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Abstract 25	

The log response ratio, lnRR, is the most frequently used effect size statistic in ecology. However, 26	

missing standard deviations (SDs) are often present in meta-analytic datasets, preventing us from 27	

obtaining the sampling variance for lnRR. We propose three new methods to deal with missing 28	

SDs. All three methods use the square of the weighted average coefficient of variation CV to obtain 29	

sampling variances for lnRR when SDs are missing. Using simulation, we find that using the 30	

average CV to estimate the sampling variances for all observations, regardless of missingness, 31	

performs best. Surprisingly, even where SDs are missing, this simple method performs better than 32	

the conventional analysis with no missing SDs. This is because the conventional method 33	

incorporates biased estimates of sampling variances as opposed to less biased sampling variances 34	

with the average CV. All future meta-analyses of lnRR could take advantage of our new approach 35	

along with the other methods. 36	

 37	
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INTRODUCTION 42	

Meta-analyses are frequently used to quantitatively synthesize the outcomes of ecological studies 43	

and explain inconsistencies among study findings (Gurevitch et al. 2018). However, incomplete 44	

reporting of necessary data in the primary literature threatens the validity of meta-analytic evidence. 45	

Specifically, many empirical papers fail to report standard deviations (SDs) or their derivatives, 46	

such as standard errors (SEs) and confidence intervals (CIs). SDs are required to calculate effect 47	

sizes and/or their precision for comparing means between two groups. The two best-known effect 48	

sizes for mean comparison are the standardized mean difference, SMD (well-known estimators 49	

include Cohen’s d and Hedges’ g) and the natural logarithm of the response ratio, lnRR (Hedges et 50	

al. 1999). 51	

 52	

The use of these effect sizes, which requires SDs, is widespread in ecology (Nakagawa & Santos 53	

2012; Koricheva & Gurevitch 2014). Yet, a recent review of 505 ecological meta-analytic studies 54	

showed nearly 70% of the datasets included studies with missing SDs (Kambach et al. 2020). The 55	

same review also showed that many meta-analysts did not use studies with missing SDs and 56	

performed a complete-case meta-analysis. Finally, this review also demonstrated that excluding 57	

studies with missing data could both upwardly and downwardly bias meta-analytic results, and that 58	

multiple imputation (MI) of missing SDs (and sample sizes) was an effective means of providing 59	

unbiased meta-analytic results. 60	

 61	

Multiple imputation (MI) was introduced to ecologists more than a decade ago (Nakagawa & 62	

Freckleton 2008). However, there has been limited uptake of this method in ecological meta-63	

analysis (cf. Ellington et al. 2015; Kambach et al. 2020). There are, we believe, two major reasons 64	

for this slow uptake. First, for many ecologists, the implementation of MI might be considered 65	

tedious, perhaps because it involves three steps: 1) creating multiple datasets with imputed missing 66	

data, e.g., Ndataset = 100 with all missing SD data imputed, 2) analyzing each dataset separately, and 67	
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3) aggregating parameter estimates (e.g., regression coefficients) using Rubin’s rules (Rubin 1987) 68	

(for details, see Nakagawa 2015; van Buuren 2018). Second, there may be uncertainty around its 69	

implementation for the complex models applied to ecological datasets. For example, it is unclear if 70	

Rubin’s rules are always appropriate for aggregating variance components and related quantities 71	

(e.g., I2 and R2) and information criteria (e.g., AIC, BIC; cf. Nakagawa & Freckleton 2011). 72	

Furthermore, MI cannot be easily implemented for multilevel (mixed-effects / hierarchical) models 73	

unless they have only two levels (i.e., one random factor) (van Buuren 2018). Therefore, MI for 74	

meta-analytic studies using multilevel models is still seldom applied, reinforcing age-old 75	

approaches of excluding studies (observations) with missing SDs. 76	

 77	

Here, we propose alternatives to MI for handling studies with missing SDs in meta-analyses that 78	

use the lnRR as the effect size measure (Nakagawa & Santos 2012; Koricheva & Gurevitch 2014; 79	

Kambach et al. 2020). We introduce three new methods to deal with missing SDs in a multilevel 80	

meta-analytic model as well as traditional random-effects models (summarized in Fig. 1). First, we 81	

introduce a method developed by Doncaster and Spake (2018) that uses an adjusted sampling 82	

variance formula for lnRR values. We then improve and extend this approach for missing SDs; we 83	

provide two procedures within this method: only using this adjustment method for effect sizes with 84	

missing SD (Method 1A) and using this adjustment method for all effect sizes regardless of 85	

missingness (Method 1B). Second, we describe a method that extends traditional weighted 86	

regression (Method 2). Next, we combine these two methods to provide a hybrid method 87	

(Method 3). We conduct a simulation study to compare these methods to the baseline method (a 88	

standard meta-analytic procedure without missing SDs) and show that Method 1B performs best. 89	

Surprisingly, for many cases, Method 1B (and Method 2) with missing SDs outperforms the 90	

baseline method without missing SDs (i.e., full data analysis). We make some recommendations for 91	

future meta-analyses accordingly. Importantly, we implement and illustrate these new methods 92	
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using the widely used R package, metafor (Viechtbauer 2010 ; all relevant data and code are 93	

available at a GitHub repository; see below). 94	

NEW STATISTICAL METHODS 95	

Estimating sampling variances prior to meta-analysis: Method 1A and 1B 96	

The effect size statistic, lnRR, was first proposed by Hedges and colleagues (1999) as follows: 97	

lnRR! = ln $
𝑚!

