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Abstract8

Species ranges are set by limitations in climate tolerances, habitat use, and dispersal abilities. Understanding9

the factors governing species range dynamics remains a challenge that is ever more important in our rapidly10

changing world. Species ranges can shift if environmental changes affect available habitat, or if the habitat11

breadth or connectivity of a species changes. The ability of a species to rapidly expand their geographic12

range through changes in their habitat breadth, also known as niche shifts, has been linked to behavioral13

flexibility, the ability to change behavior when circumstances change. We tested how changes in habitat14

availability, habitat breadth, or habitat connectivity contributed to divergent range dynamics in a sister-15

species pair. The highly behaviorally flexible great-tailed grackle (Quiscalus mexicanus) has expanded its16

range northward from Texas to Nebraska in the past 40 years, while its closest relative, the boat-tailed17

grackle (Quiscalus major), has remained tied to the coasts of the Atlantic Ocean and the Gulf of Mexico.18

We created species distribution and connectivity models trained on citizen science data from 1970-197919

and 2010-2019 to determine how suitable habitat ranges,habitat breadth, and range-wide connectivity have20

changed for both species. We found that the two species occupy distinct habitats and that the habitat of the21

great-tailed grackle has shifted to include a larger breadth of urban, arid environments farther from natural22

water sources. Meanwhile, the boat-tailed grackle has remained limited to warm, wet, coastal environments.23

We found no evidence that changes in habitat connectivity affected the ranges of either species. Overall, our24

results suggest that a change in habitat breadth drove the rapid range expansion of the great-tailed grackle,25

while climate change shaped minor shifts in the available range of the boat-tailed grackle. The expansion in26

habitat breadth of the great-tailed grackle is consistent with observations that species with high behavioral27

flexibility can rapidly expand their geographic range by using human-altered habitat. This investigation28

identifies how opposite responses to anthropogenic change drive divergent range dynamics, elucidating the29

factors that have and will continue to shape species ranges.30

Introduction31

Species ranges determine the patterns of biodiversity across the world, shaping the environments species32

encounter and the other species they can interact with (Gaston, 1996; 2003; Holt, 2003). We are still33

determining how abiotic and biotic factors limit species ranges (Buckley et al., 2018; Sirén & Morelli, 2020;34

Paquette & Hargreaves, 2021) and to what degree species are able to expand to new habitats (Holt, 2003;35

Ralston et al., 2016). Within the limits that determine species ranges, many animal species today are36

experiencing massive declines due loss of habitat (IUCN 2021). These declines have been linked to a broad37

pattern of niche conservatism, where species remain restricted to their niche, here also referred to as habitat38

1



breadth, despite movement to new geographic areas or environmental change (Holt & Gains, 1992; Wiens39

et al., 2010; Liu et al., 2020).The ecological underpinnings of niche conservatism, and what factors allow40

some species to shift their niche, remain difficult to identify (Wiens et al., 2010). Theoretical models and41

empirical results point to population dynamics, gene flow, evolutionary trade-offs, and behaviors such as42

habitat choice as possible reasons that species do not adapt to new conditions and expand their ranges (Holt43

& Gains, 1992; Holt, 2003; Wiens et al., 2010). However, there are some examples of changes in the breadth44

of habitat that a species uses, known as niche shifts, driving species range expansions (Broennimann et al.,45

2007; Hill et al., 2017; Sherpa et al., 2019).46

Species expanding into new areas are assumed to have overcome some of the trade-offs or limitations that47

lead to niche conservatism. The causes of niche shifts can include behavioral flexibility, the ability to change48

behavior when circumstances change (see Mikhalevich et al., 2017 for theoretical background on our flexibility49

definition) (Chow et al., 2016; Griffin & Guez, 2014; e.g., Lefebvre et al., 1997; Sol et al., 2002; 2005; 2007;50

Sol & Lefebvre, 2000). This idea predicts that flexibility, exploration, and innovation facilitate the expansion51

of individuals into completely new areas and that their role diminishes after a certain number of generations52

