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Abstract 13 

1. Advances in spring phenology are among the clearest biological responses to climate 14 

warming. There has been much interest in how climate impacts on phenology because the 15 

timings of key events have implications for species interactions, nutrient cycling and 16 

ecosystem services. To date most work has focused on only one aspect of population 17 

phenology, the effects of temperature on the average timing. In comparison, effects of 18 

temperature on the abundance of individuals and their seasonal spread are understudied, 19 

despite their potential to have profound impacts on species interactions. 20 

2. Here we develop a new method that directly estimates the effect of spring temperatures on 21 

the timing, height and width of the phenological distribution and apply it to temperate forest 22 

caterpillars, a guild that has been the focus of much research on phenology and trophic 23 

mismatch.  24 

3. We find that warmer spring conditions advance the timing of the phenological distribution 25 

of abundance by -4.96 days oC-1 and increase its height by 34% oC-1, but have no significant 26 

effect on the duration of the distribution. An increase in the maximum density of arboreal 27 

caterpillars with rising temperatures has implications for understanding climate impacts on 28 



 2 

forest food chains, both in terms of herbivory pressure and the resources available to 29 

secondary consumers.  30 

4. The new method we have developed allows the thermal sensitivity in the full phenological 31 

distribution to be modelled directly from raw data, providing a flexible approach that has 32 

broad applicability within global change research. 33 

Key words: Phenology, thermal sensitivity, trophic match/mismatch, spatiotemporal, 34 

caterpillar 35 

 36 

Introduction 37 

Anthropogenic climate warming has profound impacts on ecological systems, with 38 

phenological shifts having become one of the most reported biotic responses (Walther et al. 39 

2002; Parmesan & Yohe 2003). Temperature is a key driver of phenology for extra-tropical 40 

taxa, though there is heterogeneity in thermal sensitivity among species and trophic levels 41 

(Thackeray et al. 2016; Cohen et al. 2018; Roslin et al. 2021). The outcome of many species 42 

interactions depend on synchrony between ephemeral life history events and, as the thermal 43 

sensitivity of interacting species or guilds may differ, warming temperatures have the potential 44 

to alter interactions, including those between consumers and their resources (Thackeray et al. 45 

2016; Kharouba et al. 2018; Samplonius et al. 2020).  46 

 47 

Phenology is frequently quantified as the mean or first timing of an event (Fig. 1a) among 48 

individuals in a population (Thomas et al. 2001; Charmantier et al. 2008; Both et al. 2009; 49 

Reed et al. 2013; Thackeray et al. 2016; Burgess et al. 2018; Roslin et al. 2021) and the thermal 50 

sensitivity of mean (or first) timing has been examined for many species and guilds (Thackeray 51 

et al. 2016; Cohen et al. 2018; Roslin et al. 2021). In comparison, very few phenology-focused 52 

studies have addressed how temperature affects other parameters that determine the full 53 
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phenological distribution, namely the abundance of individuals exhibiting the mean timing 54 

(height), how the timing within a population or guild is spread around the mean (width), or the 55 

length of time over which the frequency of a phenological event falls above a given threshold 56 

(duration) (Fig 1a). Beyond a phenological context, there is evidence across a range of taxa 57 

that temperature affects interannual trends in abundance (Bowler et al. 2017). Previous work 58 

also finds spatial and temporal trends in the duration of life history events (Vitasse et al. 2009; 59 

Møller et al. 2010; Ahmad et al. 2021), although responses vary among species and events. 60 

For example, the grasshopper community is abundant for a longer duration in warmer years in 61 

Colorado (Buckley et al. 2021) and the deciduous tree canopy duration is longer in warmer 62 

years in the Pyrenees (Vitasse et al. 2009), whilst warmer conditions drive shorter flowering 63 

durations for a range of flowing plant species observed on Guernsey (Bock et al. 2014) and in 64 

Finland more bird species have seen a reduction in the duration of breeding over time than an 65 

increase (Hällfors et al. 2020).  66 



 4 

 67 

Figure 1: a) a Gaussian function showing the 68 

three parameters that govern the phenological 69 

distribution (black) of a life history event: mean 70 

timing is the most common timing within the 71 

population/guild, height describes the maximum 72 

response (e.g. abundance, biomass or fitness) 73 

value reached, width corresponds to the standard 74 

deviation of the function and therefore its 75 

curvature. Duration (a derived metric) describes 76 

the number of days where the response falls 77 

above a given threshold. The chosen threshold 78 

level will influence the duration, as illustrated by 79 

the two lines. b-d) Examples of how a slope in 80 

thermal sensitivity for each parameter could 81 

influence the phenological distribution while the 82 

other parameters are held constant. The grey 83 

dashed lines in c) and d) show that a change in 84 

the height or width parameter both influence the 85 

duration at a given value and therefore duration 86 

is not defined by width alone, as it would be for 87 

a Gaussian distribution. 88 

 89 

In the context of research on phenology and the match/mismatch hypothesis (MMH – the 90 

hypothesis that phenological asynchrony between consumer demand and an ephemeral 91 

resource impacts negatively on consumer fitness (Cushing 1969)), the temperate forest tri-92 

trophic chain of deciduous trees, caterpillars and cavity nesting passerines in spring has become 93 
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a classic study system (Thomas et al. 2001; Charmantier et al. 2008; Both et al. 2009; Cole et 94 

al. 2021). Within this system the phenological distribution of caterpillars may have both top-95 

down and bottom-up effects through interactions with both the leafing trees and breeding birds 96 

respectively. The phenological distribution of the caterpillar guild of primary consumers – 97 

comprised of many species (Shutt et al. 2019) – is usually summarised on the basis of mean 98 

timing, which has been found to advance by approximately 4-6 days oC-1 (Visser et al. 2006; 99 

Charmantier et al. 2008; Burgess et al. 2018); largely tracking the shift in timing of deciduous 100 

tree leafing, but a little steeper than the advance of insectivorous passerine breeding (Both et 101 

al. 2009; Burgess et al. 2018; Cole et al. 2021). Effects of spring temperature on the height or 102 

width of the caterpillar phenological distribution have been largely overlooked. The exceptions 103 

are a study that reported no correlation between spring temperature and the height of the 104 

caterpillar biomass distribution over 16 years in Poland (Nadolski et al. 2021) and studies that 105 

found the width of the biomass distribution to be narrower under warmer spring conditions 106 

across nine years in the Netherlands (Visser et al. 2006) and across 19 sites in the UK (Smith 107 

et al. 2011). However, all previous studies are low-powered (n ≤ 20) and relied on a two-step 108 

analytical approach whereby phenological parameters were estimated for each site-year 109 

combination and then estimates were treated as data in a subsequent model, ignoring 110 

measurement error. This two-step approach will underestimate the true error in slopes. One 111 

reason for the scarcity of phenological research beyond mean timing is that the field has lacked 112 

a statistical framework for directly examining the thermal sensitivity of all three parameters 113 

that govern the phenological distribution.  114 

 115 

Spring temperatures could affect the phenological distribution of the arboreal caterpillar guild 116 

abundance throughout spring via various intraspecific and interspecific effects. Warmer 117 

temperatures have been shown to drive earlier emergence for species that overwinter as eggs 118 
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or larvae (Visser et al. 2006; Charmantier et al. 2008), shifting the mean timing of the guild 119 

phenology. Temperature could affect the width of the phenological distribution by changing 120 

intraspecific variation in larval emergence – though no effect was found in previous work on 121 

Malacosoma disstria (Uelmen et al. 2016). Temperature could also affect the period over 122 

which each individual feeds prior to pupation through altering the rate of development (Stamp 123 