𝑚"
&,								(1) 98	

𝑣(lnRR) =
𝑠𝑑!"

𝑛!𝑚!
" +

𝑠𝑑""

𝑛"𝑚"
" =

CV!
"

𝑛!
+

CV"
"

𝑛"
,					(2) 99	

where m1 and m2 are the means of group 1 and group 2, respectively (e.g., experimental and control 100	

groups), v represents the sampling variance, sd and n are the corresponding SDs and sample sizes, 101	

respectively, and CV (sd/m) is the coefficient of variation. 102	

 103	

However, when sample size (replicates) per effect size (study) is small, CVs in Equation 2 are often 104	

inaccurate. If we assume CV (CV2) values for group 1 and group 2 (cf. Equation 2) are fairly 105	

constant or homogeneous across effect sizes (studies), we can obtain potentially better estimates of 106	

CV2 values by averaging (Doncaster & Spake 2018; see also Hedges & Olkin 1985; Hunter & 107	

Schmidt 1990; Berkey et al. 1995): 108	

𝑣∗(lnRR) =
∑ 3CV!$

" 4%
$&! /𝐾

𝑛!
+
∑ 3CV"$

" 4%
$&! /𝐾

𝑛"
,								(3) 109	

where CV!$
"  and CV"$

"  are from the ith effect size (study; i = 1, 2, …, K; we assume the number of 110	

effect sizes = the number of studies = K). Indeed, Doncaster and Spake (2018) have demonstrated 111	

that the use of Equation 3 over Equation 2  improve the accuracy and precision of the overall (meta-112	

analytic) mean estimate, especially when n is small (meaning n = 3–10 observations, with n1 + n2 = 113	
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6–20). Notably, they also suggested this formula could be used when SDs are missing from some 114	

studies, although this application was not investigated in their simulation. 115	

 116	

Here we propose two improvements to Equation 3. Using simulations, Lajeunesse (2015) showed 117	

that Equation 1 and 2 are both biased when sample sizes are small to moderate, and showed the 118	

following estimators – based on the second-order Taylor expansion – can reduce these biases (see 119	

also Senior et al. 2020): 120	

lnRR" = ln $
𝑚!

𝑚"
& +

1
28
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:,								(4) 121	
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.					(5) 122	

Therefore, Equation 3 can be further improved by including the extra-terms in Equation 5. Also, 123	

rather than using the average CV2, we can use the square of the weighted average of CV for both 124	

the point estimate (effect size) and sampling variance as follows: 125	

lnRR( = ln $
𝑚!

𝑚"
& +

1
28
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,					(7) 128	

One can use Equation 7 (along with Equation 6) where SDs are missing, because the weighted 129	

cross-study CV can substitute missing SDs, allowing the inclusion of these studies in meta-analyses 130	

(Method 1A; a mixture of Equations 4-7). Alternatively, one may use Equation 7 throughout 131	

regardless of the missingness of SDs (Method 1B with Equation 6 & 7; see Fig. 1). Note we discuss 132	

the use of the square of the weighted average of CV (Equations 6 & 7) rather than weighted average 133	

of CV2 below (see Section “The accuracy and limitation of lnRR”). 134	
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Using weighted-regression-like method: Method 2 135	

In the absence of SDs, it has been suggested that information on sample sizes, which are commonly 136	

available, can be used to approximate the sampling variances in meta-analyses of lnRR or SMD, 137	

using the inverse of the following (e.g., Lajeunesse 2013; Kambach et al. 2020): 138	

𝑛A =
𝑛!𝑛"
𝑛! + 𝑛"

.						(8) 139	

However, treating Equation 8 as an estimate of the ‘exact’ sampling variance is erroneous, because 140	

it ignores other terms in Equation 2 & 5 (i.e., mean and SD) (see the review by Kambach et al. 141	

2020). A more realistic assumption is to treat 1/𝑛A as proportional to the sampling error; indeed, 142	

Equation 2 reduces to the inverse of Equation 8 when we set both CVs to 1. Weighted regression 143	

models, commonly used to correct for heteroscedasticity, make this assumption of proportionality, 144	

unlike the classical random-effects meta-analytical model, which assumes that the exact sampling 145	

variances are known. Many ecologists are likely to be familiar with weighted regression models that 146	

specify sample sizes as the weights (Fletcher & Dixon 2012). 147	

 148	

The simplest random-effects meta-analytic model using lnRR can be written as follows: 149	

lnRR$ = 𝛽) + 𝑠$ +𝑚$ ,					(9) 150	

𝑠$ ∼ 𝒩(0, 𝜎*"), 		𝑚$ ∼ 𝒩(0, 𝑣$), 151	

where 𝛽) is the overall/average effect (or meta-analytic mean); si is the between-study effect for the 152	

ith effect size, normally distributed with a mean of zero and a variance of 𝜎*" (sometimes, referred 153	

to as 𝜏"), mi is the sampling error for the ith effect size, distributed with the ith sampling variance 154	

(note that i = 1, 2, …, K, the number of effect sizes = the number of studies). As mentioned earlier, 155	

we here assume that the sample variance of lnRR is known; that is, we use either Equation 2 or 5 as 156	

equal to the true sampling variances (𝑣$) in Equation 9. The ratio between 𝜎*" and the total variance 157	

is often used to quantify heterogeneity (I2): 158	
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𝐼" =
𝜎*"

