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Abstract 

1. Opportunistic citizen science produces large amounts of primary biodiversity data but 

is underutilized in the conservation and management of protected areas despite these 

areas’ status as citizen science hotspots. Application of these data may be limited by 

the challenge of understanding sampling patterns associated with opportunistic data at 

a scale relevant to local area management. An improved understanding of citizen 

science activity patterns within protected areas could strengthen both data analysis 

and the local promotion and guidance of citizen science activity. 

2. We investigated local-scale patterns of citizen science distribution, using a case study 

approach to examine citizen science activity in a recreationally popular natural area 

that serves as a regional citizen science hotspot. We modeled the relationship between 

local citizen science activity and ten spatial covariates broadly related to ease of 

access and natural interest, which have been shown to drive citizen science activity at 

regional scales in previous studies. We further compared the distribution of citizen 

science activity with that of professional data collection, and with data on recreational 

visitor activity in the study area.  

3. We found that citizen science largely complements professional data collection in 

space. Citizen science participation was primarily driven by ease of access, especially 

the presence of trails. However, citizen science use of the trail network differed from 

other types of recreational trail use, including a weaker preference for well-

established trails and a stronger association with developed areas. 

4. This improved understanding of patterns in citizen science participation may be used 

to better account for spatial biases in citizen science data and to manage natural areas 

in a way that supports and guides future citizen science activity. 
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Introduction 

Public participation in biodiversity research, often termed biodiversity citizen science, 

continues to grow in popularity. Citizen science engages millions of individuals in 

biodiversity science, produces massive amounts of data, and contributes extensively to 

research in biodiversity, conservation, and related fields (Cooper et al. 2014, Kays et al. 2020, 

Bonney 2021, Callaghan et al. 2021). Much of this contribution comes from mass 

participation citizen science, in which participants opportunistically upload species 

observations to digital platforms that are often national to international in scope, due largely 

to the accessibility of these data in open digital repositories (Ball-Damerow et al. 2019, 

Callaghan et al. 2021, Mandeville et al. 2021). But despite the mainstream recognition and 

broad application of mass participation citizen science, it is generally underutilized in the 

conservation and management of protected areas (Danielsen et al. 2010, Callaghan and 

Gawlik 2015, Binley et al. 2021, 2021, Mandeville and Finstad 2021, Rapacciuolo et al. 

2021, Salmon et al. 2021, Cheung et al. 2022). 

 

Biodiversity data from mass participation citizen science could contribute to filling a critical 

gap for small protected areas and multiple-use areas that contribute to other effective area-

based conservation measures (OECMs [IUCN 2019]), which are increasingly recognized as 

crucial for meeting biodiversity conservation targets (Kendal et al. 2017, Baldwin and Fouch 

2018, Bonnet et al. 2020, Häkkilä et al. 2021, Rodríguez-Rodríguez et al. 2021, Riva and 

Fahrig 2022). Such areas enhance connectivity, support ecosystem services, and play a key 
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role in addressing environmental threats that manifest at a local scale (Oldekop et al. 2015, 

Volenec and Dobson 2019, Wintle et al. 2019, Hlasny et al. 2021, Gaget et al. 2021, Dreiss 

and Malcolm 2022). Still, small protected areas often have limited resources for biodiversity 

conservation, management, and monitoring, despite their high conservation value 

(Armsworth et al. 2011, Maxwell et al. 2020, Jansujwicz et al. 2020). 

 

Mass participation citizen science data are already regularly collected in protected areas, 

which tend to be hotspots for citizen science activity (Tulloch et al. 2013). At broad spatial 

resolutions, citizen science activity is largely associated with two main types of predictors: 

accessibility (e.g., population density, road access, regional trail availability) and natural 

interest (e.g., aesthetic and recreational value, high biodiversity, and threatened ecosystems) 

(Tulloch et al. 2013, Geldmann et al. 2016, Boakes et al. 2016, Mair & Ruete 2016, Tiago et 

al. 2017, Millar et al. 2018, Petersen et al. 2021). Because they are accessible areas of local 

natural interest, small protected areas and OECMs are popular destinations for citizen science 

participants. Nevertheless, data collected in these areas remain underutilized in local area-

based conservation and are instead more commonly applied in studies at broad spatial scales 

(Danielsen et al. 2010, Callaghan and Gawlik 2015, Rapacciuolo et al. 2021, Mandeville et 

al. 2021). A key reason for their underutilization at local scales may be that spatial patterns of 

citizen science activity are not well understood at a scale relevant to local area management 

(Callaghan and Gawlik 2015). 

 

This may inhibit local applications of citizen science data in multiple ways. First, a limited 

understanding of the citizen science sampling process, coupled with the rarity of species non-

detection data, means that spatial and temporal biases in the data are hard to quantify and 

species absences are hard to infer, limiting the potential for statistical inference (Welvaert et 
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al. 2016, Johnston et al. 2020, Di Cecco et al. 2021). At a broader spatial scale, this challenge 

is sometimes addressed by using trends in the spatial distribution of citizen science activity to 

approximate the sampling process (Mueller et al. 2019, Sicacha Parada et al. 2020, Cretois et 

al. 2020, Johnston et al. 2020, Di Cecco et al. 2021, Zulian et al. 2021). But covariates 

commonly used to model the citizen science sampling process at broader spatial scales are 

often not well suited to characterize the sampling process at scales relevant to local 

management. As such, little is known about how the fine-scale distribution of citizen science 

activity varies within regional citizen science hotspots (Callaghan and Gawlik 2015, Dobson 

et al. 2020). 

