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Title: GridDER: Grid Detection and Evaluation in R

Running title: GridDER

Abstract

Aim Observations and collections of organisms form the basis of our understanding of Earth’s

biodiversity and are an indispensable resource for global change studies. Geographic information

is key, serving as the link between organisms and the environments they reside in. However, the

geographic information associated with these records is often inaccurate, thus limiting their

efficacy for research. Along these lines multiple solutions for identifying erroneous coordinate

data and records georeferenced to centroids or landmarks have been developed. Another

prominent, but less discussed and documented source of inaccuracies arises due to the use of

gridded survey systems in many regions of the world.

Innovation Here we present GridDER, a tool for identifying biodiversity records that have been

designated locations on widely used grid systems. Our tool also estimates the degree of

environmental heterogeneity associated with grid systems, allowing users to make informed

decisions about how to use such occurrence data in global change studies. We show that a

significant proportion (~13.5%; 261 million) of records on GBIF, largest aggregator of natural

history collection data, are potentially gridded data, and demonstrate that our tool can reliably

identify such records and quantify the associated uncertainties.

Main conclusions GridDER can serve as a tool to not only screen for gridded points, but to

quantify the geographic and environmental uncertainties associated with these records, which

can be used to inform models and analyses that utilize these data, including those pertaining to

global change.
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Introduction

The past few decades have witnessed an exponential increase of biodiversity data worldwide,

which come from rapid digitization and aggregation of existing biodiversity collections and

ongoing specimen collections, field surveys, and human observations (Feng et al., 2022). For

example, the Global Biodiversity Information Facility (GBIF) – the world’s leading repository of

biodiversity observations – recently reached ~2 billion records (accessed January 2022).

Collections and observations of organisms form the basis of our understanding of Earth’s

biodiversity, and are an indispensable resource for studying the response of biodiversity under

global change studies (Tingley et al., 2009; Hedrick et al., 2020).

The geographic information associated with primary biodiversity data (e.g., preserved

specimens, field observations) serves as the key link between organisms and their environment,

and such information has been used broadly in studies of ecology, biogeography, and beyond.

For example, one of the most basic uses of the geographic information associated with

biodiversity collections is studying the historical and current richness of species at various spatial

scales. The locality or coordinates of species’ occurrences can be associated with the

environmental conditions to study their ecological niche and model their geographic ranges, an

approach termed ecological niche modeling (or species distribution modeling) that got

tremendous attention in the recent literature (Peterson et al., 2011). For instance, such geographic

information can also be used to study the changes of species’ geographic distributions, such as

range shifts under climate change (Blowes et al., 2019), range reductions due to habitat loss and

anthropogenic disturbance (Doughty et al., 2016; Feng et al., 2021), biological invasions (Feng

https://paperpile.com/c/01DVmA/m0hm
https://paperpile.com/c/01DVmA/OjXl+gUHZ
https://paperpile.com/c/01DVmA/FF8x
https://paperpile.com/c/01DVmA/zonI
https://paperpile.com/c/01DVmA/AhTC+NW2q
https://paperpile.com/c/01DVmA/pml7+DEuQ+6sZr
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& Papeş, 2015; Park & Potter, 2015a,b), and the conservation of rare or endangered species

(Hannah et al., 2020).

However, aggregated biodiversity information is often prone to issues of data quality. Typical

issues include missing values of certain fields, or fields filled with erroneous or non-standardized

values. A notable example is the non-standardized scientific names in biodiversity databases that

were aggregated from many sources; commonly biodiversity databases rely on software to

automatically correct or standardize taxonomic information based on a reference checklist (e.g.

(Boyle et al., 2013)). A series of issues also exist for fields about the geographic information,

such as inaccurate or unfilled coordinates and inconsistency between locality descriptions and

coordinates. Since the aggregated data could be originally collected for various purposes using

different protocols, they could be associated with varying degrees of uncertainties. The

underlying spatial uncertainties are particularly relevant for studies that use aggregated

geographic information to extract the environmental conditions (Park & Davis, 2017). As a

response, many tools have been developed to solve the underlying issues in geographic

information. For records with more complete geographic information, the locality description

and coordinates can be used to cross-validate each other (Buitrago, 2020). For records with

missing coordinates, georeferencing tools can be used to infer the coordinates based on locality

descriptions (Guralnick et al., 2006; GeoLocate, https://www.geo-locate.org). When precise

