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Abstract 

To ensure the optimal development of brood, a honeybee colony needs to maintain its 

temperature within a certain range of values (thermoregulation), regardless of environmental 15 

changes in biotic and abiotic factors. While the set of behavioural and physiological responses 

implemented by honeybees to regulate the brood temperature has been well studied, less is 

known about the factors that may influence the efficiency of this thermoregulation. Based on the 

response threshold model of task allocation, increased colony homeostasis should be driven by 

increases in group size. We therefore determined whether colony size (number of adult bees and 20 

amount of brood), positively influenced the efficiency of thermoregulation that we measured via 

two criteria: (i) the precision of the temperature close to its brood optimum, and (ii) the stability 

of the temperature around this optimum value. Finally, within the applied perspective of 

honeybee colony monitoring, we assessed whether the efficiency of thermoregulation could be 

used as a proxy of colony size.  25 

For that purpose, we followed 29 honeybee colonies over two years, measured both brood and 

adult population size regularly over the beekeeping season, and monitored the in-hive 

temperature over the 24 hours preceding the inspections of these colonies. We then studied the 

effect of the size of the colony (number of adult bees and number of brood cells), as well as 

meteorological variables, on the efficiency of thermoregulation (mean and stability of brood 30 

temperature, i.e. between 32 and 36°C). 

In addition to a clear link with meteorological conditions, we found that the mean brood 

temperature and the stability of this temperature were both positively linked to the size of 

colonies. The mean brood temperature was more dependent on the amount of the brood, while its 



stability was more dependent on the number of bees. However, these relationships between 35 

colony size and thermoregulation were too weak for clearly discriminating colony population 

size based solely on the brood thermoregulatory efficiency. This demonstrates an extremely high 

flexibility and efficiency of honeybee colonies to thermoregulate the brood regardless of the 

amount of brood and the group size.  

Introduction 40 

Homeostasis denotes the ability of living organisms to actively maintain steady internal 

conditions necessary for survival. A classic example of organismal homeostasis is the regulation 

of body temperature within certain boundaries, even when environmental temperatures change. 

Such a phenomenon is also found in social insects, like the honeybee Apis mellifera, for which 

the maintenance of nest conditions within a certain range of values (homeostasis), regardless of 45 

environmental changes in biotic and abiotic factors, is crucial for their colony development and 

survival.  

The maintenance of inner hive conditions is one of the most crucial functions of honeybee 

colonies. While adult bees are rather eurytherms (i.e. can live under a wide range of 

temperatures), with a minimum of 18°C for normal muscle function (Esch & Bastian, 1968) and 50 

a maximum for survival above 50°C (Coelho, 1991; Kovac et al., 2014), the brood is 

stenothermic (i.e. only able to survive and develop within a narrow temperature range) (Seeley, 

1985). Accurate temperature regulation is therefore essential for proper development, with brood 

temperature strictly controlled within a temperature range of 32 to 36°C (Seeley, 1985) with 

regulation even more precise during the pupal period (35±0.5°C, Jones et al. 2004; Kronenberg 55 

& Heller 1982; Stabentheiner et al. 2010, 2021). Maintaining this optimal temperature window is 



crucial for the colony. Indeed, extended deviations are known to increase mortality (Koeniger, 

1978; Wang et al., 2016), cause morphological defects (Fukuda & Sakagami, 1968; Himmer, 

1932; Winston, 1987), disrupt synaptic organization in the brain of adult bees (Groh et al., 2004) 

and affect behavioural performances (Becher et al., 2009; Jones et al., 2005; Tautz et al., 2003). 60 

The colony, through the cooperation and coordination between individuals, therefore implements 

a set of behavioural and physiological responses to ensure proper temperature regulation of the 

hive (Jones & Oldroyd, 2006). When temperature is perceived as being too high, workers 

regulate it by fanning hot air out of the nest with their wings and may simultaneously spread 

water to induce evaporative cooling (Prange, 1996). At a finer scale, young workers can 65 

passively absorb heat by placing themselves between the heat source and the brood cells. This 

behaviour is called heat shielding, and it is usually carried out by placing the ventral side against 

the hot surface (Bonoan et al., 2014; Siegel et al., 2005; Starks et al., 2005; Starks & Gilley, 

1999). When temperature is perceived as being too low, workers can contract their thoracic 

muscles to produce heat (Esch et al., 1991; Heinrich, 1980, 1985, 1993; Heinrich & Esch, 1994). 70 

Another efficient heating strategy consists of entering an empty cell to warm the adjacent cells 

containing brood (Bujok et al., 2002; Kleinhenz et al., 2003). Finally, during longer periods of 

cold, workers can cluster together and generate metabolic heat (Kronenberg & Heller, 1982; 

Meikle et al., 2016; Seeley & Heinrich, 1981; Stabentheiner et al., 2010). 