 

Further, anmproved understanding of citizen science activity within natural areas is required 

for area managers to utilize citizen science more effectively (Feldman et al. 2021). Such areas 

are commonly managed for both conservation and recreation objectives, both of which can be 

furthered by citizen science (Buta et al. 2014, Newman et al. 2017, Gurney et al. 2021, Vimal 

et al. 2021, Halliwell et al. 2021). Citizen science participants are increasingly recognized as 

an important category of protected area visitors, and a better understanding of spatial patterns 

in their activity would allow managers to actively promote and direct citizen science to meet 

local objectives. Such direction (e.g., interpretive signage, the use of customized settings on 

citizen science platforms, and promotional events such as bioblitzes) can effectively guide 

mass participation citizen science data collection (Callaghan et al. 2019, Knape et al. 2021, 

Koen & Newton 2021, Kays et al. 2021, Salmon et al. 2021). For these reasons, researchers 

and managers of protected areas have called for greater research into trends in citizen science 

participation within protected areas (Weaver and Lawton 2017, Leung et al. 2018, Miller et 

al. 2019, Binley et al. 2021, Gosal et al. 2021).  
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We aimed to respond to this challenge by investigating the spatial distribution of citizen 

science participation at a scale relevant to local area management. We took a case study 

approach, characterizing citizen science activity within a small, recreationally popular natural 

area in Central Norway. The site was selected because it meets many criteria as a citizen 

science hotspot. Our objectives were to 1) test the hypothesis that the main predictors of 

citizen science activity at a broad spatial resolution—accessibility and natural interest—also 

drive citizen science at a local scale; 2) test the hypothesis that citizen science activity would 

primarily occur within a short distance of trails and roads; and 3) compare the patterns of 

citizen science activity within the study area and along the area’s trail network with patterns 

in both general recreational visitor activity, represented by activity tracking data from Strava 

Metro, and professional biodiversity data collection. 

 

Methods 

2.1 Study site 

Our study site is an 86 km2 natural area located on the periphery of Trondheim, Central 

Norway, a regionally dominant city with a population of around 190,000 (Figure 1; 

Trondheim Municipality 2020). The area consists of a diverse range of southern-boreal 

habitat types, including mires, mixed forest, lakes, and coastline (Moen 1999). Land 

management objectives vary within the study area; the entire area is designated as a natural 

area for public use, while three smaller subsets of the area comprising a total of 12 km2 are 

designated as nature reserves with greater conservation protections. The area contains an 

extensive trail network that is used throughout the year for a range of activities including 

hiking, running, cycling, and skiing, as well as a small number of access roads. There are also 

a small number of private homes within the area, primarily concentrated near the access 
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roads. The area is recognized as highly important for recreation, but visitor activity patterns 

are not well studied (Hagen et al. 2019). 

 

2.2 Data 

2.2.1 Citizen science and professional biodiversity data. All biodiversity data available on 

the Global Biodiversity Information Facility (GBIF) for the study area were downloaded on 

August 3, 2021 (GBIF 2021). The descriptions on GBIF of contributing data providers were 

used to classify all data as either opportunistic citizen science, structured citizen science, or 

professionally collected data. The single dataset classified as structured citizen science was 

excluded from analysis (Supporting Information). Data from before 2000 were excluded, as 

digital platforms for opportunistic citizen science largely grew in popularity after that year. 

Bacteria and freshwater-obligate species, including fish and aquatic invertebrates, were 

excluded because the citizen science observation process for these species is expected to 

differ fundamentally from that of terrestrial species. Finally, data points with a recorded 

coordinate uncertainty of greater than 150 meters were excluded. 

 

The filtered citizen science data consisted of 44206 observations from seven citizen science 

platforms. The majority were contributed through the Norwegian Species Observation 

Service (https://www.biodiversity.no/), which is Norway’s main biodiversity citizen science 

platform. Citizen science data were contributed by 560 participants in 8614 observation 

events (events being defined as unique combinations of observer, location coordinates, and 

date). As is typical of digital citizen science datasets, a small number of highly active 

participants contributed the majority of the data; the most active five percent of participants 

contributed 79% of the total data, while the median participant contributed just six 
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observations. The filtered professionally collected data consisted of 2059 observations from 

31 data providers, collected in 907 observation events (Supporting Information). 

 

In total, the citizen science data contained reports of 1524 species and the professional data 

contained reports of 991 species (Figure 2). Both types of data collection took place year-

round with a peak in intensity in the summer months, but annual variation in sampling 

intensity was more extreme in the professional data, with sampling intensity peaking later in 

the summer and falling to a much lower rate in the winter than in the citizen science data 

(Figure 2). Observations occurred in all available land cover types (Figure 2). 

 

2.2.2 Recreational visitor data. Data on recreational trail use were accessed from Strava 

Metro (https://metro.strava.com). Strava Metro publishes public data from users of Strava, a 

mobile app used by recreationists to log running, cycling, skiing, and other recreational 

activities. Data were summarized as the number of recorded trips per Open Street Map 

(https://www.openstreetmap.org) segment, defined as sections of trail or road between 

intersections. Strava Metro data were available from 2016 through 2020. 

