -0.068 0.104 
 rPlot[FO,Intercept] 0.055 0.051 -0.027 0.167 
 rPlot[FP,Intercept] -0.058 0.052 -0.175 0.021 
Soil moisture and thermal sum 

vs Decomposition Rate 
bIntercept 0.783 1.017 -1.102 3.011 

 bSoilmoistscaled -0.001 0.087 -0.175 0.165 
 bthermscaled 0.162 1.015 -2.03 2.063 
 sdPlotIntercept 0.096 0.067 0.006 0.256 
 sigma 0.308 0.02 0.273 0.35 
 rPlot[CHHE,Intercept] -0.026 0.087 -0.225 0.137 
 rPlot[CHKO,Intercept] -0.017 0.077 -0.193 0.131 
 rPlot[DG,Intercept] -0.023 0.079 -0.196 0.132 
 rPlot[ECN,Intercept] 0.071 0.074 -0.042 0.241 
 rPlot[ECS,Intercept] -0.041 0.071 -0.201 0.086 
 rPlot[ECW,Intercept] 0.075 0.079 -0.041 0.257 
 rPlot[FO,Intercept] 0.029 0.075 -0.101 0.204 
 rPlot[FP,Intercept] -0.067 0.08 -0.256 0.058 
Soil moisture and thermal sum 

vs Stabilisation Factor 
bIntercept 1.161 0.287 0.67 1.849 

 bSoilmoistscaled -0.108 0.022 -0.152 -0.063 
 bthermscaled -0.071 0.287 -0.75 0.419 
 sdPlotIntercept 0.023 0.017 0.001 0.067 
 sigma 0.092 0.006 0.081 0.104 
 rPlot[CHHE,Intercept] -0.001 0.022 -0.054 0.039 
 rPlot[CHKO,Intercept] -0.007 0.02 -0.056 0.028 
 rPlot[DG,Intercept] 0.016 0.023 -0.017 0.074 
 rPlot[ECN,Intercept] 0.001 0.016 -0.033 0.036 
 rPlot[ECS,Intercept] -0.015 0.019 -0.06 0.014 
 rPlot[ECW,Intercept] 0.016 0.02 -0.014 0.064 
 rPlot[FO,Intercept] -0.012 0.019 -0.057 0.019 
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 rPlot[FP,Intercept] 0.002 0.018 -0.034 0.043 
Active Layer and thermal sum 

vs Green Tea Mass Loss 
bIntercept 0.904 0.521 -0.275 1.79 

 bALTscaled 0.078 0.036 0.008 0.148 
 bthermscaled 0.011 0.53 -0.898 1.207 
 sdPlotIntercept 0.052 0.03 0.008 0.129 
 sigma 0.123 0.008 0.109 0.139 
 rPlot[CHHE,Intercept] 0.001 0.043 -0.077 0.102 
 rPlot[CHKO,Intercept] 0.02 0.039 -0.048 0.111 
 rPlot[DG,Intercept] -0.056 0.046 -0.164 0.012 
 rPlot[ECN,Intercept] 0.028 0.033 -0.03 0.099 
 rPlot[ECS,Intercept] 0.01 0.031 -0.051 0.077 
 rPlot[ECW,Intercept] -0.009 0.033 -0.083 0.052 
 rPlot[FO,Intercept] 0.041 0.037 -0.024 0.118 
 rPlot[FP,Intercept] -0.037 0.038 -0.123 0.024 
Active Layer and thermal sum 

vs Rooibos Tea Mass Loss 
bIntercept 0.597 0.771 -0.988 2.09 

 bALTscaled 0.023 0.05 -0.077 0.122 
 bthermscaled 0.35 0.782 -1.158 1.969 
 sdPlotIntercept 0.103 0.042 0.045 0.21 
 sigma 0.165 0.01 0.146 0.187 
 rPlot[CHHE,Intercept] -0.046 0.072 -0.192 0.101 
 rPlot[CHKO,Intercept] 0.032 0.064 -0.089 0.166 
 rPlot[DG,Intercept] -0.075 0.066 -0.214 0.047 
 rPlot[ECN,Intercept] 0.075 0.052 -0.026 0.184 
 rPlot[ECS,Intercept] -0.019 0.052 -0.124 0.081 
 rPlot[ECW,Intercept] 0.033 0.054 -0.072 0.143 
 rPlot[FO,Intercept] 0.096 0.059 -0.013 0.22 
 rPlot[FP,Intercept] -0.099 0.059 -0.226 0.008 
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Active Layer and thermal sum 
vs Decomposition Rate 