(Wright et al., 2010). Experimental studies have shown that latent abilities are primarily expressed in a time53

of need (A. M. Auersperg et al., 2012; Bird & Emery, 2009; Laumer et al., 2018; Manrique & Call, 2011; e.g.,54

Taylor et al., 2007). Therefore, we do not expect the founding individuals who initially dispersed out of their55

original range to have unique behavioral characteristics that are passed on to their offspring. Instead, we56

expect that the actual act of continuing a range expansion relies on flexibility, exploration, innovation, and57

persistence, and that these behaviors are therefore expressed more on the edge of the expansion range where58

there have not been many generations to accumulate relevant knowledge about the environment. There59

is also evidence that some species can behaviorally shift their niche in response to anthropogenic climate60

change or can expand their range by using human altered environments (Wong & Candolin, 2015; Wolff et61

al., 2020). Human-modified environments are increasing (Goldewijk, 2001; e.g., Liu et al., 2020; Wu et al.,62

2011), and species associated with these habitats show differences in their behavior (Chejanovski et al., 2017;63

e.g., Ciani, 1986; Federspiel et al., 2017).64

However, range dynamics are also influenced by factors beyond niche: environmental change leading to a65

recent increase in the amount of available habitat can facilitate a geographic range expansion (Hanski &66

Gilpin, 1991; Wiens, 1997), and change in habitat connectivity can alter species range limits (Holt, 2003;67

Platts et al., 2019). A species may not need to be behaviorally flexible to move into new areas if they can68

continue to use the same types of habitat they are accustomed to. For example, a species may expand its69

range because changes in climate have caused more geographic areas to fall within its niche or if previously70

isolated habitat patches become connected. Thus, it is important to identify how changes in the availability of71

habitats, their habitat breadth, and the dispersal abilities of species contribute to range shifts to understand72

whether niche shifts are truly happening and to identify the underlying causes of range shifts.73

Here we investigated the drivers of different range dynamics in two closely related grackle species, the great-74

tailed grackle (Quiscalus mexicanus, hereafter GTGR) and boat-tailed grackle (Quiscalus major, hereafter75

BTGR). These species offer an opportunity for simultaneous investigation of the roles of behavior and in-76

creased habitat availability for a rapidly increasing geographic range expansion. GTGR has rapidly expanded77

its range northward over the course of the 20th century (Post et al., 1996; Wehtje, 2003), moving its north-78

ern range edge from Southern Texas to Nebraska (Fig 1B). In contrast, BTGR has experienced only minor79

changes to the northern edge of its range (Wehtje, 2003) despite both species having similar foraging habits80

and successfully using human-altered environments (Selander & Giller, 1961; Post et al., 1996; Johnson &81

Peer, 2020). Detailed reports on the breeding ecology of these two species indicate that range expansion in82

BTGR but not GTGR may be constrained by the availability of suitable nesting sites (Selander & Giller,83

1961; Wehtje, 2003). BTGR may be limited by the need for coastal marshes or isolated groves near water for84

nesting sites (Post et al., 1996), while GTGR can nest in agricultural lands, marshes, and urban areas with85

vegetation and surface water (Johnson & Peer, 2020). GTGR inhabits a wide variety of habitats (but not86

forests) at a variety of elevations (0-2134m), while remaining near water bodies, while BTGR exist mainly in87

coastal areas (Selander & Giller, 1961). There is also evidence that GTGR has preferred different habitats88

over time and across their range. Ornithologists have recorded GTGR breeding primarily in natural and89

human-made wetlands, while those within the recently expanded range readily breed in urban parks (Wehtje,90

2003). However, this apparent difference in habitat breadth has yet to be rigorously quantified.91
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The range expansion in GTGR and range stability in BTGR could be an example of a sister-species pair92

where one has shifted its niche while the other follows niche conservatism. We characterized the historic93