 

2.2.3 Environmental covariates. We identified ten environmental covariates, broadly related 

to ease of area access and natural interest, that we expected to relate to citizen science 

activity. Five covariates were related to area access: access points, trail locations, recreational 

facilities (e.g., public tourist cabins, playgrounds, maintained swimming beaches, and 

similar), elevation, and longitude. Area access points were defined by intersections between a 

road or trail and the boundary of the natural area as well as public parking areas and public 

transit stops within or adjacent to the area. The locations of trails and recreational facilities 

were derived from maps provided by Trondheim Municipality 
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(https://kart.trondheim.kommune.no). Elevation was accessed from the Norwegian Digital 

Elevation Model (https://www.kartverket.no). Longitude was used as a proxy for distance 

from the nearest population center; the study area lies to the west of Trondheim’s population 

center, so it was expected that eastern longitudes would be positively associated with citizen 

science activity. Five covariates were related to natural interest: cultivated land cover and 

developed land cover were expected to relate negatively to citizen science activity, as these 

land cover types may be perceived as less natural and thus less interesting than other land 

cover types in the study area. Conversely, forest and wetland land cover and proximity to a 

freshwater lake or stream were expected to relate positively to citizen science activity. All 

natural interest variables were derived from the Norwegian Institute for Bioeconomics AR5 

land cover data at a 1:5000 scale (Ahlstrøm et al. 2014).  

 

2.3 Analysis 

2.3.1 Environmental covariates of citizen science activity. To examine the relationship 

between our ease of access and natural interest covariates and the distribution of citizen 

science activity, we established a grid of 150 x 150 m2 cells in the study area, resulting in 

4130 cells. Using the number of citizen science observations in each grid cell as a response 

variable, we fit a negative binomial generalized linear model with the ten covariates as 

predictor variables. This approach follows other studies that have examined covariates of 

citizen science activity at a broader spatial scale (e.g., Romo et al. 2006, Tulloch et al. 2012, 

Tiago et al. 2017). There were a small number of outlier cells (n = 7) where the number of 

citizen science observations was between two and eight times greater than in any other cells 

with citizen science activity. Citizen science participation in these highly active cells was 

most likely driven by processes that differ from typical patterns of citizen science 

participation; for instance, three such cells were located in the vicinity of a birdwatching 
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tower and two were adjacent to a school and a residential neighborhood at the edge of the 

study area. Because the drivers of sampling activity in these outlier cells might differ 

fundamentally from the typical sampling process within the study area, they were excluded 

from the analysis.  

 

The ten covariates were summarized by grid cell in the following ways: access was 

summarized by distance from grid centroid to nearest access point; trail locations were 

summarized by the total length of trail within each grid cell; recreational facilities were 

summarized as a binary variable expressing whether or not the grid contained a facility; 

elevation was summarized as the maximum elevation per grid cell; longitude was 

summarized by the grid centroid; all land cover types were summarized as the area within the 

grid cell covered by the land cover type; and proximity to freshwater was summarized as a 

binary variable expressing whether or not the cell contained a freshwater body. We tested for 

spatial autocorrelation using Moran’s I and included a distance-weighted autocovariate in the 

model, which reduced autocorrelation (Bardos et al. 2015). We used Akaike’s information 

criterion for small sample sizes (AICc) to rank all possible models consisting of combinations 

of our covariates with no interactions. The ranked models were used to determine the relative 

importance of each covariate, and we used multi-model inference to obtain the model-

averaged estimate and standard error for each covariate (Burnham and Anderson 2002). 

 

To compare the distribution of citizen science activity with comparable professional data 

collection processes, we first used a Pearson rank correlation analysis to compare the 

distribution of the two activity types and then repeated the modeling analyses using the 

number of professional biodiversity data observations per grid cell as the response variable. 
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2.3.2 Relationship between citizen science and trail network. Because accessibility, 

including regional trail density, has been shown to predict citizen science activity at broad 

spatial scales (Tiago et al. 2017), we examined the relationship between citizen science 

activity and trails in our study area. We used a linear model to test the hypothesis that the 

average distance from citizen science observation to the nearest trail would be smaller than if 

the points were distributed randomly. 

 

We further investigated whether citizen science participants who have likely accessed their 

observation sites via a trail tend to make observations from the trail or to leave the trail before 

making observations. We expected that if participants tend to make observations from the 

trail, then the distance between the recorded observation coordinates and the nearest trail 

would be greatest for taxonomic groups that are most often visible and identifiable from a 

distance (e.g., mammals, birds, some plants). If participants tend to leave the trail to make 

observations, then we would not expect this relationship. We used a linear model to examine 

the relationship between distance to trail and the observed taxonomic group as an indicator of 

off-trail observation activity. 

 

Both analyses related to the relationship between observation sites and trail locations were 

repeated for the professional dataset. 

 

2.3.3 Citizen science and other recreational trail use. Due to the previously documented 

relationship between citizen science activity and the presence of trails (Maire and Ruete 

2016, Tiago et al. 2017), we hypothesized that the spatial distribution of citizen science 

activity along trail segments would be positively correlated with the intensity of activity by 

other recreational trail users. To test this, we first used a Pearson rank correlation test to 
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compare the number of citizen science observations within a 300-meter-wide corridor along 

each trail segment in our study area (n = 7153), standardized by segment length, with the 

total number of Strava Metro activities reported on the segment. 

 

Finally, we compared the relationship between our covariates and citizen science activity 

along trail segments with the relationship that those covariates have to Strava activity. We 

first used the number of citizen science observations per segment corridor, standardized by 

segment length, as a response variable and fit a negative binomial generalized linear model 

with a modified set of landscape covariates. We then used the number of Strava activities 

reported along each trail segment to fit a second model with the same structure and 

covariates. 