locality information is not available, records are often georeferenced to the centroid of political

divisions (e.g. country or state/province). Records georeferenced in this fashion are common in

aggregated biodiversity databases, but the method of georeferencing (e.g. country centroid) is not

always properly recorded. This is concerning because of the huge potential spatial uncertainty,

https://paperpile.com/c/01DVmA/pml7+DEuQ+6sZr
https://paperpile.com/c/01DVmA/kEmN
https://paperpile.com/c/01DVmA/PuWc
https://paperpile.com/c/01DVmA/O57Y
https://paperpile.com/c/01DVmA/CUVV
https://paperpile.com/c/01DVmA/MMFy/?suffix=%3B%20GeoLocate%2C%20https%3A%2F%2Fwww.geo-locate.org
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and thus multiple tools have been developed to flag out such records (e.g. CoordinateCleaner

(Zizka et al., 2019), Geocoordinate Validation Service, https://github.com/ojalaquellueva/gvs).

Another potentially prominent but less discussed source of inaccuracies arises from the use of

grid systems to aggregate biodiversity data, where species occurrences are assigned to the center

coordinates of predefined grids (Fig. 1). A major source of such gridded coordinates is

grid-based surveys of species’ geographic distribution, where the focal landscape is divided into

equal-area grids (Franklin, 2010). The spatial resolution of the grid could be meters for local

studies (Tinkham et al., 2018; DeSisto et al., 2020) or at much coarse resolution (e.g.

1km-500km) for regional, national, or global grid systems (e.g. Ordnance Survey National Grid

or British National Grid). When gridded coordinates are aggregated in biodiversity databases, the

metadata of the grid system (e.g. spatial resolution) are not always preserved, as those metadata

are not supported by current biodiversity metadata standard (e.g. (Wieczorek et al., 2012)). Our

review of GBIF data revealed that approximately 261 million records (or 13.5% of GBIF

records) (assessed on January 1, 2022) could be associated with grid systems of varying spatial

resolution and extent (see section 2.2 and (Park et al. in review)). It is concerning that such large

volumes of gridded coordinates could be applied to biodiversity studies without accounting for

the potentially large degrees of spatial uncertainty (Franklin, 2010). It is actually difficult to

detect the presence of gridded coordinates in individual studies that focus on one or few species

or a relatively small geographic extent, since the pattern of regular spacing of gridded

coordinates is usually more visible at aggregated scale across large breadths of space and taxa.

https://paperpile.com/c/01DVmA/CwvM
https://paperpile.com/c/01DVmA/uq78
https://paperpile.com/c/01DVmA/zn9k+i1kF
https://paperpile.com/c/01DVmA/pWhj
https://paperpile.com/c/01DVmA/B0uI/?suffix=in%20review
https://paperpile.com/c/01DVmA/uq78
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Here we present GridDER, a potential solution for detecting and evaluating gridded coordinates

and grid systems. We first synthesized grid systems that were broadly used and developed a

metadata standard to characterize grid systems. We also developed functions to infer the spatial

attributes of grid systems, generate grid systems based on spatial attributes, and detect the origin

of gridded coordinates.

2. Methods

2.1 Overview of a grid system

A grid system is a set of grids (squares/rectangles) originating from predefined spatial reference

systems, which can be defined by a set of spatial attributes, including coordinate reference

system (CRS), spatial resolution of horizontal and vertical dimensions, spatial extent, and spatial

origin (minimum coordinate of all the left-bottom corners of all grids). The grid systems could

have varied spatial attributes. For example, the CRS could be a geographic reference system (e.g.

WGS84), then the unit of the spatial resolution will be arc-degrees/minutes/seconds; the CRS can

also be a projected reference system (e.g. Universal Transverse Mercator; UTM), in which case

the unit of the spatial resolution could be kilometers. The spatial extent of a grid system could be

local (e.g. a country), regional (e.g. a continent), or global. For two grid systems that have the

same CRS, extent and resolution, they could have slightly different origins, which can be caused

by unintentional uncertainty in implementing the same non-digitized map, or caused by multiple

independent implementations of the same grid design but without coordination for consistency. It

is also possible to have a series of grid systems with a gradient of resolution (e.g. 1,2,10,100 km)

while other attributes are the same.
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2.2 Compile metadata of a grid system

We mainly focused on grid systems that have been applied broadly, in the sense that many

biodiversity observations are associated with such grid systems. We started from the most

duplicated coordinates from GBIF. We virtually checked the coordinates from QGIS and

compiled a list of coordinates that show regular spacings among each other (here termed gridded

occurrences) (Park et al. in review). We further checked the metadata (e.g. dataset key,

publishing institution in Darwin Core), based on which we queried the original dataset that

contains the gridded occurrences. Those datasets were used as the baseline for compiling the

metadata of grid systems.

