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 47	

Abstract 48	

The log response ratio, lnRR, is the most frequently used effect size statistic for meta-analysis in 49	

ecology. However, often missing standard deviations (SDs) prevent estimation of the sampling 50	

variance of lnRR. We propose new methods to deal with missing SDs via a weighted average 51	

coefficient of variation (CV) estimated from studies in the dataset that do report SDs. Across a suite 52	

of simulated conditions, we find that using the average CV to estimate sampling variances for all 53	

observations, regardless of missingness, performs with minimal bias. Surprisingly, even with 54	

missing SDs, this simple method outperforms the conventional approach (basing each effect size on 55	

its individual study-specific CV) with complete data. This is because the conventional method 56	

ultimately yields less precise estimates of the sampling variances than using the pooled CV from 57	

multiple studies. Our approach is broadly applicable and can be implemented in all meta-analyses 58	

of lnRR, regardless of ‘missingness’. 59	

  60	



	 4	

INTRODUCTION 61	

Meta-analyses are frequently used to quantitatively synthesize the outcomes of ecological studies 62	

and explain inconsistencies among findings (Gurevitch et al. 2018). Meta-analyses often compare 63	

the means of two groups, and the most widely used effect sizes for this are the standardized mean 64	

difference, SMD (i.e., Cohen’s d and Hedges’ g), and the natural logarithm of the response ratio, 65	

lnRR (Hedges et al. 1999; Nakagawa & Santos 2012; Koricheva & Gurevitch 2014). Both the SMD 66	

and lnRR require the standard deviations (SDs) of the two groups to estimate the effect size’s 67	

precision (i.e., sampling variance). However, many empirical papers do not report SDs or derived 68	

statistics from which SDs can be calculated (e.g., standard errors, SEs, and confidence intervals, 69	

CIs). A recent review found incomplete reporting of SDs is pervasive and threatens the validity of 70	

meta-analytic evidence. Of 505 ecological meta-analytic studies, nearly 70% of the datasets 71	

included studies with missing SDs (Kambach et al. 2020). The same review also showed that many 72	

meta-analysts exclude studies with missing SDs, also known as a ‘complete-case’ analysis. 73	

Unfortunately, simply excluding studies with missing SDs 	reduces the overall sample size (i.e., 74	

number of included studies) can result in biased results (Kambach et al. 2020). 75	

 76	

An alternative to excluding studies with incomplete data is to impute the missing SDs via multiple 77	

imputation (MI; Ellington et al. 2015; Kambach et al. 2020). As a tool to handle missing data, MI 78	

was introduced to ecologists more than a decade ago (Nakagawa & Freckleton 2008). However, MI 79	

is not widely used in the context of meta-analysis likely for two major reasons. First, for many 80	

ecologists the implementation of MI is tedious because it involves three steps: 1) creating m (e.g., m 81	

= 100) replicate versions of the dataset, each containing its own set of imputed values for the 82	

missing SDs, 2) analyzing each of these m datasets separately, and 3) aggregating the m parameter 83	

estimates (e.g., regression coefficients) via Rubin’s rules (Rubin 1987) (for details, see Nakagawa 84	

2015; van Buuren 2018). The second reason MI is not widely used in meta-analysis is uncertainty 85	

around its implementation. For example, it is unclear if Rubin’s rules are always appropriate for 86	
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aggregating estimates of variance/heterogeneity (e.g., t2, I2 and R2) or information criteria (e.g., 87	

AIC, BIC; cf. Nakagawa & Freckleton 2011). Furthermore, MI cannot easily be implemented for 88	

multilevel (mixed-effects / hierarchical) meta-analyses, and those implementations that do exist are 89	

limited to relatively simple models (van Buuren 2018). For example, as far as we are aware, there is 90	

no off-the-shelf implementation of MI for phylogenetic multilevel meta-analytic models despite 91	

these models being recommended for meta-analyses that include multiple species – a nearly 92	

universal feature of ecological meta-analyses (Cinar et al. 2022). 93	

 94	

Another common alternative to excluding studies with missing SDs (i.e., complete-case analysis) is 95	

to perform an ‘unweighted’ meta-analysis with lnRR (Koricheva & Gurevitch 2014; O'Dea et al. 96	

2021). This approach does not include the sampling variances of effect sizes and thus does not 97	

require SDs. However, unweighted analyses are generally inferior to ‘formal’ meta-analyses for two 98	

reasons (cf. Buck et al. 2022). First, formal meta-analyses appropriately give more weight to the 99	

more precisely estimated effect sizes in the dataset (e.g., those studies with larger sample sizes and 100	

hence smaller sampling variances). This weighting improves precision of model parameter 101	

estimates, and imparts resilience to publication bias (Hedges & Olkin 1985; Gurevitch et al. 2018), 102	

because especially smaller studies, which are down-weighted in a weighted analysis, tend to be 103	

affected most by this phenomenon. This is an important consideration since publication bias is a 104	

common problem in ecology (e.g., Yang et al. 2022). Second, a formal meta-analytic model can 105	

also quantify heterogeneity (i.e., variation among effect sizes not due to sampling variance) while 106	

unweighted models cannot. Quantifying heterogeneity is essential because the overall mean effect 107	

size can only be appropriately interpreted in the context of the level of heterogeneity (Hedges & 108	

Olkin 1985; Nakagawa et al. 2017; Gurevitch et al. 2018; Spake et al. 2022). 109	

 110	

Here, we propose four new methods for handling studies with missing SDs when the lnRR is the 111	

effect size of choice (Nakagawa & Santos 2012; Koricheva & Gurevitch 2014; Kambach et al. 112	
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2020). We note here that our methods do not readily extend to the SMD because the point estimate 113	

of SMD is extremely sensitive to the SD, which adds complexity. However, our methods readily 114	

integrate with formal meta-analytic models, including traditional random-effects models and more 115	

complex multilevel models that are typically more appropriate in ecology (see Fig. 1). We start with 116	

an adjusted sampling variance formula for lnRR developed by Doncaster and Spake (2018), which 117	

we improve and extend to provide two methods for handling missing SDs: using this adjustment 118	

only for effect sizes with missing SDs (the ‘missing-cases’ method) and using this adjustment for 119	

all effect sizes regardless of missingness (the ‘all-cases’ method). We then describe a third method 120	

that extends traditional weighted regression (the ‘multiplicative’ method). Finally, we combine the 121	

missing-cases and multiplicative methods, to give a ‘hybrid’ method. To compare the performance 122	

of these four methods, we have carried out a simulation study including a standard meta-analytic 123	

model without missing SDs as a reference. Under a very broad range of simulated conditions, the 124	

all-cases method performs best. Surprisingly, even with missing SDs, the all-cases method 125	

outperforms the reference method with complete data. Finally, we make recommendations for 126	

future meta-analyses. Importantly, we implement and illustrate these new methods via the widely 127	

used R package, metafor (Viechtbauer 2010; all relevant data and code are available at a GitHub 128	

repository; see below). 129	

NEW STATISTICAL METHODS 130	

More precise sampling variances: the missing-cases and all-cases methods 131	

The effect size statistic, lnRR, was first proposed by Hedges and colleagues (1999) as follows: 132	

lnRR! = ln $
𝑚!