The thermoregulatory mechanisms within the hive are therefore numerous, of different natures 75 

(behavioural, physiological or passive), flexible and interlaced, resulting in an effective brood 

temperature homeostasis (Kronenberg & Heller, 1982; Stabentheiner et al., 2021), even in 

extreme ambient conditions (e.g. Himmer, 1932 and Lindauer, 1955). However, temperature can 

fluctuate around its optimal value (Stabentheiner et al., 2021). Within the goal of maintaining 



temperature homeostasis, the efficiency of thermoregulation can be gauged through two criteria: 80 

(i) the precision of the temperature close to its brood optimum, and (ii) the stability of the 

temperature around this optimum value. Many studies have investigated how bees perform 

thermoregulation (see above), but little is known about the factors that can influence the 

efficiency of this thermoregulation. Based on the response threshold model of task allocation 

(Beshers & Fewell, 2001), the probability that an individual bee will engage in thermoregulation 85 

will depend on the level of the task stimulus and her threshold for that stimulus, i.e. the 

likelihood of reacting to the task–associated stimuli. A greater between-individual variability and 

within-individual consistency (specialisation) in task performance is therefore expected to 

increase behavioural homeostasis within the colony (Ulrich et al., 2018). This was confirmed by 

an increased stability in temperature changes within colonies composed of genetically diverse 90 

worker bees as compared to colonies with a low level of genetic diversity (Jones et al., 2004). A 

more recent study showed in ants that increased colony behavioral homeostasis is also driven by 

increases in group size (number of adult ants), likely via a stabilization of task performance 

frequency and a decrease in task neglect  (Ulrich et al., 2018). We could therefore expect a 

similar influence of colony size on thermoregulatory efficiency in honeybees. A link between 95 

temperature regulation and the number of honeybees has been suggested (Seeley & Heinrich 

1981; e.g. Southwick, 1985), as well as the role of the stimulus intensity (here brood amount), 

but this remains to be investigated and characterized. 

We therefore investigated in this paper whether the thermoregulatory efficiency around the brood 

was related to colony size (number of adult bees and brood amount). For that purpose, we 100 

monitored outside meteorological conditions, inner hive temperature and bee population level of 

several colonies over two years. We then investigated the influence of colony size on the 



thermoregulatory level (mean brood temperature) and stability (fluctuations around the mean 

brood temperature). Finally, by using the relationship between the thermoregulatory efficiency 

and colony size, we investigated whether the ability to regulate temperature around the brood 105 

could be used to estimate the colony size (for instance, whether high variability in 

thermoregulatory capacities could be an indicator of a relatively weak colony, and vice versa), 

without needing more data such as climate data. Indeed, within the context of severe colony 

losses observed around the world over the past years (Ellis et al., 2010; Neumann & Carreck, 

2010; Potts et al., 2010), there is a clear need for surveillance networks and beekeeping 110 

operations to identify simple and non-intrusive proxies of colony state for monitoring and 

assessing their development and potential decline (López-Uribe et al., 2020). Such proxies could 

be extremely useful given that connected hives now allow us to monitor real-time data on 

physical variables such as weight, temperature, humidity and respiratory gases (Marchal et al., 

2020; Meikle & Holst, 2015; Zacepins et al., 2011, 2012).   115 

Methods 

I. Experimental setup and colony monitoring 

Experiments were performed at INRAE (Avignon, France, 43°540N-4°-520E) with honeybee 

colonies (Apis mellifera). A total of 28 ten-frame colonies were randomly selected from our local 

apiary in 2018 plus a new colony in 2019, for a total of 29 different colonies over the two years. 120 

Each colony was equipped with a temperature sensor (SHT35-DIS-B2.5KS, Sensirion AG) 

measuring in-hive temperature every 5 min. with a precision of 0.1°C within a temperature range 

of 20 to 60°C. The sensor precision was verified and validated beforehand using a climatic 

chamber. Colony strength was found to be more related to temperature data from sensors nearest 



to the geometric centre of the hive (Cook et al., 2022). Therefore, the sensor was placed between 125 

the two central frames 5 and 6 and at mid-height, in order to be as close as possible to the brood, 

which generally occupy the central place in the hive. 