We compiled the following metadata of grid systems: name of a grid system (if available),

country name/s and ISO-3166 code/s (if a grid system is applicable to one or multiple country),

the European Petroleum Survey Group (EPSG) code of the CRS (EPSG hosts a database of

CRSs), the resolution of the grid system on horizontal and vertical dimensions (size and unit),

and the spatial extent (Table 1). We compiled the metadata from online documentations of a

dataset or project, and/or acquired from the author or manager of the dataset. In situations where

spatial data (vector or raster) of a grid system is available, we extracted metadata from the spatial

data to supplement metadata information.

2.3 Simulating grid systems based on metadata

With the compiled metadata of grid systems, we simulated grid systems as spatial vectors. In

brief, we developed grid_generation (Table 2; Fig. 2) to simulate regularly spaced points

representing the four vertices of grids in a grid system. The vertices were then transformed as

https://paperpile.com/c/01DVmA/B0uI/?suffix=in%20review
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spatial polygons (square or rectangles), crop to a predefined extent, or further masked to

predefined polygons (e.g. country boundaries). The simulated grid systems were also validated

with the gridded occurrences, and some of the metadata used during simulation were adjusted

accordingly to better fit the existing occurrences. The simulated grid systems were exported as

spatial vectors in shapefile format.

2.4 Simulating grid systems based on empirical gridded occurrences

We developed functions to simulate grid systems based on empirical gridded occurrences (Table

2; Fig. 2). This applies to situations when no metadata is available or when the metadata of a grid

system is incomplete.

2.4.1 Inferring CRS

Among the metadata used for simulating a grid, the CRS is the most important attribute; it is

almost always true for a spatial dataset. The CRS with which a grid system and gridded

occurrences are originally defined could get lost during the data aggregation, where occurrences

from different sources with different CRSs are commonly unified to the same CRS (e.g.

WGS84). We developed a function (infer_crs) to infer the CRS of a grid system, using

coordinates that are associated with an unknown grid system as input. In a nutshell, this

inference builds upon a simple assumption -- the true CRS will lead to the most regular layout

(distance and angle) of the gridded coordinates. The workflow of this inference is as following:

1) download gridded occurrences from GBIF and simplify the dataset to be unique spatial points

(in CRS of WGS84) using latitude and longitude; 2) project the spatial points to ~6000 different

registered CRSs that were compiled by GDAL (GDAL/OGR contributors, 2020); 3) for each

https://paperpile.com/c/01DVmA/K8VH/?prefix=GDAL%2FOGR%20contributors%2C&noauthor=1
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projected point, find its nearest neighbor along four directions (up, down, left, right); 4) calculate

the distance between a focal point and its nearest neighbors (from previous step), along x-axis,

y-axis, and both axes (in which case Euclidean distance is calculated), respectively; 5) calculate

the angle between a focal point and its nearest neighbors; 6) the distances calculated from the

up-side neighbors were pooled to find the mode and its frequency, the latter of which is used to

quantify the regularity of spacing of projected points along y-axis; similarly, the distances

calculated from left-side neighbors were used to quantify the regularity along x-axis; 7) the

angles calculated from the up-side and left-side neighbors were divided by 90 degrees, and the

reminders were polled to further calculate the mean, which is used to quantify the deviation from

vertical or horizontal directions (the regularity of layout of projected points); 8) the ~6000 CRSs

were ranked based on the frequency calculate from step 6 and the deviations calculate from step

7; ideally, the best CRS will lead to highest frequency in step 6 and close to 0 deviations in step

7.

