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Abstract 45 

The impacts of global change — from shifts in climate to overfishing to land use change — can 46 

depend heavily on local abiotic context. Building an understanding of how to downscale global 47 

change scenarios to local impacts is often difficult, however, and requires historical data across 48 

large gradients of variability. Such data are often not available — particularly in peer reviewed 49 

or gray literature. However, these data can sometimes be gleaned from casual records of natural 50 

history — field notebooks, data sheet marginalia, course notes, and more. Here, we provide an 51 

example of one such approach for the Gulf of Maine, as we seek to understand how 52 

environmental context can influence local outcomes of region-wide shifts in subtidal community 53 

structure. We explore a decade of hand-drawn algal cover maps around Appledore Island made 54 

by Dr. Art Borror while teaching at the Shoals Marine Lab. Appledore’s steep wave exposure 55 

gradient — from exposed to the open ocean to fully protected — provides a living laboratory to 56 

test interactions between global change and local conditions. We then recreate Borror’s methods 57 

two and a half-decades later. We show that overfishing-driven urchin outbreaks in the 1980s 58 

were slowed or stopped by wave exposure and benthic topography. Similarly, local variation 59 

appears to have curtailed current invasions by filamentous red algae. Last, some formerly 60 

dominant kelps have disappeared over the past forty years — an observation verified by subtidal 61 

surveys. Global change is altering life in the seas around us. While underutilized, solid natural 62 

history observations stand as a key resource for us to begin to understand how global change will 63 

translate to the heterogeneous mosaic of life in a future Gulf of Maine and other ecosystems 64 

around the world. 65 

Introduction 66 

Ecologists and managers are constantly challenged to understand how global and regional 67 

human change translates to changes at local scales (Wilbanks and Kates 1999; Knowlton and 68 

Jackson 2008; Potter et al. 2013; De Boeck et al. 2015; Gonzalez et al. 2016; Blowes et al. 2019; 69 

Chase et al. 2019). This ability to translate from the global to the local is crucial information, as 70 

resilient and resistant communities can seed recovery and adaptation (Laborde et al. 2008; 71 

Bongaerts et al. 2010; Reis et al. 2010; Rinde et al. 2014; Eger et al. 2022). As we confront the 72 

changes to come, some of the most useful data on how local spatial variation in abiotic drivers 73 

can modify the impacts of global and regional human-driven change come from the past. Yet, 74 
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these data are often rare — even within the past few decades — and typically are not taken at a 75 

fine enough spatial grain to provide meaningful insights. Such data are particularly lacking for 76 

temperate subtidal macroalgal communities where, until recently, one needed to be in the water 77 

to see communities and colder waters limited access to even casual observers. Yet, the notebooks 78 

and ephemera of great and passionate natural historians can provide a key to unlocking this 79 

knowledge. Here we show that informal notes by faculty teaching at a marine lab can help us 80 

understand how local-scale variation can reduce the effects of past runaway trophic cascades and 81 

current-day bioinvasions. 82 

Temperate macroalgal communities have experienced drastic changes both at the global 83 

(Krumhansl et al. 2016) and regional (Steneck et al. 2013) scale over the past century. These 84 

changes include radical shifts in abundance (e.g., Wernberg et al. 2012, 2016) as well as shifts in 85 

species ranges and composition (Steneck et al. 2013; Dijkstra et al. 2017; Filbee-Dexter and 86 

Wernberg 2018; Smale 2020). Macroalgal communities serve as the foundation for rocky 87 

shallow-water benthic ecosystems; changes to these systems have immense implications for 88 

associated species and their ability to provide ecosystem services, including harvesting of 89 

commercial species. Local conditions, however, can alter the effects of global and regional 90 

environmental change on these communities. Moreover, these local modifications to species 91 

trajectories can even lead to improved trajectories of recovery after massive disturbances. When 92 

kelps were subjected to massive overgrazing by sea urchins in Norway in the 1980s, for 93 

example, local variation in wave exposure allowed for kelp persistence in some areas, which then 94 

served as nuclei for recovery (Sivertsen 1997; Norderhaug and Christie 2009; Rinde et al. 2014). 95 