𝑚"
&,								(1) 133	

𝑣(lnRR) =
𝑠𝑑!"

𝑛!𝑚!
" +

𝑠𝑑""

𝑛"𝑚"
" =

CV!
"

𝑛!
+

CV"
"

𝑛"
,					(2) 134	
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where m1 and m2 are the means of groups 1 and 2, respectively (e.g., experimental and control 135	

groups), v represents the sampling variance, sd and n are the corresponding SDs and sample sizes, 136	

respectively, and CV (sd/m) is the coefficient of variation. 137	

 138	

However, when the sample size (n; i.e., number of replicates) per effect size is small, the CVs in 139	

Equation 2 are often imprecise. This is because the CV is based on sd and m, which are themselves 140	

estimates that become less precise with small sample sizes. If we assume the CV values for group 1 141	

and group 2 are reasonably homogeneous across effect sizes (studies), we can obtain a single more 142	

precise estimate of CV2 by averaging across all values in the dataset (Doncaster & Spake 2018; see 143	

also Hedges & Olkin 1985; Hunter & Schmidt 1990; Berkey et al. 1995): 144	

𝑣∗(lnRR) =
∑ 3CV!$

" 4%
$&! /𝐾

𝑛!
+
∑ 3CV"$

" 4%
$&! /𝐾

𝑛"
,								(3) 145	

where CV!$
"  and CV"$

"  are the CVs from the ith study (study; i = 1, 2, …, K; we assume the number 146	

of effect sizes = the number of studies = K). Indeed, Doncaster and Spake (2018) have 147	

demonstrated that the use of Equation 3 over Equation 2 improves the accuracy and precision of the 148	

overall (meta-analytic) mean estimate, especially when n is small (e.g., n = 3–10 observations, with 149	

n1 + n2 = 6–20). Notably, they also suggested this formula could be used when SDs are missing 150	

from some studies, although this application was not investigated by simulation. 151	

 152	

Here we propose two improvements to Equation 3. Using simulations, Lajeunesse (2015) showed 153	

that Equations 1 and 2 are biased when sample sizes are small to moderate, and that the following 154	

estimators – based on the second-order Taylor expansion – can reduce these biases (see also Senior 155	

et al. 2020): 156	

lnRR" = ln $
𝑚!

𝑚"
& +

1
28

CV!
"

𝑛"
−

CV"
"

𝑛!
:,								(4) 157	
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𝑣(lnRR) =
CV!

"

𝑛!
+

CV"
"

𝑛"
+

CV!
'

2𝑛!"
+

CV"
'

2𝑛""
.					(5) 158	

Therefore, unifying Equations 3 and 5, and using the square of the weighted average CV (rather 159	

than average of CV2, which is more sensitive to the assumption of normality; see Section “The 160	

accuracy and limitation of lnRR”) gives the following new estimators for the effect size and 161	

sampling variance: 162	

lnRR( = ln $
𝑚!

𝑚"
& +

1
28
[∑ (𝑛!$CV!$)%

$&! /∑ 𝑛!$%
$&! ]"

𝑛!
−
[∑ (𝑛"$CV"$)%

$&! /∑ 𝑛"$%
$&! ]"

𝑛"
:,						(6) 163	

𝑣A(lnRR) =
[∑ (𝑛!$CV!$)%

$&! /∑ 𝑛!$%
$&! ]"

𝑛!
+
[∑ (𝑛!$CV"$)%

$&! /∑ 𝑛"$%
$&! ]"

𝑛"
+ 164	

[∑ (𝑛!$CV!$)%
$&! /∑ 𝑛!$%

$&! ]'

2𝑛!"
+
[∑ (𝑛"$CV"$)%

$&! /∑ 𝑛"$%
$&! ]'

2𝑛""
.					(7) 165	

We can use Equations 6 and 7 to calculate effect sizes and sampling variances when SDs are 166	

missing by simply imputing the pooled CV from the subset of studies that do report SDs. We call 167	

this approach as the ‘missing-cases’ method because we only apply Equations 6 and 7 in studies 168	

with missing SDs, while the standard approach of Equations 4 and 5 are applied in studies that 169	

report SDs (see Fig. 1 and Table 1 where we consolidated information about the different methods 170	

and their assumptions). 171	

 172	

Alternatively, one may use Equation 7 for all effect sizes/studies regardless of the missingness of 173	

SDs; we call this approach the ‘all-cases’ method (Table 1). The key difference between the 174	

missing- and all-cases methods is that the former assumes that Equation 5 (which bases sampling 175	

variances on the study-specific CVs) provides the best estimate of a given effect size’s sampling 176	

variance, reverting to Equation 7 in cases where SDs are not available. In contrast, the all-cases 177	

method assumes that Equation 7 always gives more precise estimates of the sampling variance. Two 178	

issues to note are: 1) it is important to use the square of the weighted average CV (Equations 6 & 7) 179	

rather than a weighted average of CV2. CV2 is very sensitive to non-normally distributed effect sizes 180	
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(with large outlying CVs) which might be generated by count data (see Section “The accuracy and 181	

limitation of lnRR” below), and 2) when we have multiple effect sizes per study (most meta-182	

analytic datasets in ecology; Nakagawa & Santos 2012), we need to first calculate a weighted 183	

average of CVs within studies before taking the weighted average of these cross-study CVs. 184	

Alternatively, we could such a weighed average using a multilevel meta-analysis of lnCV 185	

(Nakagawa et al. 2015; cf. Vachon et al. 2019).  186	

A weighted-regression-like approach: the multiplicative method 187	

In the absence of SDs, it has been suggested that information on sample sizes, which are more 188	

commonly available, can be used to approximate the sampling variances for lnRR (or SMD), using 189	

the inverse of the following (e.g., Lajeunesse 2013; Kambach et al. 2020): 190	

𝑛A =
𝑛!𝑛"
𝑛! + 𝑛"

.						(8) 191	

However, treating Equation 8 (originally proposed in Hedges & Olkin 1985) as an estimate of the 192	