2.4.2 Inferring resolution

In situations when a CRS, a unit of spatial distance, is known, and the spatial resolution is

unknown, we developed a function (infer_resolution) to infer the spatial resolution based on

input occurrences. The workflow of this inference is as following: 1) project the input points to

the CRS where the grid system was originally defined; 2) for each projected point, find its

nearest neighbor along four directions (up, down, left, right); 3) calculate the distance between a

focal point and its nearest neighbors (from previous step), along x-axis and y-axis, respectively;

4) the distances calculated from the up-side neighbors were pooled to find the value with highest
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frequency, which is considered as (or the approximation of) the resolution along y-axis; similarly,

the distances calculated from left-side neighbors are used to quantify the resolution along x-axis.

2.4.3 Inferring origin of the grid

We developed a function (infer_origin) to calculate the origin of the grids, when the CRS and

spatial resolutions are known. The origin is calculated as the minimum x and y among the input

spatial points minus half of the resolution along x and y-axis, respectively.

2.4.4 Defining spatial extent

The spatial extent of a grid system can be calculated by the infer_extent function. The extent

could be simply as the spatial extent where a CRS is defined, the bounding box of a country

boundary, or the bounding box of the gridded occurrences. The spatial extent could also be

further masked to be along the boundary of a country. Additional buffers, in the unit of grid

resolution, are also possible to be added along the grid system, using parameter flag_buffer of

function grid_generation.

2.5 Spatial & environmental uncertainty

We calculated the spatial and environmental uncertainty for each grid system (Table 2; Fig. 2).

The spatial uncertainty is calculated as the half of the diagonal of a grid ( ); this
𝑟𝑒𝑠

𝑥
2+𝑟𝑒𝑠

𝑦
2

2

represents the maximum distance toward the center of a grid within that grid. The spatial

uncertainty is the same for all grids within a grid system. The environmental uncertainty can vary

by the environmental variable being considered, as well as the location of a grid. Here we used

NASA DEM elevation data (Crippen et al., 2016) with fine spatial resolution (30 meters) at

https://paperpile.com/c/01DVmA/PR6O
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global scale. The environmental uncertainty is calculated as the standard deviation of elevation

for each grid of the grid system. The spatial and environmental uncertainty were all

pre-calculated for the grid systems we compiled or simulated. We also developed a function

(assess_env_uncertainty) to calculate such uncertainty; this function is based on Google Earth

Engine API accessed through R.

2.6 Identify the grid system for unknown occurrences

We developed a function (grid_matching) to help identify whether an occurrence is from a grid

system, and which grid system is most likely to be the source of the occurrence (Table 2; Fig. 2).

The workflow is as following: 1) subset the grid systems to be checked based on the country

information provided by the user; 2) project the occurrences to the CRS of a grid system to be

checked; 3) calculate the pairwise distance between occurrences and centers of all grids of a grid

system; 4) for each occurrence, find the minimum distance toward a grid center and divided it by

the spatial uncertainty of the grid system; 5) loop through all grid systems, for each occurrence

find the grid system that is associated with smallest relative distance; 6) if the relative distance is

larger than a predefined threshold (e.g. 5% of the diagonal line of a grid or the maximum

distance between known gridded coordinates and grid centroids), then reach the conclusion that

the occurrence is not from a grid system; otherwise, conclude that the grid system with shortest

relative distance is the origin of an occurrence (Fig. 3).

3. Application
Case 1. Infer the metadata of a grid system

#1.1 Infer coordinate reference system

> remotes::install_github("BiogeographyLab/gridder")

> result_crs = infer_crs(occ_path=occs_unique,  #demo coordinates

+                                  truth_crs_num = "2154",#use true crs as a reference

+                                  cup_num =15)               #use more cpus
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> result_crs$selected[c("code","note")]

code                                  note

1     2154                                 truth

1336  2154                    RGF93 / Lambert-93

6350  5698 RGF93 / Lambert-93 + NGF-IGN69 height

6351  5699 RGF93 / Lambert-93 + NGF-IGN78 height

4355  3947                          RGF93 / CC47

4354  3946                          RGF93 / CC46

2944 30731       Nord Sahara 1959 / UTM zone 31N

3515 32431               WGS 72BE / UTM zone 31N

4353  3945                          RGF93 / CC45

4352  3944                          RGF93 / CC44

#1.2 Infer the spatial resolution

> input_occ = load_occ(occs_unique)

> input_occ_prj = sp::spTransform(input_occ,crs(paste0("+init=epsg:","2154")))

> result_res = infer_resolution(input_coord=input_occ_prj@coords,flag_unit="meter")

> print(result_res$res_x)

10000

> print(result_res$res_y)