The subtidal rocky reefs of the Gulf of Maine have experienced massive human-driven 96 

changes over the past half-century. Aside from one of the fastest rates of warming in the ocean 97 

(Pershing et al. 2015, 2021), we have seen a loss of predatory cod and other finfishes in the 98 

1970s and 80s as a result of overfishing (Estes et al. 2013) creating runaway overgrazing of kelps 99 

by sea urchins (Steneck and Wahle 2013; Steneck et al. 2013). This urchin boom was followed 100 

by overfishing of urchins (Steneck et al. 2013), massive increases in mesopredatory crab and 101 

lobster abundances (Steneck and Wahle 2013; Steneck et al. 2013), and some urchin disease 102 

(Caraguel et al. 2007; Steneck et al. 2013), the latter of which was more prevalent in Nova Scotia 103 

than the Gulf of Maine itself (Scheibling 1986; Scheibling and Lauzon-Guay 2010; Feehan and 104 
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Scheibling 2014). Alongside the resulting urchin declines, we have seen  increases in crustacean 105 

shell disease  (Castro et al. 2012; Steneck and Wahle 2013), a rolling series of species invasions 106 

(Harris and Tyrrell 2001; Mathieson et al. 2003; Bullard et al. 2007; Newton et al. 2013; Dijkstra 107 

et al. 2017), changes in ocean color and pH due in part to increases in river runoff from strong 108 

storms driven by climate change (Aiken et al. 2012; Balch et al. 2012; Huntington et al. 2016), 109 

region-wide die-offs of mussels (Sorte et al. 2017), sea star wasting disease (Bucci et al. 2017; 110 

Van Volkom et al. 2021), and likely more. The sequence of urchin overgrazing followed by 111 

species invasions and increases in temperature, particularly in the southern Gulf of Maine (Harris 112 

and Tyrrell 2001), has had profound influences on the composition and abundance of subtidal 113 

habitat forming species (Steneck et al. 2013; Dijkstra et al. 2017, 2019). In particular, introduced 114 

seaweed species have increased by 90% in the Gulf of Maine since the 1970’s, reducing canopy 115 

height and providing refuge for meso-invertebrate communities (Dijkstra et al. 2017). While we 116 

have built up a wealth of knowledge looking at the consequences of regional changes in the 117 

subtidal Gulf of Maine (see review in Steneck et al. 2013), few studies have examined how 118 

small-scale environmental variability has moderated the impacts of regional anthropogenic 119 

change across large spatial scales (but see Witman and Lamb 2018 for onshore-offshore 120 

comparisons of fishing pressure and climate change). Without this information, we can only 121 

begin to understand the factors that could impede, mitigate or facilitate adaptation to human-122 

driven ecological change in the Gulf of Maine subtidal zone. 123 
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 124 

Figure 1. The Isles of Shoals off the coast of New Hampshire and Maine with Appledore Island 125 

featured in the inset. In the inset, we highlight the four quadrants of the island considered in this 126 

manuscript and describe their broad differences in swell exposure and subtidal topography. 127 

Starting in 1974, Dr. Arthur Borror taught a variety of courses in ornithology, zoology, 128 

and ecology at the Shoals Marine Lab on Appledore Island (Fig. 1). Borror, a phenomenal 129 

naturalist, recorded his observations each summer at the field station in a series of notebooks 130 

now archived at the University of New Hampshire (Borror 2016). As part of one class, students 131 

surveyed intertidal transects scattered around the whole island at low tide while Borror would 132 

circle the island by boat to check on them. Between 1982 and 1990, he also brought along a 133 

bathyscope, and would regularly lean over the side of the boat to observe the dominant subtidal 134 

habitat — either a species or functional group of algae or rocky urchin barren. He recorded five 135 

hand-drawn maps in his field notebooks of these habitats around the entire island. These maps 136 

span a huge gradient of wave exposure — from completely protected to fully exposed to the 137 

open ocean — as well as bottom topography. As a curiosity, along with Dr. James Coyer, one of 138 
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the authors of the present manuscript (Byrnes) repeated this observation in 2014, producing a 139 

comparable map. While these are casual natural history observations, they provide an 140 

unparalleled look at how the regional urchin boom of the 1980s and the rise of red algae in the 141 