‘exact’ sampling variance is erroneous because it ignores the other terms in Equations 2 & 5 (i.e., 193	

mean and SD) (see the review by Kambach et al. 2020). A more realistic assumption is to treat 1/𝑛A 194	

as proportional to the sampling variance; indeed, Equation 2 reduces to the inverse of Equation 8 195	

(i.e., 1/𝑛A) when we set both CVs to 1. Weighted regression models, commonly used to correct for 196	

heteroscedasticity, make this assumption of proportionality. Note that this differs from the classical 197	

random-effects meta-analytical model, which assumes that the exact sampling variances are known 198	

(and not just up to a proportionality constant). Many ecologists are likely to be familiar with 199	

weighted regression models that specify sample sizes as weights (Fletcher & Dixon 2012). 200	

 201	

The simplest random-effects meta-analytic model using lnRR can be written as follows: 202	

lnRR$ = 𝛽) + 𝑠$ +𝑚$ ,					(9) 203	

𝑠$ ∼ 𝒩(0, 𝜎*"), 		𝑚$ ∼ 𝒩(0, 𝑣$), 204	
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where 𝛽) is the overall/average effect (or meta-analytic mean); si is the between-study effect for the 205	

ith effect size, sampled from a normal distribution with a mean of zero and variance 𝜎*" (sometimes 206	

referred to as 𝜏"), mi is the sampling error for the ith effect size, which is also normally distributed 207	

with variance equal to the ith sampling variance (note that i = 1, 2, …, K, the number of effect sizes 208	

= the number of studies). As mentioned earlier, this model assumes that the sampling variance of 209	

lnRR is known (i.e., either Equation 2 or 5 = 𝑣$ in Equation 9). The ratio between 𝜎*" and the total 210	

variance is often used to quantify heterogeneity (I2): 211	

𝐼" =
𝜎*"

𝜎*" + 𝑣‾
,									(10) 212	

where 𝑣‾ is known as the ‘typical’ (or ‘average’) sampling variance (originally referred to as ‘typical 213	

within-study variance’; sensu Higgins & Thompson 2002), which can be estimated in several ways 214	

(Xiong et al. 2010). 215	

 216	

Unlike the meta-analytic model above, in a weighted regression, the following is assumed: 217	

𝑣$ = 𝜙$
1
𝑛A$
&,					(11) 218	

where 𝜙, which is estimated by the model, functions as a ‘multiplicative’ parameter fulfilling the 219	

assumption of proportionality (i.e., 1/𝑛A$ µ 𝑣$). The key point here is that the missing- and all-cases 220	

methods both assume that Equations 5 and/or 7 provide an accurate estimate of a study’s sampling 221	

variance (Table 1). However, Doncaster and Spake’s simulation suggests that the sampling variance 222	

(using Equation 3) is likely to be imprecise when sample sizes are small (e.g., n1 + n2 = 6 – 20). 223	

Therefore, it may instead be advisable to assume that 𝑣$∗ (Equation 3) is proportional to the true 224	

sampling variance. In the case that we have missing data, we can extend the assumption of 225	

proportionality to Equation 7 to estimate the sampling variance as: 226	

𝑣$ = 𝜙𝑣A$ .						(12) 227	
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Practically, this can be implemented as a version of a weighted-regression model that estimates 𝜙 228	

and assumes proportionality for the sampling variance as in Equation 12 (Fig. 1). We refer to this as 229	

the ‘multiplicative’ method. This method also assumes that Equation 12 provides the best estimate 230	

of sampling variance for all studies/effect sizes regardless of SD missingness (Table 1). 231	

Combining missing-cases and the multiplicative method: the hybrid method 232	

In the multiplicative method, Equation 12 is used regardless of whether SDs are missing or not. We 233	

can, however, combine the missing-cases and multiplicative methods together into a ‘hybrid’ 234	

method (Fig. 1). In this case, when SDs are available, we can use Equation 5 to obtain the sampling 235	

variance of lnRR (along with Equation 4 for the point estimate). When SDs are missing, we can use 236	

the multiplicative method (Equation 12, for the sampling variance and Equation 6 for the point 237	

estimate). The hybrid method assumes that Equation 5 gives the best estimate of the sampling 238	

variances like the missing-case method, but that Equation 12 is an acceptable substitute when SDs 239	

are missing. We can write the hybrid method, using a multilevel meta-analysis (including modelling 240	

multiple effect sizes per study) as follows: 241	

lnRR$+ = 𝛽) + 𝑠$ + 𝑢$+ +𝑚$+ ,					(13) 242	

𝑠$ ∼ 𝒩(0, 𝜎*"), 		𝑢$+ ∼ 𝒩(0, 𝜎,"),			𝑚$+ ∼ 𝒩(0, 𝐕) 243	

where si is the between-study effect for the ith study (i = 1, 2, …, K), normally distributed with a 244	

mean of 0 and variance 𝜎*" (often referred to as t2), uij is the between-effect-size effect (or within-245	

study effect) for the jth effect size in the ith study, distributed with a mean of zero and variance 𝜎," 246	

(j = 1, 2, …, Li, where Li denotes the number of effect sizes within the ith study), V is a diagonal 247	

matrix with 𝑣$+ (Equation 5) when no SDs are missing and 𝜙𝑣A$+ (Equation 12) for cases of missing 248	

SD. For example, when we have five effect sizes in three studies, V would be: 249	

𝐕 =

⎣
⎢
⎢
⎢
⎡
𝑣!! 0 0 0 0
0 𝑣!" 0 0 0
0 0 𝜙𝑣A"! 0 0
0 0 0 𝜙𝑣A"" 0
0 0 0 0 𝑣(!⎦

⎥
⎥
⎥
⎤

, 250	
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where 1st, 2nd and 5th effect sizes have SDs while the 3rd and 4th are without SDs, and as above, 𝜙 is 251	

estimated in the model. Because this model can account for non-independence, it is appropriate in 252	

ecological meta-analyses that include correlations among-effect sizes such as when there is more 253	

than one effect size per study or species (Nakagawa & Santos 2012; Noble et al. 2017; Nakagawa et 254	

al. 2022; but for a more complex model with V including covariances, or sampling variances with 255	

dependencies, see Appendix S1; https://alistairmcnairsenior.github.io/Miss_SD_Sim/). Importantly, 256	

all methods described in Table 1 can be used with multilevel meta-analysis making this approach 257	

comparable with others. 258	

SIMULATION 259	

Simulation design 260	

We conducted a simulation study to compare the performance of the missing-cases, all-cases, 261	

multiplicative and hybrid methods on meta-analytic datasets with varying proportions of missing 262	

