
The role of climate change and niche shifts in divergent range1

dynamics of a sister-species pair2

Jeremy Summers1, Dieter Lukas2, Corina J. Logan2,3, Nancy Chen1
3

1University of Rochester, Rochester, NY, USA4

2Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany5

3 University of California Santa Barbara, Santa Barbara, USA6

1/26/20237

Abstract8

Species ranges are set by limitations in factors including climate tolerances, habitat use, and dispersal9

abilities. Understanding the factors governing species range dynamics remains a challenge that is ever10

more important in our rapidly changing world. Species ranges can shift if environmental changes affect11

available habitat, or if the niche or habitat connectivity of a species changes. We tested how changes in12

habitat availability, niche, or habitat connectivity could contribute to divergent range dynamics in a sister-13

species pair. The great-tailed grackle (Quiscalus mexicanus) has expanded its range northward from Texas14

to Nebraska in the past 40 years, while its closest relative, the boat-tailed grackle (Quiscalus major), has15

remained tied to the coasts of the Atlantic Ocean and the Gulf of Mexico as well as the interior of Florida.16

We created species distribution and connectivity models trained on citizen science data from 1970-197917

and 2010-2019 to determine how the availability of habitat, the types of habitat occupied, and range-wide18

connectivity have changed for both species. We found that the two species occupy distinct habitats and19

that the great-tailed grackle has shifted to occupy a larger breadth of urban, arid environments farther20

from natural water sources. Meanwhile, the boat-tailed grackle has remained limited to warm, wet, coastal21

environments. We found no evidence that changes in habitat connectivity affected the ranges of either22

species. Overall, our results suggest that the great-tailed grackle has shifted its realized niche as part of its23

rapid range expansion, while the range dynamics of the boat-tailed grackle may be shaped more by climate24

change. The expansion in habitats occupied by the great-tailed grackle is consistent with observations that25

species with high behavioral flexibility can rapidly expand their geographic range by using human-altered26

habitat. This investigation identifies how opposite responses to anthropogenic change could drive divergent27

range dynamics, elucidating the factors that have and will continue to shape species ranges.28

Introduction29

Species ranges determine the patterns of biodiversity across the world, shaping the environments different30

species encounter and the other species they can interact with (Gaston, 1996; 2003; Holt, 2003). We are31

still determining how abiotic and biotic factors limit species ranges (Buckley et al., 2018; Sirén & Morelli,32

2020; Paquette & Hargreaves, 2021) and to what degree a species is able to expand to new habitats (Holt,33

2003; Ralston et al., 2016). Within the limits that determine species ranges, many animal species today34

are experiencing massive declines due to loss of habitat (IUCN 2021). These declines have been linked to35

limitations in the ability of many species to change their realized niche, the range of habitats that these36

species occupy, despite movement to new geographic areas or environmental change (Holt & Gains, 1992;37

Wiens et al., 2010; Liu et al., 2020). The realized niche of a species is the result of environmental limitations38
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due to physiology and behavior, geographic limitations due to dispersal, and ecological limitations due to39

interspecific interactions. Together, these three limitations determine species ranges (Soberón et al., 2009).40

However, some species can change their realized niche through occupying novel environmental conditions, a41

process referred to as a niche shift (Guisan et al., 2014, Broennimann et al., 2007; Hill et al., 2017; Sherpa42

et al., 2019), potentially allowing them to expand their ranges while other species cannot (Holt & Gains,43

1992; Holt, 2003; Wiens et al., 2010). The factors that allow some species to shift their niche have remained44

difficult to identify (Wiens et al., 2010).45

A species expanding into new areas is assumed to have overcome some of the trade-offs or limitations that46

shape a species’ realized niche. Niche shifts can occur via physiological or behavioral changes, as well as47

interactions between these factors (Wiens et al. 2010). Physiological changes reflect evolutionary changes in48

the phenotypes of individuals, such as changes in body size or metabolic processes, through which individuals49

of a species can occupy different niches (Buckley et al., 2018). Such physiological changes often occur over50

longer time spans (Swanson & Garland, 2009), suggesting that fast expansions into new niches are presumably51

facilitated by already existing plasticity in physiological tolerances. One potential cause of niche shifts over52

shorter time spans is behavioral flexibility, the ability to change behavior when circumstances change (see53

Mikhalevich et al., 2017 for theoretical background on our flexibility definition) (Chow et al., 2016; Griffin54

& Guez, 2014; e.g., Lefebvre et al., 1997; Sol et al., 2002; 2005a; 2007; Sol & Lefebvre, 2000). This idea55

predicts that flexibility, exploration, and innovation facilitate the expansion of individuals into completely56

new areas and that the role of these characteristics diminishes after some number of generations (Wright et57

al., 2010). Experimental studies have shown that latent abilities are primarily expressed in a time of need58

(Auersperg et al., 2012; Bird & Emery, 2009; Laumer et al., 2018; Manrique & Call, 2011; e.g., Taylor et59

al., 2007). Therefore, we do not expect the founding individuals who initially dispersed out of their original60

range to have unique behavioral characteristics that are passed on to their offspring. Instead, the actual act61

of continuing a range expansion likely relies on flexibility, exploration, innovation, and persistence, and thus62

these behaviors should be expressed more on the edge of the expansion range where there have not been63

many generations to accumulate relevant knowledge about the environment (Sol et al., 2005b; Wright et al.,64

2010; Cohen et al., 2020; Nicolaus et al., 2022). There is also evidence that some species can behaviorally65

shift their niche in response to anthropogenic climate change or that they can expand their range by using66

human altered environments (Wong & Candolin, 2015; Wolff et al., 2020). Human-modified environments67

are increasing (Goldewijk, 2001; e.g., Liu et al., 2020; Wu et al., 2011), and species associated with these68

habitats show differences in their behavior (Chejanovski et al., 2017; e.g., Ciani, 1986; Federspiel et al.,69

2017).70

However, range dynamics are also influenced by factors beyond changes in the realized niche: environmental71

change leading to a recent increase in the amount of available habitat representing the current niche can facil-72

itate a geographic range expansion (Hanski & Gilpin, 1991; Wiens, 1997), and change in habitat connectivity73

can alter species range limits (Holt, 2003; Platts et al., 2019). A species may not need to be behaviorally74

flexible to move into new areas if it can continue to use the same habitats within its expanded range. For75

example, a species may expand its range because changes in climate have caused more geographic areas to76

fall within its niche or if previously isolated habitat patches become connected. Thus, it is important to77

identify how changes in the availability of habitats, the usage of different habitats, and habitat connectivity78

contribute to range shifts to understand whether niche shifts are truly happening and to identify potential79

causes of range shifts.80

Here we investigated the drivers of different range dynamics in two closely related grackle species, the81

great-tailed grackle (Quiscalus mexicanus) and boat-tailed grackle (Quiscalus major). These species offer82

an opportunity for simultaneous investigation of the roles of behavior and increased habitat availability in83

a rapidly increasing geographic range expansion. The great-tailed grackle has rapidly expanded its range84

northward over the course of the 20th century (Post et al., 1996; Wehtje, 2003), moving its northern range85

edge from Southern Texas to Nebraska (Fig 1B). In contrast, the boat-tailed grackle range has remained86

largely the same, with only minor changes to the northern edge of its range (Wehtje, 2003), despite both87

species having similar foraging habits and successfully using human-altered environments (Selander & Giller,88

1961; Post et al., 1996; Johnson & Peer, 2020). The great-tailed grackle is highly behaviorally flexible (Logan,89

2016a; Logan 2016b), similar to other species that successfully use human-altered environments (Wong &90

Candolin, 2015), but the behavioral flexibility of the boat-tailed grackle has not yet been assessed. Detailed91
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reports on the breeding ecology of these two species indicate that range expansion in the boat-tailed grackle92

but not the great-tailed grackle may be constrained by the availability of suitable nesting sites (Selander &93

Giller, 1961; Wehtje, 2003). Boat-tailed grackles may be limited by the need for coastal marshes or isolated94

groves near water for nesting sites (Post et al., 1996), while great-tailed grackles can nest in agricultural lands,95

marshes, and urban areas with vegetation and surface water (Johnson & Peer, 2020). Great-tailed grackles96

inhabit a wide variety of habitats (but not forests) at a variety of elevations (0-2134m), while remaining97

near water bodies. Boat-tailed grackles exist mainly in coastal areas (Selander & Giller, 1961). There is98

also evidence that great-tailed grackles have preferred different habitats over time and across their range.99

