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Abstract 
 

Advances in spring phenology are among the clearest biological responses to climate warming. 

In the ephemeral temperate deciduous forest food webs, at the vanguard of research on 

temperature’s effect on trophic interactions, most work has focused on the average timing of 

phenological events. In comparison, effects of temperature on the abundance of individuals 

and their seasonal spread is understudied, despite the potential for profound impacts on trophic 

interactions. Here we use a new method to show that for the guild of forest caterpillars, warmer 

spring conditions not only advance the timing of the phenological distribution of abundance by 

-4.96 days oC-1, but also increase its height by 34% oC-1. This increase in the maximum density 

of caterpillars with rising temperatures is likely to have major implications for both herbivory 

pressure and the resources available to secondary consumers.  

  



Main text 
 

Anthropogenic climate warming is having profound impacts on ecological systems, with 

phenological shifts one of the most reported biotic responses1,2. Temperature is a key driver of 

phenology for extra-tropical taxa, though there is heterogeneity in thermal sensitivity among 

species and trophic levels3–5. Many species interactions depend on synchrony between 

ephemeral life history events and, as the thermal sensitivity of interacting species or guilds may 

differ, warming temperatures have the potential to disrupt interactions, including those between 

consumers and their resources5–7.  

 

Phenology is most frequently quantified as the 

mean or first timing of an event (Fig. 1a) among 

individuals in a population4,5,8–12 and the thermal 

sensitivity of mean (or first) timing has been 

examined for many species and guilds3–5. In 

comparison, very few phenology-focused studies 

have addressed how temperature affects the 

abundance of individuals exhibiting the mean 

timing (height), how the timing within a 

population or guild is spread around the mean 

(width), or the length of time over which the 

frequency of a phenological event falls above a 

given threshold  (duration)13–17 (Fig 1a), all of 

which may impact on species interactions. 

Removed from a phenological context, there is 

evidence across a range of taxa that temperature 

affects temporal trends in abundance18 and spatial 

and temporal trends in the duration of life history 

events19–21, although responses vary among 

species and events.   

 

Figure 1: Using the Gaussian function to describe the peaked 

phenological distribution of an ephemeral life history event. a) 

a Gaussian function showing the three parameters that govern 

the phenological distribution (black) and a derived statistic of 

biological importance (grey): mean timing is the most common 

timing within the population/guild, height describes the 

maximum response (e.g. abundance, biomass or fitness) value 
reached, width corresponds to the standard deviation of the 

function and therefore it’s curvature, and duration describes the 

number of days where the response falls above a given 

threshold. The chosen threshold level will influence the 

duration, as illustrated by the two lines. b-d) Show examples of 

how a slope in thermal sensitivity for each parameter could 

influence the phenological distribution while the other 

parameters are held constant. The grey dashed lines in c) and d) 

show that a change in the height or width parameter both 

influence the duration at a given value and therefore duration is 
not defined by width alone as would be for a Gaussian 

distribution. 

 



The match/mismatch hypothesis (MMH) outlines the importance of phenological synchrony 

for consumer fitness within seasonal trophic interactions22. Where the thermal sensitivity of 

phenology differs between trophic levels5, this can alter the synchrony between many 

consumers and their resource6. The MMH is most often studied through comparison of 

consumer phenology to the resource population/guild mean timing; yet the height and width 

(Fig. 1a,c,d) of the resource distribution determines the duration of time for which the resource 

is above a given threshold, the amount of food available at a particular phenological 

asynchrony and how the relative amount of food available differs among synchronous and 

asynchronous consumers. Therefore, temperature-mediated shifts in the height and width of 

phenological distributions are also expected to have implications for trophic interactions, both 

from a bottom-up and top-down perspective23,24. 

 

In phenology and MMH research, the temperate forest system of deciduous trees, caterpillars 

and cavity nesting passerines in spring has become a classic system for studying the seasonality 

of the tri-trophic interactions8,10,12,25. Within this system the phenological distribution of 

caterpillars may have both top-down and bottom-up effects through interactions with both the 

leafing trees and breeding birds respectively. The phenological distribution of the caterpillar 

guild of primary consumers – comprised of many species17 – is usually summarised on the 

basis of mean timing, which has been found to advance by approximately 4-6 days oC-1 9,10,26; 

largely tracking the shift in timing of deciduous tree leafing, but a little steeper than the advance 

of insectivorous passerine breeding8,9,25. Effects of spring temperature on the height or width 

of the caterpillar phenological distribution have been largely overlooked. The exceptions are a 

study that reported no correlation between spring temperature and the height of the caterpillar 

biomass distribution over 16 years in Poland27, a study that shows some evidence of an increase 

in the average biomass across three sites of differing elevation in Austria28, and studies that 

found the width of the biomass distribution to be narrower under warmer spring conditions 

across nine years in the Netherlands26 and across 19 sites in the UK29.      However, all previous 

studies are relatively low powered (n ≤ 20) and relied on a two-step analytical approach 

whereby phenological parameters were estimated for each site-year combination and then 

estimates were treated as data in a subsequent model. This two-step approach will 

underestimate the true error in slopes, in comparison to estimating all parameters of interest 

from the raw data within a single model. One reason for the scarcity of phenological research 

beyond mean timing is that the field has lacked a statistical framework for examining the 

thermal sensitivity of all three parameters that govern the phenological distribution.  

 

There are multiple physiological and ecological mechanisms through which spring 

temperatures could affect the phenological distribution of the arboreal caterpillar guild 

abundance throughout spring. Warmer temperatures have been shown to drive earlier 

emergence for species that overwinter as eggs or larvae10,26, shifting the mean timing of the 

guild phenology. Temperature could affect the width of the phenological distribution by 

changing the variation in emergence within the guild and the period over which each individual 

feeds prior to pupation. If development progresses according to a simple growing degree day 

model we would expect these timings to be more compressed under warmer temperatures. 