(1970-1979) and current (2010-2019) niches of GTGR and BTGR using species distribution models (SDMs)94

to test three predictions (Fig 1A): (1) changes in habitat availability: GTGR and BTGR use different95

habitats, and the habitat of GTGR, but not that of BTGR, has increased in suitability and connectivity96

over the past few decades. This supports both the hypothesis that the availability of habitat, not inherent97

species differences, explains why GTGR are able to much more rapidly expand their range than BTGR and98

the hypothesis that environmental change has facilitated the range expansion of GTGR. An alternative to99

this prediction is that there are no changes in habitat availability, but some inherent trait allows GTGR to100

expand even though both species have unused habitat available to them. This would support the hypothesis101

that the original behavior of GTGR was already well adapted to facilitate a range expansion. (2) changes102

in habitat breadth (i.e., niche): over the past few decades, GTGR has increased the habitat breadth that103

they can occupy, whereas BTGR continues to use the same limited habitat types. This would support the104

hypothesis that a niche shift, possibly due to changes in behavioral traits facilitated GTGR’s geographic105

range expansion. (3) changes in habitat connectivity: species distribution models generally do not account106

for additional factors such as dispersal limitations when estimating suitable habitat. Therefore, we plan to107

conduct a separate analysis to examine possible changes in connected habitat. This would again support the108

hypothesis that environmental change has facilitated the range expansion of GTGR.109

1979 2019

Prediction 1:
Increased Suitable Habitat

1979 2019

Prediction 2:
Increased Habitat Breadth

1979 2019

Prediction 3:
Increased Habitat Connectivity

1979 2019

Prediction 4:
Inherent Species Trait

A

1979 2019

BTGR

1979 2019

GTGRB

110

Figure 1. Comparison between the predicted patterns depending on the forces that facilitated range expansion and the habitat111

suitability predicted by the SDMs. (A) The pairs of plots display the predictions for the historic and current models if increased112

suitable habitat (P1), increased habitat breadth (P2), increased habitat connectivity (P3) or other inherent species trait(s) (P4)113
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drove range expansion. (B) The suitable habitat predictions for the historic and current models based on environmental data114

from 1979 and 2019. We used the maximum-sensitivity-specificity thresholds for each model (GTGR Current: 0.4440, BTGR115

Current: 0.4780, GTGR Historic: 0.4635, BTGR Historic: 0.3935) to assign habitat as suitable. The different colors in the116

GTGR map indicate that different environmental conditions existed within the 2019 expanded range that were not found in117

the 1979 range. The arrows connect the species ranges to the most supported predicted range dynamics.118

We used ecological niche modeling to examine temporal habitat changes over these past few decades using119

observation data for both grackle species from existing citizen science databases. We determined the change120

in habitat availability using predictions produced by both our current and historic models for each species121

based on environmental data from 1979 and 2019 (Fig 2). We also tested the ability of our current and122

historic models to predict species presence and absence using data from the opposite time period to validate123

the predicted changes in suitable habitat (Torres et al., 2015; Regos et al., 2018; Yates et al., 2018). Then, we124

compared how the importance and effect of environmental predictors and occupied land cover types changed125

between our current and historic models. Finally, we used a circuit theory-based connectivity model to126

test for changes in habitat connectivity between 1979 and 2019. In combination, our analysis allowed us to127

determine whether the range of GTGR, but not BTGR, might have increased due to an increase in habitat128

availability, connectivity, or occupancy of suitable habitat, or because GTGR, but not BTGR increased their129

habitat breadth through a niche shift.130

131

Figure 2. Overview of modeling approach and steps. The white boxes list the data used to generate the SDMs and environments132

used for predicting habitat suitability. The overlap between shaded boxes indicates that a habitat suitability prediction was133

created using the overlapping SDM and environmental predictors. The arrows indicate the habitat suitability predictions used134

to create the connectivity models (see Methods for a detailed description of data sources and steps).135
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Methods136