SDs. We also computed a meta-analytic model with full data, for reference (see Table 1 for the 263	

summary of which equations were used for each method; see also Fig. 1). To represent a typical 264	

dataset in ecology (and also evolutionary biology), we simulated a hierarchical structure where each 265	

study contained ≥1, correlated effect size; i.e., we simulated an intra-class correlation for each 266	

study; ICCs = 𝜎*" /(𝜎*" + 𝜎,") using the terms in Equation 13. For each simulated dataset we analyzed 267	

the full dataset using the conventional approach, before deleting SDs for 5%, 15%, 25% 35%, 45%, 268	

or 55% of the studies. We treated 55% as the upper limit of missingness after consulting earlier 269	

surveys (e.g., Senior et al. 2016; Kambach et al. 2020; the latter found ecological meta-analyses 270	

had missing SDs for up to 30% of cases). Missingness was imposed at the study-level, rather than 271	

the effect size-level. We then analyzed each dataset with the four proposed methods for handling 272	

missing SDs. 273	

 274	
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Datasets were analyzed using models that included a study-level and an effect-size-level random 275	

effect, specified using the ‘rma.mv’ function in metafor (Viechtbauer 2010) with the default REML 276	

(restricted maximum likelihood) estimator, which has been shown to provide robust estimations of 277	

random effects or variance components (e.g., Langan et al. 2019). For each model, we calculated: i) 278	

bias (as the difference between the estimated and the true, parametrized value) for the meta-estimate 279	

of the overall mean effect size, ii) bias for the total amount of heterogeneity (t2 = 𝜎*" + 𝜎," in 280	

Equation 13, and t2 = 𝜎*" in Equation 9; difference between estimated and parametrized value on 281	

the long scale) and the estimated ICCs (difference between estimated and parametrized value), and 282	

iii) coverage of 95% confidence intervals (CIs) for the overall mean. CIs were calculated as the 283	

estimated effect ± t-value ´ SE, where for t-values the degrees of freedom were the number of 284	

effect sizes minus 1, when ICCs = 0, and the number of studies minus 1 when ICCs > 0 (cf. 285	

Nakagawa et al. 2022). 286	

 287	

Each simulated dataset contained K studies. Values of K = 12, 30, and 100 were tested; these values 288	

were taken as representative of small, medium and large meta-analyses based on the survey in 289	

Senior et al. 2016 (see also Lajeunesse 2015). Because studies often vary in the number of effect 290	

sizes they contain, the number of effect sizes per study, L, was assigned as a random variable. We 291	

simulated L using a double Poisson distribution, which is a discrete probability distribution that can 292	

be under/over dispersed relative to a Poisson distribution via a multiplicative dispersion parameter. 293	

Using the ‘rDPO’ function in the gamlss.dist package, L was drawn from a double Poisson 294	

distribution with a mean of 2 and a multiplicative dispersion parameter of 2.88, before adding 1 (to 295	

prevent 0 values). This resulted in L having a minimum of 1, a mean of 3, and SD of 2.4 (i.e., 296	

dispersion of 1.92). We termed this set of parameters Set I. We also simulated a second set where L 297	

is fixed to 1 (i.e., each study had only one effect size; L = 1, dispersion = 0), which we called Set II. 298	

Set II is equivalent to a meta-analysis with just one effect size per study (i.e., no dependency), and 299	
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which we assessed using a standard random-effects meta-analysis (i.e., Equation 9) combined with 300	

the missing-cases, all-cases, multiplicative and hybrid methods to handle missing SDs. 301	

 302	

To simulate effect sizes that were correlated in a hierarchical manner, we assumed an overall lnRR 303	

(q) of 0.3 (e0.3 = 1.35, or a 35% increase in the mean) with either negligible (t2 = 9´10-6 or t / q = 304	

0.01) or high total heterogeneity (t2 = 0.09 or t / q = 1), referred to as the low and high 305	

heterogeneity settings, respectively. This heterogeneity was partitioned between among- and 306	

within-study level effects assuming a given intra-class correlation (ICCS; values of 0 and 0.5 were 307	

tested) such that the jth effect size (j = 1 … Li) in the ith (I = 1 … K) study, qij (cf. Equation 13) was 308	

drawn from a hierarchical pair of random normal distributions (‘rnorm’ function in base R) as: 309	

𝜃$~𝑁 Z𝜃,[t" × ICC*	_, 310	

𝜃$+~𝑁 Z𝜃$ , [t" × (1 − ICC*)	_. 311	

To simulate variation in the precision of the studies in the dataset we treated the sample size of the 312	

underlying studies as a random variable, N. We assumed N varied at the level of the study such that 313	

each group/effect size within the same study had the same sample size. In our experience it is 314	

common for experimental designs to vary among, more than within, studies. We drew the simulated 315	

sample size for study k by drawing a random value from a double Poisson distribution before 316	

adding a value of 3. The double Poisson distribution was parametrized with a mean of either 2 or 27 317	

coupled with dispersion parameters of either 3.65 or 1.66. After adding the constant of 3, this 318	

resulted in two different distributions of N both with a minimum of 3, and (over) dispersion of 1.5, 319	

but with a mean (µN) of either 5 or 30. The smaller mean value of 5 is more typical in 320	

terrestrial/ecosystem ecology (or some pre-clinical biomedical studies), while the larger mean value 321	

is more like evolutionary/behavioural ecology studies. Note that under the large-mean condition, 322	

the sample size of an individual study can be ~250 per group, which matches very large studies in 323	

ecology and evolution biology (Senior et al. 2016). 324	

 325	
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The underlying data in control and treatment groups in each effect size were drawn from normal 326	

distributions ‘shifted’ to ensure both groups had a positive mean as is required for analysis using 327	

lnRR. From these individual simulated values, we calculated the mean and SD in each group for the 328	

calculation of lnRR and meta-analysis. The observations for the control group in effect size j in 329	

study i were drawn from the random normal distribution, 𝑁(100, 𝜎$), and the paired treatment 330	

group from the random normal distribution, 𝑁3100 × 𝑒-!" , 𝜎$4, where si is the SD in the underlying 331	

individual observations in study i. 332	

 333	

Because we assessed the performance of methods to deal with missing SD values, we chose to treat 334	

the within-group (among-observation) SD as a random variable, S. The SD for study i was drawn 335	

from a random Gamma distribution (the ‘rgamma’ function in base R) with shape .#
$

/#$
 and scale /#

$

.#
, 336	

where µS is the mean of S (i.e., mean SD of studies; here 15), and sS is the SD in S. This latter 337	

parameter thus specifies how heterogeneous the within-study (among-observation) variances are; 338	

we tested values of 10-10 (~0), 3.75, and 7.5 (i.e., entirely homogeneous variances, or the CV for the 339	

SD among studies is 0.25 or 0.5). A summary of the key parameters and their values is given in 340	

Table S1. Each combination of parameter values was simulated 10,000 times for both Set I and Set 341	