𝜎*" + 𝑣‾
,									(10) 159	

where 𝑣‾ is known as a ‘typical’ (or ‘average’) sampling variance (originally referred to as ‘typical 160	

within-study variance’; sensu Higgins & Thompson 2002), which can be estimated in several ways 161	

(Xiong et al. 2010). 162	

 163	

Unlike the meta-analytic model, in a weighted regression, the following is assumed: 164	

𝑣$ = 𝜙 $
1
𝑛A$
&,					(11) 165	

where 𝜙, which is estimated by the model, functions as a multiplicative parameter fulfilling the 166	

assumption of proportionality (i.e., 1/𝑛A$ is proportional to the sampling variance 𝑣$). The key 167	

distinction here is that Methods 1A and 1B both make the classical assumption from meta-analysis; 168	

that is Equation 7 is an accurate estimate of the sampling variance for a study. However, Doncaster 169	

and Spake’s simulation suggests that the sampling variance (using Equation 3) is likely to be 170	

inaccurate when sample sizes are small (e.g., n1 + n2 = 6 –20). Therefore, it may be advisable to 171	

assume that 𝑣$∗ (Equation 3) is proportional to the true sampling variance. In a similar vein, we can 172	

apply the same assumption to Equation 7; that is: 173	

𝑣$ = 𝜙𝑣A$ .						(12) 174	

Here, our Method 2 makes the assumption of proportionality for the sampling variance using 175	

Equation 12 in a weighted-regression-like model (Fig. 1). 176	

Combining Methods 1 and 2: Method 3 177	

In the second method, Equation 7 is used regardless of whether SDs are missing or not. We can, 178	

however, combine Method 1 and Method 2 together into a new, hybrid Method 3 (Fig. 1). When 179	

SDs are available, we can use Equation 5 to obtain the sampling variance of lnRR (along with 180	

Equation 4 for the point estimate). When SDs are missing, we can use Equation 7 (and Equation 6) 181	
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combined with Method 2 in a weighted regression (i.e., 𝑣$ = 𝜙𝑣A$). We can write this model 182	

(Method 3), using a multilevel meta-analysis (modelling multiple effect sizes per study) as follows: 183	

lnRR$+ = 𝛽) + 𝑠$ + 𝑢$+ +𝑚$+ ,					(13) 184	

𝑠$ ∼ 𝒩(0, 𝜎*"), 		𝑢$+ ∼ 𝒩(0, 𝜎,"),			𝑚$+ ∼ 𝒩(0, 𝐕) 185	

where si is the between-study effect for the ith study (i = 1, 2, …, K), normally distributed with a 186	

mean of 0 and variance of 𝜎*" (often referred to as t2); uij is the between-effect-size effect (or 187	

within-study effect) for the jth effect size in the ith study, distributed with a mean of zero and 188	

variance of 𝜎," (j = 1, 2, …, Li, where Li denotes the number of effect sizes within the ith study), V 189	

is a diagonal matrix with 𝑣$+ when no SDs are missing and 𝜙𝑣A$+ when SDs are missing (i.e., 190	

Method 3). For example, when we have five effect sizes in three studies, V would be: 191	

𝐕 =

⎣
⎢
⎢
⎢
⎡
𝑣!! 0 0 0 0
0 𝑣!" 0 0 0
0 0 𝜙𝑣A"! 0 0
0 0 0 𝜙𝑣A"" 0
0 0 0 0 𝑣(!⎦

⎥
⎥
⎥
⎤

, 192	

where 1st, 2nd and 5th cases (effect sizes) have SDs while the 3rd and 4th are without SDs, and as 193	

above, 𝜙 is estimated in the model. Because this model accounts for non-independence, it is 194	

appropriate in ecological meta-analyses that include correlations among-effect sizes such as when 195	

there is more than one effect size per study or species (Nakagawa & Santos 2012; Noble et al. 2017; 196	

Nakagawa et al. 2022; but for a more complex model with V including covariances, or sampling 197	

variances having dependencies, Appendix S1; 198	

https://alistairmcnairsenior.github.io/Miss_SD_Sim/). 199	
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SIMULATION 200	

Simulation design 201	

We conducted a simulation study to compare the performance of Methods 1A, 1B, 2, and 3 on 202	

meta-analytic datasets with varying proportions of missing SDs. We also computed a (baseline) 203	

meta-analytic model with full data, for reference (see Table 1 for which equation was used; see also 204	

Fig. 1). To represent a typical eco-evolutionary dataset, we simulated a hierarchical structure where 205	

each study contained ≥1, correlated effect size (i.e., we simulated an intra-class correlation for each 206	

study; ICCs = 𝜎*" /(𝜎*" + 𝜎,") using the terms in Equation 13). For each simulated dataset we 207	

analyzed the full dataset, before deleting SDs for 5%, 15%, 25% 35%, 45%, or 55% of the studies. 208	

Missingness was imposed at the study-level, rather than the effect size-level. We then analyzed 209	

each dataset with the four proposed methods for handling missing SDs (Method 1A, 1B, 2, and 3). 210	

Datasets were analyzed using models that included a study-level and an effect-size random effect, 211	

specified using the ‘rma.mv’ function in metafor. For each model, bias was calculated as the 212	

difference between the estimated and parametrized value, for the following parameters: i) the meta-213	

estimate of the overall mean effect size, ii) coverage of 95% confidence intervals (CIs), iii) total 214	

heterogeneity (t2 = 𝜎*" + 𝜎," in Equation 12 and t2 = 𝜎*" in Equation 8; log ratio of estimated and 215	

parametrized value) and bias in the estimated ICCs (difference between estimated and parametrized 216	

value). CIs were calculated as the estimated effect ± t-value ´ SE, where for t-values the degrees of 217	

freedom were the number of effect sizes minus 1, when ICCs = 0, and the number of studies minus 218	