This article is the first of three articles that will be produced from a preregistration (http://corinalogan.137

com/Preregistrations/gxpopbehaviorhabitat.html) that passed pre-study peer review at Peer Community in138

Ecology in 2020. The hypotheses, predictions, and methods in this manuscript come from the preregistration,139

and we detail all changes to the methods below.140

Preregistered Analysis Plan141

Response Variable: Presence/absence of GTGR and BTGR142

Explanatory Variables143

1. Land cover (e.g., forest, urban, arable land, pastureland, wetlands, marine coastal, grassland, man-144

grove) - we chose these land cover types because they represent the habitat types in which both species145

exist, as well as habitat types (e.g., forest) they are not expected to exist in (Selander & Giller, 1961)146

to confirm that this is the case. If it is the case, it is possible that large forested areas are barri-147

ers for the range expansion of one or both species. We planned to download global land cover type148

data from MODIS (16 terrestrial habitat types) and/or the IUCN habitat classification (47 terrestrial149

habitat types). The IUCN has assigned habitat classifications to GTGR (https://www.iucnredlist.150

org/species/22724308/132174807#habitat-ecology) and BTGR (https://www.iucnredlist.org/species/151

22724311/94859792#habitat-ecology), however these appear to be out of date and we updated them152

for the purposes of this project.153

• Further details: We limited our study extent to the contiguous United States, which should not154

affect our investigation of distribution changes because the entire range of BTGR and the northern155

expanding edge of GTGR range are both within the contiguous United States. We verified this156

assumption by comparing species distribution models using 2010-2019 observations and MODIS157

land cover data with and without the limited spatial extent. Restricting the training data to the158

contiguous United States caused no drop in the AUC when predicting habitat suitability within159

the US relative to the unrestricted model.160

• Deviations from the preregistered plan: We used the National Land Cover Database (NLCD)161

and historical land cover modeling data from Sohl et al., 2016 instead of MODIS for our land162

cover dataset because the former datasets have a greater temporal range. MODIS data exists163

for a continuous period of 2001-present, and could only be extended to 1993 using compatible164

data from the Global Land Cover Characterization (GLCC) land cover dataset . Using MODIS165

data would require limiting the temporal range of our study to 1993, yet the most rapid period166

of GTGR expansion occurs from 1967-1977 (Wehtje, 2003). We initially proposed to use data167

from 1968-1970 for our historical model, and data from 2018 for our present-day model. However,168

instead, we used land cover projections from Sohl et al., 2016 for our historical land cover data169

and the NLCD (2011, 2013, 2016; and 2019) for our modern land cover data, which allowed170

us to model species distributions closer to our proposed temporal range. Both datasets use a171

modified version of the Anderson Land Classification System (Hardy & Anderson, 1973), share172

the same geographic extent, and are high resolution (250m and 30m, respectively). The land cover173

classification system includes classes for forests, urban areas, pasture and crop lands, wetlands174

and grasslands.175

2. Elevation - Selander & Giller (1961) notes the elevation range for GTGR (0-2134m), but not BTGR,176

therefore establishing the current elevation ranges for both species will allow us to determine whether177

and which mountain ranges present range expansion challenges. We obtained elevation data from178

the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010; Danielson & Gesch, 2011)179

available through USGS.180

3. Climate (e.g., daily/annual temperature range) - GTGR was originally from the tropics (Wehtje,181

2003), which generally have a narrow daily and annual climate range, and now exist in temperate182
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regions, which have much larger climate ranges. Accordingly, the daily/annual temperature range183

could allow us to determine the role of potential climatic limits in explaining ranges and range changes184

for both species. If there are limits, this could inform the difference between the range expansion rates185

of the two species. We considered the 19 bioclimatic variables from WorldClim.186

• Further details: We converted monthly climate data for each time period from WorldClim (Fick187