1990; Buse et al. 1999), which is predicted to narrow the width and reduce the duration, 124 

consistent with the findings of previous work (Visser et al. 2006; Smith et al. 2011). There are 125 

multiple mechanisms that could drive a relationship between temperature and the height of the 126 

phenological distribution. For instance, if low temperatures presents a constraint on 127 

development, an increase in temperature may increase pre- and post-emergence survival and 128 

post-emergence growth (Battisti et al. 2005), such that increasing temperatures could increase 129 

the guild abundance and distribution height. However, colder temperatures can increase the 130 

starvation tolerance of caterpillars (Abarca & Lill 2015), meaning the phenological synchrony 131 

between caterpillars and their host may alter the effect of temperature on the distribution height. 132 

These potential mechanisms for driving change in each phenological distribution parameter are 133 

not mutually exclusive. Interspecific differences in the magnitude or direction of effect for each 134 

of these mechanisms would also contribute to the thermal sensitivity of the phenological 135 

distribution of the full caterpillar guild.  136 

 137 

Here we use data on temperature and caterpillar abundance throughout spring, collected at 44 138 

sites across 8 years (Fig. 2), yielding 293 site-by-year combinations, to analyse the effect of 139 

temperature on the phenological distribution of 8,196 arboreal caterpillars sampled from 140 

37,674 branch beatings. We develop and apply a novel statistical method, using the Gaussian 141 

function, to estimate the thermal sensitivity of the three parameters that govern the phenology 142 

of abundance: mean timing, height and width (i.e. standard deviation) (Fig. 1). We also 143 
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examine whether estimated thermal sensitivities over space and time are consistent with a 144 

causal effect (i.e where slopes are similar in space and time (Lovell et al. 2023)). Finally, using 145 

derived parameters, we explore thermal sensitivity in the duration of and area under the full 146 

phenological distribution.  147 

 148 

 149 

Figure 2: a) Map of site locations in Scotland with elevation above sea level indicated by a scale of grey 150 

to black, and b) shows the mean annual temperatures from mid-Feb to late June for each site in each 151 

year by latitude. Gaps in the temperature data reveal years when sites were not monitored.  152 

 153 

 154 

Materials and Methods  155 

 156 

Study System 157 

Data were collected between 2014 and 2021 at 44 deciduous woodland sites along a 220km 158 

transect from Edinburgh (55°980 N, 3°400 W) to Dornoch (57°890 N, 4°080 W) in Scotland 159 

(Shutt et al. 2018; Macphie et al. 2020) (Fig. 2a). All field work was carried out with the 160 
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permission of site landowners. The sites vary in temperature and extend across two degrees of 161 

latitude and a 440m elevation range (Fig. 2b). Two iButton temperature loggers, recording 162 

hourly temperature, were installed in mid-February at different locations at each site, on the 163 

north side of a tree and in a shaded area to avoid direct sunlight. The latest installation among 164 

years was ordinal date 58 (27th February) and recording continued until the end of the season 165 

with the earliest retrieval date among years being day 161 (9/10th June). As one site had no 166 

temperature data for 2017, we used temperature data for the nearest site in 2017, making a 167 

correction for the annual average difference in temperatures between the two sites.  168 

 169 

We sampled caterpillars using a branch beating method, recording the abundance of caterpillars 170 

on each branch monitored on different dates throughout spring (Shutt et al. 2019; Macphie et 171 

al. 2020). This work defines the arboreal guild of caterpillars as the larvae of insect species 172 

that spend their larval stage on deciduous trees and are similar in appearance to Lepidopterans 173 

(Shutt et al. 2019a). Previous sampling across these sites found 93% of the guild to 174 

be Lepidoptera, including 45 species: 78% of which were Geometrids (of which 45% were the 175 

most common species, Operophtera brumata) and 13% Noctuids, and the remaining 7% 176 

included species of Hymenoptera, Diptera and Coleoptera (Shutt et al. 2019a). At each site, 177 

tree leafing phenology was monitored on a selection of trees and each year caterpillar sampling 178 

began once 45% of the trees had their first leaf across all sites. The branch beating continued 179 

until the end of the field season in mid/late June (2021 sampled from ordinal dates 133 to 157; 180 

see Macphie et al. [2020] for 2014-20 details). This sampling approach captures the beginning 181 

and end of the caterpillar season within the majority of site by year combinations. An average 182 

of 14 trees (range: 10-17) were sampled at each site in each year from 2017-21, prior to that, 5 183 

trees per site (range: 3-7) were sampled from 2014-16. One branch on each tree was marked 184 

for sampling and the trees monitored represent the tree composition throughout each site, 185 
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dominated by 10 taxa: alder (Alnus glutinosa), ash (Fraxinus excelsior), beech (Fagus 186 

sylvatica), birch (Betula spp.), elm (Ulmus glabra), hazel (Corylus avellana), oak (Quercus 187 

spp.), rowan (Sorbus aucuparia), sycamore (Acer pseudoplatanus) and willow (Salix spp.), 188 

which make up 98% of the trees sampled. Each site was visited every two days with half of the 189 

focal trees sampled on alternating visits, leaving four days between each branch beating to 190 

allow for recolonisation. The same branches were sampled across and within years unless 191 

damaged or dead.   192 

 193 

Replication Statement 194 

Scale of inference Scale at which the factor of 
interest is applied 

Number of replicates at 
the appropriate scale 

Guild (of caterpillars) Site by year combinations 293 

 195 

Modelling the caterpillar peak as a Gaussian function 196 

We modelled the number of caterpillars recorded on each branch as Poisson distributed with 197 

an expectation that follows a Gaussian function of scaled (mean = 147.9, sd = 14.1) ordinal 198 

date (𝑥; Eq. 1) using the RStan package (Stan Development Team 2020). The Gaussian 199 

function (Eq. 1) is well suited to describing the phenological distribution of caterpillar 200 

abundance over time as it consists of three parameters that describe the mean timing (𝜇), height 201 

(𝐴!"#) and width (𝜎) (Fig. 1a) (see also Dennis et al. 2016 and de Villemereuil et al. 2020 for 202 

earlier work on phenology using the Gaussian function): 203 

 204 

Eq. 1:   𝐴(𝑥) = 𝐴!"#𝑒𝑥𝑝 *−
(#%&)!

()!
,  205 

 206 

Eq. 1 can be rearranged into Eq. 2 allowing the height and width parameters to be modelled on 207 

the log scale: 208 



 10 

 209 

Eq. 2:   𝐴(𝑥) = 𝑒𝑥𝑝 *𝑙𝑜𝑔𝐴!"# −
(#%&)!

(*#+(,-.))!
,  210 

 211 

Spatiotemporal temperature model (Fig. S1): For our main analysis we modelled 𝑙𝑜𝑔𝐴!"#, 212 

𝑙𝑜𝑔𝜎 and 𝜇 (the phenological parameters) using a Generalised non-linear mixed model with 213 

fixed effects including an intercept and a temperature slope for each phenological parameter, 214 

allowing a change in each parameter with temperature (Fig. 1b-d). The periods over which 215 

mean temperatures best predicted the three phenological parameters were identified using a 216 

sliding window approach (Fig. S1; see section below regarding the determination of 217 

temperature predictors). The temperature variables were mean centred for the analysis and 218 

differed between the phenological parameters, each comprising the mean site by year daily 219 

temperatures from periods identified using the sliding window approach. Site, year and site by 220 

year interaction effects were fitted as random for each phenological parameter, and the 221 

covariance between the phenological parameters for each of these terms was calculated from a 222 

single correlation matrix, assuming the same correlation structure among random terms, with 223 

term-specific variances. Each day at each site in each year, unique tree identity, recorder of the 224 

sample and each observation were also fitted as random terms for 𝑙𝑜𝑔𝐴!"# to account for other 225 

important sources of variance in caterpillar abundance (Macphie et al. 2020), the latter term 226 

dealing with any over-dispersion with respect to the Poisson error distribution. The full analysis 227 

framework is outlined in Fig. S1 in Appendix S1, Supplementary Information, and the 228 

spatiotemporal model notation can be found in Appendix S2. To assess the fit of the 229 

temperature slope for each phenological parameter to the parameters estimates for each site by 230 

year combination we calculated a pseudo-R2 which represents the proportion of variance 231 

among site by year combinations that is explained by the slope; details can be found in 232 