1 when ICCs > 0. 219	

 220	

Each simulated dataset contained K studies (K = 12, 30, and 100 were tested). Because studies often 221	

vary in the number of effect sizes they contain, the number of effect sizes per study, L, was assigned 222	

as a random variable. We simulated L using a double Poisson distribution, which is a discrete 223	

probability distribution that can be under/over dispersed relative to a Poisson distribution via a 224	

multiplicative dispersion parameter. Using the ‘rDPO’ function in the gamlss.dist package, L was 225	
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parameterized by drawing values from a random double Poisson distribution with a mean of 2 and a 226	

multiplicative dispersion parameter of 2.88, before adding 1 (to prevent 0 values). This resulted in L 227	

having a minimum of 1, a mean of 3, and SD of 2.4 (i.e., dispersion of 1.92). We termed this set of 228	

parameters Set I. We also simulated a second set where L is fixed to 1 (i.e., each study had only one 229	

effect size; L = 1, dispersion = 0), which we called Set II. Set II is equivalent to a meta-analysis 230	

with just one effect size per study (i.e., no dependency), and which would be assessed using a 231	

standard random-effects meta-analysis (i.e., Equation 9) and its variants (i.e., Methods 2 & 3). 232	

 233	

To simulate effect sizes that were correlated in a hierarchical manner, we assumed an overall lnRR 234	

(q) of 0.3 (e0.3 = 1.35, or a 35% increase in the mean) with either negligible (t2 = 9´10-6 or t / q = 235	

0.01) or high total heterogeneity (t2 = 0.09 or t / q = 1). This heterogeneity was partitioned between 236	

among- and within-study level effects assuming a given intra-class correlation (ICCS; values of 0 237	

and 0.5 were tested) such that the jth effect size (j = 1 … Li) in the ith (i = 1 … K) study, qij (cf. 238	

Equation 13) was drawn from a hierarchical pair of random normal distributions (‘rnorm’ function 239	

in base R) as: 240	

𝜃$~𝑁 Z𝜃, [t" × ICC*	_, 241	

𝜃$+~𝑁 Z𝜃$ , [t" × (1 − ICC*)	_. 242	

To simulate variation in the precision of the studies in the dataset we treated the sample size of the 243	

underlying studies as a random variable, N. We assumed N varied at the level of the study such that 244	

each group/effect size within the same study had the same sample size. In our experience it is 245	

common for experimental designs to vary among, more than within, studies. We drew the simulated 246	

sample size for study k by drawing a random value from double Poisson distribution before adding 247	

a value of 3. The double Poisson distribution was parametrized with a mean of either 2 or 27 248	

coupled with dispersion parameters of either 3.65 or 1.66. After adding the constant of 3, this 249	

resulted in two different distributions of N both with a minimum of 3, and (over) dispersion of 1.5, 250	

but with a mean (µN) of either 5 or 30. The smaller mean value of 5 is more typical in 251	
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terrestrial/ecosystem ecology (or some pre-clinical biomedical studies), while the larger mean value 252	

is more like evolutionary/behavioural ecology studies (or clinical trials) (Senior et al. 2016). 253	

 254	

The underlying data in control and treatment groups in each effect size were drawn from random 255	

normal distributions ‘shifted’ to ensure both groups had a positive mean as is required for analysis 256	

using lnRR. From these individual simulated values, we calculated the mean and SD in each group 257	

for calculation of lnRR and downstream meta-analysis. The observations for the control group in 258	

effect size j in study i were drawn from the random normal distribution, 𝑁(100, 𝜎$), and the paired 259	

treatment group from the random normal distribution, 𝑁3100 × 𝑒-!" , 𝜎$4, where si is the SD in the 260	

underlying individual observations in study i. 261	

 262	

Because we are assessing the performance of methods to deal with missing SD values, we chose to 263	

treat the within-group (among-observation) SD as a random variable, S. The SD for study i was 264	

drawn from a random Gamma distribution (the ‘rgamma’ function in base R) with shape .#
$

/#$
 and 265	

scale /#
$

.#
, where µS is the mean of S (i.e., mean SD of studies; here 15), and sS is the SD in S. This 266	

latter parameter thus specifies how heterogeneous the within-study (among-observation) variances 267	

are; we tested values of 10-10 (~0), 3.75, and 7.5 (i.e., entirely homogeneous variances, or the CV 268	

for the SD among studies is 0.25 or 0.5). A summary of the key parameters and their values is given 269	

in Table S1. Each combination of parameter values was simulated 10,000 times for both Set I and 270	

Set II. For Set I presented in the main text, we used the multilevel meta-analytic model (Equation 271	

13) and its variants (Method 2 & 3). For Set II, we used the random-effects meta-analytic model 272	

(Equation 9) and its variants where the results are presented in the supplementary materials. For all 273	

three methods, we needed to calculate the average CV as in Equations 6 and 7. In Set I, this 274	

calculation was done by averaging CV within studies and then taking the weighted-average CV 275	

across studies (using mean n per study as the weight), disregarding rows containing missing SDs. 276	
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For Set II, we calculated the weighted CV among studies (using n per study as the weight) as we 277	

only had one CV value per study (see also Fig. S1-S3). 278	

Simulation results 279	

Fig. 2A shows the distribution of the median bias in the estimated overall effect under each 280	

simulated condition with complete data and using the four different methods for handling missing 281	