& Hijmans, 2017) into the set of 19 climate variables included in the BioClim dataset using the188

biovars function from the dismo package in R (Hijmans et al., 2017). We tested the 19 BioClim189

variables across the ranges of both species for collinearity using the vifcor function from the usdm190

package in R (Naimi et al., 2014) with a correlation threshold of 0.7. We excluded the variable with191

the greater variable inflation factor within overly correlated pairs, resulting in a set of 7 climate192

variables: mean diurnal temperature range, maximum temperature of the warmest month, mean193

temperature of the wettest quarter, precipitation of the wettest month, precipitation of the driest194

month, and precipitation of the coldest quarter.195

4. Presence/absence of water in the cell for each point - both species are considered to be highly196

associated with water (e.g., Selander & Giller, 1961), therefore we identified how far from water each197

species can exist to determine whether it is a limiting factor in the range expansion of one or both198

species. The data was planned to come from USGS National Hydrography.199

• Further details: We separated the coastlines and bodies of freshwater due to the associations200

BTGR has with salt water (Post et al., 1996) and GTGR has with freshwater (Selander & Giller,201

1961).202

• Deviations from the preregistered plan: We used the river, lake, and coastline shapefiles203

from the Natural Earth database (http://www.naturalearthdata.com/) as the basis for water204

bodies instead of the USGS National Hydrography database. The USGS National Hydrogra-205

phy database does not differentiate between minor and major bodies of water, resulting in near206

complete coverage of the contiguous US map with bodies of water. The Natural Earth database207

incorporates data on rivers and lakes from the North American Environmental Atlas at a 1:10208

million scale. The lower resolution data allowed for the computation of distances between the209

more than 1 million sample points and all water bodies. Natural Earth shapefiles have also been210

used in other SDMs to calculate distances to water bodies (Mi et al., 2017).211

5. Connectivity: Distance between points on the northern edge of the range to the nearest uninhabited212

suitable habitat patch to the north in 1970 compared with the same patches in ~2018. We identified213

the northern edge of the distribution based on reports on eBird.org from 1968-1970, which resulted214

in recordings of GTGR in 48 patches and recordings of BTGR in 30 patches. For these patches, we215

calculated the connectivity (the least cost path) to the nearest uninhabited suitable habitat patch in216

1970 and again in ~2018. Given that GTGR are not found in forests and that the elevation limits217

for GTGR (Selander & Giller, 1961), and observing the sightings of both species on eBird.org, large218

forests, tall mountain ranges and high elevation geographic features could block or slow the expansion219

of one or both species into these areas and their surroundings. For each point, we planned to calculate220

the least cost path between it and the nearest location with grackle presence using the leastcostpath221

R package (Lewis, 2022). This would allow us to determine the costs involved in a grackle deciding222

whether to fly around or over a mountain range/forest. We would define the forest and mountain223

ranges from the land cover and/or elevation maps.224

• Deviations from the preregistered plan: We did not include connectivity as an explanatory225

variable within our SDMs because we used a method for calculating connectivity that was de-226

pendent on the output of our SDMs. We quantified changes in connectivity using Circuitscape227

version 4.0.5 (Anatharaman et al., 2020), a method that uses electrical circuit theory, treating228

a landscape as an electrical circuit with different landscape features offering different levels of229

resistance. We created our resistance surfaces using the results of our SDMs, which is a common230

practice when experimental data on species movement through a landscape is not available (Beier231

et al., 2011; Justen et al., 2021; de Sousa Miranda et al., 2021). See the Analysis 4 section below232

for more details on our connectivity models.233
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Species Distribution Models234

One model, including all explanatory variables, was run for GTGR and a separate model wwas run for BTGR.235

For the explanatory variables, MaxEnt produces a continuous prediction of habitat suitability for each grid236

cell (0 is least suitable and 1 is most suitable). We planned to use MaxEnt and also use jackknifing procedures237

to evaluate the relative contribution/importance of different environmental variables to the probability of238

species occurrence. We planned to optimize the model by trying different regularization coefficient values,239

which controls how much additional terms are penalized (Maxent’s way of protecting against overfitting),240

and choosing the value that maximizes model fit. Most MaxEnt papers use cross-validation and the area241

under the curve (AUC) to evaluate model performance, and we planned to do the same.242