Appendix S3. 233 



 11 

 234 

Where phenological data are replicated across thermal environments in space and time, it is 235 

possible to estimate separate regressions of biotic responses on temperature in both space and 236 

in time. Where the effect of temperature is similar in space and time, this increases our 237 

confidence that the effect is causal and the processes involved in space and time are similar 238 

similar (Dunne et al. 2004; Phillimore et al. 2010). Alternatively, a difference in the effect of 239 

temperature over space versus time may indicate that different processes are operating over 240 

space and time, such as local adaptation or species turnover in space but not time, or  that a 241 

third variable correlated with temperature and the biotic response is at play (Tansey et al. 2017).  242 

 243 

Space versus time temperature model (Fig. S1): To test for any difference in the thermal 244 

sensitivity of the caterpillar phenological distribution in space and time we included two fixed 245 

effect temperature slopes for each phenological parameter: one using the site mean 246 

temperatures and another for the annual deviations from the mean of each site (Fig. S1); 247 

employing within-site centering (Van De Pol & Wright 2009). As the among site variance in 248 

our temperature estimates is quite high, we anticipate that site estimates of mean temperatures 249 

will be quite close to the true mean and slope estimates will be largely unbiased (Phillimore et 250 

al. 2010; Westneat et al. 2020). The site mean temperatures were attained from a linear mixed-251 

model using the lme4 package (Bates et al. 2015) to estimate a mean site temperature which is 252 

not biased by the years in which each site has been monitored (Fig. 2b). Separate linear mixed 253 

models were used for the temperature associated with each Gaussian function parameter and 254 

included temperature as the response variable with site and year random intercepts. The mean 255 

site temperatures from the models were mean-centred for use in the model, summarised below. 256 

The random term structure was the same as in the spatiotemporal temperature model. The 257 

difference between the spatial and temporal temperature slopes for each phenological 258 
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parameter was determined by subtracting the temporal slope estimate from the spatial slope 259 

estimate for each iteration of the posterior distributions.  260 

 261 

Derived parameters 262 

Duration: The width parameter is equivalent to a standard deviation, describing the curvature 263 

of the distribution, meaning that when the height is held constant a change in the width 264 

parameter defines a change in duration (Fig. 1d). When the height parameter changes with a 265 

constant width this also alters the duration (Fig. 1c), so by allowing slopes of change in both 266 

the height and the width parameters with temperature, changes in the width parameter do not 267 

uniquely define changes in duration, but this can be calculated post-hoc. We define the duration 268 

of the distribution as the number of days that the expected abundance exceeds some threshold. 269 

The choice of abundance threshold is arbitrary without an informed reason, and the relative 270 

difference in duration between distributions will differ depending on the threshold at which it 271 

is calculated.  272 

 273 

Area under the phenological distribution: The formula for the area under the Gaussian function 274 

(𝑇) can be obtained by rearranging the integral of the Gaussian function (Eq. 3) and Gaussian 275 

probability function (Eq. 4), for which the area is equal to one.   276 

 277 

Eq. 3:   𝑇 = ∫ 𝐴!"#𝑒𝑥𝑝 *−
(#%&)!

()!
, 𝑑𝑥/

%/  278 

Eq. 4:   1 = ∫ 0
)√(2

𝑒𝑥𝑝 *− (#%&)!

()!
, 𝑑𝑥/

%/  279 

  𝜎√2𝜋 = ∫ 𝑒𝑥𝑝 *− (#%&)!

()!
, 𝑑𝑥/

%/  280 

 281 
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Combining Eq. 3 and Eq.4 shows the area under the distribution can be described by Eq. 5, 282 

which rearranges to Eq. 6 when the height and width parameters are estimated on the log scale. 283 

 284 

Eq. 5:  𝑇 = 𝐴!"#𝜎√2𝜋 285 

 286 

Eq. 6:  𝑇 = 𝑒𝑥𝑝7𝑙𝑜𝑔𝐴!"# + 𝑙𝑜𝑔𝜎 + log7√2𝜋<<	 287 

 288 

This shows the area under the phenological distribution depends log-linearly on temperature 289 

with a slope equal to the sum of the log-scale slope estimates for the change in height and 290 

width. Slopes for the change in the area under the distribution with changing temperature were 291 

calculated for the spatiotemporal temperature model and both components of the space vs time 292 

temperature model (Table 1).  293 

 294 

Mean expectations on the arithmetic scale 295 

When a variable is normally distributed on the log-scale, the mean on the arithmetic scale is 296 

equal to the sum of the log-scale mean and half of the log-scale distribution variance 297 

exponentiated. Within our models the height and width parameters are assumed to come from 298 

a log-normal distribution, meaning that the expectation on the arithmetic scale across site by 299 

years must include half of the variance attributed to the random terms being marginalised. 300 

Details of the methods of estimation on the arithmetic scale for results shown in Fig. 3 and 4 301 

can be found in Appendix S4.   302 

 303 

Determination of temperature predictor using sliding windows 304 

The periods during which temperatures have most effect on the mean timing, height and width 305 

of the phenological distribution may differ among the phenological parameters; therefore, we 306 
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applied a sliding window approach simultaneously across all three parameters (Fig. S1). In the 307 

interests of efficiency we conducted model comparisons in a frequentist setting on the basis of 308 

Akaike Information Criteria (AIC) (Burnham & Anderson 2004). We obtained estimates of the 309 

mean timing, height and width of the caterpillar phenological distribution at each site in each 310 

year using the site by year model (described in Appendix S5) and then passed these estimates 311 

and a measure of measurement uncertainty to a multi-variate meta-analytic model, using the 312 

metafor package (Viechtbauer 2010). Within this framework we then ran over all combinations 313 

of sliding windows for the mean timing (start dates from 58-100 in steps of 7, durations from 314 

28-98 days in steps of 14), height (start dates from 58-128 in steps of 14, durations from 28-98 315 

days in steps of 14), and width (start dates from 58-128 in steps of 14, durations from 28-98 316 

days in steps of 14), totalling 13231 models. The mean daily temperature for each site by year 317 

combination during the identified windows were then used within the Gaussian function 318 

models described above (Fig. S1).  319 

 320 

All analyses used R version 4.0.2 (R Core Team 2020), and models including the Gaussian 321 

function used the RStan package (Stan Development Team 2020). Models were run using four 322 

chains with 2500 iterations after warmup with a thinning of 5; the spatiotemporal temperature 323 

model and space vs time model had a warmup of 2000 and the site by year model had a warmup 324 

of 1500 iterations. Convergence was checked using the Rhat (all < 1.02) and through graphical 325 

inspection. Effective sample sizes were all over 600, and over 1100 for all focal coefficients. 326 

The space vs time temperature model had 3 divergent transitions after the warmup which was 327 

0.15% of the 2000 iterations retained. Data and code are available on Zenodo 328 

https://doi.org/10.5281/zenodo.8335050 (KHMacphie 2023). 329 

 330 

 331 

https://doi.org/10.5281/zenodo.8335050
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Results 332 

Of the 37,674 branch beatings, 3,950 of the samples recorded one or more caterpillar totalling 333 

8,196 individuals. Of the samples in which one or more caterpillars were present, 69% recorded 334 

one and 16% recorded 2, with a maximum abundance of 109.  335 

 336 

In the sliding window analysis, mean timing was most sensitive to temperatures from early 337 

March to mid-April (ordinal dates 65-106, 5th March - 15th April in non-leap year, Fig. 3a, S1), 338 

height was most sensitive to temperatures later in the spring (100-141, 9th April -20th May, 339 