Ornithologists have recorded great-tailed grackles breeding primarily in natural and human-made wetlands,100

while those within the recently expanded range readily breed in urban parks (Wehtje, 2003). However, this101

apparent difference in niche has yet to be rigorously quantified.102

The range expansion in the great-tailed grackle and range stability in the boat-tailed grackle could be103

due to differences in realized niche change between these two closely related species. We characterized104

the historic (1970-1979) and current (2010-2019) realized niches of the great-tailed grackle and the boat-105

tailed grackle using species distribution models (SDMs) to test three hypotheses on the causes of range106

expansion in the great-tailed grackle and range stability in the boat-tailed grackle (Fig 1A). Hypothesis 1:107

change in habitat availability: The great-tailed grackle and the boat-tailed grackle use different habitats,108

and the suitable habitat of the great-tailed grackle, but not that of the boat-tailed grackle, has increased109

northward over the past few decades. We define habitat suitability in this paper as the predicted habitat110

suitability for occupancy by the focal species, habitat that is within the limits of tolerability of the climate111

and environmental factors as determined by the areas occupied by individuals of the species at a given time.112

Support for this hypothesis would indicate that the availability of habitat due to environmental change,113

not inherent species differences, explains why the great-tailed grackle has rapidly expanded its range while114

the boat-tailed grackle has not. Hypothesis 2: change in realized niche: Over the past few decades,115

the great-tailed grackle has expanded its realized niche, whereas the boat-tailed grackle continues to use116

the same limited habitat types. In other words, a niche shift, possibly due to changes in behavioral traits,117

facilitated the geographic range expansion of the great-tailed grackle. Hypothesis 3: changes in habitat118

connectivity: Species distribution models generally do not account for additional factors such as dispersal119

limitations due to landscape heterogeneity when estimating suitable habitat. Therefore, we conducted a120

separate analysis to examine possible changes in connected habitat due to environmental change. Support121

for this hypothesis would indicate that environmental change has facilitated the range expansion of the122

great-tailed grackle. Hypothesis 4: inherent species trait(s): Other species traits, such as demographic123

dynamics or dispersal physiology, limited the historic species range, resulting in no apparent environmental124

difference between the newly occupied and historically occupied ranges. Given this hypothesis, there are no125

changes in habitat availability, but both species have suitable but unoccupied habitat available to them. Only126

the great-tailed grackle is able to occupy additional habitat due to changes in the other traits or conditions127

that previously limited the species range, with the ongoing expansion reflecting the time-lag to reach new128

areas. This outcome would be consistent with the hypothesis that the original behavior of the great-tailed129

grackle, determined by inherent species traits, was already well adapted to facilitate a range expansion while130

the behavior of the boat-tailed grackle restricts it to its current range.131
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Figure 1. Comparison between the predicted patterns depending on the forces that facilitated range expansion and habitat133

suitability predicted by the species distribution models (SDMs) for the great-tailed grackle (GTGR) and boat-tailed grackle134

(BTGR). (A) The pairs of plots display the predictions for the historic and current models if increased suitable habitat135

(Hypothesis 1), expanded realized niche (Hypothesis 2), increased habitat connectivity (Hypothesis 3), or other inherent species136

trait(s) (Hypothesis 4) drove range expansion. (B) The suitable habitat predictions for the historic and current models based on137

environmental data from 1979 and 2019. We used the maximum-sensitivity-specificity thresholds for each model (great-tailed138

grackle current: 0.4440, boat-tailed grackle current: 0.4780, great-tailed grackle historic: 0.4635, boat-tailed grackle historic:139

0.3935) to assign habitat as suitable. The different colors in the great-tailed grackle map indicate that some environmental140

conditions within its 2019 expanded range were not found in its 1979 range. The arrows connect the species ranges to the most141

supported predicted range dynamics.142

We used ecological niche modeling to examine temporal habitat changes over these past four decades using143

observation data for both grackle species from existing citizen science databases. We determined the change144

in habitat availability using predictions produced by both our current and historic models for each species145

based on environmental data from 1979 and 2019 (Fig 2, Analysis 1). We also tested the ability of our146

current and historic models to predict species presence and absence using data from the opposite time147

period to validate the predicted changes in suitable habitat (Torres et al., 2015; Regos et al., 2018; Yates148

et al., 2018) (Analysis 1). Together, the components of Analysis 1 address Hypothesis 1 that environmental149

change could have led to the range dynamics seen in both species. Then, we compared how the importance150

and effect of environmental predictors (Analysis 2) and occupied environments changed between our current151

and historic models (Analysis 3). Analyses 2 and 3 both address Hypothesis 2, that changes in the types152

of habitat occupied could have led to the observed range dynamics. Finally, we used a circuit theory-153

based connectivity model to test for changes in habitat connectivity between 1979 and 2019 (Analysis 4),154
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which addresses Hypothesis 3, that changes in habitat connectivity caused by environmental change could155

have led to the observed range dynamics. Finally, the overall power of our analyses to predict the range156

dynamics of the great-tailed grackle addresses Hypothesis 4. If inherent species traits are a main component157

of the observed range dynamics, our species distribution and connectivity models should not be able to158

fully differentiate the realized niche and geographic areas occupied by the great-tailed grackle over time, as159

these models do not account for those traits. A range increase even though changes in the environment,160

realized niche of the great-tailed grackle, and landscape connectivity have not increased the geographic161

areas of suitable and accessible habitat over time would indicate that great-tailed grackles already had the162

inherent ability to occupy the newly inhabited areas. In combination, our analyses allowed us to investigate163

whether the range of the great-tailed grackle, but not the boat-tailed grackle, might have increased due to164

an increase in habitat availability, expansion of the realized niche of the great-tailed grackle, or changes in165

habitat connectivity.166

167

Figure 2. Overview of modeling approach and steps. The white boxes list the data used to generate the species distribution168

models (SDMs) and environments used for predicting habitat suitability. The overlap between shaded boxes indicates that a169

habitat suitability prediction was created using the overlapping species distribution model and environmental predictors. The170

arrows indicate the habitat suitability predictions used to create the connectivity models (see Methods for a detailed description171

of data sources and steps).172

Methods173

This article is the first of three articles that will be produced from a preregistration (http://corinalogan.174

com/Preregistrations/gxpopbehaviorhabitat.html) that passed pre-study peer review at Peer Community in175
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Ecology in 2020. The hypotheses, predictions, and methods in this manuscript come from the preregistration,176

and we detail all changes to the methods below.177

Preregistered Analysis Plan178

Response Variable: Presence/absence of great-tailed grackles and boat-tailed grackles179

Explanatory Variables180

1. Land cover (e.g., forest, urban, arable land, pastureland, wetlands, marine coastal, grassland, man-181

grove) - we chose these land cover types because they represent the habitat types in which both species182

exist, as well as habitat types (e.g., forest) they are not expected to exist in (Selander & Giller, 1961). If183

the suitable and unsuitable habitat of the great-tailed grackle agrees with these expectations, it is pos-184

sible that large forested areas are barriers for the range expansion of one or both species. We planned to185

download global land cover type data from MODIS (16 terrestrial habitat types) and/or the IUCN habi-186

tat classification (47 terrestrial habitat types). The IUCN has assigned habitat classifications for the187

great-tailed grackle (https://www.iucnredlist.org/species/22724308/132174807#habitat-ecology) and188

the boat-tailed grackle (https://www.iucnredlist.org/species/22724311/94859792#habitat-ecology);189

however, these classifications appear to be out of date, and we updated them for the purposes of this190

project.191

• Further details: We limited our study extent to the contiguous United States, which should192

not affect our investigation of distribution changes because the entire range of the boat-tailed193

grackle and the northern expanding edge of the great-tailed grackle range are both within the194

contiguous United States. We verified this assumption by comparing species distribution models195

using 2010-2019 observations and MODIS land cover data with and without the limited spatial196

extent. Restricting the training data to the contiguous United States caused no drop in the AUC197

when predicting habitat suitability within the US relative to the unrestricted model.198

• Deviations from the preregistered plan: We used the National Land Cover Database (NLCD)199

and historical land cover modeling data from Sohl et al., 2016 instead of MODIS for our land200

cover dataset because the former datasets have a greater temporal range. MODIS data exists for a201

continuous period of 2001-present, and could only be extended to 1993 using compatible data from202

the Global Land Cover Characterization (GLCC) land cover dataset. Using MODIS data would203

require limiting the temporal range of our study to 1993-present, yet the most rapid period of the204

great-tailed grackle expansion occurred from 1967-1977 (Wehtje, 2003). We initially proposed to205

use data from 1968-1970 for our historical model, and data from 2018 for our present-day model.206