However, the only empirical study we are aware has tested this found no effect of temperature 

on the duration of hatching for the forest tent caterpillar, Malacosoma disstriaI 30. Once larvae 

are feeding, increasing temperature increases the rate of development31,32, reducing the period 

each individual is present and therefore, if the total guild abundance remains consistent, is 

predicted to narrow the width and reduce the duration of the phenological distribution, which 

is consistent with the findings of previous work26,29. Whilst the lack of correlation between 

spring temperatures and the height of arboreal caterpillar peak in biomass estimated in a 



previous study suggests height may be unaffected by temperature27, there are multiple 

mechanisms that could drive such a relationship. Where low temperature presents a challenge, 

an increase in temperature may increase pre-emergence survival, and post-emergence it has 

been shown that cooler conditions can reduce feeding activity and increase mortality risk33, 

thereby suggesting that increasing temperatures could increase the guild abundance and 

distribution height. However, colder temperatures can increase the starvation tolerance of 

caterpillars34, meaning the phenological synchrony between caterpillars and their host may 

alter the effect of temperature on the distribution height. Within the caterpillar guild, the 

average phenological distribution may vary among species, as could the thermal sensitivity of 

mean timing35, height and width. As such, the variation in thermal sensitivity among species 

comprising the guild, and any temperature driven turnover in guild composition or richness 

could also contribute to shifts in width and height of the guild-level phenological distribution.  

 

Here we use data on temperature and caterpillar abundance throughout spring, collected at 44 

sites across 8 years (Fig. 2), yielding 293 site by year combinations, to analyse the effect of 

temperature on the phenological distribution of 8,196 arboreal caterpillars sampled from 

37,674 branch beatings. Of the 3,950 samples in which one or more caterpillars were present, 

69% recorded one and 16% recorded 2, with a maximum abundance of 109. We present a novel 

statistical method, using the Gaussian function, to estimate the thermal sensitivity of the three 

parameters that govern the phenology of abundance: mean timing, height and width (standard 

deviation) (Fig. 1).  

 

 
 

To identify when in late winter/spring the mean air temperature has most effect on the 

phenological distribution, we used a sliding-window approach that simultaneously considered 

all three phenological parameters. We found mean timing was most sensitive to temperatures 

from early March to mid-April (ordinal dates 65-106, 5th March - 15th April in non-leap year, 

Fig. 3a), height was most sensitive to temperatures later in the spring (100-141, 9th April -20th 

May, Fig. 3a) and width to temperatures that spanned the spring (58-155, 27th February - 3rd 

June, Fig. 3a). For mean timing this period is similar to that identified as important in other 

European studies26,36,37, whereas for width our time window is broader than identified in Visser 

et al26,      though we note a high degree of uncertainty in the position of the window for this 

phenological parameter (Fig. S1). We used the most sensitive windows (i.e. those returning the 

lowest AIC) in all subsequent analyses. The sliding window approach involves a very high-

level of multiple testing (13231 window combinations in our case)38, which inflates the type I 

 

Figure 2: a) Map of site 

locations in Scotland with 

elevation above sea level 

indicated by a scale of grey to 

black, and b) shows the mean 

annual temperatures from mid-

Feb to late June for each site in 

each year by latitude. Gaps in 

the temperature data reveal 

years when sites were not 

monitored.  
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errors. In the context of our study, we anticipate 

that this is most likely to affect the slope of 

temperature on the width parameter, which is the 

weakest of the correlations we identify. 

 

Spring temperatures had a significant effect on all 

three phenological parameters, with the most 

profound effects being that the caterpillar 

phenological distribution is earlier and higher in 

warmer years (Fig. 3b-c, 4a). We found that mean 

timing shifted by -4.96 days oC-1 (95% credible 

intervals [CIs]: -6.21 - -3.64 days oC-1, Fig. 3b), in 

keeping with results from previous studies9,10,26. 

When looking at the expected change in 

distribution height independently of the other 

parameters (see Methods), the maximum 

abundance increased by 34% oC-1 (CIs: 5 - 61% oC-

1, Fig. 3c), though we still find substantial 

variation in height among sites, years and site-

years (Table S3). When we account for the 

uncertainty in all three parameters to attain the 

mean expectations of abundance on each day in 

spring (see Methods), we found the distribution 

height increased by 28% (CIs: 1 - 52%) when 

temperature increased by one degree above the 

mean (Fig. 4a). Here our findings agree with the 

suggested increase in mean daily biomass across a 

spatial temperature gradient in Austria28, and 

appear to depart substantially from work in Poland 

that reported a lack of correlation between 

temporal temperature change and maximum 

biomass27, though we cannot properly compare as 

they report no confidence interval. The width 

parameter decreased by 9% oC-1 (CIs: 1 – 17% oC-

1, Fig. 3d), indicating the shape of the distribution 

narrows as spring temperature increases.  