The sensor was wired to a STM32 microcontroller (STMicroelectronics) and data were stored on 

a memory card (SanDisk Ultra SDHC 16 Go). 

Colonies were inspected six times in 2018 (i.e. every two to three weeks between July and 130 

October) and five times in 2019 (i.e. approximatively every three weeks between April and July) 

to estimate three parameters: the number of open and closed brood cells and the number of adult 

bees. During colony visits, each side of each frame was visually inspected and the area covered 

by each of these parameters was reported as a percentage (one full side = 100%). Considering 

that a full side of a Dadant Hoffmann frame has a surface of 9.03 dm2 and contains in theory 135 

1,100 bees and 3,100 brood cells, percentages were ultimately converted into number of open 

brood cells, number of closed brood cells, and number of adult bees inside the hive (Alaux et al., 

2018; Hernandez et al., 2020). Initial population size was different for each colony, and ranged 

from 4,536 to 40,131 adult bees, 15,200 to 44,250 open and closed brood cells in July 2018, and 

from 5,292 to 40,950 adult bees and 0 to 37,600 open and closed brood cells in April 2019 140 

(Appendix S2 Figure S1, Appendix S3 Table S3). 

II. Data analysis 

1. Link between thermoregulatory efficiency, meteorological conditions and colony size 

Thermoregulatory variables 



Using temperature sensor data, we calculated the mean of in-hive temperatures over the 24 hours 145 

preceding the day of colony evaluation (hereafter MeanT – Appendix S2 Figure S2). We chose a 

24-hour time period since brood population can rapidly evolve over days (e.g. adult emergence). 

We therefore minimized the risk of having brood population changes between the temperature 

and population monitoring. We then discarded observations for which this mean (MeanT) was 

outside the range 32-36°C, since it is unlikely that brood develop near the sensor at such 150 

temperatures (Seeley, 1985), resulting in a total number of 236 observations for the 29 colonies. 

The mean brood temperature in the dataset was 34.3°C (min = 32.15, Q1 = 33.9, Median = 34.4, 

Q3 = 34.81, max = 35.85), and rarely exceeded 35°C (n = 29 events for 236 observations). We 

then calculated the coefficient of variation (CV; i.e. standard deviation expressed as a percentage 

of MeanT) within this same 24-hour period, to obtain a dimensionless variable representing the 155 

variation of temperature as a percentage of the mean temperature. The final response variables 

are therefore (i) the in-hive mean temperature (MeanT), representing the thermoregulatory 

precision and (ii) the coefficient of variation of the in-hive temperature (CV), representing the 

thermoregulatory stability.  

Predictor variables 160 

Both colony size and environmental meteorological conditions can potentially influence the 

regulation of the in-hive temperature (Stabentheiner et al., 2021). Regarding colony size, we 

studied two predictor variables: (i) the number of adult bees (Nbees), and (ii) the total number of 

brood cells (Nbrood - as the sum of the number of capped and uncapped brood cells). Regarding 

meteorological conditions, we retrieved data from a local INRAE weather station and 165 

investigated the three following variables as relevant indicators of environmental conditions: 

(i) the daily mean external temperature over the 24 hours preceding the day of colony evaluation 



(temperature mean TM, in degree Celsius), (ii) the daily global radiation (GR, in joule/cm², 

Burrill & Dietz 1981) and (iii) the daily precipitation (rainfall rate RR, in mm). In addition, to 

take into account a possible effect of phenological advancement of the colony, we have adapted 170 

the cumulative growing degree-day, usually used to estimate the growth and development of 

plants, to the foraging activity of bees, which largely contributes to colony development. The 

cumulative growing degree-day (GDDcum) was calculated as the sum of mean daily 

temperatures (TM) above 12.5°C, from the beginning of each year, i.e. 2018 and 2019 

(Appendix S2 Figure S3). A temperature of 12.5°C corresponds to the minimum temperature at 175 

which honeybee foraging activity starts (Vicens & Bosch, 2000). For a given year the GDDcum 

was calculated as follows (where t=1 corresponds to the 1st of January): 

𝐺𝐷𝐷𝑐𝑢𝑚𝑡 =  ∑(max(𝑇𝑀𝑖 − 12.5 , 0))

𝑡

𝑖=1

 