Instead, we used land cover projections from Sohl et al., 2016 for our historical land cover data207

(1970-1979) and the NLCD (2011, 2013, 2016; and 2019) for our modern land cover data, which208

allowed us to model species distributions closer to our proposed temporal range. Both datasets209

use a modified version of the Anderson Land Classification System (Hardy & Anderson, 1973),210

share the same geographic extent, and are high resolution (250m and 30m, respectively). The211

land cover classification system includes classes for forests, urban areas, pasture and crop lands,212

wetlands, and grasslands.213

2. Elevation - Selander & Giller (1961) notes the elevation range for the great-tailed grackle (0-2134m),214

but not the boat-tailed grackle, therefore establishing that the current elevation ranges for both species215

may allow us to determine whether and which mountain ranges present range expansion challenges. We216

obtained elevation data from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010;217

Danielson & Gesch, 2011) available through USGS.218

3. Climate (e.g., daily/annual temperature range) - the great-tailed grackle was originally from the219

tropics (Wehtje, 2003), which generally have a narrow daily and annual climate range, and now exists in220

temperate regions, which have much larger climate ranges. Accordingly, the daily/annual temperature221

range could allow us to determine the role of potential climatic limits in explaining ranges and range222

changes for both species. If there are limits, climate conditions could inform the difference between the223

range expansion rates of the two species. We considered the 19 bioclimatic variables from WorldClim.224
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• Further details: We converted monthly climate data for each time period from WorldClim225

(Fick & Hijmans, 2017) into the set of 19 climate variables included in the BioClim dataset226

using the biovars function from the dismo package in R (Hijmans et al., 2017). We tested the227

19 BioClim variables across the ranges of both species for collinearity using the vifcor function228

from the usdm package in R (Naimi et al., 2014) with a correlation threshold of 0.7. For highly229

correlated variables, we excluded the variable with the greater variable inflation factor. Our final230

dataset included 7 climate variables: mean diurnal temperature range, maximum temperature of231

the warmest month, mean temperature of the wettest quarter, precipitation of the wettest month,232

precipitation of the driest month, and precipitation of the coldest quarter.233

4. Presence/absence of water in the cell for each point - both species are considered to be highly234

associated with water (e.g., Selander & Giller, 1961), therefore we identified how far from water each235

species can exist to determine whether it is a limiting factor in the range expansion of one or both236

species. We had planned to use data from USGS National Hydrography.237

• Further details: We separated the coastlines and bodies of freshwater due to the associations238

the boat-tailed grackle has with salt water (Post et al., 1996) and the great-tailed grackle has239

with freshwater (Selander & Giller, 1961).240

• Deviations from the preregistered plan: We used the river, lake, and coastline shapefiles241

from the Natural Earth database (http://www.naturalearthdata.com/) as the basis for water242

bodies instead of the USGS National Hydrography database. The USGS National Hydrography243

database does not differentiate between minor and major bodies of water, resulting in near-244

complete coverage of the contiguous US map with bodies of water. The Natural Earth database245

incorporates data on rivers and lakes from the North American Environmental Atlas at a 1:10246

million scale. The lower resolution data allowed for the computation of distances between the247

more than 1 million sample points and all water bodies. Natural Earth shapefiles have also been248

used in other SDMs to calculate distances to water bodies (Mi et al., 2017).249

5. Connectivity: We planned to use connectivity as the distance between points on the northern edge250

of the range to the nearest uninhabited suitable habitat patch to the north in 1970 compared with251

the same patches in ~2018. We identified the northern edge of the distribution based on reports252

on eBird.org from 1968-1970, which resulted in recordings of great-tailed grackles in 48 patches and253

recordings of boat-tailed grackles in 30 patches. For these patches, we calculated the connectivity (the254

least cost path) to the nearest uninhabited suitable habitat patch in 1970 and again in ~2018. Given255

that great-tailed grackles are not found in forests or beyond certain elevations (Selander & Giller,256

1961), large forests and high elevation geographic features could block or slow the expansion of one or257

both species into these areas and their surroundings. For each point, we planned to calculate the least258

cost path between it and the nearest location with grackle presence using the leastcostpath R package259

(Lewis, 2022). This approach would allow us to determine the costs involved in a grackle’s decision to260

fly around or over a mountain range/forest. We would define the forest and mountain ranges from the261

land cover and/or elevation maps.262

• Deviations from the preregistered plan: We did not include connectivity as an explanatory263

variable within our SDMs because we used a method for calculating connectivity that was de-264

pendent on the output of our SDMs. We quantified changes in connectivity using Circuitscape265

version 4.0.5 (Anatharaman et al., 2020), a method that uses electrical circuit theory, treating266

a landscape as an electrical circuit with different landscape features offering different levels of267

resistance. We created our resistance surfaces using the results of our SDMs, which is a common268

practice when experimental data on species movement through a landscape is not available (Beier269

et al., 2011; Justen et al., 2021; de Sousa Miranda et al., 2021). See the Analysis 4 section below270

for more details on our connectivity models.271

Species Distribution Models272
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One model, including all explanatory variables, was run for the great-tailed grackle and a separate model273

was run for the boat-tailed grackle. We planned to use the program MaxEnt (Phillips et al., 2008) to create274

the species distribution models. MaxEnt is a maximum entropy based software that compares environments275

between species presence and a set of background points to estimate habitat suitability (Phillips et al., 2008).276

For the explanatory variables, MaxEnt produces a continuous prediction of habitat suitability for each grid277

cell (0 is least suitable and 1 is most suitable). We planned to use MaxEnt followed by jackknifing procedures278

to evaluate the relative contribution/importance of different environmental variables to the probability of279

species occurrence. We planned to optimize the model by trying different regularization coefficient values,280

which controls how much additional terms are penalized (Maxent’s way of protecting against overfitting),281

and choosing the value that maximizes model fit. Most MaxEnt papers use cross-validation and the area282

under the curve (AUC) to evaluate model performance, and we planned to do the same.283

For all models we fit, we selected one presence and one absence from a 2.5 km hexagonal grid per week284

to geographically subsample the data and reduce imbalance in observation effort. We then separated the285

subsampled checklists into a set to train our model (80% of checklists) and a set for model validation (20%286

of checklists). We used a balanced random forest approach, in which absence points are selected at an287

equal frequency as presence points, thus addressing the imbalance in the ratio of presence and absence288

points (Strimas-Mackey et al., 2020). Random forests are machine learning algorithms that generate a large289

number of classification trees based on different subsets of the given data (Evans et al., 2011). Once all trees290

are generated, the average result is taken and used as the final classification method, which determines which291

environmental factors differentiate species presences from species absences. We accounted for stochasticity292

in the geographic subsampling, dataset separation, and balanced random forest processes by repeating model293

creation 10 times independently for each time period and species. We used the ranger package in R to create294

each model (Wright & Ziegler, 2017).295

We predicted habitat suitability across the contiguous United States using environmental data from 1979296

and 2019. We produced three types of predictions (contemporary predictions, forecasts, and backcasts)297

depending on whether the time period of the SDM matched the time period of the environmental data (Fig298

2). When the time periods matched, we produced contemporary predictions (e.g., predictions using the299

historic great-tailed grackle model with the 1979 environmental data). The predictions we made using the300

historic models and the 2019 environmental data were forecast predictions, and the predictions we made301

using the current model and the 1979 environmental data were backcast predictions. To standardize the302

predicted suitabilities, we set all effort covariates to the same values within the models of each species. We303

set the day of the year to April 1st, the observation time to maximize the encounter rate for each species (5304

AM for the boat-tailed grackle and 6 AM for the great-tailed grackle, based on most common observation305

times), observation duration to one hour, distance traveled to one km, and the number of observers to one.306

We present the average habitat suitability predicted by the 10 replicates of each model.307

• Deviations from the preregistered plan: We used a random forest model to estimate habitat308

suitability in place of Maxent due to the advantages offered by using presence-absence data instead309

of presence-background data. Presence-background data can only determine the habitat suitability310

of points relative to the background environment (Guillera-Arroita et al., 2014), thus the results of311

presence-background models such as Maxent cannot be compared between different environments due312

to the difference in backgrounds. This limitation of presence-background models makes them a poor fit313

for comparing range shifts over long periods of time (Sofaer et al., 2018). In contrast, presence-absence314

data allows relative likelihood to be proportional to the probability of occurrence so long as the sampling315

process is included within the model through effort covariates (Guillera-Arroita et al., 2015). Random316

forest models incorporate absence points and are similarly robust to limited sample sizes and against317

overfitting as are Maxent models (Elith & Graham, 2009; Evans et al., 2011; Mi et al 2017; Norberg318

et al., 2019). Random forest models have also been used to fit species distribution models based on319

citizen science data (Robinson et al., 2020), including in the best practices for eBird data (Strimas-320