Fig. 3a, S1) and width to temperatures that spanned the spring (58-155, 27th February - 3rd 340 

June, Fig. 3a, S1). We used the mean temperature during each of these windows as the 341 

temperature variable for the respective Gaussian parameter in in all subsequent analyses.  342 

 343 

Spring temperatures had a significant effect on all three phenological parameters, with the most 344 

profound effects being that the caterpillar phenological distribution is both earlier and higher 345 

in warmer years (Fig. 3b-c, 4a). We found that mean timing shifted by -4.96 days oC-1 (95% 346 

credible intervals [CIs]: -6.21 - -3.64 days oC-1, Fig. 3b). The bimodal pattern among the points 347 

in Fig. 3b is caused by substantial year random effects (2014=0.25, 2016=0.62, 2017=0.25, 348 

2018=0.11, 2019=-0.63, 2020=-0.55, 2021=-0.31 and 2022=0.24). When looking at the 349 

expected change in distribution height independently of the other parameters (see Appendix 350 

S4), the maximum abundance increased by 34% oC-1 (CIs: 5 - 61% oC-1, Fig. 3c), though we 351 

still find substantial variation in height among sites, years and site-years (Table S3; differences 352 

in phenological parameter variances among sites and years from models with and without 353 

temperature are discussed further in Appendix S6). When we account for the uncertainty in all 354 

three parameters to attain the mean expectations of abundance on each day in spring (see 355 

Appendix S4), the distribution height increased by 28% (CIs: 1 - 52%) when temperature 356 
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increased by one degree above the mean (Fig. 4a). The width parameter decreased by 9% oC-1 357 

(CIs: 1 – 17% oC-1, Fig. 3d), indicating the shape of the distribution narrows as spring  358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

Figure 3: a) Windows of time where spring 367 

temperature was identified as the best predictor 368 

of each parameter of the phenological 369 

distribution. b-d) show the model predictions 370 

(black points) for the mean timing, height and 371 

width of the caterpillar peak, as a function of 372 

temperature during the identified windows for 373 

each site by year combination. Mean estimate 374 

on the data scale (black line) and 95% credible 375 

intervals (grey band). c) The inset plot shows 376 

log scale estimates and red points indicate 377 

points excluded from the data scale plot. 378 

Coloured squares along the x-axis show the 379 

mean temperature in yellow with +/- 1 and 2 380 

degrees in blues/reds which correspond to the 381 

plots in Figure 4. 382 

 383 
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temperature increases. The temperature slopes explained 34.93% (CIs: 13.62-55.82%), 7.96% 384 

(CIs: 0.15-19.17%) and 4.94% (CIs: 0.07-14.97%) of the variance among site by year 385 

combinations for the mean timing, height and width parameters, respectively (Fig. 3 b-d; 386 

calculations described in Appendix S3).  387 

 388 

The duration of the distribution will be affected by both the height and width parameters and 389 

varies depending on the abundance threshold at which it is calculated (Fig. 1); we therefore 390 

chose to present duration at two thresholds. The purpose of quantifying duration was to assess 391 

any change in the period throughout which caterpillars are present, making lower abundance 392 

thresholds most informative; we chose 0.05 and 0.1 caterpillars per branch as in the absence of 393 

a biological motivation the choice of abundance was arbitrary and these allowed comparison 394 

across a 4oC range (blue to red lines in Fig 4a) that is within the temperature variation we find 395 

across sites and years within our study. We found no significant effect of temperature on 396 

duration at either threshold across the 4oC range within our data (Fig. 4b; mean [CIs] difference 397 

between 2oC and -2oC at 0.1 = 19.45 days [-4.23 - 47.90]; at 0.05 = 9.42 days [-7.75 - 29.58]). 398 

Whilst the change in duration at the chosen abundance levels was not significant, the mean 399 

point estimates show a slight increase with temperature, particularly at the higher threshold. 400 

This illustrates that whilst the shape of the peak is narrowing through a reduction in the width 401 

parameter, the substantial increase in height maintains (or may even increase) the duration 402 

when caterpillars are present above a particular abundance. The area under the phenological 403 

distribution increases by 1.21 times per oC (derived on the log scale then exponentiated), 404 

though this effect was not significantly removed from 1 (CIs: 0.97 - 1.44, Fig. 4c).  405 

 406 



 18 

 407 

Figure 4: a) Posterior mean expected abundance on the data scale of the full phenological distribution 408 

at different temperatures: the mean of each temperature window (mean timing = 5.85oC, height = 409 

8.92oC, width = 7.81oC; yellow), +1oC (orange), +2oC (red), -1oC (light blue) and -2oC (dark blue); 410 

calculated from the posterior predictive distribution. b) shows the mean and 95% credible intervals 411 

(95% CIs) for the duration of the peak at an abundance of 0.1 and 0.05 caterpillars for distribution at 412 

each temperature calculated from the posterior distributions of the simulated expectations of abundance 413 

across dates; and c) shows the mean and 95% CIs for the area under the phenological distribution from 414 

-2 to 2oC around the mean (centred) temperature, calculated from the simulations under the model. 415 

 416 

Spatial and temporal slopes were generally in the same direction as the main spatiotemporal 417 

model (Table 1), except for the temporal width parameter slope. For the mean timing 418 

parameter, estimates in space and time were not significantly different and both were in the 419 

same direction with CIs removed from zero. Whilst there was no significant difference in the 420 

mean timing slopes across space and time, the difference in the point estimates were consistent 421 

with a co-gradient, a steeper spatial slope. For the thermal sensitivity of the distribution height, 422 

the spatial and temporal estimates did not significantly differ, and point estimates were in the 423 

same direction consistent with a co-gradient pattern; however the credible intervals for both 424 

terms included 0. The thermal sensitivity of the width parameter was significantly different in 425 



 19 

space versus time, with a significant negative spatial slope, but no effect of temperature across 426 

years. The effect of temperature on the area under the phenological distribution was similar in 427 

the main model and over space and time, all showing positive but non-significant effects.  428 

 429 

Table 1: Summary of results for the effect of temperature on the mean timing, height, width and area 430 

under the phenological distribution of spring arboreal caterpillars, showing posterior mean effect with 431 

95% credible intervals (CI) in brackets beneath. Spatiotemporal slopes come from a model using 432 

temperatures for each site-year to estimate the thermal sensitivity of the parameters. The spatial and 433 

temporal slopes come from a model employing a within-site centering approach to separate the effects 434 

in space and time. The difference column indicates the difference between the spatial and temporal 435 

slope estimates calculated from the spatial slope minus the temporal. Slope estimates are exponentiated 436 

or unscaled where applicable and ‘prop.’ in the unit column implies proportional changes (i.e. 437 

exponentiated slopes). For the mean timing parameter and the difference column CI removal from 0 438 

suggests a significant effect, whereas for the three parameters in units of proportional change CI 439 

removal from 1 suggests significance. 440 

 441 

Parameter Unit 
Spatiotemporal 

slope 
Spatial slope Temporal slope Difference (S-T) 

Mean 

Timing 
days oC-1 

-4.96  

(-6.21 - -3.64) 

-5.77  

(-7.39 - -4.18) 

-3.39  

(-5.49 - -1.46) 

-2.37  

(-4.77 - 0.17) 

Height 
prop. change 

oC-1 

1.34 

(1.05 - 1.61) 

1.66  

(0.97 - 2.63) 

1.17  

(0.81 - 1.49) 

0.49  

(-0.31 - 1.55) 

Width 
prop. change 

oC-1 

0.91 

(0.83 - 0.99) 

0.85  

(0.75 - 0.96) 

1.05  

(0.89 - 1.21) 

-0.20  

(-0.39 - -0.01) 

Area 
prop. change 

oC-1 

1.21 

(0.97 - 1.44) 