Finally, colony replicate was included as a random effect to take into account potential variation 

in thermoregulatory capacity inherent to the colony (such as colony genetics, Jones et al. 2004). 180 

The various meteorological predictors (TM, GR, RR and GDDcum) were tested in addition to 

the strength of the colony (via Nbrood and Nbees variables) to explain the thermoregulatory 

efficiency criteria: the mean temperature around the brood (MeanT) and the variability of 

temperatures around the brood (CV). For the later, we also integrated MeanT as a predictor to 

assess its potential influence on thermoregulatory stability. 185 

Statistical analysis and model selection 

We conducted a model-averaging analysis in order to study in detail the predictors explaining the 

variations of MeanT and CV and their contributions. For this purpose, we first used generalized 



linear mixed models to model the relationship between the two response temperature variables 

(MeanT and CV) and the predictors. For MeanT, we specified a Gaussian distribution and the 190 

Identity link function. For CV, since this variable was continuous and severely skewed, we 

specified an inverse-Gaussian distribution with a Log link function. Because variables are 

measured in different units, we centred and scaled (by dividing by the standard deviation) the 

numerical variables when used as predictors (hereafter with an “S” at the end of their names). 

The two models are written as follows: 195 

g (𝜇𝑖𝑗) =  𝛽0 +  ∑ 𝛽ℎ𝑥ℎ𝑖𝑗 +  𝛼𝑖  

𝑝

ℎ=1

 

Where 

𝜇𝑖𝑗 is the expectation of the variable 𝑌𝑖𝑗 

𝑦𝑖𝑗 is the jth observation of the ith colony (either MeanT or CV),  

𝛽0 is the intercept,  200 

𝛽ℎ is the regression coefficient for the hth predictor, 

𝑥ℎ𝑖𝑗 is the jth value of the ith colony for the hth of p fixed-effect predictors,  

𝛼𝑖 is the colony-specific effect and  𝛼𝑖 ~ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 𝜎2), 

g is the link function (identity for the normal distribution and log for the inverse gaussian 

distribution). 205 

We fitted the generalized linear models using the "glm" function (from the "stats" package - R 

Core Team 2021) for fixed effects models (without colony random effect), or the "glmer" 



function (from the "lme4" packages – Bates et al. 2015) for mixed models (with colony random 

effect).  

In order to avoid multicollinearity, which is highly problematic in the case of model averaging 210 

(Banner & Higgs, 2017; Cade, 2015), we have excluded the possibility for the models to 

integrate simultaneously variables that introduce multicollinearity (for multicollinearity detection 

method see Appendix S1). In the end, the following pairs were not integrated into the same 

model: NBeeS and NBroodS, GRS and RRS, GRS and TMS, and GDDcumS and MeanTS. 

A model selection procedure was applied by using the corrected Akaike Information Criterion 215 

(AICc). This procedure was done with the dredge function in the “MuMIn” package (Bartoń, 

2020). Finally, we conducted model averaging based on AICc, a multimodel inference approach 

that allows one to derive inference from a subset of closely related best models, and not just from 

a single best model. Regarding the choice of the subset, we included models with a ΔAICc of 

less than seven points from the best model, grouping models that are likely to be the best models 220 

and that should all be used when making further inferences (ΔAICc<2) and models that are 

unlikely to be best models but that should not be discounted (ΔAICc ∈ [4,7], Burnham & 

Anderson, 2002). Having previously forced some predictors not to be included in certain models, 

in order to avoid multicollinearities and a strong bias of underestimation of coefficients, we 

preferred the results of the conditional average. This model only averages over the models where 225 

the parameter appears, ignoring the cases where the model does not include the predictors when 

calculating the coefficients (unlike the full average for which the coefficients are set to 0.0 if the 

predictors are not included in the model). We did not consider any interaction between predictors 

because we had no a priori biological reason for doing so, and integrating these interactions, in 

particular with the random effects, was too ambitious in relation to the quantity of data available. 230 



Based on the average models of MeanT and CV, for each predictor, we extracted its regression 

coefficient (to study effect size) and its P-value (to evaluate if its relationship with the studied 

variable is statistically significant). We also assessed the relative importance of each predictor by 

summing the Akaike weight across all the models in the set in which the predictor appeared. The 

closer the sum is to 1.0, the more important the predictor is in the set of fitted models (Burnham 235 

& Anderson, 2004). 