 

The duration of the distribution will be affected by 

both the height and width parameters and varies 

depending on the abundance threshold at which it 

is calculated (Fig. 1); we therefore chose to present 

duration at two thresholds. The purpose of 

quantifying duration was to assess any change in 

the period throughout which caterpillars are 

present, making lower abundance thresholds most 

informative; we chose 0.05 and 0.1 caterpillars per 

branch as in the absence of a biological motivation 

the choice of abundance was arbitrary and these 

allowed comparison across a 4oC range (blue to 

red lines in Fig 4a) that is within the temperature 

Figure 3: a) windows of time where spring 

temperature was identified as the best predictor of 
each parameter of the phenological distribution. b-d) 

show the model predictions (black points) for the 

mean timing, height and width of the caterpillar peak, 

as a function of temperature during the identified 

windows for each site by year combination. Mean 

estimate on the data scale (black line) and 95% 

credible intervals (grey band). c) The inset plot shows 

log scale estimates and red points indicate points 
excluded from the data scale plot. Coloured squares 

along the x-axis show the mean temperature in 

yellow with +/- 1 and 2 degrees in blues/reds which 

correspond to the plots in Figure 4. 
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variation we find across sites and years within our study. We found no significant effect of 

temperature on duration at either threshold across the 4oC range within out data (Fig. 4b; mean 

[CIs] difference between 2oC and -2oC at 0.1 = 19.45 days [-4.23 - 47.90]; at 0.05 = 9.42 days 

[-7.75 - 29.58]). Whilst the change in duration at the chosen abundance levels was not 

significant, the mean point estimates show a slight increase with temperature, particularly at 

the higher threshold. This illustrates that whilst the shape of the peak is narrowing through a 

reduction in the width parameter, the substantial increase in height maintains (or may even 

increase) the period of time where caterpillars are present above a particular abundance. We 

can also derive the thermal sensitivity of the area under the phenological distribution; and 

whilst the slope estimate of 1.21 times the area per oC suggests an increase in area with 

temperature, this effect was not significantly removed from 1 (CIs: 0.97 - 1.44, Fig. 4c).  

 

Where suitably replicated spatiotemporal data have been collected, as in our study, this presents 

an opportunity to estimate separate regressions of  biotic responses on temperature in both 

space and in time. Where the effect of temperature is similar in space and time, this increases 

our confidence that the effect is causal and the processes involved in space and time are 

similar39,40. Within the timescale of our study a difference in slopes could arise where different 

processes are operating in space and time, such as local adaptation or species turnover in space 

but not time, or if a third variable correlated with temperature also drives phenological 

processes41. We employed a within-site centring approach42 to our temperature variables to 

separate the temporal effects (annual deviations from site mean temperatures) of temperature 

from the spatial (mean site temperatures) on the three phenological parameters. As the among 

site variance in our temperature estimates is quite high, we anticipate that site estimates of 

mean temperatures will be quite close to the true mean and slope estimates will be largely 

unbiased40,43. 

 

 

 
 
Figure 4: a) posterior mean expected abundance on the data scale of the full phenological distribution 

at different temperatures: the mean of each temperature window (mean timing = 5.85oC, height = 

8.92oC, width = 7.81oC; yellow), +1oC (orange), +2oC (red), -1oC (light blue) and -2oC (dark blue); 

calculated from the posterior predictive distribution. b) shows the mean and 95% credible intervals 

(95% CIs) for the duration of the peak at an abundance of 0.1 and 0.05 caterpillars for distribution at 

each temperature calculated from the posterior distributions of the simulated expectations of abundance 

across dates; and c) shows the mean and 95% CIs for the area under the phenological distribution from 

-2 to 2oC around the mean (centred) temperature, calculated from the simulations under the model. 
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We found that spatial and temporal slopes were generally in the same direction as the main 

spatio-temporal model (Table 1), except for the temporal width parameter slope, with no 

parameter yielding slopes that differed significantly in space versus time.  For the mean timing 

parameter the estimates in space and time were not significantly different and the point 

estimates were in the same direction and removed from zero, suggesting temperature has a 

causal effect and consistent with plasticity being responsible for much of the spatiotemporal 

variation in mean timing9,10,40. Whilst there was no significant difference in the mean timing 

slopes across space and time, the difference in the point estimates were consistent with a co-

gradient, a steeper spatial slope, which may suggest some local adaptation or differing species 

turnover within the guild. Our estimates differ in magnitude to previous results from across 

eight localities in the UK , which reported a significant negative temporal slope in mean timing, 

but a shallow and non-significant negative slope in space9. For the thermal sensitivity of the 

distribution height, the spatial and temporal point estimates were both in the same direction 

and did not significantly differ, suggestive of a causal effect of temperature, and showed a co-

gradient pattern; however neither effect was significant. While all point estimates are in the 

same direction, there is large uncertainty when this relationship is separated into spatial and 

temporal trends; therefore we suggest analyses with increased power through greater temporal 

replication would be of value in future work. The thermal sensitivity of the width parameter 

was significantly different in space versus time, with a significant negative spatial slope but no 

effect of temperature across years, consistent with the findings of Smith et al29. This suggests 

the effect of temperature on distribution width in our main model may not be causal, 

alternatively driven by spatially correlative variables or differences in guild species 

composition. The effect of temperature on the area under the phenological distribution is 

similar in the main model and over space and time, all showing positive but non-significant 

effects; we therefore cannot conclude that there is any effect of temperature on the distribution 

area within our data set, though this presents an interesting avenue for future work.  

 

 
Table 1: Summary of results for the effect of temperature on the mean timing, height, width and area 

under the phenological distribution of spring arboreal caterpillars, showing posterior mean effect with 

95% credible intervals (CI) in brackets beneath. Spatio-temporal slopes come from a model using 

temperatures for each site-year to estimate the thermal sensitivity of the parameters. The spatial and 

temporal slopes come from a model employing a within-site centering approach to separate the effects 

in space and time. The difference column indicates the difference between the spatial and temporal 

slope estimates calculated from the spatial slope minus the temporal. Slope estimates are exponentiated 

or unscaled where applicable and ‘prop.’ in the unit column implies proportional changes (i.e. 

exponentiated slopes). For the slope estimate columns: red text indicates a negative effect, blue text 

indicates a positive effect and coloured CI text indicates the effect was significant. For the mean timing 

parameter and the difference column CI removal from 0 suggests a significant effect, whereas for the 

three parameters in units of proportional change CI removal from 1 suggests significance. 