2010s played out against a backdrop of local environmental variability. Here we digitize these 142 

maps and use the products to explore temporal and spatial patterns of macroalgae at Appledore 143 

Island in order to understand how local variability can modify regional change within the Gulf of 144 

Maine. 145 

 146 

 147 

Methods 148 

Digitization of maps 149 

We recorded handwritten metadata and took digital photos of all maps and their legends 150 

(Fig. 2, S1–S6, Supplementary Materials 1 for details of digitization), adjusted images with 151 

Adobe Photoshop and then imported them into QGIS (QGIS Development Team 2022). In 152 

QGIS, we georeferenced seven distinct points which were consistent across all maps based on 153 

the more precise 2014 map (Fig. 2A). We overlaid the georeferenced photos on a Google 154 

Satellite base map (obtained through QuickMapServices QGIS plugin Map data ©2015 Google ) 155 

with transparency at 50%. We manually added polygons matching maps and labeled them 156 

corresponding to a single species or mix of species (Fig. 2B,C for 1984 map), which we will 157 

refer to as communities or habitats. To account for changes in taxonomy across years and lack of 158 

specificity for some groups, we identified communities based on a standardized taxonomy across 159 

maps (Table S1). Using a bathymetry layer (Ward et al. 2021), we clipped polygons to areas 160 

shallower than 5m below mean low low water. We then drew a perimeter line at 1.5m around the 161 

island to create a gapless island perimeter from which to determine the percent cover of habitats. 162 
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163 
Figure 2. Appledore Island maps depicting the various habitats (often species) occupying the 164 

coastline. A. The 2014 map with seven red circles showing the points used for georeferencing all 165 

six maps and satellite maps in QGIS. Each habitat is represented by a different letter along the 166 
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coast. B. The original 1984 map where each habitat is represented by a different color along the 167 

coast. C. The final 1984 digitized map showing habitats present between 0–5 meters depth. 168 

Percent cover of each habitat type  169 

To obtain the area covered by each habitat, we imported all six map shapefiles into R 170 

(version 4.1.1, R Core Team 2020) and split polygons representing more than one habitat into 171 

multiple overlapping polygons for each unique habitat. On the original Borror maps, some labels 172 

included details such as “kelp and sparse Saccharina”, but we were unable to quantify “sparse” 173 

or other qualitative descriptors and therefore ignored these details for consistency. We 174 

determined the intersection between the 1.5-meter perimeter around Appledore Island and 175 

polygons for each habitat in each year and used the proportion of perimeter intersected as our 176 

measure of cover. For overlapping polygons, we evenly divided the percentage of the perimeter 177 

between them. We then repeated the process with habitats grouped into “pure kelp”, “mixed kelp 178 

& reds”, “mixed red algae”, and “urchin barrens”. 179 

Assessing local modification of urchin barren formation and red algal dominance 180 

To evaluate how local environmental variation around the island might have impacted 181 

urchin barren formation and the rise of red algae across Appledore, we split the island into four 182 

quadrants due to substantial subtidal variation in these areas (see Fig. 1). Each quadrant had 183 

unique properties of wave exposure and benthic topography (Supplementary Materials 2). Going 184 

clockwise, these quadrants were: southwest, characterized by minimal wave exposure and wide 185 

shallow sloping benches; northwest, characterized by exposure to swell coming from the 186 

mainland and narrow fast-dropping ledges; northeast, characterized by moderate exposure to the 187 

open ocean shielded by nearby Duck island and wide sloping benches, canyons; and the 188 

southeast, characterized by direct exposure to the open ocean and fast-dropping ledges parallel to 189 

shore.  190 

To evaluate how quadrant affected urchin barren cover and kelp cover, we analyzed each 191 

using beta regression with a logit link — ideal for bounded data (Cribari-Neto and Zeileis 2010; 192 