II. For Set I presented in the main text, we used the multilevel meta-analytic model (Equation 13; 342	

with the missing and all-cases methods) and its variants (the multiplicative and hybrid methods). 343	

For Set II, we used the random-effects meta-analytic model (Equation 9) and its variants. The 344	

results from Set II are presented in the supplementary materials, and match those from Set I. For all 345	

four methods, we needed to calculate the average CV as in Equations 6 and 7. In Set I, this 346	

calculation was done by averaging CV within studies and then taking the weighted-average CV 347	

across studies (using mean n per study as the weight), disregarding rows containing missing SDs. 348	

For Set II, we calculated the weighted CV among studies (using n per study as the weight) as we 349	

only had one CV value per study (see also Fig. S1-S3). 350	
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Simulation results 351	

Fig. 2A shows the distribution of the median bias in the estimated overall effect under each 352	

simulated condition with complete data and using the four different methods for handling missing 353	

SDs. Even with full data, both upward and downward biases were possible for the estimated effect 354	

size, and this was also observed in the analyses using the missing-cases and hybrid methods to 355	

handle missing SDs. Notably, even at its most extreme, this bias only amounted to a little over 2% 356	

of the true effect size and was usually ~0.5%, meaning all the proposed methods performed well 357	

(all methods had a median bias across conditions that was < 0.0001). Nonetheless, the all-cases and 358	

multiplicative methods, both of which use the weighted average CV to estimate the sampling 359	

variance for all effect sizes regardless of missingness, yielded the lowest bias on average and were 360	

considerably less variable than other methods (Fig. 2A). The all-cases and multiplicative methods 361	

were consistently less biased than the other approaches, regardless of the degree of missingness 362	

(Fig. S4A). The degree of bias across conditions in the full data analysis correlated very strongly 363	

with that of bias from the missing-cases and hybrid methods, while bias in the missing-cases and 364	

hybrid methods correlated strongly with each other (Fig 2B). This observation suggests that the 365	

methods fall into two classes that perform similarly across situations: the all-cases and 366	

multiplicative methods and the missing-cases and hybrid methods. Contrasting the missing-cases 367	

and all-cases methods directly, the absolute level of bias in the missing-cases method was almost 368	

always higher than that for the all-cases method (Fig. 2C). Further, where the all-cases method had 369	

a higher bias than the missing-cases method, this difference was small (Fig. 2C). Although the all-370	

cases and multiplicative methods outperformed the other approaches on average, they yielded 371	

extremely biased estimates on rare occasions; Fig. 2D shows the range in bias among the individual 372	

replicates under each simulated condition as a function of the different methods. With the all-cases 373	

method, large ranges in bias only occurred when the SDs among different studies were highly 374	

heterogeneous, and within-study sample sizes were low (Fig. 2E). 375	

 376	
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All methods for handling missing data, and the full data analyses, could produce 95% CIs that were 377	

too narrow, or too wide under different scenarios (Fig. 3A). The full data, and the missing-cases and 378	

hybrid methods tended to typically produce CIs that were slightly too narrow, whereas the all-cases 379	

and multiplicative methods were prone to producing wider CIs (Figs 3A and S4B). Again, 380	

contrasting the missing-cases and all-cases method, the all-cases method’s tendency to produce a CI 381	

that is too wide occurs when the total heterogeneity among studies is low (Figs 3B and 3C). 382	

However, where total heterogeneity is high, the all-cases method performs as well as the missing-383	

cases method (Fig. 3B and 3C). 384	

 385	

Fig. 4A shows the median bias in the estimated heterogeneity under each condition and method. 386	

Under most conditions, the missing-cases, all-cases and hybrid methods estimated heterogeneities 387	

with little bias, but could also overestimate the total heterogeneity, although to a similar degree to 388	

the full data analysis (Fig. 4A). The multiplicative method tended to slightly underestimate 389	

heterogeneity (Fig. 4A). Any bias in the estimation of heterogeneity was independent of the actual 390	

level of missingness (Fig S4C). Overestimation of heterogeneity occurred where the actual level of 391	

heterogeneity was low (Fig. 4B). On average most methods did a good job of partitioning 392	

heterogeneity between the within- and among-study levels, although the multiplicative method 393	

displayed a slight bias on average (Fig. 4C). Under some circumstances all methods could be biased 394	

in partitioning heterogeneity (Fig. 4C). As an example, the missing-cases and all-cases methods 395	

were prone to biased partitioning when the total heterogeneity was low; overestimating the ICC 396	

when the simulated study effect was absent and underestimating when it was present (Figs 4D and 397	

4E).  398	

 399	

In summary, although the all-cases method performed with the least bias under the broad range of 400	

simulated conditions tested, all the methods fared surprisingly well, compared with the full data 401	

analysis (see Discussion for more). The results presented here pertain to the performance of these 402	
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methods in the context of multilevel meta-analytic models (Equation 13, which explicitly model 403	

non-independence). However, these conclusions are mirrored for more traditional random-effects 404	

models (i.e., analyses without non-independence; contrast Figs 2-4 vs Figs S1-S3). 405	

IMPLEMENTATION 406	

The accuracy and limitation of lnRR 407	

The accuracy of the sampling variance for lnRR depends on whether lnRR is normally distributed. 408	

Hedges et al. (1999) suggested a simple test to check the assumption of normality based on Geary 409	

(1930), who originally advocated screening for effect sizes with √𝑛/CV ≥ 3. This test was 410	

improved by Lajeunesse (2015) as: 411	

1
CVc

4𝑛
(
"

1 + 4𝑛d ≥ 3.					(14) 412	

If many effect sizes fail to fulfil this relationship, then, meta-analytic results are unlikely to be 413	

robust. Lajeunesse (2015) suggests a sensitivity analysis, which excludes effect sizes that fail to 414	

fulfill Equation 14. However, such tests are rarely used. Count data and related types (e.g., counts 415	

per a given time and space, which are standardized), which are extremely common in ecology 416	

(Spake et al. 2021), may often fail this test (Equation 14). This is because such data is usually over-417	

dispersed, meaning CV > 1. For example, it is not uncommon for count data to have CV = 5, 418	

especially when the mean is close to zero (cf. Lajeunesse 2015). When CV = 5, the sample sizes 419	

need to be >226 for each group to pass Equation 14, which would be difficult for most ecological 420	

studies to attain. 421	

 422	

All meta-analyses of lnRR are sensitive to the assumption of normality to some degree, but our 423	

proposed formulations may be more sensitive because the Taylor expansion used in Equations 4-7 424	

also assumes normality. Therefore, it may be advisable to use Equation 1 for the point estimate and 425	
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the following estimator of the sampling variance (rather than Equation 7) when many effect sizes 426	

fail Geary’s test (see also Table S2): 427	

𝑣A(lnRR) =
[∑ (𝑛!$CV!$)%

$&! /∑ 𝑛!$%
$&! ]"