1.40  

(0.90 - 2.12) 

1.22 

 (0.89 - 1.53) 

0.18  

(-0.41 - 0.95) 

 442 
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 443 

Discussion 444 

We found that spring temperatures have an effect on the mean timing, height and width of the 445 

caterpillar phenological distribution. In addition to the phenological mean timing shifting by -446 

4.96 days oC-1, which is consistent with results from previous studies (Visser et al. 2006; 447 

Charmantier et al. 2008; Burgess et al. 2018),  the distribution height increases by 34% oC-1 448 

and decreases in width by 9% oC-1 (Fig 3b-d). Whilst the shape of the peak narrows through 449 

the decrease in width, when paired with the substantial increase in height we found no change 450 

in the duration of the distribution with changing temperature (Fig 4b). The results reveal 451 

substantial thermal sensitivity of the full phenological distribution, including effects that have 452 

been largely overlooked in earlier work on phenology and MMH research. 453 

 454 

Our finding that spring temperatures have a substantial impact on the maximum height of the 455 

caterpillar guild phenological distribution (an increase of 34% oC-1) is likely to have cascading 456 

effects through interactions within the forest community. Even an increase in temperature of 457 

1.5oC could yield more than a 50% increase in the maximum abundance of arboreal caterpillars. 458 

This is liable to lead to an increase in herbivory pressure that represents a potentially major 459 

indirect effect of temperature on the severity of tree defoliation (Kulman 1971; Whittaker & 460 

Warrington 1985; Whitham et al. 1991; Marquis & Whelan 1994), though this effect will also 461 

depend on the thermal sensitivity of leaf toughness and palatability. The impact on tree 462 

defoliation and growth is likely to depend on how synchronous caterpillars are to the tree and 463 

the level of defences the leaves have acquired at the time of maximum herbivory (Schwartzberg 464 

et al. 2014; Bellemin-Noël et al. 2021). Should the increased maximum abundance translate to 465 

a greater prevalence of pest outbreaks and defoliation, further work into whether the change is 466 

driven by a few specific species or is consistent throughout the guild will be important for the 467 
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design of effective and targeted pest management interventions. An increase in the height of 468 

the caterpillar phenological distribution is also liable to have profound consequences for 469 

secondary consumers, a theme to which we will return.  470 

 471 

The positive effect of spring temperature on the height of phenological abundance distribution 472 

that we observe departs substantially from the Nadolski et al. (2021) report of no correlation 473 

between annual temperature variation and maximum caterpillar biomass in Poland across 16 474 

years. Whilst it is possible that this reflects true differences in the caterpillar thermal-response 475 

between Scotland and Poland, perhaps influenced by spatial patterns in the thermal sensitivity 476 

of defoliator populations (Netherer & Schopf 2010), it is possible that our slopes do not in fact 477 

differ from theirs. Whilst Nadolski et al. do not report a slope or confidence interval, the 478 

interval is likely to be broad and therefore may overlap with our result.  479 

 480 

By separating the effects of temperature in space and time we can gain a window into whether 481 

effects are likely to be causal and insights into the processes at play (Lovell et al. 2023). For 482 

the mean timing parameter, similar estimates in space and time suggest temperature has a 483 

causal effect and is consistent with plasticity being responsible for much of the spatiotemporal 484 

variation in mean timing (Phillimore et al. 2010). While non-significant, the difference in the 485 

point estimates was in a direction consistent with a co-gradient pattern, which may suggest 486 

some contribution of local adaptation or a difference in species turnover over space versus over 487 

time. For the thermal sensitivity of the distribution height, the general direction of the estimates 488 

and lack of difference in space versus time suggests a causal effect of temperature, with a 489 

possible co-gradient pattern; yet neither effect was significant when considered in isolation. 490 

For the thermal sensitivity of the width, the lack of a trend in time but significant negative 491 

effect in space were consistent with the findings of Smith et al (2011). Such a difference 492 
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between effects estimated over space and time suggests a non-causal relationship between 493 

temperature and distribution width in our main model. The positive but non-significant effect 494 

of temperature on the area under the phenological distribution was similar in both space and 495 

time and the spatiotemporal model; we therefore cannot conclude that there is any effect of 496 

temperature on the area under the curve within our data set, though this presents an interesting 497 

avenue for future work. While point estimates for all temperature-phenology effects are in the 498 

same direction over space and time, the trends are estimated with considerable uncertainty and 499 

we suggest there would be value in revisiting these analyses with greater temporal replication 500 

in the future. 501 

 502 

Our spatiotemporal estimate of a shift in phenological mean of -4.96 daysoC-1 in the caterpillar 503 

guild is similar to estimates obtained for leaf out in oak trees and other deciduous species from 504 

previous studies across Europe (Vitasse et al. 2010; Roberts et al. 2015; Tansey et al. 2017). 505 

In contrast, our estimate of the temporal slope for mean caterpillar timing is shallower than 506 

some dominant UK trees, e.g., Quercus sp. leaf-out found to have sensitivity to forcing 507 

temperatures of -8.81 +/- 0.52 days oC-1 (Roberts et al. 2015). This means that increasing 508 

temperatures could alter the phenological (a)synchrony between caterpillars and deciduous 509 

trees, despite previous studies suggesting that caterpillars are maintaining synchrony with oak 510 

(Both et al. 2009; Burgess et al. 2018). An increase in tree-caterpillar asynchrony may impede 511 

the increase in the height of the caterpillar phenological distribution and prevent the most 512 

extreme detrimental effects for the trees (Schwartzberg et al. 2014), whilst greater synchrony 513 

could exacerbate the increase in herbivory pressure (Schwartzberg et al. 2014; Bellemin-Noël 514 

et al. 2021). 515 

 516 
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Moving up the food chain to the insectivorous bird-caterpillar trophic interaction, a study of 517 

bird species in UK and Netherlands (not limited to woodland passerines) showed an average 518 

advance in lay date of 3.28 days oC-1 for resident species and 2.49 days oC-1 for migratory 519 

species (Mclean et al. 2022). Our temporal estimate for the shift in caterpillar mean timing is 520 

similar to the estimate for resident birds and the average migratory species slope falls within 521 

the temporal caterpillar slope CIs (Mclean et al. 2022). The overlap between bird and 522 

caterpillar slope estimates suggests that average resident and migratory bird species may be 523 

able to track the change in caterpillar phenology from year to year.    524 

 525 

Where the thermal sensitivity of phenology differs between trophic levels (Thackeray et al. 526 

2016), changing temperatures will alter the asynchrony between a consumer and its resource 527 

(Kharouba et al. 2018). The MMH is most often studied through comparison of consumer 528 

phenology and fitness to the resource population/guild mean timing; yet the height and width 529 

of the resource distribution determines the duration of time for which the resource is above a 530 

given threshold, the amount of food available i) as the total among days throughout spring (the 531 

area under the phenological distribution) or ii) given a particular amount of phenological 532 

asynchrony and how the relative amount of food available differs among synchronous and 533 

asynchronous consumers. For forest birds that rely on caterpillars as a food resource to feed 534 

nestlings, the impacts of temperature on the shape and height of the caterpillar peak could have 535 

stark consequences for how the MMH manifests. The increase in peak height means that under 536 

warmer spring conditions far more food is predicted to be available to consumers that remain 537 

approximately synchronous with the caterpillars. However, the reduction in peak width with 538 

increasing temperature means that resource abundance declines more steeply to either side of 539 

the mean timing under warmer conditions, affecting the relative abundance of food available 540 

to synchronous versus asynchronous consumers. Therefore, the fitness consequences of 541 
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asynchrony could change with temperature, potentially increasing the strength of stabilising or 542 

directional selection on consumer breeding phenology. In the future, the modelling framework 543 

we present here could be extended to model the impact of the three phenological parameters of 544 

the resource on the parameters that govern the phenological fitness function of consumers (or 545 

resources). Specifically under the MMH we predict that the mean timing, height and width of 546 

the resource should have causal effects on the optimum timing, maximum and width of the 547 

consumer phenological fitness function (Macphie 2023). 548 

 549 

Through allowing temperature during different windows to affect each distribution parameter 550 

in the sliding window we have gained new insights into the thermal sensitivity of the caterpillar 551 

phenological distribution. The window identified as most influential for mean timing falls prior 552 

to the onset of the main peak in abundance, most likely influencing hatching phenology rather 553 

than altering the mean timing through impact on developmental rate, and is similar to that 554 

identified as important in other European studies (Visser et al. 2006; Porlier et al. 2012; 555 