Douma and Weedon 2019) — with quadrant, year (as a categorical variable), and their 193 

interaction as predictors for data from 1980–1990. Based on the results, we ran post-hoc 194 

contrasts between quadrants in each year, correcting p-values for False Discovery Rate 195 
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(Benjamini and Hochberg 2000). We did not use 2014 data for these analyses given the shift in 196 

the subtidal community from an urchin-dominated to non-urchin-dominated state. Instead, we 197 

used 2014 data to qualitatively compare the abundance of coarse taxonomic groups in different 198 

quadrants, as n=1. 199 

 200 

Results 201 

 202 

 Digitized maps (Fig. 2,  S7–S12, Supplementary Data 1,2) clearly show several trends in 203 

composition of dominant space holders over time (Fig. 3, Figure S13 for maps). First, urchin 204 

barrens were a dominant habitat type around Appledore in the 1980s (22.8–34.1% of total 205 

habitat), although kelps comprised the majority of habitat around the entire island (49.9–63.0%). 206 

Second, we see the expansion of Saccharina latissima between 1990 and 2014 and the absence 207 

of urchin barrens in 2014. Notably, in 2014 red algae composed 35% of the perimeter versus less 208 

than 12% in the 1980s. More subtly, Laminaria digitata is absent in 2014 and Alaria esculenta, 209 

while abundant in 1982, is greatly diminished in abundance (Fig. 3).  210 

 211 
 212 
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Figure 3. Change in percent of perimeter at 1.5m depth covered by each habitat or community 213 

type over time. 214 

  215 

Looking at these trends spatially and aggregating groups into kelps, red algae (or “reds”), 216 

and barrens, we can see that the impact of urchins in the 1980s and putative impact of red algal 217 

expansion in the 2010s was unevenly distributed over Appledore (Figure 4, Fig. S14), reflecting 218 

local variability in abiotic conditions. In the 1980s, the southwest quadrant of the island was 219 

characterized by an extensive urchin barren, which persisted into the early 2000s (Siddon and 220 

Witman 2004, J. Byrnes pers. obs.). The northeast also appears to have developed two urchin 221 

barrens — one in a cove known as Devil’s Dancing Floor at the north and the other at the back of 222 

Babb’s Cove further to the south. These barrens eventually joined by 1987, although the most 223 

exposed tip of the northeast had begun to revert back to kelp by 1990. Barrens were rare in the 224 

northwest and southeast. This trend in urchin barrens is supported by an interaction between year 225 

and quadrant (df = 3, χ2 = 25.8, p < 0.001 Supp. Table 2) and post-hoc test results showing the 226 

trends described above (Fig. S15).  227 

Curiously, 2014 looks similar to 1990, but red algae replaced barrens (Fig. 4). The 228 

protected southwest was dominated by stands of reds, the partially-protected northwest and 229 

partially-exposed northeast hosted a combination of kelps and reds, and the fully-exposed 230 

southeast was largely dominated by kelps.  231 

 232 
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 233 
 234 

Figure 4. Maps of the perimeter of Appledore over time showing kelp, stands of mixed kelp and 235 

red algae, red algae, and urchin barrens over time. 236 

 237 

Discussion 238 

 239 

Our analysis of these natural history observations supports long-term trends observed in 240 

other studies (Harris and Tyrrell 2001; Steneck et al. 2013; Dijkstra et al. 2017). First, we can see 241 

the major island-wide macroalgal community responses due to two important major regional 242 

shifts in the Gulf of Maine, the explosion of urchins in the 1980s and the rise of — often invasive 243 