𝑛!
+
[∑ (𝑛!$CV"$)%

$&! /∑ 𝑛"$%
$&! ]"

𝑛"
.				(15) 428	

This formula still relies on the first-order Taylor expansion, but not the second-order, and is 429	

therefore less sensitive than Equation 7 to violations of Geary’s test. Other limitations (and 430	

advantages) of lnRR are discussed elsewhere (e.g., Spake et al. 2021; Yang et al. 2022). 431	

Worked examples 432	

Bird and colleagues (2019) conducted a meta-analysis exploring the impacts of competition on 433	

herbivorous insect fitness when occupying a host plant with another species or in isolation. In brief, 434	

they collected data on a series of fitness measurements (e.g., abundance, body size, development 435	

time, fecundity; see Table 2 in Bird et al. 2019) and quantified the impact of competition on those 436	

measures using phylogenetic multilevel meta-analyses (Cinar et al. 2022; Appendix S1). 437	

 438	

For demonstration purposes, we focused on the largest dataset that used measures of abundance 439	

(population size). We restricted our analysis to data on the ratio scale (i.e., having true zero, which 440	

is a condition required for lnRR) and those effect sizes that passed the ‘improved’ Geary’s test 441	

(Equation 14 above), giving a total of 173 effect sizes from 62 studies. We use a multilevel meta-442	

analytic model (Equation 13) to estimate the overall impact of competition on focal insect fitness 443	

(i.e., intercept or overall meta-analytic mean) while controlling for phylogeny, research group, and 444	

research year (as per the analysis by Bird et al. 2019). We then introduced missing data at the study 445	

(article) level, so that a randomly selected ~20% of articles had effect sizes with missing SD in the 446	

control and experimental groups; a scenario that is typical of many meta-analyses (cf. Kambach et 447	

al. 2020). 448	

 449	
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An analysis of these data applying the different methods compared to the full data is provided in 450	

Table 2. We can see that the complete-case analysis (excluding all data with missing SDs) gives 451	

slightly larger confidence intervals that cross zero, and a reduction in the meta-analytic mean effect 452	

size, relative to most of the other methods. The missing-cases, multiplicative and hybrid methods all 453	

suggest the overall meta-analytic is slightly larger and result in greater precision around this 454	

estimated effect size than the complete-case analysis. The all-cases method had the smallest overall 455	

effect size magnitude, which was not significantly different from zero, while the other three 456	

methods yielded mean estimates that were significant (see Discussion). Using this example, we 457	

show how each approach is implemented in the supplement (Appendix S2) along with an additional 458	

example (McDonald et al. 2019; Appendix S3). 459	

DISCUSSION 460	

In this study, we have developed new methodological procedures to handle missing SDs in meta-461	

analyses of lnRR. Our methods will enable ecologists to include studies with missing SDs in their 462	

meta-analyses, while also using appropriately weighted formal meta-analyses rather than 463	

unweighted counterparts. Our simulation suggested that the least biased estimates were obtained by 464	

the ‘all-cases’ method. This method uses the weighted average CV (estimated from those studies 465	

with SDs) to calculate point estimates and sampling variances for all effect sizes, regardless of 466	

missingness in SD (Table 1). In terms of implementation, this is also the easiest method of those 467	

that we describe (see Supporting Information). 468	

 469	

The all-cases method effectively uses ‘single imputation’ (rather than ‘multiple imputation’), and 470	

single imputations are generally believed to fare worse than meta-analysis with full data (using 471	

Equation 4 & 6, see Table 1; Nakagawa & Freckleton 2008; Nakagawa 2015; van Buuren 2018; 472	

Kambach et al. 2020; see also Fletcher & Dixon 2012). Yet, this is not what we found. In their 473	

previous simulation, Doncaster and Spake (2018) found that Equation 3, which uses the average CV 474	

for all effect sizes, performed better than analysis with Equation 2, which uses study-specific CVs. 475	
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Thus, on reflection, we might have expected the all-cases method to do well (see also Lin & Aloe 476	

2021). 477	

 478	

The all-cases method and Doncaster and Spake’s procedure (i.e., using Equation 3 rather than 479	

Equation 2) perform well because, even where they are reported, the CV values from individual 480	

studies are often imprecise due to the small within-study sample size. This, in turn, results in 481	

imprecise estimates of the sampling variance. However, using a pooled CV improves estimates of 482	

the sampling variance, with benefits to the downstream analyses. Of relevance, another simulation 483	

study by Bakbergenuly and colleagues (2020) suggests that sample size (more precisely, 𝑛A as in 484	

Equation 8) is the most important component of weighting in the analysis of lnRR. This insight 485	

explains why the all-cases and multiplicative methods do well even in simulations that violate the 486	

assumption that CV is homogenous across studies, especially when the number of effect (K) is large 487	

(see more for this point below).  488	

 489	

It is important to note that our simulation built on those in Doncaster and Spake (2018) in at least 490	

three respects. First, Doncaster and Spake (2018) never tested how their method fared with missing 491	

data. Second, our simulation uses multilevel models that are now being applied to many ecological 492	

datasets. Third, our simulation has shown that, as well as reducing bias in overall estimates, using a 493	

pooled CV does not compromise the accuracy of heterogeneity estimates (i.e., variance 494	

components). Between our work and the previous publication by Doncaster and Spake (2018), we 495	

have established that using a cross-study averaged CV in the estimation of effect sizes can improve 496	

ecological meta-analyses in a range of realistic scenarios. 497	

 498	

Incidentally, Doncaster and Spake (2018) are not the first to use the ‘averaging’ method. For 499	

example, Hedges and Olkin (1985) also proposed to use the average of the observed standardized 500	

mean differences in the computation of their sampling variances when meta-analyzing a large 501	
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number of small studies. Also, Hunter and Schmidt (Hunter & Schmidt 1990) proposed to use the 502	

weighted average of correlations in the sampling variance for the correlation coefficient. Similarly, 503	

Berkey et al. (1995) showed that using averages of counts or proportions in the equations for 504	

computing the sampling variances of log relative risks and odds ratios led to less biased estimates. 505	

 506	

There were two conditions where the all-cases method could result in biased estimates. The first 507	

scenario is when CVs are very different between studies, and within-study sample size is relatively 508	

small. As discussed below, parallel analysis with the missing-cases method (or alternatively the 509	

hybrid method, although the latter is more difficult to implement) could help establish the stability 510	

of meta-analytic results. In addition, a meta-analysis of lnCVR (log CV ratio) or lnCV (log CV) 511	

could help to evaluate how large the between-study variance in CV is (Nakagawa et al. 2015; 512	