2. Thermoregulatory efficiency across colony size categories 

Within the applied perspective of honeybee colony monitoring, we tested whether data on 

thermoregulatory capacities on their own (i.e. without the climatic information), could provide 

information on colony size. For that purpose, we transformed the two quantitative variables 240 

representing the strength of the colony (Nbees and Nbrood), into ordinal variables of four 

categories (respectively; catBees and catBrood) based on the quartiles (balanced in terms of 

number; Appendix S3 Table S3). We then assessed whether colony size categories were 

associated with specific in-hive temperature variables (MeanT and CV) by comparing the later 

across the different categories representing the strength of the colony. Since the MeanT and CV 245 

data were not normally distributed (neither globally nor by categories), we applied the 

nonparametric test of Kruskal-Wallis to test whether the medians of the thermoregulatory 

variables (MeanT or CV) differ across colony-size categories. We also looked at the effect size 

of this Kruskal-Wallis test (as being the eta squared based on the H-statistic, with ε² < 0.01: very 

small effect, 0.01 < ε² < 0.08: small effect, 0.08 < ε² < 0.26: medium effect and ε² ≥ 0.26: large 250 

effect, Cohen, 1988). In the case of significant results (P < 0.05), we applied a Dunn post-hoc 

test to investigate multiple pairwise comparisons. These tests were carried out using the package 

“rstatix” (Kassambara, 2021). 



Finally, we conducted ordinal logistic regression (with “clm” function from the “ordinal” 

package - Christensen 2019) in order to try to predict colony-size category (brood or number of 255 

bees) based on the in-hive temperature (with MeanT scaled). We compared predictions of the 

models with the real observations and extracted accuracy (the proportion of all correctly 

classified validation points) and Cohen’s Kappa statistics (𝜅 = (Observed Accuracy −

 Expected Accuracy)/ (1 −  Expected Accuracy)), which evaluate classification performance, 

taking into account the possibility of the agreement occurring by chance. 260 

Statistical analyses were conducted on the filtered data (temperature of brood thermoregulation: 

MeanT ∈ [32,36°C]), and therefore the sample size of each population category was no longer 

balanced (see Appendix S3 Table S8 & Appendix S3 Table S9 for the effective categories sizes). 

 

Results 265 

I. Link between the mean temperature around the brood, colony size and 

meteorological conditions 

After setting aside models prone to multicollinearity, a total of 13 models remained (Appendix 

S3 Table S4) from which the average model was estimated (Appendix S3 Table S5). The 

combined outputs of the average model suggest that MeanT deviance was better explained by the 270 

scaled cumulative growing degree-day (GDDcumS), the scaled global radiation (GRS), the 

scaled mean external temperature (TMS), the scaled total number of brood cells (NbroodS), the 

scaled total number of adult bees (NBeesS), the scaled precipitation levels (RRS), and a colony 

random effect (sum of weights=0.20). NbroodS, GRS and TMS had a significant positive effect 



on MeanT, contrary to GDDcumS that had a significant negative effect on MeanT (Figure 1). 275 

NbeesS and RRS had no significant effect on MeanT (Figure 1). When looking at the sum of 

Akaike weights, GRS, NBroodS and particularly GDDcumS, had high relative importance. The 

model was not very efficient in predicting the observed data, with weak MeanT strongly 

overestimated and strong MeanT heavily underestimated (Figure 2). 

 280 

Figure 1: Left: Predictor estimates (β), and P-values (P) of fixed-effect parameters for the in-

hive mean temperature (MeanT) average model. Bars represent the 95% confidence intervals of 

predictor estimates. Red points and bars are for predictors with significant effect at a level of 

5%. Right: Sum of weights across all models in the set where the variable occurred. 



 285 

Figure 2: Mean in-hive temperature (MeanT) predicted by the average model as a function of 

the observed MeanT, with first bisector in blue (Predicted MeanT=Observed MeanT), deviations 

from this line in grey and regression line of the point cloud as a dotted red line. 