SDs. Even with full data, both upward and downward bias was possible in the estimated effect size, 282	

and this was reflected in the analyses using Method 1A and 3 to handle missing SDs. Notably, even 283	

at its most extreme, this bias only amounted to a little over 2% of the true effect size and was 284	

usually ~0.5%. Nonetheless, Method 1B and 2, both of which use the weighted average CV to 285	

estimate the sampling variance for all effect sizes regardless of missingness, yielded the lowest bias 286	

on average (Fig. 2A). The degree of bias across conditions in the full data analysis correlated very 287	

strongly with bias using Method 1A and 3, while bias in Method 1B and 2 correlated strongly (Fig 288	

2B). This suggests that the methods fall into two classes that perform similarly across situations: 289	

Method 1A with Method 3, and Method 1B with Method 2. Contrasting Methods 1A and 1B 290	

directly, in almost all cases the absolute level of bias in Method 1A was higher than that for Method 291	

1B (Fig. 2C). Further, where Method 1B had a higher bias than method 1A, this difference was 292	

small (Fig. 2C). Although Method 1B and Method 2 outperformed the other approaches on average, 293	

they were prone to producing excessively large bias on rare occasions; Fig. 2D shows the range in 294	

bias among the individual replicates under each simulated condition as a function of the different 295	

methods. Large ranges in bias occurred when the SDs among different studies were very 296	

heterogeneous, and the individual studies themselves had a low sample size (Fig. 2E). 297	

 298	

All methods for handling missing data, and the full data analyses, could produce 95% CIs that were 299	

too narrow, or too wide under different scenarios (Fig. 3A). The full data, and Methods 1A and 3 300	

tended to typically produce CIs that were slightly too narrow, whereas method 1B and 2 were prone 301	

to producing wider CIs (Fig 3A). Again, contrasting Method 1A and 1B, Method 1B’s tendency to 302	
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produce a CI that is too wide occurs when the total heterogeneity among studies is low (Fig. 3B and 303	

3C). However, where total heterogeneity is high, Method 1B performs as well as Method 1A (Fig. 304	

3B and 3C). 305	

 306	

Fig. 4A shows the median bias in the estimated heterogeneity under each condition and method. 307	

Under most conditions, methods 1A, 1B, and 3 estimated heterogeneities with little bias, but all 308	

including analysis of the full data were prone to substantially overestimating the total heterogeneity 309	

(Fig. 3A). Method 2 tended to slightly underestimate heterogeneity (Fig. 3A). Overestimation of 310	

heterogeneity occurred where the actual level of heterogeneity was low (Fig. 3B). On average most 311	

methods did a good job of partitioning heterogeneity between the within- and among-study levels, 312	

although Method 2 displayed a slight bias on average (Fig. 3C). Under some circumstances all 313	

methods could be biased in partitioning heterogeneity (Fig. 3C). Method 1B was prone to bias 314	

partitioning when the total heterogeneity was low; overestimating the ICC when the simulated study 315	

effect was absent and underestimating when it was present (Fig 3D). In summary, while Method 1B 316	

performed with the least bias under the broad range of simulated conditions tested, all the methods 317	

fared surprisingly well, compared with the full data analysis (see Discussion for more). 318	

IMPLIMENTATION 319	

The accuracy and limitation of lnRR 320	

The accuracy of the sampling variance for lnRR depends on whether lnRR is normally distributed. 321	

Hedges et al. (1999) suggested a simple test to check the normality assumption based on Geary 322	

(1930). This test was improved by Lajeunesse (2015) and expressed as: 323	

1
CVa

4𝑛
(
"

1 + 4𝑛b ≥ 3.					(14) 324	
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If many effect sizes fail to fulfil this relationship, then, meta-analytic results are unlikely to be 325	

robust. However, such tests are rarely used. This test is sometimes referred to as Geary’s test whose 326	

original form is √𝑛/CV ≥ 3. Lajeunesse (2015) has suggested a sensitivity analysis excluding 327	

effect sizes which fail to fulfill Equation 14 as a check on the robustness of the meta-analytic 328	

results. 329	

 330	

It is important to realize that count data and abundance data, which are extremely common in 331	

ecology (Spake et al. 2021), may often fail this test (Equation 14). This is because such data is 332	

usually overdispersed meaning CV > 1. For example, it is not uncommon for count data to have, 333	

say, CV = 5, especially when the mean is close to zero (cf. Lajeunesse 2015). In such a case, one 334	

would need sample sizes larger than 226 for each treatment and control group to pass the test, 335	

which would be difficult for most ecological studies. 336	

 337	

Importantly, because the Taylor expansion used in Equations 4-7 also assumes normality, these 338	

formulations of lnRR are even more sensitive than the original formulations (Equations 1 &2). 339	

Therefore, it may be advisable to use Equation 1 for the point estimate and the following estimator 340	

of the sampling variance (rather than Equation 7) when many effect sizes fail Geary’s test: 341	

𝑣A(lnRR) =
[∑ (𝑛!$CV!$)%

$&! /∑ 𝑛!$%
$&! ]"

𝑛!
+
[∑ (𝑛!$CV"$)%

$&! /∑ 𝑛"$%
$&! ]"