10000

# 1.3 Infer the spatial extent

> result_ext = infer_extent(method = "crs_extent",

+              crs_grid = result_crs$selected$code[1],

+              flag_adjust_by_res = TRUE,

+              res_x = result_res$res_x,

+              res_y = result_res$res_y)

Case 2: Generation of a grid system based on metadata

> simulated_grid = grid_generation(res_x = result_res$res_x,

+                            res_y = result_res$res_y,

+                            unit = "m",

+                            flag_crs=TRUE,

+                            country = "France",

+                            extent_unit="empirical_occ_extent",

+                            input_extent=result_ext,

+                            flag_offset=c(0,-result_res$res_y*10,

+                                          result_res$res_x*10,0),

+                            crs_num = result_crs$selected$code[1],

+                            flag_maskByCountry = TRUE)

Case 3. Match occ dataset against known grid systems

> point_grid = input_occ[sample(1:length(input_occ),100),]

> point_nongrid = point_grid

> point_nongrid@coords = point_nongrid@coords + runif(100)

> point_all = rbind(point_grid,point_nongrid)
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>

> grid_metadata = data.frame(grid_ID=c("88"),

+                            resolution_x=c(10000),

+                            resolution_y=c(10000),

+                            resolution_unit=c("m")  )

>

> temp_result = grid_matching(input_occ = point_all,

+                             input_grid = simulated_grid,

+                             grid_metadata=grid_metadata,

+                             flag_relativeTHD = 0.1,

+                             flag_absoluteTHD = 10)

input 200 occ

checking 1 grid out of 1[1] 1

> table(temp_result@data$grid_closest_both)

grid_ID_88   notFound

100        100

4. Discussion

The software (GridDER) we developed here provides a potential solution for detecting and

evaluating gridded coordinates and grid systems that are broadly used in ecological and

biodiversity studies. We built upon a synthesis of grid systems used in biodiversity records and

developed a metadata standard to characterize grid systems with different spatial attributes.

When the metadata are partly or completely unknown, GridDER can be used to infer the spatial

attributes of a grid system, such as CRS and resolution, based on a dataset of coordinates. With

the metadata available, GridDER can be used to generate grid systems. The software (GridDER)

can also be used to assess the grid system that coordinates stem from, as well as to assess the

spatial and environmental uncertainty associated with gridded coordinates.

We envision this software can be used in a variety of scenarios. First, GridDER can be used by

dataset managers to simulate the original grid system of gridded coordinates, when the metadata

of the grid system is either partly or fully unknown or when the grid system is known but not

available in digitized format. During our review of duplicated coordinates from GBIF, we found
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multiple cases that documented metadata of a grid system (e.g. resolution) does not match the

spatial patterns inferred from the corresponding coordinates. This would be a case where

GridDER could be used by dataset managers to further validate the relevant grid systems.

Second, GridDER can be utilized at larger scales by biodiversity databases for data curation

purposes. Biodiversity databases can integrate digitized biodiversity collections with coordinates

of localities. We demonstrated that such aggregated information commonly includes gridded

coordinates, but the origin of the grid systems are not necessarily properly recorded. For

example, our review of duplicated coordinates from GBIF identified 107 datasets (Table S2) that

are enriched with gridded coordinates; those together correspond to over 261 million records (or

13.5% of GBIF records) (assessed on January 1, 2022). GridDER can be used to identify

coordinates that represent the centroids of cells in different grid systems. The identified grid

system can also be used to infer the potential spatial and environmental uncertainty associated

with the gridded coordinates. The inferred spatial uncertainty can be used to fill

coordinateUncertaintyInMetersProperty

(https://dwc.tdwg.org/terms/#dwc:coordinateUncertaintyInMeters), a field in Darwin Core (a

widely adopted metadata standard for biodiversity data; (Wieczorek et al., 2012)). Information

on the uncertainty of coordinates can also be reported in the specifics and/or metadata of species

distribution models and ecological niche models that make use of these data to ensure

reproducibility and accurate interpretation of results (Feng et al., 2019; Zurell et al., 2020). The

inferred spatial and environmental uncertainties can have important implications for studies that

utilize digitized biodiversity records. Third, in addition to the functions for grid simulation and

matching, another major component of GridDER is the data of known grid systems. GridDER

can be used to match coordinates that come from multiple datasets (or multiple grid systems) to

https://dwc.tdwg.org/terms/#dwc:coordinateUncertaintyInMeters
https://paperpile.com/c/01DVmA/pWhj
https://paperpile.com/c/01DVmA/yeWA+CYVj
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known gridded systems. This more likely represents a use case for individual users or individual

species, where the compiled coordinates may stem from multiple sources.
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Figure 1. Examples of four grid systems used in France (a), United Kingdom (b), South Africa