II. Link between the variability of the temperature around the brood, colony 

size and meteorological conditions 290 

After setting aside models prone to multicollinearity, a total of 3 models remained (Appendix S3 

Table S6) from which the average model was estimated (Appendix S3 Table S7).  The combined 

outputs of the average model suggest that CV deviance was better explained by the scaled mean 

in-hive temperature (MeanTS), the scaled precipitation levels (RRS), the scaled external mean 

temperature (TMS), the scaled number of adult bees (NBeesS), the scaled total number of brood 295 



cells (NbroodS) and a colony random effect. All models composing the average model included 

the colony random effect, which had a significant effect on CV. TMS had a significant positive 

effect on CV, contrary to MeanTS, RRS, and NBeesS which had a significant negative effect 

(Figure 3). NBroodS had no significant effect on CV (Figure 3). When looking at the sum of 

Akaike weights, TMS, MeanTS, RRS and, to a lesser extent, NbeeS, had high relative 300 

importance. The model was again not very efficient in predicting the observed data, with weak 

CVs slightly overestimated and the few strong CVs heavily underestimated, meaning that the 

model better explains weak CVs than strong CVs (Figure 4). 

 

 305 

Figure 3: Left: Predictor estimates (β), and P-values (P) of fixed-effect parameters for the in-

hive temperature CV average model. Bars represent the 95% confidence intervals of predictor 



estimates. Red points and bars are for predictors with significant effect at a level of 5%. Right: 

Sum of weights across all models in the set where the variable occurred. 

 310 

Figure 4: Coefficient of variation of in-hive temperature (CV) predicted by the average model as 

a function of the observed CV, with first bisector in blue (Predicted CV=Observed CV), 

deviations from this line in grey and regression line of the point cloud as a dotted red line. 

III. Link between thermoregulatory efficiency and categorized colony sizes 

We then assessed whether thermoregulatory efficiency (precision MeanT and stability CV) 315 

differed between colony size categories (based on quartiles of brood amount: catBrood and of 

bee number: catBees). We found significant variations across colony size categories with 

moderate magnitude for both MeanT (catBrood: P-value < 0.001, ε2 = 0.112 and catBees: P-



value < 0.001, ε2 = 0.0796, Kruskall-Wallis tests) and CV (catBrood: P-value < 0.001, 

ε2 = 0.1010 and catBees: P-value < 0.001, ε2 = 0.0834). Thermoregulatory efficiency of middle-320 

size colonies (cat2 and cat3 of catBrood and catBees) did not consistently differ from 

thermoregulatory efficiency of the smallest and largest colonies and from each other (Figure 5). 

However, the MeanT and the CV were always significantly different between colonies of the 

smallest and largest size category (for both catBees and catBrood). 

The effect of Nbrood or Nbees on the precision or stability of thermoregulation was not distinct 325 

enough to clearly discriminate different potential colony sizes. However, a low temperature 

(MeanT ≈ 33.8°C) combined with poor stability of this temperature (CV ≈ 1.67) was somewhat 

associated with a weak colony at least in terms of number of bees (catBees cat1 ≤ 13,419 bees, 

cf. Appendix S3 Table S8). In the same way, a temperature near the optimal brood temperature 

(MeanT ≈ 34.7°C) combined with a good stability of this temperature (CV ≈ 0.962), seemed to 330 

indicate a strong colony, at least in terms of the amount of brood (catBrood cat4 > 27,225 brood 

cells, cf. Appendix S3 Table S9). The analysis of the density plot (Appendix S2 Figure S1Error! 

Reference source not found.) showed that, around a MeanT of 35°C, colonies were unlikely to 

belong to the first category of NBrood. Conversely, below a MeanT of 34°C, colonies were 

unlikely to belong to the fourth category of NBrood. Regarding the CV, we did not observe any 335 

clear discrimination of categories (NBrood and NBees, Figure 5 and Appendix S2 Figure S4). 



 

Figure 5: Thermoregulatory efficiency (MeanT and CV) across categories of number of adult 

bees (catBees) and brood cells (catBrood). ns: not significant, stars indicate significant 

differences between colony categories (post-hoc Dunn test). *** P-value < 0.005, ** P-340 

value < 0.01, * P-value < 0.05, ns P-value ≥ 0.05. For category ranges see Appendix S3 Table 

S1. 

Finally, the ordinal logistic regression showed that MeanT and CV were not significantly 

correlated to categories of number of bees, catBees (MeanT: P-value = 0.151; CV: P-

value = 0.075), and the predictions of the model based on the two predictors were predominantly 345 

incorrect in comparison with the observations (accuracy = 0.3136, κ = 0.0313; Table 1). On the 

other hand, MeanT had a significant effect on Nbrood categories (catBrood) with ordinal logistic 



models (MeanT: P-value < 0.001; CV: P-value = 0.601), but the model predictions were still not 

correct (accuracy = 0.3432, κ = 0.0884; Table 1). 