𝑛"
				(15) 342	

This formula still relies on the first-order Taylor expansion but is less sensitive than Equation 7. Of 343	

relevance, the square of the average of CV and the average of CV2 tend to be very similar when the 344	

value of CV is small. However, when CV becomes larger (or fail to satisfy the ‘improved’ Geary’s 345	

test), they diverge. When data are overdispersed, in particular, the average of CV2 could be much 346	

higher than the square of the average of CV. This is the primary reason we chose the square of the 347	

average of CV over the average of CV2; the former is less heavily influenced of individual effect 348	
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sizes based on overdispersed data. Other limitations (and advantages) of lnRR are discussed 349	

elsewhere (e.g., Spake et al. 2021; Yang et al. 2022). 350	

Worked examples 351	

Bird and colleagues (2019) conducted a meta-analysis exploring the impacts of competition on 352	

herbivorous insect fitness when occupying the same host plant with another species or in isolation. 353	

In brief, they collected data on a series of fitness measurements (e.g., abundance, body size, 354	

development time, fecundity; see Table 2 in Bird et al. 2019) and quantified the separate overall 355	

impact of competition on the various fitness measures, using phylogenetic multilevel meta-analyses 356	

(Cinar et al. 2022; Appendix S1). 357	

For demonstration purposes, we focus on the largest dataset that makes use of abundance data. We 358	

restricted the analysis ratio scale (required for lnRR) and those effect sizes that passed the 359	

‘improved’ Geary’s test (Equation 14; see above). We use a multilevel meta-analytic model to 360	

estimate the overall impact of competition on focal insect fitness (i.e., intercept or overall meta-361	

analytic mean) while controlling for phylogeny, research group, and research year (as per the 362	

analysis by Bird et al. 2019). We then introduced missing data at the study (article) level, so that a 363	

randomly selected ~20% of articles had effect sizes with missing SD in the control and 364	

experimental treatment; a scenario that is typical of many meta-analyses (cf. Kambach et al. 2020). 365	

An analysis of these data applying the different methods compared to the whole data is provided in 366	

Table 2. We can see that the complete-case analysis (excluding all data with missing SDs) results in 367	

slightly larger confidence intervals and a reduction in the meta-analytic mean effect size, relative to 368	

the other methods. Methods 1A, 2, and 3 all suggest the overall meta-analytic is slightly smaller and 369	

result in greater precision around this estimated effect size. Using this example, we show how each 370	

approach is implemented in the supplement (Appendix S2) along with another example (McDonald 371	

et al. 2019; Appendix S3). 372	



	 17	

DISCUSSION 373	

In this study, we have developed new methodological procedures to handle missing SDs in meta-374	

analyses of lnRR values. Our simulation suggested that the least biased estimates were obtained by 375	

Method 1B, which uses the weighted average CV to calculate point estimates and sampling 376	

variances for all effect sizes, regardless of missingness in SD. In terms of implementation, this is 377	

the easiest method of all (see Supporting Information). We were surprised to find that Method 1B 378	

(along with Method 2) outperformed the conventional meta-analysis of full data. This is especially 379	

so given Method 1B along with other new proposed methods use ‘single imputation’ rather than 380	

‘multiple imputation’, and analysis with single imputation should, in theory, fare worse than meta-381	

analysis with full data (using Equation 4 & 6, see Table 1; Nakagawa & Freckleton 2008; 382	

Nakagawa 2015; van Buuren 2018; Kambach et al. 2020; see also Fletcher & Dixon 2012). 383	

 384	

Given that Doncaster and Spake (2018) found the use of Equation 3 (the use of average CV) 385	

performed better than analysis with Equation 2, we might have expected Method 2 to do well (see 386	

also Lin & Aloe 2021). It is important to note that our simulation work clearly differed in at least 387	

two respects. First, Doncaster and Spake never tested how their method fared with missing data. 388	

Second, their simulation was restricted to non-multilevel models; however, many ecological 389	

datasets require a multilevel approach. Method 1B and Doncaster and Spake’s procedure (i.e., using 390	

Equation 3 rather than Equation 2) perform well because even where they are reported, CV values 391	

from individual studies are often inaccurate due to the small within-study sample size. This, in turn, 392	

results in imprecise estimates of the sampling variances. However, using a pooled CV improves the 393	

estimates of the sampling variances, and all subsequent downstream analyses. Improvements in the 394	

estimation of the overall mean were demonstrated by Doncaster and Spake (2018), while our 395	

simulation has shown that this method also improves the accuracy of heterogeneity estimates (i.e., 396	

variance components). Incidentally, Doncaster and Spake (2018) are not the first one to use the 397	

‘averaging’ method. For example, Hedges and Olkin (1985) also proposed to use the average of the 398	
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observed standardized mean differences in the computation of their sampling variances when meta-399	

analyzing a large number of small studies. Also, Hunter and Schmidt (Hunter & Schmidt 1990) 400	

proposed to use the weighted average of correlations in the sampling variance for the correlation 401	

coefficient. Similarly, Berkey et al. (1995) suggested using averages of counts or proportions in the 402	

equations for computing the sampling variances of log relative risks and odds ratios, which led to 403	

less biased estimates. 404	

 405	

There were two conditions where Method 1B could result in biased estimates. The first scenario is 406	

when CVs are very different between studies and the number of studies is relatively small (e.g., K < 407	

20). In such cases, we would be able to use Method 1A (or alternatively Method 3, although the 408	

latter is more difficult to implement) to check whether meta-analytic results are drastically different. 409	