Simmonds et al. 2020). The height of the distribution however is most sensitive to temperatures 556 

around the onset of the peak and in the weeks following, suggesting the thermal sensitivity in 557 

height is driven more by thermal effects on the larvae (and potentially their host plants) than 558 

eggs. For width our time window is broader than identified in Visser et al (2006), though we 559 

note a high degree of uncertainty in the position of the window for this phenological parameter 560 

(Fig. S2). The sliding window approach involves a very high-level of multiple testing (13231 561 

window combinations in our case) (van de Pol et al. 2016), which inflates the type I  errors. In 562 

the context of our study, we anticipate that this is most likely to affect the slope of temperature 563 

on the width parameter, which is the weakest of the correlations we identify. It is also possible 564 

that the most influential window of temperature will differ with elevation and latitude (Macphie 565 

2023), or that the window that affects height and width may be relative to caterpillar phenology. 566 
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 567 

Our approach is similar to the Gaussian model functions described in de Villemereuil et al. 568 

(2020) and Dennis et al. (2016), with the major difference being that we include linear effects 569 

of temperature on the three parameters that control the position, shape and height of the 570 

phenological distribution. The approach we present here offers great potential for modelling 571 

effects of climate (e.g., temperature, precipitation) or other continuous variables (e.g., year, 572 

density of conspecifics) on phenological distributions. Examples of seasonal events that could 573 

be approximated by a Gaussian phenological distribution include planktonic blooms, tree 574 

leafing and senescence, flowering, fruiting, fish or amphibian spawning events, migration and 575 

reproduction metrics for mammals or birds, and numbers of parasitised or diseased individuals. 576 

Further potential improvements to the approach include modelling of skewed phenological 577 

distributions and incorporation of spatiotemporal autocorrelation in parameters (particularly 578 

height, as abundance is expected to be correlated from one year to the next).  In addition, 579 

inclusion of linear latitude and year effects would reduce the risk that the effects that we 580 

attribute to climate variables arise from third variables that exhibit spatial or temporal trends. 581 

The approach we describe has advantages over use of a GLM/GLMM with a Poisson response 582 

and quadratic date term to estimate the effects of an environmental variable on mean timing 583 

(Chevin et al. 2015; Edwards & Crone 2021), as we found that this approach forces an 584 

undesirable non-linear relationship between the environmental variable and height (see 585 

Appendix S7 for further details).  586 

 587 

Introducing a new approach for estimating climate-phenology relationships, we have shown 588 

that temperature has an effect not only on the mean timing of the phenological distribution of 589 

spring arboreal caterpillars, but also on the height and width of the peak. We report an increase 590 

in the height accompanied by a decrease in the width; resulting in a similar duration of the 591 
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distribution as temperature increases. The alterations to the shape of the phenological 592 

distribution of caterpillars not only identifies shifts in dynamics within the caterpillar guild that 593 

are attributed to temperature, but it will also impact the herbivory pressure on deciduous trees 594 

and alter the food availability throughout spring for breeding birds with possible implications 595 

for the MMH. The methods we present have broad applicability to other systems and questions 596 

within phenology and the MMH, and we encourage more work to consider the full 597 

phenological distribution of biological events rather than focusing on mean timing.  To predict 598 

the biotic impacts of ongoing climate warming, it will often be essential to take these additional 599 

components of change into account.  600 

 601 
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Appendix S1: Framework summary figure 808 



 36 

Figure S1: Graphical outline of the methodological framework used to analyse the effect of 809 

temperature on the full phenological distribution. Raw data on the abundance of caterpillars on 810 

days throughout spring (Caterpillar Data) and daily mean temperatures (Temperature Data) 811 

were collected at each site over multiple years. The caterpillar data were used to estimate the 812 

mean timing, height and width of the phenological distribution at each site in each year (Site 813 

by Year Model). A multi-variate meta-analytical Sliding Window Analysis was used to 814 

estimate the most predictive temperature windows, allowing a separate window for 815 

each phenological distribution parameter. The Spatiotemporal Temperature Model used 816 

site-by-year variation in average temperatures from these windows as predictors of each 817 

phenological distribution parameter estimated using raw caterpillar data (modelled as a 818 

Gaussian function of ordinal date). Site-by-year temperatures were within-site centred, with 819 

the site mean temperature and annual temperature deviations used as predictors of each 820 

phenological parameter in the Space versus Time Model (following the same approach as the 821 

spatiotemporal model).   822 

 823 

 824 

 825 

Appendix S2: Spatiotemporal temperature model notation 826 

 827 

The abundance of caterpillars, 𝑦, recorded at the 𝑖th site in the 𝑗th year on the 𝑘th date and  𝑡th 828 

tree by the 𝑟th recorder was Poisson distributed with mean 𝜆: 829 

 830 

Eq. S1:    𝑦34567~𝑃𝑜𝑖𝑠7𝜆34567< 831 

 832 
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𝜆 was modelled as a Gaussian function of ordinal date 𝑥 in which the phenological parameters, 833 

𝑚, 𝐴!"#, and 𝜎 define the mean timing, height and width respectively. On the log-scale this 834 

model is: 835 

 836 

Eq. S2:    𝑙𝑜𝑔7𝜆34567< = 𝑙𝑜𝑔𝐴!"# −
(#%!)!

()!
+ 𝑒34567 837 

 838 

where 𝑒34567 is an observation-level random effect that captures any overdispersion with respect 839 

to the Poisson. Each phenological parameter (or in the case of 𝐴!"#, and 𝜎, their log) follows 840 

a linear model with an intercept 𝛽0 and a slope with respect to temperature 𝛽( as fixed effects. 841 

Note different temperature variables are used for each phenological parameter since different 842 

time windows over which temperature was averaged were selected. In addition, site 𝑢(8)	year 843 

𝑢(9) and site by year 𝑢(8:9) random terms were included.   The linear model for 𝑙𝑜𝑔𝐴!"# also 844 

included random terms for date by site by year 𝑢(#:8:9), tree identity 𝑢(6) and sample recorder 845 

𝑢(7).   846 

 847 

Eq. S3:    𝑚 = 𝛽0
(!) + 𝛽(

(!)𝑡34
(!) + 𝑢3

(!:8) + 𝑢4
(!:9) + 𝑢34

(!:8:9) 848 

Eq. S4:    𝑙𝑜𝑔𝐴!"# = 𝛽0
(;) + 𝛽(

(;)𝑡34
(;) + 𝑢3

(;:8) + 𝑢4
(;:9) + 𝑢34

(;:8:9) + 𝑢345
(;:#:8:9) + 𝑢6

(;:6) + 𝑢7
(;:7) 849 

Eq. S5:    𝑙𝑜𝑔𝜎 = 𝛽0
(<) + 𝛽(

(<)𝑡34
(<) + 𝑢3

(<:8) + 𝑢4
(<:9) + 𝑢34

(<:8:9) 850 

 851 

The vector containing the three (one for each phenological parameter) site effects for site 𝑖 𝐮3
(8) 852 

were drawn from a normal distribution with a zero mean vector and a variance-covariance 853 

matrix estimated from 𝐃(8)𝐑𝐃(=)in which 𝐃(8)represents a diagonal matrix with the standard 854 

deviations of the site random effects along the diagonal and 𝐑 represents the correlation matrix 855 

for the three terms:  856 
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 857 