Mackey et al., 2016). Johnston et al. (2021) directly compared Maxent and random forest models321

using eBird data and found that the random forest model that included effort covariates performed322

the best in terms of the AUC and Cohen’s Kappa. Cohen’s Kappa is a chance-corrected measurement323

of agreement between groups made by a classification system and a set of samples classified into real324
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values (Titus et al., 1984). We fit species distribution models based on the 2010-2019 data for the325

great-tailed grackle and the boat-tailed grackle using both random forest and Maxent and found that326

the random forest model outperformed the Maxent model based on AUC and kappa for both species.327

The data preparation methods have remained the same, and the models still output a continuous328

habitat suitability metric between 0 and 1 for each grid cell.329

Analysis instructions330

1. Download and preprocess eBird data. Conduct spatial filtering to account for sampling bias331

2. Clean the species occurrence data: remove any uncertain records or geographic outliers332

3. Import climactic variables from WorldClim and landscape data from MODIS and crop to region of333

interest334

4. Match environmental data to grackle occurrence records335

5. Fit models with maxent to get predicted distributions and estimate importance/contribution of each336

environmental variable337

We referred to Strimas-Mackey et al., (2020) best practices for using eBird data when extracting data on338

grackle presence in a region from eBird.org. We planned to gather environmental data from databases,339

including a database that maps global urban change from 1985-2015 to a high (30 m) resolution (Liu et al.,340

2020). We used a variety of R packages, including auk (Strimas-Mackey et al., 2018), dismo (Hijmans et341

al., 2017), raster (Hijmans, 2020), maptools (Bivand & Lewin-Koh, 2019), tidyverse (Wickham et al., 2019),342

rgdal (Bivand et al., 2019), rJava (Urbanek, 2020), and elevatr (Hollister & Tarak Shah, 2017).343

We used the R package auk (Strimas-Mackey et al., 2018) to download and process occurrence records for344

both the great-tailed grackle and the boat-tailed grackle from the citizen science project eBird (Sullivan345

et al., 2014), matching our preregistered analysis plan. We included only complete checklists to allow us346

to infer non-detections (Johnston et al., 2021). We filtered the selected checklists to only include those347

less than 5 hours long, less than 5 km in length, and with fewer than 10 observers, in accordance with348

recommendations from Strimas-Mackey et al. (2020). We also excluded presence points outside the current349

known range for either species (Johnson & Peer, 2020; Post et al., 1996). We kept all checklists within350

600 km of the remaining presence points to restrict our datasets to areas near the species ranges while351

including a wide area of environmental conditions. We also included information on the year of observation,352

day of the year, time of observation, distance traveled, observation duration, and number of observers as353

effort covariates for use in our SDMs. In total, we included 8,163 historic and 8,606,111 current great-tailed354

grackle checklists (with 502 and 519,082 great-tailed grackle observations, respectively) and 6,940 historic355

and 7,211,101 current boat-tailed grackle checklists (with 467 and 304,028 boat-tailed grackle observations,356

respectively). All species observation locations can be found in Supplementary Figure S1.357

• Deviations from preregistered plan: For our historic models, we used checklists from 1970-1979,358

and for the current models we used checklists from 2010-2019 (eBird Basic Dataset, Jan 2021) instead359

of 1960 and 2018, respectively. The temporal ranges for our dataset were selected for both sufficient360

sample size and overlap with the period of maximum great-tailed grackle range expansion (Wehtje,361

2003). To determine the minimum number of samples needed to make our present and historical models362

comparable, we created species distribution models using subsamples of the 2010-2019 eBird dataset363

with different numbers of positive observations. We found that retaining >= 300 observations allowed364

our models to have a ∆AUC of less than 0.1. Using this limit, we set the temporal range for our365

historical model to 1970-1979 because this range had > 300 observations of both species and captures366

the most rapid period of great-tailed grackle range expansion. We also limited our spatial extent to367

the contiguous United States to ensure consistent coverage of historic and current environmental data.368
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Analysis 1: habitat availability: Has the available habitat for both species increased over time? We fit369

species distribution models for both species in 1970 and in 2018 and determined for each variable, the range370

in which grackles were present (we define this area as the habitat suitability for each species). We then371

planned to take these variables and identify which locations in the Americas fall within the grackle-suitable372

ranges in 1970 and in 2018. We would then be able to compare the maps (1970 and 2018) to determine373

whether the amount of suitable habitat has increased or decreased. If we would be able to find data for these374

variables before 1970 across the Americas, we would additionally run models using the oldest available data375

to estimate the range of suitable habitat earlier in the great-tailed grackle range expansion period.376

• Final analysis: We used the discrimination ability of our SDMs as metrics for how accurately our377

models predict grackle-suitable habitat and whether one model could be used to predict suitable habitat378

in both the historic and current time periods for each species. We tested discrimination ability using379

the 20% of data excluded from the training set of each model. We measured Cohen’s Kappa and380

AUC for each model. We also used these metrics to quantify model transferability, the ability of a381

model to perform accurately using datasets independent of the training dataset. Model transferability382

has been used to measure the consistency of habitat associations over time (Torres et al., 2015; Wu383

et al., 2016; Regos et al., 2018). Low transferability would indicate that the backcast or forecast384

suitability predictions do not accurately represent the species range and that the relationship between385

occurrence probability and environmental predictors has changed. We used the 20% excluded from386

the opposite time period (1970-1979 for the current backcast and 2010-2019 for the historic forecast)387

model to test the transferability of our models over time. We also compared the geographic extents of388

suitable habitat based on the historic and current models for both species to determine whether the389

models agree on the range dynamics for their species (Fig 2). We used the sensitivity-specificity-sum-390

maximum threshold (Liu et al., 2005) to classify suitable habitat. We applied the suitability threshold391

to the contemporary prediction maps and the backcast/forecast prediction maps to generate predicted392

suitable habitat ranges in 1979 and 2019. We then mapped changes in habitat suitability classifications393

to determine the range dynamics predicted by each model.394

• Deviations from the preregistered plan: We predicted habitat suitability in 1979 and 2019 instead395

of 1970 and 2018 to line up with the most recent years within our historic and current datasets.396

Analysis 2: habitat associations: Does the range of variables that characterize suitable habitat for the397

great-tailed grackle differ from that of the boat-tailed grackle? We fit species distribution models for both398

species in 2018 to identify the variables that characterize suitable habitat. We planned to examine the raw399

distributions of these variables from known grackle occurrence points or extract information on how the400

predicted probability of grackle presence changes across the ranges for each habitat variable. The habitat401

variables for each species would be visualized in a figure that shows the ranges of each variable and how402

much the ranges of the variables overlap between the two species or not.403

• Final analysis: To determine changes in habitat associations over time, we quantified the importance404

of each environmental predictor using the Gini index and calculated the partial dependence of each405

model to the environmental predictors. The Gini index quantifies the classification information gained406

when a predictor was included in our random forests, with more informative predictors receiving greater407

values (Strimas-Mackey et al., 2020). We calculated partial dependence by averaging the predicted408

habitat suitability across 1000 randomly selected checklists in which one predictor was set to 1 of 25409

evenly spaced values across its observed range. We repeated the partial dependence calculation across410

all 25 values to create a partial dependence curve for every predictor. To compare partial dependence411

across predictors, we subtracted all partial dependence values by the minimum habitat suitability for412

each curve to obtain the marginal effect of each predictor.413

• Deviations from the preregistered plan: We did not compare the distribution of environmental414

values at observation points. Instead, we used predictor importance and the partial dependence of415

habitat suitability on each predictor because they are more informative metrics of habitat breadth.416

Predictor importance and the partial dependence of habitat suitability on each predictor take into417
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account differences in sampling effort across geographic areas and predictor covariation. Comparing418

the distribution of environmental values at observation points would not have accounted for these419

confounding effects and would not take full advantage of the information available through our SDMs.420

Analysis 3: habitat occupancy: Have the habitats occupied by both species changed over time? We421

planned to count the number of different land cover categories each species is or was present in during 1970422

and 2018. To determine whether land cover influences their distributions, we would calculate how much423

area in the Americas is in each land cover category, which would then indicate how much habitat is suitable424