Table 1 : Confusion table for both ordinal logistic models predicting catBees or catBrood based 350 

on MeanT and CV. Grey highlights indicate true positives. For category ranges see Appendix S3 

Table S2. 

Variable studied Data 

observations 

Model predictions 

cat1 cat2 cat3 cat4 

catBees cat1 10 10 26 1 

cat2 5 5 50 1 

cat3 5 8 58 2 

cat4 3 3 48 1 

catBrood cat1 8 15 21 1 

cat2 10 15 35 4 

cat3 5 13 47 7 

cat4 1 5 38 11 

 

Discussion 

I. Link between the mean temperature around the brood and colony size 355 

In order for the brood to develop normally, honeybee colonies need to regulate the brood 

temperature between 32°C and 36°C, and optimally at 35°C (Seeley, 1985). Brood temperature 

is therefore regulated within a narrow range of temperatures but according to the response 



threshold model of division of labour, we still expected that an increase in group size would 

generate a higher level of social homeostasis and therefore increased capacity of reaching 360 

optimal nest conditions, due to higher variability and task specialization between individuals 

(Ulrich et al., 2018). We did not find that brood temperature significantly increases with the 

number of adult bees within colonies, the link seems present but not strong enough in our data to 

be significant. However, the increase in thermoregulation was significantly and positively related 

to the amount of brood. Social homeostasis, and thus the ability to thermoregulate, is not only 365 

due to the likelihood of individuals to react to a stimulus but also to the intensity of the stimulus 

and whether it exceeds the individual response threshold (Theraulaz et al., 1998). Under this last 

scenario, it is possible that the stimulus intensity of the thermoregulatory tasks (brood amount) 

was high enough to surpass the threshold response of many individual bees, regardless of their 

respective thresholds. However, a non-mutually exclusive hypothesis is that the greater the 370 

quantity of brood, the greater the chance there is that the sensor is well surrounded by brood, and 

therefore to record optimal temperatures. By selecting temperatures within the brood 

thermoregulatory range, we expected to always have brood in the vicinity of the sensor, which 

was confirmed during colony inspection, but a large amount of brood would exclude situations in 

which the temperature sensor would be located at the periphery of the brood patch where the 375 

brood temperature would be lower. 

II. Link between the variability of the temperature around the brood and colony 

size 

The variability of brood temperature was mainly linked to the mean temperature around which 

this variability was calculated: as the value of the brood temperature increased, approaching 380 



35°C, the temperature variability decreased. This confirms that a finer-tuned temperature 

regulation occurs around the temperature of 35°C, which is the optimal temperature for pupal 

development (Jones et al., 2004; Kronenberg & Heller, 1982). 

Variation in brood temperature was also correlated to the colony size (number of adult bees and, 

to a lesser extent, amount of brood), with larger colonies exhibiting reduced changes in brood 385 

temperature. This could be expected given that we first found that brood temperature increased 

with colony size (amount of brood, see above), and brood temperature increase was associated 

with lower temperature variability. However, when analysing the contribution of different 

environmental and colony variables, the ability to keep brood temperature stable seemed to be 

more linked to the number of adult bees (significant) than to the amount of brood (selected by 390 

models but not significant). This suggests that an increase in group size allows honeybee colony 

responses to better buffer against environmental fluctuation and therefore regulate hive 

temperature. This phenomenon could be attributed to differences among individuals, which 

generally increases with colony size in social insects (Ulrich et al., 2018). Inter-individual 

behavioural variation was notably found to favour the collective control of nest climate in 395 

bumblebees (Bombus terrestris, Weidenmüller 2004). However, the contribution of group size to 

the stability of brood temperature was of low magnitude and needs to be confirmed in future 

studies with perhaps a greater range of colony sizes. More generally, we also found important 

inter-colony variation in the ability of keeping brood temperature stable. These differences 

among colonies could be linked to various underlying reasons, for example, the exact location of 400 

the hive (more or less shaded) or the genetics of the bees (Graham et al., 2006; Jones et al., 

2004). 



III. Link between thermoregulatory efficiency and environmental conditions 

This efficiency of thermoregulation also depends on environmental conditions. The effect of the 

environmental temperature on the hive temperature has been highlighted previously. 405 

Stabentheiner et al. (2010) notably showed that the environmental temperatures have a non-

negligible impact on the temperature regulation capacity inside the hive, in particular at the level 

of the brood. We also highlighted an influence of these environmental conditions on the 

regulation of brood temperature.  