In addition, a meta-analysis of lnCVR (log CV ratio) or lnCV (log CV) could help to evaluate how 410	

large the between-study variance in CV is (Nakagawa et al. 2015; Senior et al. 2020). Large 411	

variation in between-study CVs would violate our assumption that the CV stays fairly constant for 412	

our new methodologies (cf. Nakagawa et al. 2015). Note, however, that our simulation shows this 413	

assumption is less important when we have a relatively large number of studies (e.g., K > 20). The 414	

second scenario is when there is very low total heterogeneity (t2 = 𝜎*" + 𝜎,", which usually 415	

translates to low I2; see Higgins et al. 2003; Nakagawa & Santos 2012; also see Borenstein et al. 416	

2017). As mentioned earlier, heterogeneity is typically high in eco-evolutionary meta-analyses. 417	

Indeed, Senior et al (2016) showed that on average, ecological and evolutionary meta-analyses have 418	

high heterogeneity with I2 of around 90%. 419	

 420	

Importantly, our simulation results are based on the assumptions that SDs are missing completely at 421	

random, and that SDs (or CVs) do not change systematically across studies. Regardless of whether 422	

these assumptions are true or not, we recommend that the default method should be Method 1A. 423	

This is because: 1) almost all meta-analytic datasets suitable for lnRR would have missing SD, 2) 424	
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we should avoid not using these data without SDs, and 3) Method 1A makes fewer assumptions 425	

than Method 1B. At the same time, one should always accompany Method 1A with Method 1B, 426	

which had the best performance in our simulation. Also, one may decide to use Method 1B in the 427	

main analysis when sample sizes (replications) per effect size are consistently low – a condition 428	

where Method 1B works best. Yet, in many cases, both Method 1A and 1B would provide 429	

quantitatively similar results. However, it is when results diverge quantitatively or qualitatively that 430	

we need to be careful about the robustness of one’s results (cf. our worked example). These two 431	

approaches can be considered as each other’s sensitivity analysis (Noble et al. 2017). Taken 432	

together, we recommend conducting a meta-analysis using Method 1A and 1B in tandem, and it is 433	

straightforward to do both (see Supplementary Information). 434	

 435	

Finally, we emphasize that these methods represent an alternative, and not a replacement, to 436	

multiple imputation, MI. Indeed, if there are missing values in moderators, the only way to deal 437	

with such missing data is to use MI. However, our proposed methods (i.e., Method 1A & 1B) are 438	

easier to implement and readily extendable to complex models, as we showed above, especially 439	

when we do not have any missing data in moderators or are less concerned about missing data in 440	

moderators. We hope that meta-analysts in ecology and evolution will adopt these two new 441	

approaches (Method 1A & 1B) to improve their meta-analytic estimation under many 442	

circumstances. Importantly, we should all be aware of the limitations of the lnRR for meta-analysis, 443	

incorporating routine assessment of the underlying assumptions using the improved Geary’s test. 444	

 445	
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Figure Legends 578	

 579	

Figure 1 580	

Visual schematics of a hypothetical dataset with missing standard deviations (SDs) and five 581	

different approaches used in this study, including 3 new methods. The symbols: lnRR2 (Equation 4), 582	

lnRR3 (Equation 6), 𝑣 (Equation 5), 𝑣A (Equation 7), and 𝜙𝑣A (Equation 12). Note that, under some 583	

circumstances, we could replace Equations 4 & 6 with Equation 1 while Equation 7 can be replaced 584	

by Equation 15 (see the text for more details). 585	

 586	

Figure 2 587	

Results on overall meta-analytic mean from multi-level meta-analytic models: A) Violin plot 588	

showing the distribution of median bias in the estimated effect under each simulated condition as a 589	

function of the method used to handle missing data (distribution assuming full data shown for 590	

reference). B) Pairwise correlations between the degree of bias under each simulated condition for 591	

each method. C) Distribution of the difference between Method 1A and 1B in the absolute degree of 592	

bias under each condition (positive values indicate greater median bias under Method 1A). D) 593	

Violin plot showing the distribution of range bias (log10 transformed) in the estimated effect under 594	

each simulated condition as a function of the method used to handle missing data. E. Violin plot 595	

showing the distribution of range bias (log10 transformed) in the estimated effect under each 596	

simulated condition as a function of the degree of heterogeneity in SDs among studies and typical 597	

size of studies in the meta-analysis. Our plots were drawn using the R package ggplot2 (Wickham 598	

2009). 599	

 600	

Figure 3 601	

Results on coverage from multi-level meta-analytic models: A) Violin plot showing the distribution 602	

of coverage of 95% CIs under each simulated condition as a function of the method used to handle 603	
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missing data (distribution assuming full data shown for reference). B) Violin plot showing the 604	

distribution of coverage under each simulated condition as a function of the simulated level of total 605	

heterogeneity and the ICC for study using method 1.1 to handle missing SDs. C) Violin plot 606	

showing the distribution of coverage under each simulated condition as a function of the simulated 607	

level of total heterogeneity and the ICC for study using method 1.2 to handle missing SDs. 608	

 609	

Figure 4 610	

Results on coverage from multi-level meta-analytic models: A) Violin plot showing the distribution 611	

of median bias in the estimated heterogeneity under each simulated condition as a function of the 612	

method used to handle missing data (distribution assuming full data shown for reference). Bias in 613	

heterogeneity is calculated as the log ratio of the estimated and parametrized value. B. Box plot 614	

showing the median bias in estimated heterogeneity under each simulated condition as a function of 615	

the method used to handle missing data (colours as in panel A), and the simulated level of 616	

heterogeneity. C) Violin plot showing the distribution of the median bias in the estimated ICC for 617	

study under each simulated condition as a function of the method used to handle missing data. Bias 618	

in the ICC was calculated as the difference between the estimated and parameterized value. D) 619	