(based solely on land cover) for each species.425

• Final analysis: We compared the proportion of observations located on each land cover class in426

addition to the number of different land cover classes that each species was observed on. Changes in427

the number of land cover classes either species was observed on would indicate that the species occupies428

novel habitat.429

We also performed a niche overlap test using the ecospat.niche.similarity.test function within the R pack-430

age ecospat (Broennimann et al., 2022). This function compares the environmental space occupied by the431

observed points for a species across two different time periods to determine if the differences in the environ-432

ments that the species are found in across these ranges differ significantly compared to a null space generated433

by simulations that randomly reassign observations to either time range. We generated the environmental434

space using a principal component analysis of the environmental predictors found at species occurrence points435

within both the historic and current time periods. We used the two principal components that explained the436

largest proportion of variation to create the environmental space because the ecospat.niche.similarity.test437

function is limited to two dimensions. We binned the first two principal components to create a 100x100438

grid of environmental predictor values, and we used 100 simulations to create our null expectations. Our439

two ranges were the historic and current datasets, and we ran the niche overlap test independently for each440

species. We quantified the niche overlap using Warren’s I (Warren et al., 2008, Broennimann et al., 2012),441

a commonly used metric of niche overlap that is calculated using the difference in the occupancy rate of442

grid cells within the environmental space (frequency of occurrences within each grid cell normalized by the443

frequency of observations). Lower values of Warren’s I indicate greater differences in the environmental444

space occupied by the species than expected by chance if the habitat usage for the species is the same across445

both time ranges. We used Warren’s I instead of the more common Schoerner’s D statistic, which Warren’s446

I is modified from, due to disagreements between these statistics in cases where the ranges compared are447

drastically different in size (Rödder & Engler, 2011). The historic and current range sizes for the great-tailed448

grackle differ greatly and could result in the Schoerner’s D statistic underestimating niche overlap within the449

simulations that form the null expectation we compare the observed overlap to. We used direct observations450

of each species, also known as ordinances, for our niche overlap test instead of the predicted suitability values451

from our SDMs because ordinance-based tests more accurately quantify niche overlap (Guisan et al., 2014).452

The niche overlap test excludes areas of niche space that were not sampled within one of the two ranges to453

avoid non-analogous comparisons.454

• Deviations from the preregistered plan: We compared species observations from 1970-1979 and455

2010-2019 instead of only using observations from 1970 and 2018 to use all available data. We also456

performed a niche overlap test to compare the observed differences in the environments of the historic457

and current ranges for each species to a null expectation. Significant differences between the observed458

habitat occupancy changes and the null expectation indicate that our focal species are occupying459

different habitats over time.460

Analysis 4: habitat connectivity: Has habitat connectivity for both species increased over time? If the461

connectivity distances are smaller in 2018, this would indicate that habitat connectivity has increased over462

time. We planned to calculate the least cost path from the northern edge to the nearest suitable habitat463

patch. To compare the distances between 1970 and 2018, and between the two species, we would run two464

models where both have the distance as the response variable and a random effect of location to match465
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the location points over time. The explanatory variable for model 1 would be the year (1970, 2018), and466

for model 2 the species (great-tailed grackle, boat-tailed grackle). If we were be able to find data for these467

variables before 1970 across the Americas, we would additionally run models using the oldest available data468

to estimate the range of connected habitat earlier in their range expansion.469

• Final analysis: We used Circuitscape version 4.0.5 (Anatharaman et al., 2020) to determine whether470

changes in access to habitat due to connectivity caused by environmental change could explain range471

shifts in the boat-tailed grackle or the great-tailed grackle. Circuitscape uses electrical circuit theory,472

treating a landscape as an electrical circuit with different landscape features offering different levels of473

resistance. We created our resistance surfaces using the results of our current SDMs, which is a common474

practice when experimental data on species movement through a landscape is not available (Beier et475

al., 2011; Justen et al., 2021; de Sousa Miranda et al., 2021). Because we used the current SDMs476

to create our resistance surfaces, our models tested whether environmental change has connected or477

isolated areas of suitable habitat given the current realized niche of the species. We converted habitat478

suitability to resistance using a negative exponential function because this function performs well for479

avian species (Trainor et al., 2012). Our final resistance surface had values ranging from 1 to 100,480

with 1 as the minimum resistance value. To calculate connectivity across the entire species range,481

we used a method that does not require a priori selection of habitat patches. This method uses482

randomly selected points, called nodes, as the locations where current enters and exits the resistance483

surface (Koen et al., 2014). Connectivity is measured as the current that travels through each cell484

when moving between these nodes. Current is elevated near the node locations, so we created a buffer485

surrounding the ranges for each species and selected random points from the perimeter of this buffer for486

our nodes in Circuitscape (Koen et al., 2014). The elevated connectivity values adjacent to the nodes487

thus existed outside of the species range, allowing the connectivity values within the species range488

to remain constant regardless of the location of the randomly selected nodes. The buffer removed489

the correlation between node location and connectivity values within the checklist ranges, resulting490

in connectivity values that were only dependent on the resistance map. We used a buffer that was491

600 km removed from the edge of the checklist ranges and used 18 randomly selected nodes. We then492

simulated current between each node using the pairwise function in Circuitscape and used the summed493

accumulated current as our metric of connectivity. We defined regions within the 75th percentile of494

the accumulated current values as high connectivity areas because the rank of suitability values, rather495

than the magnitude of suitability values, are the most transferable feature of SDMs (Guillera-Arroita496

et al., 2015). We chose the 75th percentile as our threshold based on Bonnin et al., (2020).497

• Deviations from the preregistered plan: We did not calculate the least cost path between habitat498

patches because we did not have experimental data on species movement nor did we have a priori suit-499

able habitat patches for either species. We used Circuitscape 4.0.5 instead to quantify the accumulated500

current as a measure of ease of movement through the landscape.501
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Results502
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Figure 3. Predicted suitability maps and discrimination ability of SDMs. (A) Maps display areas where predicted suitability504

is greater than the maximum-sensitivity-specificity thresholds for each model [great-tailed grackle (GTGR) current: 0.4440,505

boat-tailed grackle (BTGR) current: 0.4780, great-tailed grackle (GTGR) historic: 0.4635, boat-tailed grackle (BTGR) historic:506

0.3935]. Darker shaded regions are predictions made using the historic environment (historic and current backcast) and lighter507

regions are predictions made using the current environment (historic forecast and current). The northern edge of the boat-tailed508

grackle range is expanded in a map insert for clarity. Overall, the areas of lighter color indicate changes in habitat availability509
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from 1979-2019, as predicted by each model. (B) The ability of each model to predict the presence or absence of boat-tailed510

grackles (blues) or great-tailed grackles (reds) using Cohen’s kappa (agreement between presence or absence classification for511

model and true presence or absence) and AUC (area under the sensitivity-specificity curve). The models were tested using512

either test data excluded from the training data set (historic and current predictions) or test data from the opposing temporal513

period (backcast and forecast predictions). Error bars signify one standard deviation in the values across 10 replicates. The high514

values of the boat-tailed grackle historic, current backcast, and current, and the great-tailed grackle historic and current models515

indicate that these models are accurate, while the lower values of the boat-tailed grackle Historic Forecast and the great-tailed516

grackle historic forecast and current backcast models indicate that the boat-tailed grackle historic and the great-tailed grackle517

historic and current models have poor transferability.518

Hypothesis 1: Habitat Availability519

We compared how habitat availability has changed for the boat-tailed grackle and the great-tailed grackle520

by predicting habitat suitability across each species range using environmental data from 1979 and 2019521

(Analysis 1). We validated these predictions using presence-absence data set aside from the current and522

historic datasets. If habitat availability was an important factor in determining the range dynamics of either523

species, then the current models should be sufficient to predict the expected range dynamics, the current524

and historic models should agree on the locations of suitable habitat, and the current models should be525

transferable to the historic dataset. Alternatively, if changes in habitat associations or connectivity were526

important for the species range dynamics, the current and historic models should disagree and be mutually527

non-transferrable.528

Habitat availability for the boat-tailed grackle has remained the same across most of its range according to529

both the current and historic models, and the current model is highly transferable. The boat-tailed grackle530

remained restricted to the coasts of the Gulf of Mexico and Atlantic Ocean, but habitat suitability increased531

within the interior of Florida and on the northern edge of the species range, increasing the total suitable532

area from 180,406 km2 to 199,912 km2 in the historic model, and from 111,218 km2 to 163,243 km2 in the533

current model (Fig 3A; see Fig S2 for suitability values). The models disagreed on the northern extent of534

suitable habitat, with the historic model reaching the southern tip of Delaware, while the current model535

predicted that suitable habitat reached farther north to Long Island. The current model recreated existing536

species range definitions, including a known break in the species range on the western edge of the Florida537

panhandle (Post et al., 1996). The current model was also highly transferable, with little difference between538

the prediction accuracy using the current or historic datasets (∆Kappa = 0, ∆AUC = -0.026, Fig 3B),539

while the historic model had lower transferability (∆Kappa = -0.226, ∆AUC = -0.049). The accuracy of540

the current model indicates that environmental change is sufficient to predict changes in habitat suitability,541

and the low transferability of the historic model could be due to greater geographic bias caused by the542

smaller sample size (Fig S1). Our models agree with observations that the boat-tailed grackle range has543

remained largely stable except for an expansion along the northeastern coast of the US and suggest that544

habitat availability could play a role in the range dynamics of the boat-tailed grackle.545