bIntercept 0.533 1.006 -1.335 2.667 

 bALTscaled -0.084 0.088 -0.257 0.089 
 bthermscaled 0.492 1.033 -1.68 2.425 
 sdPlotIntercept 0.088 0.058 0.007 0.228 
 sigma 0.308 0.02 0.273 0.349 
 rPlot[CHHE,Intercept] -0.023 0.08 -0.203 0.125 
 rPlot[CHKO,Intercept] -0.012 0.072 -0.172 0.128 
 rPlot[DG,Intercept] -0.021 0.073 -0.176 0.124 
 rPlot[ECN,Intercept] 0.056 0.068 -0.055 0.214 
 rPlot[ECS,Intercept] -0.04 0.065 -0.187 0.073 
 rPlot[ECW,Intercept] 0.064 0.072 -0.048 0.228 
 rPlot[FO,Intercept] 0.039 0.073 -0.086 0.204 
 rPlot[FP,Intercept] -0.059 0.073 -0.225 0.059 
Active Layer and thermal sum 

vs Stabilisation Factor 
bIntercept 1.113 0.513 0.378 2.356 

 bALTscaled -0.06 0.029 -0.115 -0.004 
 bthermscaled -0.066 0.524 -1.322 0.692 
 sdPlotIntercept 0.043 0.026 0.008 0.113 
 sigma 0.096 0.006 0.086 0.109 
 rPlot[CHHE,Intercept] -0.004 0.04 -0.115 0.06 
 rPlot[CHKO,Intercept] -0.018 0.034 -0.109 0.036 
 rPlot[DG,Intercept] 0.047 0.04 -0.009 0.156 
 rPlot[ECN,Intercept] -0.022 0.026 -0.077 0.026 
 rPlot[ECS,Intercept] -0.008 0.024 -0.056 0.04 
 rPlot[ECW,Intercept] 0.01 0.028 -0.04 0.078 
 rPlot[FO,Intercept] -0.032 0.028 -0.091 0.019 
 rPlot[FP,Intercept] 0.032 0.031 -0.017 0.106 
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Topography vs Green Tea 
Mass Loss 

bIntercept 1.007 0.051 0.905 1.104 

 belevationscaled -0.003 0.036 -0.079 0.062 
 bslopescaled -0.018 0.025 -0.066 0.03 
 baspectclassNorth 0.121 0.052 0.021 0.224 
 baspectclassSouth -0.022 0.036 -0.091 0.053 
 baspectclassWest -0.004 0.038 -0.075 0.073 
 sdPlotIntercept 0.033 0.025 0.002 0.096 
 sigma 0.122 0.008 0.109 0.138 
 rPlot[CHHE,Intercept] -0.009 0.03 -0.074 0.051 
 rPlot[CHKO,Intercept] 0.009 0.03 -0.046 0.077 
 rPlot[DG,Intercept] -0.029 0.037 -0.121 0.019 
 rPlot[ECN,Intercept] 0.014 0.025 -0.029 0.071 
 rPlot[ECS,Intercept] 0.003 0.028 -0.052 0.067 
 rPlot[ECW,Intercept] 0.004 0.025 -0.049 0.058 
 rPlot[FO,Intercept] 0.015 0.035 -0.044 0.095 
 rPlot[FP,Intercept] -0.007 0.026 -0.067 0.043 

Topography vs Rooibos Tea 
Mass Loss 

bIntercept 1.074 0.11 0.85 1.291 

 belevationscaled -0.083 0.093 -0.283 0.094 
 bslopescaled -0.017 0.046 -0.104 0.076 
 baspectclassNorth -0.028 0.08 -0.184 0.132 
 baspectclassSouth -0.035 0.064 -0.16 0.093 
 baspectclassWest -0.007 0.065 -0.136 0.121 
 sdPlotIntercept 0.12 0.06 0.046 0.28 
 sigma 0.183 0.012 0.162 0.208 
 rPlot[CHHE,Intercept] -0.028 0.091 -0.2 0.16 
 rPlot[CHKO,Intercept] 0.045 0.086 -0.11 0.231 
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 rPlot[DG,Intercept] -0.113 0.092 -0.313 0.045 
 rPlot[ECN,Intercept] 0.081 0.065 -0.038 0.216 
 rPlot[ECS,Intercept] -0.026 0.075 -0.176 0.125 
 rPlot[ECW,Intercept] 0.034 0.067 -0.104 0.163 
 rPlot[FO,Intercept] 0.089 0.095 -0.095 0.29 
 rPlot[FP,Intercept] -0.079 0.071 -0.233 0.046 
Topography vs Decomposition 