Senior et al. 2020). Large variation in between-study CVs would violate our assumption that the 513	

CV is relatively constant (cf. Nakagawa et al. 2015). Note, however, that our simulation shows this 514	

assumption is less important when studies have larger sample sizes. The second scenario is when 515	

there is very low total heterogeneity (t2 = 𝜎*" + 𝜎,", which usually translates to low I2; see Higgins et 516	

al. 2003; Nakagawa & Santos 2012; also see Borenstein et al. 2017). As mentioned earlier, 517	

heterogeneity is typically high in meta-analyses in ecology (and evolutionary biology). Indeed, 518	

Senior et al (2016) showed that on average, ecological and evolutionary meta-analyses have high 519	

heterogeneity with I2 of around 90%. Therefore, the second scenario may not be of concern to most 520	

ecologists.  521	

 522	

Based on the simulation results alone it would be natural to recommend the use of the all-cases 523	

method as the default. While we believe the all-cases method is generally the most robust, we 524	

advocate that analysts take caution and adopt the following procedure: One should conduct a meta-525	

analysis using both the missing-cases and all-cases methods in tandem, which is very 526	

straightforward (see Supplementary Information). If the results of the two methods are qualitatively 527	
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the same (e.g., both statistically significant, with similar effect size magnitudes), one can present the 528	

all-cases method in confidence. If, however, the results are qualitatively different, both results 529	

should be presented (e.g., our worked example: see Table 2). In such a case, one should conclude 530	

carefully and emphasize uncertainty about their results. An analysis of the heterogeneity among 531	

CVs may help guide the user to decide which results to favor; if the CVs are quite different across 532	

studies, results from the missing-cases method may be more reliable (see above). 533	

 534	

Notably, our simulation assumes that SDs are missing completely at random. Therefore, when cases 535	

with missing SDs are non-random and have consistently higher or lower CVs than cases with SDs, 536	

one could use the hybrid method. The hybrid method was shown to work as well as the all-cases 537	

method, but this method also can adjust for higher or lower CVs via the multiplicative term 𝜙 (see 538	

Equations 12). Yet, the issue is that we are unlikely to know what CVs missing cases have so that 539	

one needs to try the hybrid method to find out (𝜙 being more or less than 1). Here, we re-emphasize 540	

that all the methods we proposed work well under many conditions (i.e., were not more/less biased 541	

than an analysis of the full data). Regardless, it is important to report the % of missing SDs, and 542	

which methods have been used to handle missing data, in accordance with the PRISMA-EcoEvo 543	

(Preferred Reporting Items for Systematic reviews and Meta-Analyses in Ecology and Evolutionary 544	

biology) reporting guidelines (O'Dea et al. 2021).  545	

 546	

Finally, our proposed methods are easy to implement and readily extend to a host of complex 547	

models. We hope that meta-analysts in ecology and evolution will adopt these two new approaches 548	

to improve their meta-analytic estimation, especially the all-cases approach which performs well 549	

even in the absence of missing data. Importantly, we should also all be aware of the limitations of 550	

the lnRR for meta-analyses, for example, by more routinely evaluating the underlying assumptions 551	

using the improved Geary’s test. 552	

 553	
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Figure Legends 699	

 700	

Figure 1 701	

Visual schematics of a hypothetical dataset with missing standard deviations (SDs) and five 702	

different approaches used in this study, including 3 new methods. The symbols: lnRR2 (Equation 4), 703	

lnRR3 (Equation 6), 𝑣 (Equation 5), 𝑣A (Equation 7), and 𝜙𝑣A (Equation 12). Note that, under some 704	

circumstances, we could replace Equations 4 & 6 with Equation 1 while Equation 7 can be replaced 705	

by Equation 15 (see the text for more details). 706	

 707	

Figure 2 708	

Results on overall meta-analytic mean from multi-level meta-analytic models: A) Violin plot 709	

showing the distribution of median bias in the estimated effect under each simulated condition as a 710	

function of the method used to handle missing data (distribution assuming full data shown for 711	

reference). B) Pairwise correlations between the degree of bias under each simulated condition for 712	

each method. C) Distribution of the difference between the missing-cases and all-cases methods in 713	

the absolute degree of bias under each condition (positive values indicate greater median bias under 714	

the missing-cases method). D) Violin plot showing the distribution of range bias (log10 transformed) 715	

in the estimated effect under each simulated condition as a function of the method used to handle 716	

missing data. E). Violin plot showing the distribution of range bias (log10 transformed) in the 717	

estimated effect using the all-cases method under each simulated condition as a function of the 718	

degree of heterogeneity in SDs among studies under two different (within-)study sample size 719	

conditions. Our plots were drawn using the R package ggplot2 (Wickham 2009). 720	

 721	

Figure 3 722	

Results on coverage from multi-level meta-analytic models: A) Violin plot showing the distribution 723	

of coverage of 95% CIs under each simulated condition as a function of the method used to handle 724	
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missing data (distribution assuming full data shown for reference). B) Violin plot showing the 725	

distribution of coverage under each simulated condition as a function of the simulated level of total 726	

heterogeneity and the ICC for study using the missing-cases method to handle missing SDs. C) 727	

Violin plot showing the distribution of coverage under each simulated condition as a function of the 728	

simulated level of total heterogeneity and the ICC for study using the all-cases method to handle 729	

missing SDs. In B and C, low heterogeneity is t2 = 9´10-6 (or t / q = 0.01), and high heterogeneity 730	

is t2 = 0.09 (or t / q = 1). 731	

 732	

Figure 4 733	

Results on heterogeneity from multi-level meta-analytic models: A) Violin plot showing the 734	

distribution of median bias in the estimated heterogeneity under each simulated condition as a 735	

function of the method used to handle missing data (distribution assuming full data shown for 736	

reference). Bias in heterogeneity is calculated as the log ratio of the estimated and parametrized 737	

value. B. Box plot showing the median bias in estimated heterogeneity under each simulated 738	

condition as a function of the method used to handle missing data (colours as in panel A), and the 739	

simulated level of heterogeneity. C) Violin plot showing the distribution of the median bias in the 740	

estimated ICC for study under each simulated condition as a function of the method used to handle 741	

missing data. Bias in the ICC was calculated as the difference between the estimated and 742	

parameterized value. D) Violin plot showing the distribution of the median bias in the estimated 743	

ICC for study under each simulated condition as a function of the simulated level of total 744	

heterogeneity and the ICC for study using the missing-cases method to handle missing SDs. E) 745	