Habitat availability for the great-tailed grackle has expanded, but the current and historical models disagree546

on the extent and location of this expansion and are mutually non-transferable. The historic model restricted547

the great-tailed grackle range to 198,175 km2 in southern Texas, matching previous reports of the species548

range in the 1970s (Wehtje, 2003), and predicted minor reductions in range to 181,281 km2 (Fig 3A, Fig S2).549

The current model instead predicted suitable habitat existed in both time periods across the known great-550

tailed grackle range expansion (Wehtje, 2003) in the central and southwestern US, with further expansions551

within central California, Colorado, Kansas, and southeastern Texas. Suitable habitat expanded from 322,750552

km2 in 1979 to 547,694 km2 in 2019, however this expansion included areas that were suitable within553

the historic model. Neither model had high transferability (current: ∆Kappa = -0.184, ∆AUC = -0.061;554

(historic: ∆Kappa = -0.203, ∆AUC = -0.177, Fig 3B). The disagreement between our models indicates that555

environmental change alone cannot explain the range expansion of the great-tailed grackle. Each model556

accurately predicted the species range within its own time period, but failed to predict the known changes in557

that range. Together, our models predict that the great-tailed grackle range has more than doubled in the558

past 40 years, but the habitat associations found in one time period are incapable of predicting the changes in559
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occupied habitat over time. These changing habitat associations could indicate that the great-tailed grackle560

is occupying novel habitat, either because the species can tolerate a wider variety of habitats or has overcome561

barriers such as dispersal barriers or temporal lag, the time required for populations of a species to establish562

in previously unoccupied suitable habitat (Essl et al., 2015).563

Hypothesis 2: Habitat Associations564

We compared the changes in habitat associations of boat-tailed grackles and great-tailed grackles by mea-565

suring the importance of each environmental predictor to the current and historic models for each species566

and quantifying the marginal effect that changing the value of these predictors had on habitat suitability.567

Differences in which predictors are most important or how predictors influence habitat suitability describe568

differences in the realized niches predicted by our models (Analysis 2). We also quantified how frequently569

each species was observed on different land cover classes between the current and historic datasets to test for570

changes in the breadth of land cover classes used by either species. Finally, we performed a niche similarity571

test to determine if the environments occupied by each species in the historic and current time periods are572

more different from each other than would be expected by chance (Analysis 3). Changes in the environments573

either species was observed on would indicate that the species has novel habitat associations in the current574

time period relative to the historic time period.575
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Figure 4. Importance of environmental predictors for the boat-tailed grackle (BTGR) and the great-tailed grackle (GTGR)577

historic and current species distribution models (SDMs). Relative predictor importance measures how informative the predictors578

were for classifying presence or absence points within each model (% total GINI index). The predictor colors indicate whether579

a predictor was a measure of climate (yellow), observer effort (red), distance to water (blue), land cover classification (green),580

or elevation (gray).581

The most important predictors for the current boat-tailed grackle model were mean temperature of the582

wettest quarter (accounting for 14.2% of the total average GINI index), elevation (11.8%), precipitation of583

the wettest month (9.1%), and deciduous forest land cover (8.4%; Fig 4). Habitat suitability increased as the584

mean temperature of the wettest quarter and precipitation of the wettest month increased and was highest585

when both elevation and deciduous forest land cover were close to zero (Fig 5; see Fig S3 for the full set of586
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partial dependence plots). Our model predicts that the ideal habitats for boat-tailed grackles are warm, low587

elevation habitats with high precipitation and low forest cover.588
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Figure 5. Partial dependence curves for the 12 most important environmental predictors across all boat-tailed grackle (BTGR)590

and great-tailed grackle (GTGR) models. The curves represent how changing each environmental predictor changes the en-591

counter rate for the modeled species. The historic models are represented by the darker dashed lines and the current models592

are represented by the lighter solid lines. Shaded regions indicate one standard deviation. The differences between the historic593

and current models for each species present how realized niches of each species as predicted by our models have changed.594

The historic model for the boat-tailed grackle disagreed on the importance and effect of only a few predictors,595

supporting consistent habitat usage in the species. Both the historic and current models placed high impor-596

tance on the mean temperature in the wettest quarter (12.4%; Fig 4), precipitation of the wettest month597

(12.4%), and deciduous forest cover (7.9%). However, the historic model prioritized the mean temperature of598

the driest quarter (9.7%, 5.8% in the current model) and not elevation (4.8%). Among these predictors, only599

the mean temperature of the driest quarter had a different effect in the historic model than in the current600

model (Fig 5). Habitat suitability increased as the mean temperature of the driest quarter increased in both601

models, but the current model predicted that suitability would decrease beyond the observed temperature602

range of the historic model. Differences between the historic and current models do not support a change in603

habitat associations of boat-tailed grackles over time.604

Boat-tailed grackles were found in every land cover class except deciduous forests and ice/snow in both605

the historic and current time periods. Boat-tailed grackles were found more often in urban areas in the606

current time period, and less often in the land cover class that was the second most common in the historic607

time period: woody wetlands (Fig S4). Boat-tailed grackles were also found less often in croplands, which608

corresponds with a decrease in croplands across the checklist range. We found no evidence of change in609

habitat occupancy based on land cover classes for boat-tailed grackles, agreeing with the results of our610

SDMs. The niche similarity test for the boat-tailed grackle did not find a significant difference in the611
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environmental space occupied by the boat-tailed grackle over time (Warren’s I = 0.647; p-value = 0.446, Fig612

S5B), which further supports the hypothesis that the boat-tailed grackle did not change the environments613

it occupies between the historic and current time periods.614

The most important predictors for the current great-tailed grackle model were maximum temperature of615

the warmest month (15.5%; Fig 4), mean temperature of the wettest quarter (15.3%), mean temperature616

in the driest quarter (7.2%), and distance to coasts (6.8%). Habitat suitability increased as the maximum617

temperature of the warmest month, mean temperature of the wettest quarter, and mean temperature of the618

driest quarter increased, while suitability was negatively related to the distance to coasts (Fig 5, Fig S3).619

Our model predicts that the ideal habitats for great-tailed grackles are warm areas not too far from coasts.620

The historic model for the great-tailed grackle disagreed on the importance and effect of several predictors,621

supporting a change in habitat associations. The historic model agreed with the current model on the high622

importance of the maximum temperature of the warmest month (9.8%, Fig 4) and mean temperature of the623

wettest quarter (17.0%). However, the historic model prioritized the precipitation in the driest month (9.9%624

vs. 5.9% in the current model) and the distance to fresh water (7.9% vs. 2.7% in the current model), and625

not the distance to coasts (4.5%) nor the mean temperature in the driest quarter (4.3%). Habitat suitability626

increased as precipitation in the driest month increased, while the current model predicted the opposite627

trend (Fig 5). Habitat suitability was also greatest near fresh water, while the current model predicted628

little effect of the distance to fresh water. The two models also disagree on which land cover class was most629

important for great-tailed grackles. Urban cover was most important for the current model (4.8% vs. 3.6%630

in the historic model), while grassland cover (4.7% vs. 1.5% in the current model) was most important631

for the historic model. While habitat suitability increased as urban cover increased for both models, the632

current model reached its maximum suitability by 25% urban cover, while the historic model did not reach633

similar suitability until almost 100% urban cover. The faster rate of suitability increase in the current model634

indicates that great-tailed grackles were found across a wide variety of urban habitats, from moderate to635

highly urbanized areas, while the historic model indicates that great-tailed grackles were preferentially found636

in highly urbanized habitat. Our models predict that the great-tailed grackle is currently found in more arid637

habitat with greater variability in urban cover than 40 years ago.638

Great-tailed grackles were found in every land cover class except deciduous forests, mixed forests, and639

ice/snow in the historic sample, and every land cover class except deciduous forests and ice/snow in the640

current sample. There were more great-tailed grackle observations in the current sample on urban areas,641

croplands, and grasslands and less observations in water, shrublands, pastures, and evergreen forests (Fig642