Rate 
bIntercept 1.018 0.148 0.722 1.307 

 belevationscaled -0.036 0.107 -0.24 0.185 
 bslopescaled 0.018 0.069 -0.116 0.161 
 baspectclassNorth -0.135 0.133 -0.4 0.124 
 baspectclassSouth -0.047 0.1 -0.247 0.145 
 baspectclassWest -0.091 0.104 -0.302 0.11 
 sdPlotIntercept 0.125 0.072 0.021 0.305 
 sigma 0.307 0.02 0.271 0.348 
 rPlot[CHHE,Intercept] -0.016 0.1 -0.224 0.19 
 rPlot[CHKO,Intercept] 0.013 0.097 -0.179 0.217 
 rPlot[DG,Intercept] -0.024 0.1 -0.23 0.189 
 rPlot[ECN,Intercept] 0.097 0.084 -0.042 0.28 
 rPlot[ECS,Intercept] -0.084 0.102 -0.316 0.086 
 rPlot[ECW,Intercept] 0.068 0.084 -0.088 0.249 
 rPlot[FO,Intercept] 0.033 0.111 -0.184 0.273 
 rPlot[FP,Intercept] -0.094 0.092 -0.297 0.064 

Topography vs Stabilisation 
Factor 

bIntercept 0.975 0.038 0.9 1.052 

 belevationscaled 0.005 0.03 -0.045 0.084 
 bslopescaled 0.014 0.019 -0.024 0.052 
 baspectclassNorth -0.095 0.041 -0.174 -0.013 
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 baspectclassSouth 0.017 0.029 -0.042 0.072 
 baspectclassWest 0.003 0.03 -0.058 0.06 
 sdPlotIntercept 0.028 0.022 0.001 0.085 
 sigma 0.096 0.006 0.085 0.108 
 rPlot[CHHE,Intercept] 0.005 0.027 -0.058 0.06 
 rPlot[CHKO,Intercept] -0.009 0.027 -0.074 0.037 
 rPlot[DG,Intercept] 0.025 0.03 -0.014 0.1 
 rPlot[ECN,Intercept] -0.013 0.022 -0.062 0.023 
 rPlot[ECS,Intercept] -0.004 0.025 -0.067 0.042 
 rPlot[ECW,Intercept] -0.003 0.02 -0.045 0.039 
 rPlot[FO,Intercept] -0.011 0.026 -0.07 0.036 
 rPlot[FP,Intercept] 0.005 0.021 -0.035 0.056 

 1037 
 1038 

 1039 

 1040 

 1041 

 1042 
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 1044 

 1045 

 1046 

 1047 
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Supplementary Table 3: Model Output (no random effect, no interactions) 1048 

Model name Term Estimate Std. 

error 

Lower 95% 

CI 

Upper 95% 

CI 

Soil moisture & surface temperature vs Green Tea Mass Loss b_Intercept 0.858 0.224 0.415 1.295  
b_Soilmoist_scaled 0.141 0.025 0.091 0.191  

b_therm_scaled 0.001 0.225 -0.439 0.438  

sigma 0.118 0.007 0.105 0.133 
Soil moisture & surface temperature vs Rooibos Tea Mass Loss b_Intercept 0.364 0.36 -0.345 1.077  

b_Soilmoist_scaled 0.181 0.041 0.1 0.26  

b_therm_scaled 0.447 0.36 -0.263 1.154  

sigma 0.189 0.011 0.168 0.213 
Soil moisture & surface temperature vs Decomposition Rate b_Intercept 0.503 0.598 -0.67 1.685  

b_Soilmoist_scaled 0.063 0.069 -0.072 0.2  

b_therm_scaled 0.389 0.599 -0.787 1.564  
sigma 0.312 0.019 0.277 0.352 

Soil moisture & surface temperature vs Stabilisation Factor b_Intercept 1.092 0.176 0.753 1.443  

b_Soilmoist_scaled -0.111 0.02 -0.15 -0.072  
b_therm_scaled 0.001 0.176 -0.35 0.344  

sigma 0.093 0.006 0.083 0.104 
Active Layer & surface temperature vs Green Tea Mass Loss b_Intercept 1.212 0.266 0.691 1.729  