Violin plot showing the distribution of the median bias in the estimated ICC for study under each 620	

simulated condition as a function of the simulated level of total heterogeneity and the ICC for study 621	

using method 1.2 to handle missing SDs. 622	

 623	

Figure S1 624	

Results on overall meta-analytic mean from multi-level meta-analytic models: A) Violin plot 625	

showing the distribution of median bias in the estimated effect under each simulated condition as a 626	

function of the method used to handle missing data (distribution assuming full data shown for 627	

reference). B) Pairwise correlations between the degree of bias under each simulated condition for 628	

each method. C) Distribution of the difference between Method 1A and 1B in the absolute degree of 629	
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bias under each condition (positive values indicate greater median bias under Method 1A). D) 630	

Violin plot showing the distribution of range bias (log10 transformed) in the estimated effect under 631	

each simulated condition as a function of the method used to handle missing data. E. Violin plot 632	

showing the distribution of range bias (log10 transformed) in the estimated effect under each 633	

simulated condition as a function of the degree of heterogeneity in SDs among studies and typical 634	

size of studies in the meta-analysis. 635	

 636	

Figure S2 637	

Results on coverage from multi-level meta-analytic models: A) Violin plot showing the distribution 638	

of coverage of 95% CIs under each simulated condition as a function of the method used to handle 639	

missing data (distribution assuming full data shown for reference). B) Violin plot showing the 640	

distribution of coverage under each simulated condition as a function of the simulated level of total 641	

heterogeneity and the ICC for study using method 1.1 to handle missing SDs. C) Violin plot 642	

showing the distribution of coverage under each simulated condition as a function of the simulated 643	

level of total heterogeneity and the ICC for study using method 1.2 to handle missing SDs. 644	

 645	

Figure S3 646	

Results on coverage from random-effects meta-analytic models: A) Violin plot showing the 647	

distribution of median bias in the estimated heterogeneity under each simulated condition as a 648	

function of the method used to handle missing data (distribution assuming full data shown for 649	

reference). Bias in heterogeneity is calculated as the log ratio of the estimated and parametrized 650	

value. B. Box plot showing the median bias in estimated heterogeneity under each simulated 651	

condition as a function of the method used to handle missing data (colours as in panel A), and the 652	

simulated level of heterogeneity. 653	

 654	

 655	
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Table 1 Different methods including the case with no missing data, used for simulations and which 656	

equations were used for which method 657	

Methods Point estimate1 Sampling variance 

(full data) 

Sampling variance 

(missing SD) 

Method 1A Equations 4 and 6 Equation 5  Equations 7 

Method 1B Equations 4 and 6 Equation 7 Equations 7 

Method 2 Equations 4 and 6 Equation 12 Equation 12 

Method 3 Equations 4 and 6 Equations 5  Equation 12 

No missing data Equation 4 Equations 5 Not applicable 

1 Applying both Equations 4 & 6 (the latter for observations/rows with missing SD) or applying 658	

only Equation 6 for all observations when SDs are missing would make little differences for (effect 659	

size) point estimates, unless effect sizes fulfill Equation 14. 660	

  661	
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Table 2 Results from the re-analyses of a subset of data from Bird et al. (2019) using the methods 662	

we propose to deal with missing SD data estimating the overall effects of competition on focal 663	

insect abundance (LCI = lower, or 2.5%, confidence limit; UCI = upper, or 97.5%, confidence 664	

limit). Note that these results exclude effect size estimates that fail Geary’s test. 665	

Method Est. SE 95% LCI 95% UCI 

Full Data 0.202 0.085 0.036 0.369 

Complete Case 0.176 0.102 -0.024 0.377 

Method 1A 0.186 0.091 0.008 0.364 

Method 1B 0.146 0.096 -0.043 0.334 

Method 2 0.192 0.083 0.03 0.354 

Method 3 0.185 0.086 0.017 0.353 

 666	
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 668	

Table S1. Variables/parameters in simulations. 669	

Variable (Notation) Description and details Value(s) 

% Studies Missing SD Percentage of studies that have missing SDs 5, 15, 25, 35, 45 or 55 

Overall Effect Size (q) The overall mean lnRR effect size 0.3 

Number of Studies (K) Total number of studies within the meta-analytic 

dataset 

12, 30, 100 

Number of Effect Sizes 

in Study (L) 

The number of effect sizes within a study. Values 

for each study were randomly distributed using a 

double Poisson distribution 

Random with mean of 

5, and dispersion 1.5 

Total Heterogeneity (t2) The total heterogeneity among effect sizes 0.09 

Intra-Class Correlation 

for Study (ICCs) 

The proportion of total heterogeneity that is 

attributable to study-level effects 

0 or 0.5 

Sample Size in Study 

(N) 

The sample size of groups within studies; individual 

sample sizes were randomly distributed using a 

double Poisson distribution 

Random with mean of 

either 5 or 30, and 

dispersion 1.5 

Standard Deviation in 

Study (S) 

The within-study SDs. Individual within-study SDs 

were randomly distributed following a Gamma 

distribution 

Random with mean 15 

and SD of either 10-10, 

3.75 or 7.5 

 670	

  671	
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Figure 1 672	
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Figure 2 675	
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Figure 3 679	
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Figure 4 683	
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Figure S1 688	
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Figure S2 691	
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Figure S3 695	
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