For every model we fit, we selected one presence and one absence from a 2.5 km hexagonal grid per week243

to geographically subsample the data and reduce imbalance in observation effort. We then separated the244

subsampled checklists into a set to train our model (80% of checklists) and a set for model validation245

(20% of checklists). We used a balanced random forest approach, where absence points are selected at an246

equal frequency as presence points, which addressed the imbalance in the ratio of presence and absence247

points (Strimas-Mackey et al., 2020). We accounted for stochasticity in the geographic subsampling, dataset248

separation, and balanced random forest processes by repeating model creation 10 times independently for249

each time period and species. We used the ranger package in R to create each model (Wright & Ziegler,250

2017).251

We predicted habitat suitability across the contiguous United States using environmental data from 1979252

and 2019. We produced three types of predictions (contemporary predictions, forecasts, and backcasts)253

depending on whether the time period of the SDM matched the time period of the environmental data254

(Fig 2). When the time periods matched, we produced contemporary predictions (e.g., predictions using255

the historic GTGR model with the 1979 environmental data). The predictions we made using the historic256

models and the 2019 environmental data were forecast predictions, and the predictions we made using the257

current model and the 1979 environmental data were backcast predictions. To standardize the predicted258

suitabilities, we set all effort covariates to the same values within the models of each species. We set the259

day of the year to April 1st, the observation time to maximize the encounter rate for each species (5 AM for260

BTGR and 6 AM for GTGR, based on most common observation times), observation duration to one hour,261

distance traveled to one km, and the number of observers to one. We present the average habitat suitability262

predicted by the 10 replicates of each model.263

• Deviations from the preregistered plan: We used a random forest model to estimate habitat264

suitability in place of Maxent due to the advantages offered by using presence-absence data instead265

of presence-background data. Presence-background data can only determine the habitat suitability266

of points relative to the background environment (Guillera-Arroita et al., 2014), thus the results of267

presence-background models such as Maxent cannot be compared between different environments due268

to the difference in backgrounds. This limitation of presence-background models makes them a poor fit269

for comparing range shifts over long periods of time (Sofaer et al., 2018). In contrast, presence-absence270

data allows relative likelihood to be proportional to the probability of occurrence so long as the sampling271

process is included within the model through effort covariates (Guillera-Arroita et al., 2015). Random272

forest models incorporate absence points and are similarly robust to limited sample sizes and against273

overfitting as are Maxent models (Elith & Graham, 2009; Evans et al., 2011; Mi et al 2017; Norberg et274

al., 2019). Random forest models have also been used to fit species distribution models based on citizen275

science data (Robinson et al., 2020), including in the best practices for eBird data (Strimas-Mackey et276

al., 2016). Johnston et al. (2021) directly compared Maxent and random forest models using eBird data277

and found that the random forest model that included effort covariates performed the best in terms278

of the AUC and Cohen’s Kappa. Cohen’s Kappa is a chance-corrected measurement of agreement279

between groups made by a classification system and a set of samples classified into real values (Titus et280

al., 1984). We fit species distribution models based on the 2010-2019 data for GTGR and BTGR using281

both random forest and Maxent and found that the random forest model outperformed the Maxent282

model based on AUC and kappa for both species. The data preparation methods have remained the283

same, and the models still output a continuous habitat suitability metric between 0 and 1 for each grid284

cell.285
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Analysis instructions286

1. Download and preprocess eBird data. Conduct spatial filtering to account for sampling bias287

2. Clean the species occurrence data: remove any uncertain records or geographic outliers288

3. Import climactic variables from WorldClim and landscape data from MODIS and crop to region of289

interest290

4. Match environmental data to grackle occurrence records291

5. Fit models with maxent to get predicted distributions and estimate importance/contribution of each292

environmental variable293

We refered to Strimas-Mackey M. et al., (2020) best practices for using eBird data when extracting data294

on grackle presence in a region from eBird.org. We planned to gather environmental data from databases,295

including a database that maps global urban change from 1985-2015 to a high (30 m) resolution (Liu et al.,296