S4). While the most common land cover classes great-tailed grackles were found on had shifted, there was643

no evidence that great-tailed grackles expanded the breadth of land cover classes they could occupy. These644

results are consistent with our SDMs, which only found differences in the range of urban habitats that great-645

tailed grackles occupied.. The niche similarity test for the great-tailed grackle found a significant difference646

in the environmental space occupied by the great-tailed grackle over time (Warren’s I = 0.641; p-value =647

0.001, Fig S6B). The observed value for Warren’s I was lower than the simulated values, further supporting648

the hypothesis that the great-tailed grackle changed the environments it occupies between the historic and649

current time periods.650

Hypothesis 3: Connectivity651

To determine whether changes in connectivity between habitat patches caused by environmental change652

could explain the rapid expansion of the great-tailed grackle but not the boat-tailed grackle, we estimated653

the change in accumulated current across the range of each species between 1979 and 2019 (Analysis 4).654

Accumulated current summarizes the amount of movement through a cell, thus cells with higher current655

values are more suitable for movement and increase connectivity. We binned current values into high or low656

connectivity using the 75th percentile (Bonnin et al., 2020). Most cells within the 75th percentile of current657

values based on the 1979 resistance surface remained within the 75th percentile for both species. Decreases658

in the distances between patches of cells with high current between the two time periods would indicate that659

habitat connectivity has increased.660
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Connectivity decreased for the boat-tailed grackle along the interior portion of its range (farther from the661

coasts) in the southern Atlantic states and the southern coast of Texas (Fig S7). However, connectivity662

increased along the Florida panhandle, the northern coast of North Carolina, and the areas surrounding663

New York City (New York State, New Jersey, and Connecticut). There were no isolated patches of high664

connectivity for the boat-tailed grackle, and changes in connectivity did not connect or isolate any habitat665

patches. Our model does not predict major connectivity changes occurring across the range of the boat-tailed666

grackle.667

Connectivity decreased for the great-tailed grackle within the state of Arizona and along the northern extreme668

of the cells within the 75th percentile (Oregon, Nevada, Colorado, and Kansas). However, connectivity669

increased along the eastern extreme (Texas and Oklahoma) and the northern edges in Arizona and New670

Mexico (Fig S7). Only one region of high connectivity in Montana was isolated from the core of connected671

cells, and no areas became isolated or connected between 1979 and 2019. Similar to the boat-tailed grackle,672

our model does not predict major connectivity changes occurring across the range of the great-tailed grackle.673

Discussion674

We investigated how changes in habitat availability, habitat breadth, and connectivity relate to differential675

range dynamics in a sister-species pair. We found that the rapidly-expanding great-tailed grackle has in-676

creased the variety of occupied habitats in the past 40 years. The current realized niche of the great-tailed677

grackle contains more arid climate conditions and is less dependent on bodies of fresh water than in the past678

realized niche. We did not find evidence for an increase in the connectivity of previously isolated patches679

of suitable habitat. Overall, our results for the great-tailed grackle are consistent with hypothesis 2, that680

an expansion in the realized niche of the great-tailed grackle may have contributed to the geographic range681

expansion of the species (Fig 1). While this expansion might predate the period we investigated, which could682

be the case if these behavioral traits are part of the inherent repertoire of great-tailed grackles in line with683

hypothesis 4, the change in the range does not seem to reflect a lag to move into previously unoccupied684

habitat as the novel habitats the great-tailed grackle now occupies did exist within dispersal distance of the685

historic range for the species. In contrast, the boat-tailed grackle has remained within the same habitat686

conditions. Climate change in the northern extreme of the boat-tailed grackle range increased the area of687

predicted suitable habitat, matching observed expansions of the species in that area. Similar to the great-688

tailed grackle, we found no changes in connectivity. Accordingly, the range dynamics of the boat-tailed689

grackle match expectations based on changes in habitat availability, our hypothesis 1 (Fig 1).690

Our current boat-tailed grackle model is consistent with past work showing that boat-tailed grackles are691

highly restricted to coastal areas, and that an expansion into northern coastal areas could be due to climate692

changes. Boat-tailed grackles rarely occur far from saltwater in the northern portion of their range, but693

can nest inland across Florida (Selander & Giller, 1961; Post et al., 1996). Our current model recreated694

this distribution and predicted that elevation and distance to coastline were highly important environmental695

limitations. The historical model did not recreate the same high suitability within the interior of Florida696

and had both elevation and distance to coastlines as less important. However, our historic model also had697

lower transferability and could have reduced accuracy due to a low sample size, which can inflate the impact698

of geographic bias in samples (Elith et al., 2010; Anderson & Gonzalez, 2011; Guillera-Arroita et al., 2016;699

Yates et al., 2018). Our niche similarity test also supports consistent habitat use for the boat-tailed grackle700

in both time periods. Both SDMs predict increased suitability in the northern portion of the species range,701

which matches past observations (Selander & Giller, 1961) and general trends observed in several bird species702

that track their optimal conditions as anthropogenic climate change has altered environments (Vitousek et703

al., 1997; Thomas, 2010; Chen et al., 2011; Tomiolo & Ward, 2018).704

The changes in species range we found in the great-tailed grackle matched those predicted by previous705

researchers. Selander & Giller (1961) note that, along the northern range edge, great-tailed grackles have706

expanded into new arid prairie habitat but were highly restricted to human settlements and farms in these707

areas. Great-tailed grackles require access to open habitat and standing water across their range (Selander &708

Giller, 1961), and human land use change and irrigation could meet these needs. Our models did find higher709
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habitat suitability values for the great-tailed grackle close to bodies of freshwater in the historic but not the710

current time period, suggesting that great-tailed grackles occupy habitats farther from natural open water711

sources. The differences between the current and historic models were also supported by our niche similarity712

test, which indicated that great-tailed grackles occupied a significantly different area of environmental space713

in the current time period relative to the historic time period. The current great-tailed grackle model also714

predicted higher suitability in areas with more cropland and pasture, but neither land cover class had high715

predictor importance. Instead, precipitation in the wettest and driest months marked the greatest difference716

between the current and historic models. Wehtje (2003) proposed that lower nest predation and abundant717

food in human modified environments could allow the great-tailed grackle to support populations within718

otherwise suboptimal climate conditions. The great-tailed grackle could use the same land cover classes in719

both time periods, but current populations have novel or preexisting ways to use human altered environments720

to expand their realized climatic niche. It is possible that the fundamental niche of the great-tailed grackle721

has remained the same, while the realized niche has expanded due to anthropogenic environmental change.722

Our results show that the great-tailed grackle is currently found across a wider variety of broad-scale habitats723

than 40 years ago. Further work on local-scale habitat use across the range of the great-tailed grackle could724

explore the causes of the trend we have observed.725

It remains unclear why the great-tailed grackle has expanded its realized niche while the boat-tailed grackle726

has not. Both the boat-tailed grackle and the great-tailed grackle are highly adaptable species with similar727

foraging habits. Human-associated species like boat-tailed grackles and great-tailed grackles that use urban728

habitats are typically more behaviorally flexible and better suited to use new environments than other729

species (Sol et al., 2002; 2005; 2013; Wong & Candolin, 2015). There could be meaningful differences in the730

degree of flexibility between these species or other factors that limit the ability of the boat-tailed grackle731

to expand to new habitats. The greater nest-site specificity of the boat-tailed grackle could be a limiting732

factor, though nest-site plasticity does exist in the species (Post et al., 1996). Further studies are needed733

to compare ecologically relevant differences in flexibility, exploration, dispersal, and reproductive behaviors734

between these two species.735

Our results demonstrate vastly different niche dynamics within closely related species and illustrate the736

divergent responses species can have to anthropogenic change. The distinct niche dynamic of each species737

represents opposing responses to anthropogenic change: the boat-tailed grackle has shifted its range in738

response to climate change, while the rapidly expanding great-tailed grackle has acclimated to new climates739

possibly due to human land-use change. Species with similar responses to the boat-tailed grackle could be740

more vulnerable to future climate change (Thomas, 2010), while the great-tailed grackle parallels rapidly741

expanding introduced species, despite being native to North America (Peer, 2011). The expansion habitats742

used by the great-tailed grackle also confounds our ability to project how the species range will change in the743

future, and could have implications for a projected expansion in the common grackle (Quiscalus quiscalus,744

Capainolo et al., 2021). Evidence of bird species not following predicted range shifts in response to climate745

change is building, with many species becoming decoupled from previously identified climatic niches (Viana746