 

The ten covariates were adapted to relate to trail segments rather than grid cells: all distance 

covariates, elevation, and longitude were summarized relative to the segment centroid, and all 

land cover covariates were summarized by percentage of area in the trail segment corridor 

covered by the land cover type. Rather than examining trail density as in the grid-based 

model, we added an additional covariate to examine the characteristics of the trail segment 

itself: the percentage of the trail segment characterized by the “transportation” land cover 

category was used to indicate the function of the segment as a main travel route. We adjusted 

for spatial autocorrelation, determined the relative variable importance, and conducted multi-

model averaging using the same approaches as in the grid-based model. 

 

All analyses were conducted in R version 4.1.2 (R Core Team 2021), and analysis scripts are 

available (Mandeville et al. 2022). Key R packages included tidyverse for data management 
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(Wickham et al. 2019), sf for spatial analyses (Pebesma 2018), and glmulti for multi-model 

inference (Calcagno et al. 2010). 

 

Results 

3.1 Environmental covariates of citizen science activity. 

As predicted, ease of area access was positively correlated with citizen science activity 

among grid cells (Figure 3). The total trail length per grid cell was the most important 

covariate and had a large positive effect on citizen science activity. Grid cells nearer to an 

area access point and to the closest population center were also positively associated with 

citizen science activity, though the effect of these covariates was smaller. Neither elevation 

nor the presence of recreational facilities were related to citizen science activity. The 

relationship with natural interest covariates did not match expectations; it was expected that 

developed and cultivated areas would be negatively associated with citizen science activity 

while land cover types often perceived to be more “natural” would be positively associated. 

Instead, the developed and cultivated land cover types had a large positive association with 

citizen science, while the wetland and forest land cover types were unimportant (Figure 3). 

The presence of freshwater had a small but important positive relationship to citizen science 

activity. These results were consistent among the six models that had a substantial level of 

support (ΔAICc < 2), in total accounting for 65.9% of the weight of evidence (Supporting 

Information). 

 

We found no evidence that citizen science activity was correlated with professional data 

collection activity among grid cells (Figure 1; Pearson correlation r = 0.035, p = 0.232). 

Three access covariates—distance to access points, longitude, and trail length—were 

important, but the effect sizes were much smaller than in the models of citizen science 
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activity (Figure 4). As with citizen science, the presence of water and cultivated land had a 

small positive relationship to professional data collection. Unlike with citizen science, the 

presence of wetland land cover had a very small negative relationship to professional data 

collection and the developed land cover type did not have an important effect. These results 

were consistent among the eight models with a substantial level of support (ΔAICc < 2), in 

total accounting for 57.2% of the weight of evidence (Supporting Information) 

 

3.2 Relationship between citizen science and trail network. 

Citizen science observations in the study area were on average made 26 meters (SD 42 

meters) from the nearest trail, which was closer than professional data collection points 

(mean 53 meters; SD 68 meters) as well as a random distribution of sites, which would be 

expected to have a mean distance from the nearest trail of 72 meters. 

 

There was high variability in the distance between observation points and the nearest trail 

within taxonomic groups. Still, the variation in mean distance values between taxonomic 

groups for citizen science data was consistent with the trend expected if observations tended 

to be made from a trail: taxonomic groups that are difficult to see from a distance (fungi, 

reptiles and amphibians) were associated with the smallest mean distance from the trail, while 

taxonomic groups that are easiest to spot from a distance (birds, mammals) were associated 

with the greatest distance. There was greater within-taxa variability and little evidence for a 

trend between taxonomic groups in the professional dataset (Figure 5). 

 

3.3 Citizen science and other recreational trail use. 

The tested covariates had limited ability to explain variation in citizen science activity among 

trail segments; four models had a substantial level of support, totaling 23.8% of the weight of 
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evidence (Figure 6; Supporting Information). All effect sizes were relatively small compared 

to the grid-level models (Figure 6). Notably, most covariates that were important at the grid 

scale were not important to describe variation between trail segments; distance from the 

nearest access point, longitude, and proximity to freshwater were important at the grid level 

but had only a small and uncertain relationship to citizen science activity along trail 

segments. The most important variable was forest cover, which had a small negative 

relationship to citizen science activity.  

 

The number of citizen science observations per trail segment corridor had no relationship to 

the number of reported Strava activities (Figure 1; Pearson correlation test, r = -0.01 , p = 

0.414). The relationship between the covariates and Strava activity differed substantially 

from their relationship to citizen science activity. The degree to which a trail segment 

functioned as a main travel route was the most important covariate, with a large positive 

relationship to Strava activity (Figure 7). In contrast, this covariate had a very small, 

marginally important positive effect on citizen science activity (Figure 6). Elevation had a 

strong positive association with Strava activity but a small negative association with citizen 

science activity. Wetland land cover had a positive association, while the association with 

forest and developed land cover was negative. These results were consistent among the 

twelve models with a substantial level of support (ΔAICc < 2), together accounting for 39.2% 

of the weight of evidence (Supporting Information) 

 

Discussion 

We responded to calls for research on citizen science within protected areas by examining 

citizen science activity in a small natural area that serves as a regional citizen science hotspot. 

Our results illustrate that citizen science participation is spatially heterogeneous on a local 
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scale. Ease of area access was the dominant landscape characteristic driving the distribution 

of citizen science in our study area, and a key component of accessibility is the use of a trail 

network to access observation sites. However, the distribution of citizen science activity 

along the trail network differed from that of other trail users. In general, citizen science 

activity was more evenly dispersed over a wider range of trail characteristics than other trail 

use; for example, citizen science participants were more likely than other trail users to spend 

time both in more developed parts of the natural area and also on less well-established paths 

that do not function as main travel routes. 