 

Parameter Unit 
Spatio-temporal 

slope 
Spatial slope Temporal slope Difference (S-T) 

Mean 

Timing 
days oC-1 

-4.96  

(-6.21 - -3.64) 

-5.77  

(-7.39 - -4.18) 

-3.39  

(-5.49 - -1.46) 

-2.37  

(-4.77 - 0.17) 

Height 
prop. change 
oC-1 

1.34 

(1.05 - 1.61) 

1.66  

(0.97 - 2.63) 

1.17  

(0.81 - 1.49) 

0.49  

(-0.31 - 1.55) 

Width 
prop. change 
oC-1 

0.91 

(0.83 - 0.99) 

0.85  

(0.75 - 0.96) 

1.05  

(0.89 - 1.21) 

-0.20  

(-0.39 - -0.01) 

Area 
prop. change 
oC-1 

1.21 

(0.97 - 1.44) 

1.40  

(0.90 - 2.12) 

1.22 

 (0.89 - 1.53) 

0.18  

(-0.41 - 0.95) 



Our finding that the phenological distribution increases in height by 34% oC-1 differs from the 

lack of correlation reported by Nadolski et al27. Our study includes high replication of site by 

year combinations so the uncertainty in our estimates may be narrower than that of Nadolski 

et al. and the slopes estimated may not truly be different; whilst the confidence intervals of 

Nadolski et al. were not reported, they would likely be broad. Alternatively, this may suggest 

a differing effect of temperature on caterpillar abundance compared to biomass or a stronger 

effect of temperature in space than time (Table 1); the Nadolski et al. results were based on 

samples of biomass and entirely on temporal variation, whilst Schöll et al28 tested biomass 

across a spatial temperature gradient and suggest a positive effect, yet this was also low 

powered and was not using an estimate of the phenological distribution height. Alternatively, 

there could be geographic differences between regions; our study is based further north, where 

temperature may be more of a constraint on the guild, causing temperature variation to have a 

greater effect. It is unclear how much of the increase in height with temperature is attribuatble 

to within species versus between species thermal responses, and this will require further 

investigation at the species level. Future investigation at the species rather than guild level 

would shed light on the relative importance of within-species shifts in abundance or between-

species turnover in abundance. 
 

The previously undocumented increase in peak height within the caterpillar guild is likely to 

have cascading effects through interactions within the forest community. Even an increase in 

temperature of 1.5oC could yield more than a 50% increase in the maximum abundance of 

arboreal caterpillars. The increase in herbivory pressure at the mean timing of the herbivorous 

caterpillar guild may give rise to an indirect effect of temperature on the severity of tree 

defoliation44–47. Though the impact on tree defoliation and growth is likely to depend on how 

synchronous caterpillars are to the tree and the level of defences the leaves have acquired at 

the time of maximum herbivory48,49. Should the increased maximum abundance translate to a 

greater prevalence of pest outbreaks and defoliation, further work into whether the change is 

driven by a few specific species or is consistent throughout the guild will be important for the 

design of effective and targeted pest management interventions.  

 

Previous studies have suggested that caterpillars are maintaining synchrony with oak trees8,9, 

and our spatiotemporal estimate of -4.96 daysoC-1 is broadly consistent with European 

estimates for the thermal sensitivity of the timing of leaf out in oak trees and other deciduous 

species41,50,51. In contrast, our estimate of the temporal slope for mean timing is shallower than 

that of some dominant UK trees, e.g., Quercus sp leaf-out found to have sensitivity to forcing 

temperatures of -8.81 +/- 0.52 days oC-1 50. This means that increasing temperatures could alter 

the phenological (a)synchrony between caterpillars and deciduous trees. Increased asynchrony 

may impede the increase in the height of the caterpillar phenological distribution and prevent 

the most extreme detrimental effects for the trees48, whilst greater synchrony could exacerbate 

the increase in herbivory pressure48,49; highlighting an important direction for future analyses. 

 

A study of bird species in UK and Netherlands showed an average advance in lay date of 3.24 

days oC-1 (SE = 0.4)52, which is shallower than our spatio-temporal estimate for the shift in 

caterpillar mean timing, albeit with overlapping confidence/credible intervals. However, whilst 

our mean timing slopes over space and time did not differ significantly, our temporal estimate 

for the caterpillar timing is similar to this temporal estimate in birds, which may allow the 

average bird species to track the change in caterpillar phenology within the range of 

temperatures tested.   

 



For forest birds that rely on caterpillars as a food resource to feed nestlings, the impacts of 

temperature on the shape and height of the caterpillar peak could have stark consequences for 

how the MMH manifests. The increase in peak height means that under warmer spring 

conditions far more food is predicted to be available to consumers that remain synchronous 

with the caterpillars. However, the relative abundance of food available to synchronous versus 

asynchronous consumers changes with temperature, with the reduction in peak width driving 

a steeper decline in abundance to either side of the mean timing under warmer conditions. 

These changes to the phenological distribution of the resource could alter the dynamics of the 

MMH for consumers as the relative fitness consequences of asynchrony within the population 

could change with temperature, potentially increasing the strength of selection on breeding 

phenology. Whilst the strength of selection within the bird population may increase, as the 

duration remains constant and the maximum height increases, late birds at increased 

temperatures will have access to more resource than at cooler temperatures, suggesting focus 

on asynchrony in mean timing alone may give an overly pessimistic view of the bird’s ability 

to cope under a warming climate. Much of the previous work on effects of the MMH on 

consumer fitness has focused on the strength of selection on phenology attributed to 

asynchrony between consumers and mean resource timing10,11. Very few studies have 

examined the effects of the height or width of the resource distribution on fitness16; this presents 

an important direction for future work to fully understand the impact of climate-mediated 

mismatch on fitness. 