b_ALT_scaled 0.087 0.033 0.022 0.153  
b_therm_scaled -0.306 0.279 -0.845 0.246  

sigma 0.127 0.008 0.113 0.143 
Active Layer & surface temperature vs Rooibos Tea Mass Loss b_Intercept 0.673 0.382 -0.082 1.417  

b_ALT_scaled 0.032 0.047 -0.06 0.123  

b_therm_scaled 0.27 0.399 -0.513 1.055  

sigma 0.18 0.011 0.159 0.203 
Active Layer & surface temperature vs Decomposition Rate b_Intercept 0.291 0.661 -1.008 1.593  

b_ALT_scaled -0.099 0.082 -0.258 0.062  

b_therm_scaled 0.752 0.694 -0.609 2.118  

sigma 0.313 0.02 0.278 0.355 
Active Layer & surface temperature vs Stabilisation Factor b_Intercept 0.814 0.208 0.408 1.224  

b_ALT_scaled -0.068 0.026 -0.12 -0.018  

b_therm_scaled 0.241 0.219 -0.191 0.672 
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sigma 0.1 0.006 0.088 0.112 
Topography vs Green Tea Mass Loss b_Intercept 1.024 0.037 0.951 1.097  

b_elevation_scaled -0.006 0.021 -0.047 0.035  

b_slope_scaled -0.026 0.019 -0.064 0.012  

b_aspect_classNorth 0.106 0.044 0.021 0.191  
b_aspect_classSouth -0.032 0.027 -0.085 0.021  

b_aspect_classWest -0.023 0.03 -0.082 0.035  

sigma 0.124 0.008 0.111 0.14 
Topography vs Rooibos Tea Mass Loss b_Intercept 1.097 0.061 0.976 1.218  

b_elevation_scaled -0.076 0.034 -0.143 -0.009  

b_slope_scaled -0.024 0.031 -0.086 0.038  
b_aspect_classNorth 0.046 0.073 -0.097 0.19  

b_aspect_classSouth -0.07 0.043 -0.154 0.016  

b_aspect_classWest -0.043 0.048 -0.137 0.051  

sigma 0.196 0.012 0.174 0.221 
Topography vs Decomposition Rate b_Intercept 0.972 0.102 0.773 1.175  

b_elevation_scaled -0.053 0.057 -0.167 0.058  

b_slope_scaled 0.014 0.051 -0.087 0.114  
b_aspect_classNorth -0.017 0.119 -0.248 0.214  

b_aspect_classSouth 0.018 0.07 -0.121 0.155  

b_aspect_classWest 0.011 0.079 -0.145 0.165  
sigma 0.316 0.02 0.28 0.357 

Topography vs Stabilisation Factor b_Intercept 0.964 0.03 0.905 1.022  

b_elevation_scaled 0.005 0.016 -0.027 0.037  

b_slope_scaled 0.02 0.015 -0.009 0.049  
b_aspect_classNorth -0.083 0.035 -0.151 -0.016  

b_aspect_classSouth 0.025 0.021 -0.017 0.067  

b_aspect_classWest 0.017 0.024 -0.029 0.064  
sigma 0.097 0.006 0.086 0.11 

 1049 
 1050 
 1051 
 1052 
 1053 
  1054 
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Supplementary Table 4: Full Model Output (with interactions) 1055 

Model name Term Estimate Std. error Lower 95% CI Upper 95% CI 

Soil moisture and thermal sum vs 
Green Tea Mass Loss 

bIntercept 1.197 0.666 -0.197 2.464 

 bSoilmoistscaled -0.363 0.656 -1.655 0.925 
 bthermscaled -0.334 0.666 -1.603 1.056 
 bSoilmoistscaled:thermsc

aled 
0.501 0.656 -0.786 1.795 

 sdPlotIntercept 0.029 0.022 0.002 0.082 
 sigma 0.117 0.007 0.104 0.132 
 rPlot[CHHE,Intercept] 0 0.028 -0.05 0.066 
 rPlot[CHKO,Intercept] 0.01 0.026 -0.035 0.074 
 rPlot[DG,Intercept] -0.018 0.029 -0.089 0.024 
 rPlot[ECN,Intercept] -0.001 0.021 -0.046 0.042 
 rPlot[ECS,Intercept] 0.018 0.024 -0.019 0.076 
 rPlot[ECW,Intercept] -0.021 0.026 -0.084 0.016 
 rPlot[FO,Intercept] 0.012 0.024 -0.03 0.069 
 rPlot[FP,Intercept] -0.001 0.023 -0.053 0.047 