 

The importance of area access is a notable result of our study. It is known that accessibility 

and natural interest are major regional determinants of citizen science activity, but our results 

are among the first to show that, within a small natural area, accessibility has a stronger 

relationship to citizen science activity than particular landscapes perceived as the most 

natural. To the contrary, citizen science activity was positively associated with cultivated and 

developed land within the area. This may be partially explained by the increased accessibility 

afforded by infrastructure in these areas. But it may also stem from an affinity for these land 

cover types, as suggested by recent findings that the integration of biodiversity with cultural 

and agricultural heritage plays an important role in communities’ relationship to natural areas 

(Cusens et al. 2021). Proximity to water was positively associated with citizen science 

activity, as has previously been shown at regional scales and within urban areas (Boakes et al. 

2016, Tiago et al. 2017). This could be explained by trends in either participant behavior 

(e.g., participants might prefer spending time near water or observing species found near 

water) or in species availability (e.g., landscapes containing freshwater may be more species-

rich or afford greater detectability for species that are present). 
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The strong association between accessibility and citizen science participation offers some 

possibilities for improving the analysis of citizen science data. First, it may be possible to 

coarsely model the citizen science sampling intensity in local-scale analyses by accounting 

for access opportunities, as has been done previously at broader scales (Johnston et al. 2020, 

Cretois et al. 2020, Sicacha Parada et al. 2020). Further, accounting for accessibility could 

allow for better estimation of the citizen science sampling process on a regional scale. Our 

results suggest that even areas with a regionally high density of citizen science have likely 

not been sampled evenly, and that the regional citizen science sampling process could be 

better estimated by accounting for fine scale access patterns within citizen science hotspots. 

 

At the same time, our results emphasize that mass participation citizen science can be a 

valuable supplement or, where needed, surrogate for biodiversity data from structured 

sampling. The citizen science data on GBIF include a greater number of species from all 

taxonomic groups than the equivalent professional datasets, covering a similarly diverse 

range of land cover types. In some ways, citizen science expands the reach of professional 

data collection; for instance, citizen science far outpaced professional data collection in the 

winter months in our study area. Winter ecology is recognized as understudied yet critical to 

conservation in the face of climate change (Studd et al. 2021, Sutton et al. 2021), so the 

contribution to this research area by citizen science is noteworthy. When comparing citizen 

science and professionally collected data, is important to note that the professional data on 

GBIF for our study area is almost certainly not a complete record of professional biodiversity 

data that has been collected in the area; while the value of openly sharing data is increasingly 

recognized, barriers still prevent much biodiversity data from being shared (Mandeville et al. 

2021). For this reason, citizen science data are particularly valuable for their relatively easy 

accessibility. 
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In addition to informing more effective analysis of existing citizen science data, knowledge 

of citizen science activity patterns can be used by area managers to promote and guide future 

data collection. First, managers could use knowledge about citizen science trends to reach out 

to current participants to prompt collection of data to meet specific monitoring needs, for 

example by posting signs in areas regularly frequented by citizen science participants or 

communicating through customization features offered by citizen science platforms (Loen & 

Newton 2021, Gosal et al. 2021). Second, managers could identify areas of low citizen 

science activity to target for recruiting new participants (Weaver and Lawton 2017). For 

instance, recreational facilities were not closely associated with citizen science participation 

in our study area, so promotional information placed near such facilities could engage area 

visitors who do not yet participate in citizen science. Finally, managers may be able to 

prioritize professional data collection to complement citizen science by emphasizing areas of 

low citizen science activity. 

 

Knowledge of spatial trends in citizen science activity can further inform overall recreational 

area management strategies. The needs and preferences of recreational visitors are regularly 

used to make management decisions about protected areas, but because different subsets of 

visitors prioritize different types of area management, it is challenging to fully capture the 

diverse needs of area visitors (Muñoz et al. 2020, Komossa et al. 2021). Because recreational 

preferences often play a key role in justifying area protection, it is important to accurately 

understand the full range of visitor experiences (Hornigold et al. 2016, Mancini et al. 2018, 

Cambria et al. 2021). Our results show that citizen science participants tend to use the trail 

network differently from other visitors, so their needs may be overlooked if not explicitly 

considered. Citizen science participants may even serve as a useful proxy to represent a 
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broader group of area visitors, characterized by a desire to experience and learn about nature, 

who may be otherwise difficult to account for when assessing overall visitation trends 

(Havinga et al. 2020, Cambria et al. 2021). 

 

Moving forward, there is much left to learn about citizen science participation at a local scale. 

The knowledge gained from modeling spatial patterns in citizen science participation is 

critical for understanding the ways that participants’ motivations and behaviors manifest in 

spatially heterogeneous data collection (Sisneros-Kidd et al. 2021). Our results demonstrate 

spatial trends in citizen science participants’ behavior. They also suggest new directions that 

could be followed up with research to address the motivation for this behavior: for instance, it 

would be useful to survey citizen science participants about their selection of trail routes or 

their on- and off-trail activity. Importantly, our goal of understanding citizen science activity 

in local protected areas responds to a commonly documented motivation for citizen science 

participation: participants regularly indicate that they want their data to be used for the 

conservation and management of places that they value (Ganzevoort et al. 2017, Larson et al. 