 

We anticipate that our statistical approach offers great potential for modelling effects of climate 

on many phenological distributions. The approach is similar to the Gaussian model functions 

described in de Villemereuil et al.53 and Dennis et al.14, with the major difference being that 

we include a linear effect of temperature on the three parameters that control the position, shape 

and height of the phenological distribution.  Whilst a GLM/GLMM with a Poisson response 

and quadratic date term has been used to estimate the effects of an environmental variable on 

mean timing54,55, this forces an undesirable non-linear relationship between the environmental 

variable and height (see Extended Data for further details). 

 

Using a novel method in phenology research we have shown that temperature has an effect not 

only on the mean timing of the phenological distribution of spring arboreal caterpillars, but 

also on the height and width of the peak. We report an increase in the height accompanied by 

a decrease in the width; resulting in a similar duration of the distribution as temperature 

increases. The alterations to the shape of the phenological distribution of caterpillars not only 

identifies shifts in dynamics within the caterpillar guild that are attributed to temperature, but 

it will also impact the herbivory pressure on deciduous trees and alter the food availability 

throughout spring for breeding birds with possible implications for the MMH. The methods we 

present have broad applicability to other research systems and questions within phenology and 

the MMH, and we encourage more work to study the full phenological distribution of 

biological events rather than focusing on mean timing.  To predict the biotic impacts of ongoing 

climate warming, it will often be essential to take these additional components of change into 

account.  

 

 

 

 

 

 

 



Methods  

 

Study System 

Data were collected between 2014 and 2021 at 44 deciduous woodland sites along a 220km 

transect from Edinburgh (55°980 N, 3°400 W) to Dornoch (57°890 N, 4°080 W) in 

Scotland13,56 (Fig. 2a). The sites vary in temperature and extend across two degrees of latitude 

and a 440m elevation range (Fig. 2b). Two iButton temperature loggers, recording hourly 

temperature, were installed in mid-February at different locations at each site, on the north side 

of a tree and in a shaded area to avoid direct sunlight. The latest installation among years was 

ordinal date 58 (27th February) and recording continued until the end of the season with the 

earliest retrieval date among years being day 161 (9/10th June). As one site had no temperature 

data for 2017, we used temperature data for the nearest site in 2017, making a correction for 

the annual average difference in temperatures between the two sites.  

 

Caterpillar sampling used a branch beating method, recording the abundance of caterpillars on 

each branch monitored on different dates throughout spring13,17. At each site, tree leafing 

phenology was monitored on a selection of trees and each year caterpillar sampling began once 

45% of the trees had their first leaf across all sites. The branch beating continued until the end 

of the field season in mid/late June (2021 sampled from ordinal dates 133 to 157; see Macphie 

et al13 for 2014-20 details). An average of 14 trees (range: 10-17) were sampled at each site in 

each year from 2017-21, prior to that, 5 trees per site (range: 3-7) were sampled from 2014-16. 

One branch on each tree was marked for sampling and the species of trees at each site varied 

to represent the local habitat. Each site was visited every two days with half of the focal trees 

sampled on alternating visits, leaving four days between each branch beating to allow for 

recolonisation. The same branches were sampled across and within years unless damaged or 

dead.   

 

 

Approximating the caterpillar peak using a Gaussian function 
 

We modelled the number of caterpillars recorded on each branch as Poisson distributed with 

an expectation that follows a Gaussian function of scaled (mean = 147.9, sd = 14.1) ordinal 

date (𝑥; Eq. 1) using the RStan package57. The Gaussian function (Eq. 1) is well suited to 

describing the phenological distribution of caterpillar abundance over time as it consists of 

three parameters that describe the mean timing (𝜇), height (𝐴𝑚𝑎𝑥) and width (𝜎) (Fig. 1a): 

 

Eq. 1:   𝐴(𝑥) = 𝐴𝑚𝑎𝑥𝑒𝑥𝑝 (−
(𝑥−𝜇)2

2𝜎2 )  

 

Eq. 1 can be rearranged into Eq. 2 allowing the height and width parameters to be modelled on 

the log scale: 

 

Eq. 2:   𝐴(𝑥) = 𝑒𝑥𝑝 (𝑙𝑜𝑔𝐴𝑚𝑎𝑥 −
(𝑥−𝜇)2

2𝑒𝑥𝑝(𝑙𝑜𝑔𝜎)2)  

 

For our main analysis (spatio-temporal temperature model) we modelled 𝑙𝑜𝑔𝐴𝑚𝑎𝑥, 𝑙𝑜𝑔𝜎 and 

𝜇 (the phenological parameters) using a Generalised non-linear mixed model with fixed effects 

including an intercept and a temperature slope for each phenological parameter, allowing a 

change in each parameter with temperature (Fig. 1b-d).  The temperature variables were mean 

centred for the analysis and differed between the phenological parameters, each comprising the 

mean site by year daily temperatures from periods identified using a sliding window approach; 



see section below. Site, year and site by year interaction effects were fitted as random for each 

phenological parameter, and the covariance between the phenological parameters for each of 

these terms was calculated from a single correlation matrix, assuming the same correlation 

structure among random terms, with term-specific variances. Each day at each site in each year, 

tree taxon sampled, unique tree identity, recorder of the sample and each observation were also 

fitted as random terms for 𝑙𝑜𝑔𝐴𝑚𝑎𝑥  to account for other important sources of variance in 

caterpillar abundance13, the latter term dealing with any over-dispersion with respect to the 

Poisson.  