— red algae in the 2010s. Yet, these two observations are by no means uniform, and the 244 

substantial spatial variation suggests that local environments can play a strong role in mediating 245 

the impacts of global or regional change. Second, informal natural history observations such as 246 

these hand-drawn maps are an invaluable source of data that can contribute meaningful insight 247 

into how the local variation of a region is shaping the response of biotic communities to global 248 

patterns and even direct how we approach future management. 249 
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 Borror’s maps from the 1980s show strong correlation with known regional trends. By 250 

the 1980s, cod catches had declined due to overfishing (Sosebee and Cadrin 2006) and urchins 251 

were likely already on the rise (Steneck et al. 2013). Urchin barrens increased notably on the 252 

northeast and southwest of the island, where they were most abundant, while fluctuating 253 

stochastically in other quadrants. In 1990, the last survey where barrens were observed , they had 254 

notably decreased. The urchin fishery in Maine started in 1987 and peaked in 1993 (Johnson et 255 

al. 2012). Cancer crab abundance — a current major predator of juvenile urchins — did not 256 

begin to rise until the mid 1990s (Steneck et al. 2013). After urchin declines across the Gulf of 257 

Maine, many former barren grounds turned over multiple times between different waves of 258 

invasive algae (Harris and Tyrrell 2001). In particular, the last decade has witnessed the rise of 259 

the invasive red turf alga Dasysiphonia japonica in New England (Newton et al. 2013; Dijkstra 260 

et al. 2017, 2019; Ramsay-Newton et al. 2017). Indeed, much of the red algae (hereafter reds) in 261 

2014 on the west side of the island are confirmed Dasysiphonia, while those in the northeast are 262 

primarily other native reds mixed with some Dasysiphonia (J. Byrnes, pers. obs). This expansion 263 

of red algae around Appledore Island matches both a regional and global turf-i-fication of 264 

temperate rocky reefs (Dijkstra et al. 2017; Filbee-Dexter and Wernberg 2018) driven globally 265 

by invasions, climate change, and more.  266 

 267 

The role of local environmental variation in temperate rocky reefs 268 

 269 

Within these broad temporal trends, however, we see substantial spatial variation. One of 270 

the features that makes Appledore Island such an excellent living lab is the variation in the 271 

abiotic environment around its rocky shores, from exposure to the open ocean to protected by the 272 

natural harbor formed by the Isles of Shoals as well as substantial variation in benthic 273 

topography. Island quadrants with narrow ledges and moderate to strong exposure to waves had 274 

the fewest barrens (NW and SE Appledore). These trends follow what we know of the 275 

biomechanical limits on urchins and their ability to form barrens under the stress of higher flows 276 

from storms or even regular strong sublethal wave velocities (Siddon and Witman 2003; Rinde et 277 

al. 2014). Curiously, the partially-exposed northeast also hosted a large barren, seeming to 278 

contradict the exposure hypothesis. However, this area has relatively simple smooth descending 279 

benches whose lack of complexity could have played a role in providing good habitat for barren 280 
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formation (Randell et al. 2022). Further, the barren in the northeast quadrant grew from two 281 

protected embayments, which could have served as urchin refuges during periods of intense 282 

wave action.  283 

Variation by quadrant seems to also play a role in the expansion of red algae, seen on the 284 

2014 map (Fig. S12). As urchins declined in the 1990s, a series of invasive algae moved into 285 

former barren grounds (Harris and Tyrrell 2001; Levin et al. 2002; Mathieson et al. 2003; 286 

Dijkstra et al. 2017). In 2014, the protected southwest quadrant — a former barren —  is largely 287 

covered with red algae that we verified in the field as the invasive Dasysiphonia japonica. 288 

Dasysiphonia also has a strong presence in the more protected northwest, as verified by divers (J. 289 