2020, Maund et al. 2020). Through facilitation of improved data analysis and citizen science 

program implementation, a stronger understanding of citizen science activity within protected 

areas can be a step towards increasing the local conservation impact of participants’ 

contributions. 
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Figures 

Figure 1. Map of study area in Trondheim, Central Norway. (a) indicates the position of the 

study area in relation to the population center of Trondheim. (b) indicates the density of 

reported Strava activities per trail segment. (c) and (d) indicate the density of citizen science 

data and professional data per grid cell, respectively. 
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Figure 2. (a) Number of observations from each taxonomic group for citizen science and 

professional data; (b) number of species from each taxonomic group for citizen science and 

professional data; (c) month of observation for citizen science and professional data; (d) land 

cover type for citizen science and professional observations, shown relative to the availability 

of land cover types within the area.  
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Figure 3. Modeled effect of all covariates on the number of citizen science observations per 

grid cell, modeled with a negative binomial generalized linear model structure. All six 

models with substantial support (ΔAICc < 2) are shown. Ribbons indicate a 95% confidence 

interval. Relative variable importance, calculated with a weighted average of all models, is 

indicated for each covariate. 
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Figure 4. Modeled effect of all covariates on the number of professional biodiversity 

observations per grid cell, modeled with a negative binomial generalized linear model 

structure. All eight models with substantial support (ΔAICc < 2) are shown. Ribbons indicate 

a 95% confidence interval. Relative variable importance, calculated with a weighted average 

of all models, is indicated for each covariate. 
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Figure 5. Distance between reported observation coordinates and the nearest trail for citizen 

science and professional data. Letters indicate groups of taxonomic classes that were 

identified as distinct from each other at a p < 0.05 level with a Tukey HSD test. 
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Figure 6. Modeled effect of all covariates on the number of citizen science observations per 

300-meter-wide trail segment corridor, standardized by segment length, modeled with a 

negative binomial generalized linear model structure. All four models with substantial 

support (ΔAICc < 2) are shown. Ribbons indicate a 95% confidence interval. Relative 

variable importance, calculated with a weighted average of all models, is indicated for each 

covariate. 
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Figure 7. Modeled effect of all covariates on the number of reported Strava activities per trail 

segment corridor, modeled with a negative binomial generalized linear model structure. All 

twelve models with substantial support (ΔAICc < 2) are shown. Ribbons indicate a 95% 

confidence interval. Relative variable importance, calculated with a weighted average of all 

models, is indicated for each covariate. 
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S1.1 Data contributors to the biodiversity data accessed from GBIF, after filtering for 

inclusion in this study. n indicates the number of included data points contributed by the 

indicated data source. Data sources where n = 0 were present in the study area on GBIF but 

all data from these sources were excluded through the filtering described in the Methods 

section. 

Data source Type of source n 

(included) 

Norwegian Species Observation Service Citizen science - opportunistic 40376 

eBird Observation Dataset Citizen science - opportunistic 3450 

iNaturalist Research-grade Observations Citizen science - opportunistic 299 

Pl@ntNet Citizen science - opportunistic 50 

Skandobs Citizen science - opportunistic 11 

Naturgucker Citizen science - opportunistic 11 

Observation.org Citizen science - opportunistic 6 

Vascular plant herbarium TRH, NTNU 

University Museum 

Professional 492 

Lichen herbarium TRH, NTNU 

University Museum 

Professional 291 

Terrestrial and limnic invertebrates 

systematic collection, NTNU University 

Museum 

Professional 246 

Mycology herbarium TRH, NTNU 

University Museum 

Professional 218 

Fungi field notes, Oslo (O) Professional 170 

NINA insect database Professional 120 

International Barcode of Life project 

(iBOL) 

Professional 100 

BioFokus Professional 99 

Geographically tagged INSDC sequences Professional 67 

Bryophyte herbarium TRH, NTNU 

University Museum 

Professional 53 

Lichen field notes, Oslo (O) Professional 29 

Royal Botanic Garden Edinburgh Living 

Plant Collections (E) 

Professional 28 

Bird collection NTNU University 

Museum 

Professional 27 

Lichen herbarium, Oslo (O) UiO Professional 25 

Mycology herbarium, Oslo (O) UiO Professional 23 

NHMO DNA Bank Vascular plants 

collection 

Professional 19 

Vascular Plant Herbarium, Oslo (O) UiO Professional 15 

NHMO DNA Bank Fungi and Lichens 

collection 

Professional 7 



Danish Mycological Society, fungal 

records database 

Professional 6 

Artsprosjekt: hypogeous_macrofungi Professional 4 

Bryophyte Herbarium, Oslo (O) UiO Professional 4 

Herpetile collection NTNU University 

Museum 

Professional 4 

Entomological collections, UiB Professional 3 

Lichen herbarium, UiB Professional 2 

Algae herbarium TRH, NTNU University 

Museum 

Professional 1 

Mycology collection, Norwegian Forest 

and Landscape Institute 

Professional 1 

Reptilia notes, NTNU University Museum Professional 1 

Seabirds in Norway - Estimated 

population sizes 

Professional 1 

The cryptogamy collection (PC) at the 

Herbarium of the Muséum national 

d'Histoire Naturelle (MNHN - Paris) 