 

To test for any difference in the thermal sensitivity of the caterpillar phenological distribution 

in space and time we then included two fixed effect temperature slopes for each phenological 

parameter (space vs time temperature model): one using the site mean temperatures and another 

for the annual deviations from the mean of each site; employing within-site centering42. The 

site mean temperatures were attained from a linear mixed-model using the lme4 package58 to 

estimate a mean site temperature which is not biased by the years in which each site has been 

monitored (Fig. 2b). Separate linear mixed models were used for the temperature associated 

with each Gaussian function parameter and included temperature as the response variable with 

site and year random intercepts. The mean site temperatures from the models were mean-

centred for use in the model, summarised below. The random term structure was the same as 

in the spatio-temporal temperature model. 

 

 

Derived parameters and mean expectations on the arithmetic scale 

 

Duration: The width parameter is equivalent to a standard deviation, describing the curvature 

of the distribution, meaning that when the height is held constant a change in the width 

parameter defines a change in duration (Fig. 1d). When the height parameter changes with a 

constant width this also alters the duration (Fig. 1c), so by allowing slopes of change in both 

the height and the width parameters with temperature, changes in the width parameter do not 

uniquely define changes in duration, but this can be calculated post-hoc. We define the duration 

of the distribution as the number of days that the expected abundance exceeds some threshold. 

The choice of abundance threshold is arbitrary without an informed reason, and the relative 

difference in duration between distributions will differ depending on the threshold at which it 

is calculated.  

 

Area under the phenological distribution: The formula for the area under the Gaussian function 

(𝑇) can be attained by rearranging the integral of the Gaussian function (Eq. 3) and Gaussian 

probability function (Eq. 4), for which the area is equal to one.   

 

Eq. 3:   𝑇 = ∫ 𝐴𝑚𝑎𝑥𝑒𝑥𝑝 (−
(𝑥−𝜇)2

2𝜎2
) 𝑑𝑥

∞

−∞
 

Eq. 4:   1 = ∫
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2 ) 𝑑𝑥
∞

−∞
 

  𝜎√2𝜋 = ∫ 𝑒𝑥𝑝 (−
(𝑥−𝜇)2

2𝜎2 ) 𝑑𝑥
∞

−∞
 

 

Combining Eq. 3 and Eq.4 shows the area under the distribution can be described by Eq. 5, 

which rearranges to Eq. 6 when the height and width parameters are estimated on the log scale. 

 

Eq. 5:  𝑇 = 𝐴𝑚𝑎𝑥𝜎√2𝜋 

 



Eq. 6:  𝑇 = 𝑒𝑥𝑝(𝑙𝑜𝑔𝐴𝑚𝑎𝑥 + 𝑙𝑜𝑔𝜎 + log(√2𝜋))  
 

This shows the area under the phenological distribution depends log-linearly on temperature 

with a slope equal to the sum of the log-scale slope estimates for the change in height and 

width. Slopes for the change in the area under the distribution with changing temperature were 

calculated for the spatio-temporal temperature model and both components of the space vs time 

temperature model (Table 1).  

 

Mean expectation on the arithmetic scale: When a variable is normally distributed on the log-

scale, the mean on the arithmetic scale is equal to the sum of the log-scale mean and half of the 

log-scale distribution variance exponentiated. Within our models the height and width 

parameters are assumed to come from a log-normal distribution, meaning that the expectation 

on the arithmetic scale across site by years must include half of the variance attributed to the 

random terms being marginalised. There are two forms of expectations on the arithmetic scale 

that we were interested in from the spatio-temporal temperature model: i) the average value of 

each phenological parameter at different temperatures, and ii) the average value of mean 

caterpillar abundance on each date throughout spring at different temperatures which depends 

on all phenological parameters. Both required marginalising random terms, but the method to 

do this differed. 

 

(i) To estimate the height or width at different temperatures (Fig. 3c-d), half of the variance for 

each random term associated with each parameter was added to the estimate before 

exponentiating.  

 

(ii) Since an analytical solution was not available, marginalisation was carried out by 

simulating from the posterior predictive distribution 10,000 times for each date:temperature 

combination and taking the average abundance. This allows visualisation of changes to the full 

phenological distribution with changing temperature (Fig. 4a). The duration was calculated for 

each temperature as the dates on which the average abundance exceeded the threshold (Fig. 

4b), and the area was calculated as the sum of the average abundance across dates (Fig. 4c). 

Due to the uncertainty in the mean timing of the distribution the maximum average abundances 

reached are lower than those predicted from i). 

 

Determination of temperature variable using sliding windows 

It is feasible that the period during which temperature is most influential for the mean timing, 

height and width of the phenological distribution may differ among the parameters; therefore, 

we began our analyses by identifying the periods during which temperature best predicted the 

thermal sensitivity of each peak parameter using a sliding window approach. As the number of 

windows to consider was the product of the number of windows considered for each parameter, 

for efficiency we applied a frequentist meta-analytic approach (using the metafor package59) 

to the site by year estimates for the three parameters. This allowed us to compare sliding 

windows based on AIC. 

 

To obtain estimates of the three phenological parameters for each site in each year we modelled 

the phenological distribution of at each site in each year using the same model composition as 

the spatio-temporal temperature model using RStan57, but excluding the temperature fixed 

effects. From the model output the intercept and random intercepts for each site, year and site 

by year combination could be summed to obtain the estimate of each phenological parameter 

for each site in each year. The posterior mode (calculated using the MCMCglmm package60 

function) was used as our estimate of mean timing, height and width for each site by year 



combination for the response variable in metafor multivariate meta-analyses. The variance-

covariance matrix of the posterior distributions for the three parameters in each site in each 

year were included as the sampling variance.  