Eq. S6:    N
𝑢3
(!:8)

𝑢3
(;:8)

𝑢3
(<:8)

O~𝑁 QR
0
0
0
T , 𝐃(8)𝐑𝐃(8)V 858 

 859 

The vectors of year and site by year effects,  𝐮4
(9)and 𝐮34

(9) respectively, were modelled in the 860 

same way, with 𝐑 common to the site, year, and site by year effects but with effect-specific 861 

standard deviations (i.e. 𝐃(9)and 𝐃(8:9)).   862 

 863 
 864 
 865 
 866 
Appendix S3: Pseudo-R2 for phenological parameter-temperature slopes 867 

 868 

To give some indication of the model fit for the main slope effect results shown in Fig. 3b-d, 869 

we calculated the proportion of variance among site by year combinations that is explained by 870 

the slope: 871 

 872 

Eq. S7:    𝑅((!) = >!
!(#)?"7(6(#))

>!
!(#)?"7@6(#)AB?"7(C(#:&))B?"7(C(#:'))B?"7(C(#:&:'))

 873 

 874 

The slope coefficient squared 𝛽(( multiplied by the variance in site by year temperature 875 

𝑣𝑎𝑟(𝑡34) gives the variance explained by the slope. The variance explained by the slope is 876 

divided by the total variance among site by year combinations, which consists of the variance 877 

explained by the slope and the remaining variance attributed to site, year and site by year 878 

random terms. Eq. S7 shows the equation for the mean timing parameter 𝑚, the same is used 879 

for the height and width parameter “R2” estimates.    880 

 881 
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Appendix S4: Mean expectation on the arithmetic scale 882 

 883 

There are two forms of expectations on the arithmetic scale that we were interested in from the 884 

spatiotemporal temperature model: i) the average value of each phenological parameter at 885 

different temperatures, and ii) the average value of mean caterpillar abundance on each date 886 

throughout spring at different temperatures which depends on all phenological parameters. 887 

Both required marginalising random terms, but the method to do this differed. 888 

 889 

(i) To estimate the height or width at different temperatures (Fig. 3c-d), half of the variance for 890 

each random term associated with each parameter was added to the estimate before 891 

exponentiating.  892 

 893 

(ii) Since an analytical solution was not available, marginalisation was carried out by 894 

simulating from the posterior predictive distribution 10,000 times for each date:temperature 895 

combination and taking the average abundance. This allows visualisation of changes to the full 896 

phenological distribution with changing temperature (Fig. 4a). The duration was calculated for 897 

each temperature as the dates on which the average abundance exceeded the threshold (Fig. 898 

4b), and the area was calculated as the sum of the average abundance across dates (Fig. 4c). 899 

Due to the uncertainty in the mean timing of the distribution the maximum average abundances 900 

reached are lower than those predicted from i). 901 

 902 

 903 

 904 

 905 

 906 
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Appendix S5: Sliding window analysis 907 

 908 

Methods 909 

We began our analyses by identifying the periods during which temperature best predicted the 910 

thermal sensitivity of the mean timing, height and width parameters of the caterpillar 911 

phenological distribution. As it is feasible that the most influential period could differ for each 912 

parameter, we used a sliding window approach which allowed such. Therefore, as the number 913 

of windows to consider was the product of the number of windows considered for each 914 

parameter, for efficiency we applied a frequentist meta-analytic approach (using the metafor 915 

package (Viechtbauer 2010)) to the site by year estimates for the three parameters. This allowed 916 

us to compare sliding windows based on AIC. 917 

 918 

Site by year model: To obtain estimates of the three phenological parameters for each site in 919 

each year we modelled the phenological distribution of at each site in each year using the same 920 

model composition as the spatiotemporal temperature model using RStan (Stan Development 921 

Team 2020), but excluding the temperature fixed effects. From the model output the intercept 922 

and random intercepts for each site, year and site by year combination could be summed to 923 

obtain the estimate of each phenological parameter for each site in each year. The posterior 924 

mode (calculated using the posterior.mode function in the MCMCglmm package (Hadfield 925 

2010)) was used as our estimate of mean timing, height and width for each site by year 926 

combination for the response variable in metafor (Viechtbauer 2010) multivariate meta-927 

analyses. The variance-covariance matrix of the posterior distributions for the three parameters 928 

in each site in each year were included as the sampling variance.  929 

 930 
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We modelled the effect of temperature on each distribution parameter under a sliding window 931 

framework, allowing each parameter to be predicted by different time windows of temperature. 932 

For mean timing the window start dates ranged from day 58 to day 100, shifting in 7 day 933 

increments. For the height and width the window start dates ranged from 58 to 128, shifting in 934 

14 day increments. The incremental shifts in start date were slightly higher resolution and  935 

restricted to an earlier period of the year for the mean timing parameter due to stronger a priori 936 

predictions from previous studies (Visser et al. 2006); whereas much less is known about the 937 

time windows that best predict the distribution height and width (see Visser et al. 2006) so we 938 

allowed larger increments to reduce the extent of multiple testing. All three parameters had 939 

windows ranging in duration from 28 to 98 days, increasing in duration in 14 day increments. 940 

This produced 30 window options for the mean timing variable and 21 for the height and width, 941 

resulting in 13231 models in total.  942 

 943 

The metafor multivariate models included independent intercepts and temperature slopes for 944 

each of the response variable, as well as including year and each site in each year (site-year) as 945 

random terms for each response. As it is only possible to include two random terms that are 946 

independent for each response variable in the metafor package we selected year and site-year 947 

but not site. Random terms were estimated using an unstructured variance-covariance matrix. 948 

The models were fitted using maximum-likelihood rather than restricted maximum-likelihood 949 

to enable model comparison using AIC. 950 

 951 

 952 

 953 

 954 

 955 
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Supplementary results 956 

 957 

Table S1: Window combinations for the models that did not converge in a sliding window 958 

analysis which allowed different temperature periods to predict the three parameters that 959 

describe the phenological distribution of caterpillar abundance. Shows the start date and 960 

duration of each window. 961 

 962 

Mean Timing Height Width 

Start Duration Start Duration Start Duration 

93 28 72 70 100 28 

93 28 72 84 100 28 

93 28 58 98 100 28 

100 56 72 70 128 28 

100 56 72 70 114 42 

100 56 72 84 128 28 

100 56 58 98 128 28 

 963 

 964 

Of the 13231 models run, 7 did not converge, the details of which can be found in Table S1. 965 

 966 

As seen in Fig S1, all models with AIC’s within 2 of the best fitting model for the mean timing 967 

and height parameters included the windows that were also in the best fitting model, however 968 

for the width parameter the windows used in models within 2 AICs of the best fitting were 969 

more varied, suggesting there is no particular time period between mid-Feb and late June 970 

during which temperature predicts the change in peak shape to a much greater extent (Fig. S3). 971 
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As the aim of this work was to identify the effect of spring temperatures on each metric of the 972 

caterpillar peak and not to identify the most influential time period of temperature throughout 973 

the year we proceeded using the windows of temperature identified in the best fitting model 974 

despite the lack of a clear optimal window for estimating the width parameter. 975 

 976 

 977 

 978 

 979 

Figure S2: Plot of the AICs from models using different windows of temperature (horizontal 980 

black lines) as predictors of the three parameters describing the phenological distribution of 981 

caterpillar abundance. All lines beneath the red dashed line are within two AICs of the model 982 

with the lowest AIC value. Cropped Y axis, only showing subset of models with lower AICs. 983 

 984 
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 985 

Figure S3: Plots of the minimum AIC from models using windows of temperature starting 986 