Professional 1 

Tropicos Specimen Data Professional 1 

Vascular plant herbarium (KMN) UiA Professional 1 

Norwegian Biodiversity Information 

Centre - Other datasets 

Citizen science - structured  0 

Algae collection, Oslo (O) UiO Professional 0 

Algae, Norwegian College of Fishery 

Science 

Professional 0 

Birds ringed with Norwegian rings 1914-

1960 

Professional 0 

Birds ringed with Norwegian rings 1961-

1990 

Professional 0 

Bryophyte herbarium, UiT Tromsø 

Museum 

Professional 0 

Collembola collection of Arne Fjellberg, 

Norway 

Professional 0 

Entomology collection, UiT Tromsø 

Museum 

Professional 0 

Entomology Division, Yale Peabody 

Museum 

Professional 0 

Entomology, Natural History Museum, 

University of Oslo 

Professional 0 

Fish collection NTNU University 

Museum 

Professional 0 

Herbarium GB, University of Gothenburg Professional 0 

Huitfeldt Kaas: Freswhater fish 

distribution in Norway 1918 

Professional 0 

Ims fish tag database Professional 0 

Lichen herbarium, UiT Tromsø Museum Professional 0 

Limnic freshwater benthic invertebrates 

biogeographical mapping/inventory 

NTNU University Museum 

Professional 0 



Limnic freshwater pelagic invertebrates 

biogeographical mapping/inventory 

NTNU University Museum 

Professional 0 

Lund Botanical Museum (LD Professional 0 

Mammal collection NTNU University 

Museum 

Professional 0 

Marine invertebrate collection NTNU 

University Museum 

Professional 0 

Mycology herbarium, UiT Tromsø 

Museum 

Professional 0 

National fish tag database Professional 0 

NHMO DNA Bank Fish and Herptile 

collection 

Professional 0 

NINA Vanndata fisk Professional 0 

NINA Vanndata øvrige arter Professional 0 

NMNH Extant Specimen Records Professional 0 

Notes from the Mycology Herbarium, 

Oslo (O) 

Professional 0 

NSW AVH data Professional 0 

Provincial Museum of Alberta, 

Edmonton, AB, Canada. Birds (Aves) 

Professional 0 

SEAPOP - Last observation per locality in 

breeding season 

Professional 0 

Thrips (Thysanoptera) in Norway Professional 0 

Vascular plant field notes, NTNU 

University Museum 

Professional 0 

Vascular plant herbarium, UiT Tromsø 

Museum 

Professional 0 

Vascular Plants, Field notes, Oslo (O) Professional 0 

Vascular Plants, Museum of Archaeology, 

University of Stavanger 

Professional 0 

 

  



S2.1 Model-averaged relative variable importance of each covariate for the models of (a) 

citizen science and (b) professional biodiversity data observations among grid cells in the 

study area. 

 

 

 

  



S2.2 Importance and model-averaged estimates and standard error for each covariate in the 

(a) citizen science and (b) professional model of biodiversity observations among grid cells in 

the study area. 

(a) Citizen science 

 Importance Estimate Standard error 

Intercept 1.0000 -40.8046 18.1530 

Trails 1.0000 2.8719e-03 3.2799e-04 

Water 1.0000 0.6120 0.1286 

Access 0.9988 -3.1417e-04 7.6526e-05 

Developed 0.9976 2.1905e-04 5.2257e-05 

Cultivated 0.9959 7.3890e-05 2.1878e-05 

Longitude 0.9126 7.3116e-05 3.2137e-05 

Forest 0.7900 -1.4755e-05 1.4731e-05 

Wetland 0.5379 -3.4152e-04 1.4731e-05 

Elevation 0.4681 -3.4152e-04 5.0224e-04 

Facilities 0.2726 -2.5224e-02 0.1365 

(b) Professional 

 Importance Estimate Standard error 

Intercept 1.0000 45.9149 22.0541 

Water 0.9997 0.6563 0.1528 

Access 0.9996 -4.3222e-04 9.7075e-05 

Cultivated 0.9857 7.1324e-05 2.450e-05 

Wetland 0.9655 -4.6951e-05 1.8090e-05 

Longitude 0.9103 -8.4016e-05 3.9093e-05 

Trails 0.8837 9.0124e-04 4.7133e-04 

Facilities 0.4802 0.2920 0.4288 

Developed 0.4212 4.01662e-05 5.7759e-05 

Elevation 0.3205 -1.3417e-04 3.2941e-04 

Forest 0.3139 -2.1098e-06 5.0725e-06 

 

  



S2.3 All negative binomial generalized linear models of (a) citizen science and (b) 

professional biodiversity observations within grid cells with a substantial level of support 

(ΔAICc < 2). 

(a) Citizen science 

Model AICc ΔAICc k Evidence 

weight 

water + access + trails + longitude + 

developed + cultivated + forest + ac 

10764.62 0.00 9 0.152 

water + access + trails + longitude + elevation 

+ developed + cultivated + forest + ac 

10764.76 0.14 10 0.142 

water + access + trails + longitude + 

developed + cultivated + forest + wetlands + 

ac 

10765.07 0.45 10 0.121 

water + access + trails + longitude + elevation 

+ developed + cultivated + forest + wetlands 

+ ac 

10765.30 0.68 11 0.109 

water + access + trails + longitude + 

developed + cultivated + wetlands + ac 

10765.95 1.33 9 0.078 

facilities + water + access + trails + longitude 

+ developed + cultivated + forest + ac 

10766.58 1.96 10 0.057 

(b) Professional 

facilities + water + access + trails + longitude 

+ cultivated + wetlands + ac 

4766.53 0.00 8 0.113 

water + access + trails + longitude + 

cultivated + wetlands + ac 

4766.62 0.09 7 0.109 

water + access + trails + longitude + 

developed + cultivated + wetlands + ac 

4767.32 0.70 8 0.076 

facilities + water + access + trails + longitude 

+ developed + cultivated + wetlands + ac 

4767.65 1.12 9 0.065 

facilities + water + access + trails + longitude 

+ elevation + cultivated + wetlands + ac 

4768.00 1.47 8 0.055 

water + access + trails + longitude + elevation 

+ cultivated + wetlands + ac 

4768.03 1.50 7 0.054 

water + access + trails + longitude + 

cultivated + forest + wetlands + ac 

4768.10 1.57 7 0.052 

facilities + water + access + trails + longitude 

+ cultivated + forest + wetlands + ac 

4768.24 1.71 8 0.048 



S2.4 AICc weights of the 2000 highest rated negative binomial generalized linear models for 