Byrnes, pers obs.). Red algae were also common in the shallow subtidal in the partially exposed 290 

northeast, but field identification revealed a mix of native Polysiphonia and Chondrus crispus, 291 

with Dasysiphonia composing only a small percentage thereof. The fully-exposed southeast 292 

remained largely kelp-dominated, and, indeed, is the only place around the island to still hold the 293 

high-wave energy tolerant Alaria esculenta. Aside from the southwest, red macroalgal 294 

communities in all quadrants are typically mixed with kelp rather than being a large red shag-295 

carpet-like monoculture (J. Byrnes, pers. obs.).  296 

Local variation appears to be key to understanding the ubiquity and composition of the 297 

rise of reds around Appledore, as well as where kelps are able to persist. Many rocky reefs 298 

around the globe are undergoing similar shifts from kelp forests to dominance by turf macroalgae 299 

(Connell et al. 2014; Filbee-Dexter and Wernberg 2018). Our results suggest these regime shifts, 300 

rather than being characterized by complete dominance, are more like patchworks determined by 301 

local conditions at the seascape scale. Around Appledore, wave exposure and seafloor 302 

topography create refuges for kelp from both sea urchins and red algal dominance. With respect 303 

to urchins, the results are strikingly similar to results from Norway (Sivertsen 1997; Norderhaug 304 

and Christie 2009; Rinde et al. 2014). The combination of exposure and benthic topography set 305 

the stage for oceanographic conditions such as current speed, upwelling, and wave energy, all of 306 

which could act to facilitate kelp persistence and dominance. For example, steep slopes around 307 

islands in the Gulf of Maine, such as those seen at Appledore’s north head, can facilitate local 308 

upwelling (Townsend et al. 1983) bringing colder nutrient-rich waters to fast-growing kelps. We 309 

see a similar example at Cashes Ledge, an underwater mountain range with steep slopes ~140km 310 

from Appledore with a dense healthy kelp forest  (Witman and Lamb 2018). Our work suggests 311 
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that there might be a suite of predictable characteristics that can strengthen kelp forests’ 312 

resistance to and resilience from ongoing trends of global change that warrant deeper 313 

exploration. 314 

 315 

Natural history observations and global change 316 

 317 

These results, garnered from informal notebooks, provide key insights into the larger 318 

field of global change ecology. Solid natural history observations and notes are an unparalleled 319 

and largely untapped resource for the field. The old field notebooks and observations from 320 

generations past floating around in archives, bookshelves, and file cabinets deserve preservation 321 

and ought to be digitized to provide us with an ecological time-machine that could open new 322 

chapters in our understanding of long-term change. Even informal large-scale observations can 323 

provide incredible clarifying insight into the ability of the local environment to modify global 324 

impacts. 325 

 Ultimately, our work shows a striking concordance with literature around the globe 326 

attempting to grapple with the importance of local-scale drivers in modifying global and 327 

regional-scale human-driven change (Wilbanks and Kates 1999; Knowlton and Jackson 2008; 328 

Potter et al. 2013; De Boeck et al. 2015; Gonzalez et al. 2016; Blowes et al. 2019; Chase et al. 329 

2019). Patterns in the spatial variability of urchin barrens over time echo patterns seen in Norway 330 

(Sivertsen 1997; Norderhaug and Christie 2009; Rinde et al. 2014) and Southern California 331 

(Harrold and Reed 1985; Randell et al. 2022), and show how small-scale observations in the 332 

Gulf of Maine (Siddon and Witman 2003) scale up to whole coastlines. Further, large-scale 333 

patterns in the rise of reds highlight that the same types of variation — high wave and current 334 

energy — can mediate other forms of global change as well. We suggest that similar broad-scale 335 

low-taxonomic resolution approaches — whether from formal or more informal sources — 336 

might provide incredible insight as ecologists grapple with how global changes will manifest 337 

locally. That, and it makes for some fun boat (or road) trips. 338 

 339 

 340 
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