(c), and Australia (d). The four grid systems have different spatial solutions – 10km for (a), 1km

for (b), 5 arc-minute for (c), and 6 arc-minute for (d). The black points represent the biological

collections assigned to the centroid of the corresponding grid systems. All maps constructed

using WGS84.
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Figure 2. Overview of the workflow of grid detection and evaluation.
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Figure 3. Comparison between gridded and non-gridded coordinates. Panel a shows an example

of a grid system (1km resolution) used by the United Kingdom, where the gridded coordinates

are shown in black and non-gridded coordinates are shown in orange. Panel b shows the

histogram of the distances between gridded or non-gridded coordinates (~10,000) and nearest

grid centroids. The x-axis of panel b is log10 transformed.
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Table 1. Metadata format of grid systems

File name Note Example

grid_ID the ID of a registered grid system 2

ISO-3166 country name in ISO-3166 code, separated
by comma

FR

country_name country name France

crs_type (mandatory) either “EPSG” or “from_shapefile” EPSG

crs_code (mandatory) an EPSG code 2154

grid_name the name of a grid system Grille nationale
(10km x 10km)

resolution_x
(mandatory)

the resolution of the grid system along the
horizontal axis

10

resolution_y
(mandatory)

the resolution of the grid system along the
vertical axis

10

resolution_unit
(mandatory)

km, degree, minute, or second km

extent the spatial extent of a grid system "20000,6040000,131
0000,7130000"

extent_unit either “empirical_occ_extent”,
“crs_web_extent”, or “crs_countryPolygon”

empirical_occ_exten
t

path_demo_occ path of point dataset that is associated with a
grid system

"data/france_datasetI
D10/0068190-21091
4110416597.csv"

spatial_uncertainty_me
an_grid

the spatial uncertainty in meters calculated
from empirical gridded coordinates

4.349

spatial_uncertainty_me
an_nongrid

the spatial uncertainty in meters calculated
from empirical non-gridded coordinates (e.g.
iNaturalist)

3745.848
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Table 2. Overview of functions in gridder
Purpose New Name Functionality

internal function find_angle calculate angle between two points

internal function find_crs_extent automatically find the spatial extent of a coordinate
reference system from https://epsg.io

data prep load_occ transform a txt file (e.g. a dataset from GBIF in
DarwinCore format) that has decimalLongitude and
decimalLatitude into simplified spatially points

metadata
inference

infer_crs infer the coordinate reference system in which a set
of gridded coordinates were originally defined

metadata
inference

infer_resolution estimate the resolution (or regular spacing of input
coordinates) along horizontal and vertical axes,
based on distance to nearest neighbors along four
directions (i.e. up, down, left, right)

metadata
inference

infer_origin infer the origin a grid system while considering the
small uncertainty of the coordinates

metadata
inference

infer_extent infer the spatial extent of a grid system, based on
country polygons, coordinate reference system, or
input spatial point data

grid generation grid_generation generate a grid system based on user defined
attributes

grid matching grid_matching infer whether a coordinate is from a known grid
system, based on absolute and relative distance

grid adjustment grid_adjustment adjust the origin of a grid system to minimize the
mismatch between grid centroids and input
coordinates

uncertainty
assessment

assess_sp_uncer
tainty

assess the spatial uncertainty of a grid system, by
calculating the distance between grid centroids
toward gridded coordinates and non-gridded
coordinates (e.g. iNaturalist data)

uncertainty
assessment

assess_env_unce
rtainty

assess the environmental uncertainty of a grid
system, by calculating the variation of
environmental conditions (e.g. 30m elevation)
within each grid
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Data availability statement:

The software is available from Github: https://github.com/BiogeographyLab/gridder. The

compiled metadata of grid systems are available in Table S1. The DOIs of the coordinate datasets

assessed are available in Table S2.

Table S1. Metadata of grid systems

Table S2. Datasets from GBIF with gridded coordinates

https://github.com/BiogeographyLab/gridder