Soil moisture and thermal sum vs 
Rooibos Tea Mass Loss 

bIntercept 0.576 1.04 -1.535 2.556 

 bSoilmoistscaled 0.035 0.992 -1.854 2 
 bthermscaled 0.304 1.046 -1.668 2.442 
 bSoilmoistscaled:thermsc

aled 
0.061 0.998 -1.916 1.967 

 sdPlotIntercept 0.066 0.041 0.007 0.167 
 sigma 0.166 0.011 0.146 0.189 
 rPlot[CHHE,Intercept] -0.032 0.055 -0.152 0.072 
 rPlot[CHKO,Intercept] 0.019 0.049 -0.074 0.127 
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 rPlot[DG,Intercept] -0.042 0.054 -0.165 0.047 
 rPlot[ECN,Intercept] 0.045 0.044 -0.026 0.144 
 rPlot[ECS,Intercept] -0.002 0.042 -0.089 0.083 
 rPlot[ECW,Intercept] 0.016 0.043 -0.065 0.109 
 rPlot[FO,Intercept] 0.056 0.053 -0.026 0.176 
 rPlot[FP,Intercept] -0.056 0.052 -0.174 0.025 

Soil moisture and thermal sum vs 
Decomposition Rate 

bIntercept 0.497 1.833 -3.102 4.07 

 bSoilmoistscaled 0.339 1.856 -3.414 4.024 
 bthermscaled 0.453 1.839 -3.124 4.085 
 bSoilmoistscaled:thermsc

aled 
-0.342 1.865 -4.036 3.414 

 sdPlotIntercept 0.099 0.069 0.007 0.265 
 sigma 0.31 0.02 0.274 0.352 
 rPlot[CHHE,Intercept] -0.027 0.09 -0.238 0.131 
 rPlot[CHKO,Intercept] -0.02 0.079 -0.2 0.128 
 rPlot[DG,Intercept] -0.028 0.081 -0.212 0.128 
 rPlot[ECN,Intercept] 0.07 0.075 -0.045 0.244 
 rPlot[ECS,Intercept] -0.042 0.073 -0.206 0.08 
 rPlot[ECW,Intercept] 0.076 0.081 -0.045 0.263 
 rPlot[FO,Intercept] 0.033 0.078 -0.1 0.215 
 rPlot[FP,Intercept] -0.073 0.086 -0.27 0.058 

Soil moisture and thermal sum vs 
Stabilisation Factor 

bIntercept 0.83 0.528 -0.167 1.878 

 bSoilmoistscaled 0.285 0.526 -0.739 1.31 
 bthermscaled 0.261 0.528 -0.795 1.259 
 bSoilmoistscaled:therm

scaled 
-0.394 0.526 -1.42 0.626 

 sdPlotIntercept 0.023 0.018 0.001 0.065 
 sigma 0.092 0.006 0.082 0.104 
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 rPlot[CHHE,Intercept] 0 0.022 -0.05 0.041 
 rPlot[CHKO,Intercept] -0.007 0.021 -0.057 0.027 
 rPlot[DG,Intercept] 0.014 0.023 -0.019 0.074 
 rPlot[ECN,Intercept] 0.001 0.017 -0.033 0.036 
 rPlot[ECS,Intercept] -0.014 0.019 -0.059 0.016 
 rPlot[ECW,Intercept] 0.017 0.021 -0.013 0.069 
 rPlot[FO,Intercept] -0.01 0.019 -0.054 0.025 
 rPlot[FP,Intercept] 0.001 0.019 -0.036 0.043 

Active Layer and thermal sum vs 
Green Tea Mass Loss 

bIntercept 1.45 0.908 -0.389 3.209 

 bALTscaled -0.618 0.871 -2.33 1.075 
 bthermscaled -0.536 0.915 -2.303 1.325 
 bALTscaled:thermscaled 0.691 0.865 -0.99 2.39 
 sdPlotIntercept 0.058 0.032 0.012 0.135 
 sigma 0.122 0.008 0.108 0.139 
 rPlot[CHHE,Intercept] -0.003 0.046 -0.088 0.103 
 rPlot[CHKO,Intercept] 0.025 0.042 -0.047 0.117 
 rPlot[DG,Intercept] -0.065 0.048 -0.172 0.008 
 rPlot[ECN,Intercept] 0.032 0.035 -0.03 0.105 
 rPlot[ECS,Intercept] 0.013 0.033 -0.049 0.081 
 rPlot[ECW,Intercept] -0.008 0.036 -0.085 0.056 
 rPlot[FO,Intercept] 0.042 0.038 -0.024 0.121 
 rPlot[FP,Intercept] -0.04 0.04 -0.128 0.025 