 

We modelled the effect of temperature on each distribution parameter under a sliding window 

framework, allowing each parameter to be predicted by different time windows of temperature. 

For mean timing the window start dates ranged from day 58 to day 100, shifting in 7 day 

increments. For the height and width the window start dates ranged from 58 to 128, shifting in 

14 day increments. The incremental shifts in start date were slightly higher resolution and  

restricted to an earlier period of the year for the mean timing parameter due to stronger a priori 

predictions from previous studies26; whereas much less is known about the time windows that 

best predict the distribution height and width (see Visser et al.26) so we allowed larger 

increments to reduce the extent of multiple testing. All three parameters had windows ranging 

in duration from 28 to 98 days, increasing in duration in 14 day increments. This produced 30 

window options for the mean timing variable and 21 for the height and width, resulting in 

13231 models in total.  

 

The metafor multivariate models included independent intercepts and temperature slopes for 

each of the response variable, as well as including year and each site in each year (site-year) as 

random terms for each response. As it is only possible to include two random terms that are 

independent for each response variable in the metafor package we selected year and site-year 

but not site. Random terms were estimated using an unstructured variance-covariance matrix. 

The models were fitted using maximum-likelihood rather than restricted maximum-likelihood 

to enable model comparison using AIC (see Extended Data for more detailed results). The 

mean daily temperature for each site by year combination during the identified windows were 

then used within the Gaussian function models described above.  

 

All analyses used R version 4.0.261, and models including the Gaussian function used the RStan 

package57. Models were run using four chains with 2500 iterations after warmup with a 

thinning of 5; the spatio-temporal temperature model and space vs time model had a warm up 

2000 and the site by year model had a warmup of 1500 iterations. Convergence was checked 

using the Rhat (all < 1.02) and through graphical inspection. Effective sample sizes were all 

over 600, and over 1100 for all focal coefficients. The space vs time temperature model had 3 

divergent transitions after the warmup which was 0.15% of the 2000 iterations retained.  
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Extended data 
 

Part 1: Sliding window analysis 

 

Table S1: Window combinations for the models that did not converge in a sliding window 

analysis which allowed different temperature periods to predict the three parameters that 

describe the phenological distribution of caterpillar abundance. Shows the start date and 

duration of each window. 

 

Mean Timing Height Width 

Start Duration Start Duration Start Duration 

93 28 72 70 100 28 

93 28 72 84 100 28 

93 28 58 98 100 28 

100 56 72 70 128 28 

100 56 72 70 114 42 

100 56 72 84 128 28 

100 56 58 98 128 28 

 

 

 

 

 

 

 
 

Figure S1: Plot of the AICs from models using different windows of temperature (horizontal 

black lines) as predictors of the three parameters describing the phenological distribution of 

caterpillar abundance. All lines beneath the red dashed line are within two AICs of the model 

with the lowest AIC value. Cropped Y axis, only showing subset of models with lower AICs. 

 

 



 
Figure S2: Plots of the minimum AIC from models using windows of temperature starting 

(blue) or ending (red) on each date for each parameter describing the phenological distribution 

of caterpillar abundance.  Dashed vertical lines indicate the start and end dates with the lowest 

AICs. 

 

 

 

Of the 13231 models run, 7 did not converge, the details of which can be found in Table S1. 

 

As seen in Fig S1, all models with AIC’s within 2 of the best fitting model for the mean timing 

and height parameters included the windows that were also in the best fitting model, however 

for the width parameter the windows used in models within 2 AICs of the best fitting were 

more varied, suggesting there is no particular time period between mid-Feb and late June 

during which temperature predicts the change in peak shape to a much greater extent. As the 

aim of this work was to identify the effect of spring temperatures on each metric of the 

caterpillar peak and not to identify the most influential time period of temperature throughout 

the year we proceeded using the windows of temperature identified in the best fitting model 

despite the lack of a clear optimal window for estimating the width parameter.  

 

 

Temperature mean, standard deviation and range in the identified windows: 

The mean temperature during the mean timing parameter window was 5.83oC, ranging from -

3.05 to 3.06oC with a standard deviation (sd) of 1.22 after mean centring (spatial: -1.73 - 

1.48oC; temporal: -2.13 - 1.57oC). The mean temperature during the width parameter window 

was 7.81oC , ranging from -2.50 to 2.17oC with a sd of 0.85 after mean centring (spatial: -1.58 

- 1.16oC; temporal: -1.15 - 1.18oC). The mean temperature during the height parameter window 

was 8.92oC, ranging from -3.55 to 2.43oC with a sd of 1.20 after mean centring (spatial: -1.59 

- 1.05oC; temporal: -2.40 - 2.01oC).  

 

 

Correlation among temperatures in identified windows:  

The temperatures that contribute to each of the three best windows (one for timing, height and 

width) are overlapping (Figure 3a, Table S2). Therefore one would expect the effect of a change 

in temperature to lead to a somewhat correlated response. When we estimate the pairwise 

correlations in temperatures between windows, we find that in space the correlations are very 

high (Table S2), whereas in time the correlation is weaker and there is no temporal correlation 



between the temperatures that predict timing and height. The stronger correlations between 

different windows in space (across sites) versus time (across years) is consistent with 

information about the position of the sliding windows stemming mainly from the temporal 

replication in the data62. 