(blue) or ending (red) on each date for each parameter describing the phenological distribution 987 

of caterpillar abundance.  Dashed vertical lines indicate the start and end dates with the lowest 988 

AICs. 989 

 990 

Temperature mean, standard deviation and range in the identified windows: 991 

The mean temperature during the mean timing parameter window was 5.83oC, ranging from -992 

3.05 to 3.06oC with a standard deviation (sd) of 1.22 after mean centring (spatial: -1.73 - 993 

1.48oC; temporal: -2.13 - 1.57oC). The mean temperature during the width parameter window 994 

was 7.81oC , ranging from -2.50 to 2.17oC with a sd of 0.85 after mean centring (spatial: -1.58 995 

- 1.16oC; temporal: -1.15 - 1.18oC). The mean temperature during the height parameter window 996 

was 8.92oC, ranging from -3.55 to 2.43oC with a sd of 1.20 after mean centring (spatial: -1.59 997 

- 1.05oC; temporal: -2.40 - 2.01oC).  998 

 999 

Correlation among temperatures in identified windows:  1000 

The temperatures that contribute to each of the three best windows (one for timing, height and 1001 

width) are overlapping (Figure 3a, Table S1). Therefore one would expect the effect of a change 1002 
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in temperature to lead to a somewhat correlated response. When we estimate the pairwise 1003 

correlations in temperatures between windows, we find that in space the correlations are very 1004 

high (Table S2), whereas in time the correlation is weaker and there is no temporal correlation 1005 

between the temperatures that predict timing and height. The stronger correlations between 1006 

different windows in space (across sites) versus time (across years) is consistent with 1007 

information about the position of the sliding windows stemming mainly from the temporal 1008 

replication in the data (Shutt et al. 2019b). 1009 

 1010 

 1011 

Table S2: Comparison of the best windows identified for each pair of parameters (timing, 1012 

height and width). Proportional overlap is the number of days that intersect divided by the 1013 

summed number of days.  Temperature correlations capture the correlation between the 1014 

average temperatures obtained for pairs of parameters and is partitioned into spatiotemporal 1015 

(using site-year mean temperatures), spatial (using site means) and temporal (using annual 1016 

deviations from site means) estimates. 1017 

 1018 

Parameter pairs Prop. 

overlap 

Spatiotemporal cor. Spatial cor. Temporal cor. 

MeanTiming:Height 0.08 0.31 0.94 -0.06 

MeanTiming:Width 0.3 0.78 0.98 0.58 

Height:Width 0.3 0.79 0.99 0.71 

 1019 

 1020 

 1021 

  1022 
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Appendix S6: Site, year and site-year variance in models 1023 

 1024 

The variance in timing, height and width that is distributed among site, year and site-year 1025 

quantify are captured by random terms in the model, and all terms are significantly removed 1026 

from 0 (Table S3). 1027 

 1028 

 1029 

Table S3: Posterior mode (95% credible intervals) for the variance attributed to the site, year 1030 

and site-year (each site in each year) random terms for the timing, height and width parameters 1031 

of the phenological distribution of caterpillars. Outlined for two models: the main 1032 

spatiotemporal temperature model and the equivalent model that excludes the fixed effect 1033 

temperature slopes for each parameter. As estimates are directly from the model the width and 1034 

height terms are on the log-scale and the timing and width terms are scaled (original sd = 14.1) 1035 

 1036 

 
Random 

term 

Spatiotemporal 

temperature model 
Site by year model 

Ti
m

in
g 

Site 0.043 (0.025 - 0.096) 0.145 (0.085 - 0.254) 

Year 0.142 (0.089 - 1.033) 0.119 (0.06 - 0.782) 

Site-year 0.012 (0.006 - 0.031) 0.019 (0.01 - 0.042) 

H
ei

gh
t 

Site 0.744 (0.516 - 1.333) 0.860 (0.559 - 1.415) 

Year 0.134 (0.028 - 1.267) 0.397 (0.216 - 3.123) 

Site-year 0.459 (0.369 - 0.636) 0.462 (0.354 - 0.611) 

W
id

th
 

Site 0.029 (0.011 - 0.066) 0.029 (0.014 - 0.076) 

Year 0.055 (0.021 - 0.508) 0.020 (0.01 - 0.258) 

Site-year 0.034 (0.018 - 0.065) 0.037 (0.016 - 0.066) 
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In the site by year model (i.e. a model without temperature predictors) we find substantial 1037 

variation in timing among sites and years. When temperature is included in the model this leads 1038 

to a substantial reduction (-70%) in the among site variance (Table S3). The variation in height 1039 

is greatest among sites, but also substantial among years and site-years and this variance is 1040 

substantially reduced among years when temperature is included in the model (though credible 1041 

intervals are broad). An implication of the substantial site-year variance is that the height of 1042 

the caterpillar guild abundance peak may be quite idiosyncratic in space and time and not solely 1043 

predictable on the basis of temperature. For the width parameter the main difference seen was 1044 

an increased variance among years when the temperature slope was included, supporting our 1045 

finding from the space vs time model that temporal temperature variation does not predict the 1046 

width of the phenological distribution. 1047 

 1048 

 1049 

 1050 

Appendix S7: Issues with a Poisson GLMM approach to modelling temperature effects 1051 

 1052 

The non-linear Gaussian function used by our study has more often been modelled as the re-1053 

parameterised linear form in a Poisson GLMM (Eq. S8). 1054 

 1055 

Eq. S8:    𝑦 = 𝛽D + 𝛽0𝑑 + 𝛽(𝑑( 1056 

 1057 

Previous work has suggested that by extending Eq. S8 to include an interaction between a 1058 

temperature variable and the date parameter,	𝑑 (Eq. S9) it is possible to estimate the change in 1059 

mean timing with temperature (Chevin et al. 2015; Edwards & Crone 2021). 1060 

 1061 



 48 

Eq. S9:    𝑦 = 𝛽D + 𝛽0𝑑 + 𝛽(𝑑( + 𝛽E𝑡 + 𝛽F𝑑𝑡 1062 

 1063 

The maximum height (𝐻) of the distribution is reached at the mean timing (𝑀), which can be 1064 

simplified to 𝐴 + 𝐵𝑡 (Eq. S10) where 𝐴 = − >(
(>!

 and B=− >)
(>!

. 1065 

 1066 

Eq. S10:  𝑀 = − (>(B>)6)
(>!

	  1067 

     =	− >(
(>!

− >)
(>!

𝑡 1068 

     = 𝐴 + 𝐵𝑡	1069 

 1070 

When quantifying the height of the phenological distribution (𝑑 = 𝑀) in Eq. S9, we found the 1071 

model forces the height to be a quadratic function of temperature (Eq. S11).  1072 

 1073 

 1074 

Eq. S11:          	𝐻 = 𝛽D + 𝛽0(𝐴 + 𝐵𝑡) + 𝛽((𝐴 + 𝐵𝑡)( + 𝛽E𝑡 + 𝛽F(𝐴 + 𝐵𝑡)𝑡 1075 

													= 	𝛽D + 𝛽0𝐴 + 𝛽0𝐵𝑡 + 𝛽(𝐴( + 𝛽(2𝐴𝐵𝑡 + 𝛽(𝐵(𝑡( + 𝛽E𝑡 + 𝛽F𝐴 + 𝛽F𝐵𝑡( 1076 

													= 	𝛽D + 𝛽0𝐴 + 𝛽(𝐴( + 𝛽F𝐴 + (𝛽0𝐵 + 𝛽(2𝐴𝐵 + 𝛽E)𝑡 + (𝛽(𝐵( + 𝛽F𝐵)𝑡(	1077 

 1078 

As our interest was modelling linear effects of temperature on mean timing, height and width 1079 

of the phenological distribution, this linear model composition has undesired properties.  1080 

 1081 
 1082 