The external temperature had a non-negligible influence on both the mean brood temperature and 410 

the colony’s ability to maintain a stable brood temperature. Indeed, the hotter the environmental 

temperature, the hotter mean brood temperature was, and the more difficult it was for the colony 

to stabilise the brood temperature. This might be explained by the mechanisms used by colonies 

to compensate for high environmental temperatures, which consist of the collection and 

evaporation of water above the brood. Notably, in response to a simulated heat wave at 37°C 415 

(2°C above the optimal temperature), a 70% increase in forager traffic to sustain water needs was 

previously observed (Bordier et al., 2017). However, the efficacy of water collection not only 

depends on the foraging capacity but also on water availability in the environment (distance from 

the hive, water amount), which might lead to some degree of fluctuation in the regulation of 

brood temperature as compared to the more “passive” response to cold (changes in bee density 420 

and endothermy), especially in our experimental site characterized by high summer temperatures 

(between 35 and 40°C).  

The cumulative growing degree-day, which gives an indication of phenological advancement of 

the colony, was negatively associated with the mean brood temperature: the further we advanced 



in the beekeeping season, the lower the brood temperature was. Such an association could be 425 

easily explained by the link between brood temperature and brood size, which declined between 

the spring and fall. More interestingly, even though precipitation was not significantly associated 

with an increase in the brood temperature, it seemed to substantially influence the maintenance 

of stable brood temperature, as the occurrence of precipitation was associated with a decrease in 

temperature variability. This observation confirms the influence of group size (number of bees) 430 

on the stability of brood temperature since higher numbers of bees are expected in the hive due 

to reduced or no foraging activity on rainy days. Finally, solar radiation seemed to influence the 

mean brood temperature, with an increase in radiation associated with an increase in mean 

temperature, likely due to the direct heating of the hive by the sun's rays on sunnier days. 

IV. From thermoregulatory data to colony size evaluation 435 

Measurements of in-hive temperatures have already been suggested and used for monitoring 

honeybee colony populations. It was notably found that the adult and brood mass of colonies 

were positively correlated with the in-hive temperatures (Cook et al., 2022; Meikle et al., 2016, 

2017). Similarly, brood mass (but not adult mass) was inversely related to the amplitude of in-

hive temperatures (Meikle et al., 2017). These results were obtained by including all in-hive 440 

temperatures (no pre-selection of brood temperatures ranging between 32 and 36°C). As a 

consequence, strict control of temperatures (low temperature variation) was indicative of 

colonies with brood and large temperature amplitudes were indicative of colonies with little or 

no brood (Meikle et al., 2017). The fact that we obtained similar results but on brood 

thermoregulation is promising within the goal of estimating colony population size. Indeed, in-445 

hive temperatures could be used as a first filter to discriminate colonies with brood from colonies 



with little or no brood. Then, analysis of brood thermoregulatory efficiency could be used in a 

second step to evaluate in more detail the state of colonies with a relatively high amount of 

brood. The greater the brood temperature homeostasis, the larger the colony would be (as 

indicated by our results). By splitting colonies into size categories, we effectively found that 450 

large colonies had significantly better brood thermoregulation than small colonies. However, 

when looking at the boxplot and density plot of colony size categories according to their 

thermoregulatory levels (Figure 5, Appendix S2 Figure S4), it was only possible to state that a 

temperature below 33.8°C was not indicative of large colonies in our dataset (≥ 27,225 adult 

bees or ≥ 27,225 brood cells). While in-hive temperatures can easily discriminate colonies with 455 

brood from colonies with almost no brood, a higher level of colony-size discrimination was not 

possible when focusing on brood temperatures. 

V. Conclusion 

Brood thermoregulatory efficiency was associated with colony size, and the propensity to reach 

35°C was more related to the amount of brood near the sensor and the temperature stability more 460 

related to the number of adult bees. This highlights the importance of increased group size 

notably for maintaining stable temperature conditions within the hive. However, when 

considering the size effect (magnitude), the influence of colony size on thermoregulation was 

relatively marginal, which indicates a very high efficiency of the honeybee colony to 

thermoregulate whatever the amount of brood and the group size. As a consequence, the 465 

discrimination of colony population level based on brood thermoregulatory data was rather 

difficult. Nevertheless, within the applied perspective of honeybee colony monitoring, it would 

be useful to analyse a larger range of colony size variation, including depopulated or collapsing 



colonies, to fully conclude on the potential of brood temperature as a proxy for colony size 

estimation. 470 
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