the number of (a) citizen science and (b) professional observations per grid cell, out of a set 

consisting of all possible combinations of the ten covariates with no interactions. Models 

below the red line have substantial support (ΔAICc < 2). 

 

 

 

 

 

 

  



S3.1 Model-averaged relative variable importance of each covariate for the models of (a) 

citizen science observations, standardized by trail length, and (b) reported Strava activities 

among trail segment corridors in the study area. 

  



S3.2 Importance and model-averaged estimates and standard error for each covariate in the 

(a) citizen science and (b) Strava model among trail segments in the study area. 

(a) Citizen science 

 Importance Estimate Standard error 

Intercept 1.0000 2.5276 6.7570 

Forest 0.9999 -1.4894 0.2837 

Wetland 0.9840 -1.5201 0.5525 

Main route 0.9267 0.3813 0.1839 

Developed 0.8364 2.2695 1.5327 

Elevation 0.7575 -1.1050e-03 9.4727e-04 

Facilities 0.7045 1.8293e-04 1.4776e-04 

Cultivated 0.5258 -0.4971 0.6186 

Water 0.3156 -7.3325e-05 1.5947e-04 

Longitude 0.2928 -1.0377e-06 1.1786e-05 

Access 0.2725 -3.434e-09 5.3803e-06 

(b) Strava 

 Importance Estimate Standard error 

Intercept 1.0000 -0.9757 7.4036 

Wetland 1.0000 2.3556 0.2464 

Main route 1.0000 1.6205 6.9936e-02 

Elevation 1.0000 2.4697e-03 3.5730e-04 

Developed 0.9999 -2.5075 0.5347 

Facilities 0.6626 -6.4751e-05 6.0945e-05 

Forest 0.6590 0.1587 0.1540 

Access 0.6008 9.0454e-06 9.9301e-06 

Water 0.5969 -1.3327e-04 1.5104e-04 

Cultivated 0.5346 0.1924 0.2492 

Longitude 0.4080 7.8845e-06 1.3055e-05 

  



S3.3 All negative binomial generalized linear models of (a) citizen science observations, 

standardized by trail length, and (b) reported Strava activities within trail segment corridors 

with a substantial level of support (ΔAICc < 2). 

(a) Citizen science 

Model AICc ΔAICc k Evidence 

weight 

mainroute + facilities + elevation + wetlands + 

forest + developed + cultivated + ac 

14490.53 0.00 8 0.095 

mainroute + facilities + elevation + wetlands + 

forest + developed + ac 

14491.42 0.00 7 0.061 

mainroute + facilities + elevation + wetlands + 

forest + developed + cultivated + water + ac 

14491.99 0.00 9 0.046 

access + mainroute + facilities + elevation + 

wetlands + forest + developed + cultivated + ac 

14492.50 0.89 7 0.036 

(b) Strava 

access + mainroute + facilities + elevation + 

wetlands + forest + developed + cultivated + water 

+ ac 

105747.2 0.0 10 0.065 

access + mainroute + facilities + elevation + 

wetlands + forest + developed + cultivated + ac 

105747.8 0.6 9 0.048 

mainroute + facilities + elevation + wetlands + 

forest + developed + cultivated + water + ac 

105748.2 1.0 9 0.039 

access + mainroute + longitude + elevation + 

wetlands + forest + developed + cultivated + water 

+ ac 

105748.2 1.0 10 0.038 

access + mainroute + longitude + facilities + 

elevation + wetlands + forest + developed + 

cultivated + water + ac 

105748.3 1.1 11 0.037 

access + mainroute + facilities + elevation + 

wetlands + forest + developed + water + ac 

105748.3 1.1 9 0.036 

mainroute + facilities + elevation + wetlands + 

forest + developed + cultivated + ac 

105748.4 1.2 8 0.036 

access + mainroute + facilities + elevation + 

wetlands + forest + developed + ac 

105748.8 1.6 8 0.028 

access + mainroute + elevation + wetlands + forest 

+ developed + cultivated + water + ac 

105748.9 1.7 9 0.027 



mainroute + facilities + elevation + wetlands + 

forest + developed + water + ac 

105749.1 1.9 8 0.025 

access + mainroute + facilities + elevation + 

wetlands + developed + ac 

105749.1 1.9 7 0.025 

access + mainroute + longitude + elevation + 

wetlands + forest + developed + water + ac 

105749.1 1.9 9 0.024 

  



S3.4 AICc weights of the 2000 highest rated negative binomial generalized linear models for 

the number of (a) citizen science observations, standardized by trail length, and (b) recorded 

Strava activities per trail segment, out of a set consisting of all possible combinations of the 

ten covariates with no interactions. Models below the red line have substantial support 

(ΔAICc < 2). 

 