& Chase, 2022). Species appear to shift their ranges in ways that do not directly track the rapid changes in747

climate (Currie & Venne, 2016), potentially because the local climate shapes niches indirectly by leading to748

habitat changes that often can take many years to fully manifest (Neate-Clegg et al., 2020). Identifying the749

mechanism of range dynamics in both grackle species expands the knowledge of the complex and changing750

factors that shape species ranges globally.751

The high accuracy of our SDMs when cross validated on their own datasets and the transferability of the752

current boat-tailed grackle model support the use of SDMs as tools to study how species ranges change753

over time. While improving model transferability remains a challenge for SDMs (Vaughan & Ormerod,754

2005; Yates et al., 2018), using a combination of climate and land use data can improve model accuracy755

and transferability in some situations (Elith & Graham, 2009; Regos et al., 2019). Our results also stress756

the importance of testing model transferability before assuming niche conservatism for all species. While757

the niches of species commonly remain consistent (Liu et al., 2020), assuming species will retain their niche758

through time can limit the usefulness of SDMs. When model transferability is tested, SDMs become a more759

effective tool for studying species ranges to both understand fundamental questions in ecology and evolution760

and set conservation priorities in the face of ongoing anthropogenic changes (Elith et al., 2010; Grenoullet761

& Comte, 2014; Sofaer et al., 2018; Chen et al., 2018).762
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SDMs are accompanied by several limitations that are important to consider. SDMs are correlative in nature763

and are susceptible to biases in sample and parameter selection (Regos et al., 2019; Sofaer et al., 2018). Here,764

we used geographic undersampling and a balanced random forest design to reduce the impact of sampling765

bias and selected both climate and land cover parameters to include biologically relevant variables, but766

other potentially causative variables could remain. We note that our results capture correlations between767

species occurrence and environmental factors, and thus cannot determine a causal link between where either768

species is found and the environment. Habitat occupancy change could occur independently of environmental769

change, such as if all suitable sites were not yet occupied due to temporal lag. Increased occupancy as the770

species reaches already suitable sites would correlate with further environmental change and be captured by771

our species distribution models. Our models similarly cannot distinguish lagged responses to environmental772

trends that pre-date our dataset from responses to within-dataset trends. The temporal limits of our study773

could influence our results as the species ranges could react to changes beyond the scales we investigated.774

Environmental change that occurred before 1970 could have influenced the observed ranges of the species775

during 1970-1979 due to temporal lag in the species occupying areas within their fundamental niches. Because776

our models were trained on species occurrences, the niches described by our model depend on a combination777

of environmental factors that are physiologically or behaviorally favored by the species (the fundamental778

niche for the species), dispersal behavior and limitations, and biotic factors that influence where the two779

species will occur (Soberón & Nakamura, 2009). We included a broad set of climatic, land use, topographic,780

and hydrologic factors within our SDMs to capture the environmental factors that could influence occurrence,781

but these factors may be incomplete, or may be too coarse to capture local scale habitat use. Our connectivity782

analysis investigated whether environmental change could influence the dispersal limitations for either species,783

but assumed that dispersal ability and habitat use remained constant over time. Further work is needed to784

investigate variation in dispersal behavior within the great-tailed grackle and boat-tailed grackle to determine785

the possible influence of dispersal behavior in the range dynamics for both species (see Q1 and Q2 of Logan786

et al. (2021) for project proposals). Recent work promotes the inclusion of biotic factors in SDMs such as787

pathogen, predator, or competitor species because interspecific dynamics can play a major role in determining788

species ranges (Gaston, 2003; Paquette & Hargreaves, 2021; Stephan et al., 2021). Determining the relevant789

biotic factors for each species remains challenging, but future work could investigate how the presence of790

nest predators such as the fish crow (Corvus ossifragus), which overlaps in range with boat-tailed grackles791

but not great-tailed grackles (Post et al., 1996), could also prevent the boat-tailed grackle from expanding792

its range.793

In conclusion, this investigation found that across the range expansion of the great-tailed grackle, the species794

now occupies a wider variety of habitats than 40 years ago, while the boat-tailed grackle is found within795

the same habitats over time, even as environments have changed. Despite the many similarities between796

these two species, they occupy distinct niches and appear to have divergent responses to anthropogenic797

change. While the boat-tailed grackle range currently conforms to climate change, the great-tailed grackle798

has expanded across new human-altered environments. The potential causes for the observed widening of799

habitat use in the great-tailed grackle, but not the boat-tailed grackle, demand further investigation of the800

ecology, gene flow, and behavior of both species that could have created such different range dynamics. We801

encourage others to also consider behavior when attempting to understand what limits species ranges (e.g.,802

Greggor et al. 2016). Here we have detailed how environmental and habitat use change can play important803

roles in range expansions and range stability, and future work will elucidate the factors shaping species804

ranges in our rapidly changing world.805
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Supplemental Figures1075

BTGR Current GTGR Current

BTGR Historic GTGR Historic

1076

Figure S1. Map of observation locations for boat-tailed grackles (BTGR) or great-tailed grackles (GTGR) from historic1077

(1970-1979) and current (2010-2019) eBird records. These locations are filtered for record quality.1078
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Figure S2. Predicted habitat suitability using random forest models for boat-tailed grackles (BTGR) and great-tailed grackles1080

(GTGR). Brighter colors indicate higher habitat suitability. The presented results are the average of the 10 replicates.1081
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Figure S3. Partial dependence curves for environmental predictors across all models (boat-tailed grackle: BTGR; great-tailed1083

grackle: GTGR). The curves represent how changing each environmental predictor changes the encounter rate for the modeled1084
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species. The historic models are represented by the darker dashed lines and the current models are represented by the lighter1085

solid lines. Shaded regions indicate one standard deviation. The differences between the historic and current models for each1086

species present how the species niche has changed based on our models.1087
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Figure S4. Land cover classes with observations of boat-tailed grackles (BTGR) and great-tailed grackles (GTGR) in 1970-1089

1979 and 2010-2019 compared to the change in percent land cover area between each year range. The proportion of land cover1090

measures what percent of observations for each species were located on each land cover class in the corresponding time frame.1091

Both species were found more often in urban environments in the current time period, which also corresponds with a slight1092

increase in the urban background area. Both species were also found less often in their previously second most common land1093

cover type (woody wetland for boat-tailed grackles and shrubland for great-tailed grackles).1094
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1095

Figue S5. Results of the niche similarity test between the historic (1970-1979) and current (2010-2019) time periods for the1096

boat-tailed grackle. (A) Species occurrence points plotted along the first two principal component (PC) axes used for the niche1097

similarity test. The percent variance captured by each principal component is presented in the axis label. The black lines1098

expanding from the origin indicate the rotation values for the environmental predictors along the two principal components.1099

The current time period observations were randomly subsampled to 1000 points for visual clarity. (B) Values of Warren’s I from1100

the niche similarity test based on the observed data (solid line) and 100 simulations (histogram). Higher values of Warren’s I1101

indicate greater niche similarity. The p-value presented for the observed value is based on the null hypothesis that the observed1102

value presents equal or greater niche similarity than the simulations.1103
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Figue S6. Results of the niche similarity test between the historic (1970-1979) and current (2010-2019) time periods for the1105

great-tailed grackle. (A) Species occurrence points plotted along the first two principal component (PC) axes used for the niche1106

similarity test. The percent variance captured by each principal component is presented in the axis label. The black lines1107

expanding from the origin indicate the rotation values for the environmental predictors along the two principal components.1108

The current time period observations were randomly subsampled to 1000 points for visual clarity. (B) Values of Warren’s I from1109

the niche similarity test based on the observed data (solid line) and 100 simulations (histogram). Higher values of Warren’s I1110

indicate greater niche similarity. The p-value presented for the observed value is based on the null hypothesis that the observed1111

value presents equal or greater niche similarity than the simulations.1112
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1113

Figure S7. Change in connectivity between 1979 and 2019 measured as change in accumulated current for boat-tailed grackles1114

(BTGR) and great-tailed grackles (GTGR). Current values were divided into high and low categories based on whether the1115

values were above or below the 75th percentile of current values for each map. Colors indicate whether the current values1116

remained low between the two time steps (gray), went from high to low (magenta), went from low to high (blue), or remained1117

high (green). The darker gray color indicates areas outside the range where checklists were selected for each species, and were1118

excluded from the connectivity analysis. The regions that have remained highly connected are continuous for both species,1119

which indicates that changes in connectivity are not responsible for range changes in either species.1120
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