Violin plot showing the distribution of the median bias in the estimated ICC for study under each 746	

simulated condition as a function of the simulated level of total heterogeneity and the ICC for study 747	

using the all-cases method to handle missing SDs. In D and E, low heterogeneity is t2 = 9´10-6 (or t 748	

/ q = 0.01), and high heterogeneity is t2 = 0.09 (or t / q = 1). 749	

 750	
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 751	

 752	

Figure S1 753	

Results on overall meta-analytic mean from random-effects meta-analytic models: A) Violin plot 754	

showing the distribution of median bias in the estimated effect under each simulated condition as a 755	

function of the method used to handle missing data (distribution assuming full data shown for 756	

reference). B) Pairwise correlations between the degree of bias under each simulated condition for 757	

each method. C) Distribution of the difference between the missing-cases and all-cases methods in 758	

the absolute degree of bias under each condition (positive values indicate greater median bias under 759	

the missing-case methods). D) Violin plot showing the distribution of range bias (log10 transformed) 760	

in the estimated effect under each simulated condition as a function of the method used to handle 761	

missing data. E. Violin plot showing the distribution of range bias (log10 transformed) in the 762	

estimated effect under each simulated condition using the all-cases method to handles missing SDs 763	

as a function of the degree of heterogeneity in SDs among studies under two different (within-764	

)study sample size conditions. 765	

 766	

Figure S2 767	

Results on coverage from random-effects meta-analytic models: A) Violin plot showing the 768	

distribution of coverage of 95% CIs under each simulated condition as a function of the method 769	

used to handle missing data (distribution assuming full data shown for reference). B) Violin plot 770	

showing the distribution of coverage under each simulated condition as a function of the simulated 771	

level of total heterogeneity and the ICC for study using the missing-case method to handle missing 772	

SDs. C) Violin plot showing the distribution of coverage under each simulated condition as a 773	

function of the simulated level of total heterogeneity and the ICC for study using the all-cases 774	

method to handle missing SDs. In B and C, low heterogeneity is t2 = 9´10-6 (or t / q = 0.01), and 775	

high heterogeneity is t2 = 0.09 (or t / q = 1). 776	
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 777	

Figure S3 778	

Results on coverage from random-effects meta-analytic models: A) Violin plot showing the 779	

distribution of median bias in the estimated heterogeneity under each simulated condition as a 780	

function of the method used to handle missing data (distribution assuming full data shown for 781	

reference). Bias in heterogeneity is calculated as the log ratio of the estimated and parametrized 782	

value. B. Box plot showing the median bias in estimated heterogeneity under each simulated 783	

condition as a function of the method used to handle missing data (colours as in panel A), and the 784	

simulated level of heterogeneity. 785	

 786	

Figure S4 787	

Bias in A) overall meta-analytic mean estimation, B) coverage and C) heterogeneity, as function of 788	

the method used to handle missing SDs and the percentage of studies with missing SDs in the 789	

simulated dataset. Note that for the full data analysis no studies have missing SDs and thus no trend 790	

is expected. Random ‘jitter’ has been added to the x-axis to make overlaying points visible. Fitted 791	

lines are based on a generalised additive model (GAM) implemented using the ‘geom_smooth’ 792	

function in ggplot2. 793	
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Table 1 Equations and assumptions for different methods, including the case with no missing data (see also Figure 1).  794	

Method Point estimate1 Sampling variance 

(SD not missing) 

Sampling variance 

(SD missing) 

Assumptions in relation to sampling variance 

 

Reference 

(No missing data) 

Equation 4 Equation 5 Not applicable Equation 5 estimates sampling variance well (observed mean 

and SD values are reasonable estimates of true values) 

Missing cases  Equations 4 & 6 Equation 5  Equation 7 When SD values are missing, Equation 7 can estimate sampling 

variance for these missing cases well 

All cases Equations 4 & 6 Equation 7 Equation 7 Equation 7 estimates sampling variance better than Equation 5 

regardless of missing SD 

Multiplicative  Equations 4 & 6 Equation 12 Equation 12 Equation 12 estimates sampling variance better than Equation 5 

or 7 regardless of missing SD 

Hybrid Equations 4 & 6 Equation 5  Equation 12 When SD is missing, Equation 12 can estimate sampling 

variance for these missing cases well (better than Equation 7) 

     

1 Applying both Equations 4 & 6 (the latter for observations/rows with missing SD) or applying only Equation 6 (even for all studies where SDs are not 795	

missing) would make little difference for (effect size) point estimates, unless effect sizes fulfill Equation 14.  796	
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Table 2 Results from the re-analyses of a subset of data from Bird et al. (2019) using the methods 797	

we propose to deal with missing SD data estimating the overall effects of competition on focal 798	

insect abundance (LCI = lower, or 2.5%, confidence limit; UCI = upper, or 97.5%, confidence 799	

limit).  800	

Method Est. SE 95% LCI 95% UCI 

Full data 0.202 0.085 0.036 0.369 

Complete case 0.176 0.102 -0.024 0.377 

Missing cases  0.186 0.091 0.008 0.364 

All-cases 0.146 0.096 -0.043 0.334 

Multiplicative  0.192 0.083 0.03 0.354 

Hybrid 0.185 0.086 0.017 0.353 

 801	

  802	
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 803	

Table S1. Variables/parameters in simulations. 804	

Variable (Notation) Description and details Value(s) 

% Studies Missing SD Percentage of studies that have missing SDs 5, 15, 25, 35, 45 or 55 

Overall Effect Size (q) The overall mean lnRR effect size 0.3 

Number of Studies (K) Total number of studies within the meta-analytic 

dataset 

12, 30, 100 

Standard Deviation in 

Study (S) 

The within-study SDs. Individual within-study SDs 

were randomly distributed following a Gamma 

distribution 

Random with a mean 

(µS) of 15 and a SD of 

either 10-10, 3.75 or 

7.5 

 805	

  806	
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Table S2 Recommendations for the use of equations when observations (effect sizes) fail Geary’s 807	
test; note 𝜙 is a multiplicative factor as in Equation 12 (cf. Table 1).  808	
Method Point estimate Sampling variance 

(SD not missing) 

Sampling variance 

(SD missing) 

Missing cases  Equation 1 Equation 2  Equation 15 

All cases Equation 1 Equation 15 Equation 15 

Multiplicative  Equation 1 Equation 15 x 𝜙 Equation 15 x 𝜙 

Hybrid Equation 1 Equation 2  Equation 15 x 𝜙 

 809	
 810	
  811	
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Figure 1 812	
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Figure 2 816	
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Figure 3 820	
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Figure 4 824	
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Figure S1 828	
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Figure S2 832	
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Figure S3 836	
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Figure S4 842	
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