Active Layer and thermal sum vs 
Rooibos Tea Mass Loss 

bIntercept -0.665 1.274 -3.181 1.839 

 bALTscaled 1.486 1.186 -0.841 3.792 
 bthermscaled 1.616 1.283 -0.902 4.154 
 bALTscaled:thermscaled -1.456 1.18 -3.756 0.85 
 sdPlotIntercept 0.099 0.045 0.041 0.213 
 sigma 0.165 0.011 0.146 0.187 
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 rPlot[CHHE,Intercept] -0.032 0.071 -0.176 0.114 
 rPlot[CHKO,Intercept] 0.028 0.062 -0.094 0.158 
 rPlot[DG,Intercept] -0.067 0.064 -0.204 0.05 
 rPlot[ECN,Intercept] 0.069 0.052 -0.029 0.176 
 rPlot[ECS,Intercept] -0.024 0.051 -0.126 0.076 
 rPlot[ECW,Intercept] 0.027 0.053 -0.08 0.134 
 rPlot[FO,Intercept] 0.098 0.058 -0.01 0.219 
 rPlot[FP,Intercept] -0.099 0.058 -0.221 0.005 

Active Layer and thermal sum vs 
Decomposition Rate 

bIntercept -3.016 2.015 -6.896 0.975 

 bALTscaled 4.112 2.124 -0.028 8.21 
 bthermscaled 4.046 2.03 0.037 7.953 
 bALTscaled:thermscaled -4.171 2.11 -8.247 -0.049 
 sdPlotIntercept 0.082 0.056 0.005 0.218 
 sigma 0.305 0.019 0.269 0.346 
 rPlot[CHHE,Intercept] 0.001 0.075 -0.161 0.158 
 rPlot[CHKO,Intercept] -0.018 0.068 -0.174 0.113 
 rPlot[DG,Intercept] -0.009 0.069 -0.158 0.133 
 rPlot[ECN,Intercept] 0.045 0.064 -0.062 0.193 
 rPlot[ECS,Intercept] -0.049 0.065 -0.2 0.056 
 rPlot[ECW,Intercept] 0.049 0.067 -0.059 0.202 
 rPlot[FO,Intercept] 0.041 0.069 -0.074 0.201 
 rPlot[FP,Intercept] -0.058 0.071 -0.224 0.053 

Active Layer and thermal sum vs 
Stabilisation Factor 

bIntercept 0.638 0.704 -0.701 2.055 

 bALTscaled 0.462 0.682 -0.882 1.805 
 bthermscaled 0.412 0.709 -1.02 1.768 
 bALTscaled:thermscaled -0.52 0.678 -1.86 0.811 
 sdPlotIntercept 0.044 0.026 0.008 0.107 
 sigma 0.096 0.006 0.085 0.109 
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 rPlot[CHHE,Intercept] 0.002 0.035 -0.077 0.066 
 rPlot[CHKO,Intercept] -0.019 0.032 -0.094 0.035 
 rPlot[DG,Intercept] 0.049 0.038 -0.009 0.135 
 rPlot[ECN,Intercept] -0.025 0.027 -0.082 0.023 
 rPlot[ECS,Intercept] -0.011 0.026 -0.064 0.039 
 rPlot[ECW,Intercept] 0.006 0.027 -0.046 0.063 
 rPlot[FO,Intercept] -0.033 0.029 -0.094 0.018 
 rPlot[FP,Intercept] 0.03 0.031 -0.021 0.1 

1056 
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 1057 
Supplementary Figure 1: Increased soil moisture corresponded with higher green and rooibos tea mass loss, 1058 
lower stabilisation rate and did not explain decomposition rate (b,d,f,h). The relationship between decomposition 1059 
rate and temperature was weakly positive for shallow active layers and weakly negative for deep active layers 1060 
with decomposition being faster where the active layer was deeper in cooler microclimates, and slower in areas 1061 
with deeper activer layers but warmer surface temperatures - while no trend is apparent between soil moisture 1062 
and decomposition rates. The trend lines are Bayesian model fits with ribbons showing 95% credible intervals. 1063 
Trend lines and ribbon colours represent categories of dry, medium and moist soils (left panel) and shallow, 1064 
medium and deep active layers (right panel). Full outputs can be found in Table S3. 1065 