 

 

 

Table S2: Comparison of the best windows identified for each pair of parameters (timing, 

height and width). Proportional overlap is the number of days that intersect divided by the 

summed number of days.  Temperature correlations capture the correlation between the 

average temperatures obtained for pairs of parameters and is partitioned into spatiotemporal 

(using site-year mean temperatures), spatial (using site means) and temporal (using annual 

deviations from site means) estimates. 

 

Parameter pairs Prop. 

overlap 

Spatiotemporal cor. Spatial cor. Temporal cor. 

MeanTiming:Height 0.08 0.31 0.94 -0.06 

MeanTiming:Width 0.3 0.78 0.98 0.58 

Height:Width 0.3 0.79 0.99 0.71 

 

  



Part 2: Site, year and site-year variance in models 

 

The variance in timing, height and width that is distributed among site, year and site-year 

quantify are captured by random terms in the model, and all terms are significantly removed 

from 0 (Table S3). 

 

In the site by year model (i.e. a model without temperature predictors) we find substantial 

variation in timing among sites and years. When temperature is included in the model this leads 

to a substantial reduction in the among site variance.  

 

The variation in height is greatest among sites, but also substantial among years and site-years 

and this variance is substantially reduced among years when temperature is included in the 

model (though credible intervals are broad). An implication of the substantial site-year variance 

is that the height of the caterpillar guild abundance peak may be quite idiosyncratic in space 

and time and not solely predictable on the basis of temperature.   

 

For the width parameter the main difference seen was an increased variance among years when 

the temperature slope was included, supporting our finding from the space vs time model that 

temporal temperature variation does not affect the width of the phenological distribution. 

 

 

 

Table S3: Posterior mode (95% credible intervals) for the variance attributed to the site, year 

and site-year (each site in each year) random terms for the timing, height and width parameters 

of the phenological distribution of caterpillars. Outlined for two models: the main 

spatiotemporal temperature model and the equivalent model that excludes the fixed effect 

temperature slopes for each parameter. As estimates are directly from the model the width and 

height terms are on the log-scale and the timing and width terms are scaled (original sd = 14.1) 

 

 
Random 

term 

Spatio-temporal 

temperature model 
Site by year model 

T
im

in
g

 Site 0.043 (0.025 - 0.096) 0.145 (0.085 - 0.254) 

Year 0.142 (0.089 - 1.033) 0.119 (0.06 - 0.782) 

Site-year 0.012 (0.006 - 0.031) 0.019 (0.01 - 0.042) 

H
ei

g
h
t Site 0.744 (0.516 - 1.333) 0.860 (0.559 - 1.415) 

Year 0.134 (0.028 - 1.267) 0.397 (0.216 - 3.123) 

Site-year 0.459 (0.369 - 0.636) 0.462 (0.354 - 0.611) 

W
id

th
 Site 0.029 (0.011 - 0.066) 0.029 (0.014 - 0.076) 

Year 0.055 (0.021 - 0.508) 0.020 (0.01 - 0.258) 

Site-year 0.034 (0.018 - 0.065) 0.037 (0.016 - 0.066) 

 

 

  



Part 3: Why we have used the Gaussian function rather than the Poisson GLMM 

alternative 

 

 

The non-linear Gaussian function used by our study has more often been modelled as the re-

parameterised linear form in a Poisson GLMM (Eq. S1). 

 

Eq. S1:    𝑦 = 𝛽0 + 𝛽1𝑑 + 𝛽2𝑑2 

 

Previous work has suggested that by extending Eq. S1 to include an interaction between a 

temperature variable and the date parameter, 𝑑 (Eq. S2) it is possible to estimate the change in 

mean timing with temperature55,56. 

 

Eq. S2:    𝑦 = 𝛽0 + 𝛽1𝑑 + 𝛽2𝑑2 + 𝛽3𝑡 + 𝛽4𝑑𝑡 

 

 

The maximum height (𝐻) of the distribution is reached at the mean timing (𝑀), which can be 

simplified to 𝐴 + 𝐵𝑡 (Eq. S3) where 𝐴 = −
𝛽1

2𝛽2
 and B=−

𝛽4

2𝛽2
. 

 

Eq. S3:         𝑀 = −
(𝛽1+𝛽4𝑡)

2𝛽2
   

=  −
𝛽1

2𝛽2
−

𝛽4

2𝛽2
𝑡 

 

= 𝐴 + 𝐵𝑡 
 

 

When quantifying the height of the phenological distribution (𝑑 = 𝑀) in Eq. S2, we found the 

composition of the model forces the height to be a quadratic function of temperature (Eq. S3).  

 

Eq. S3:           𝐻 = 𝛽0 + 𝛽1(𝐴 + 𝐵𝑡) + 𝛽2(𝐴 + 𝐵𝑡)2 + 𝛽3𝑡 + 𝛽4(𝐴 + 𝐵𝑡)𝑡 

 

             =  𝛽0 + 𝛽1𝐴 + 𝛽1𝐵𝑡 + 𝛽2𝐴2 + 𝛽22𝐴𝐵𝑡 + 𝛽2𝐵2𝑡2 + 𝛽3𝑡 + 𝛽4𝐴 + 𝛽4𝐵𝑡2 
 

             =  𝛽0 + 𝛽1𝐴 + 𝛽2𝐴2 + 𝛽4𝐴 + (𝛽1𝐵 + 𝛽22𝐴𝐵 + 𝛽3)𝑡 + (𝛽2𝐵2 + 𝛽4𝐵)𝑡2 
 

 

As our interest was modelling a change in the mean timing, height and width of the 

phenological distribution, this linear model composition has undesired properties. Therefore, 

we proceeded with the non-linear Gaussian function. 
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