2020). We usee a variety of R packages, including auk (M. Strimas-Mackey et al., 2018), dismo (Hijmans et297

al., 2017), raster (Hijmans, 2020), maptools (Bivand & Lewin-Koh, 2019), tidyverse (Wickham et al., 2019),298

rgdal (Bivand et al., 2019), rJava (Urbanek, 2020), and elevatr (Hollister & Tarak Shah, 2017).299

We used the R package auk (Strimas-Mackey et al., 2018) to download and process occurrence records for300

both GTGR and BTGR from the citizen science project eBird (Sullivan et al., 2014), matching our prereg-301

istered analysis plan. We included only complete checklists to allow us to infer non-detections (Johnston et302

al., 2021). We filtered the selected checklists to only include those less than 5 hours long, less than 5 km303

in length, and with fewer than 10 observers, in accordance with recommendations from Strimas-Mackey et304

al. (2020). We also excluded presence points outside the current known range for either species (Johnson305

& Peer, 2020; Post et al., 1996). We kept all checklists within 600 km of the remaining presence points to306

restrict our datasets to areas near the species ranges while including a wide area of environmental condi-307

tions. We also included information on the year of observation, day of the year, time of observation, distance308

traveled, observation duration, and number of observers as effort covariates for use in our SDMs. In total,309

we included 8,163 historic and 8,606,111 current GTGR checklists (with 502 and 519,082 GTGR observa-310

tions, respectively) and 6,940 historic and 7,211,101 current BTGR checklists (with 467 and 304,028 BTGR311

observations, respectively). All species observation locations can be found in Supplementary Figure S1.312

• Deviations from preregistered plan: For our historic models, we used checklists from 1970-1979,313

and for the current models we used checklists from 2010-2019 (eBird Basic Dataset, Jan 2021) instead of314

1960 and 2018, respectively. The temporal ranges for our dataset were selected for both sufficient sample315

size and overlap with the period of maximum GTGR range expansion (Wehtje, 2003). To determine316

the minimum number of samples needed to make our present and historical models comparable, we317

created species distribution models using subsamples of the 2010-2019 eBird dataset with different318

numbers of positive observations. We found that retaining >= 300 observations allowed our models319

to have a ∆AUC of less than 0.1. Using this limit, we set the temporal range for our historical model320

to 1970-1979 because this range had > 300 observations of both species and contains the most rapid321

period of GTGR range expansion. We also limited our spatial extent to the contiguous United States322

to ensure consistent coverage of historic and current environmental data.323

Analysis 1 (P1: habitat suitability): has the available habitat for both species increased over time?324

We fit species distribution models for both species in 1970 and in 2018 and determine for each variable, the325

range in which grackles are present (we define this as the habitat suitability for each species). Then planned326

to take these variables and identify which locations in the Americas fall within the grackle-suitable ranges in327

1970 and in 2018. We then be able to compare the maps (1970 and 2018) to determine whether the amount328

of suitable habitat has increased or decreased. If we would be able to find data for these variables before329

1970 across the Americas, we would additionally run models using the oldest available data to estimate the330

range of suitable habitat earlier in their range expansion.331
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• Final analysis: We included the discrimination ability of our SDMs as metrics for how accurately332

our models predict grackle-suitable habitat and whether one model could be used to predict suitable333

habitat in both the historic and current time periods for each species. We tested discrimination ability334

using the 20% of data excluded from the training set of each model. We measured Kappa and AUC335

for each model. We also used these metrics to quantify model transferability; the ability of a model336

to perform accurately using datasets independent of the training dataset. Model transferability has337

been used to measure the consistency of habitat preferences over time (Torres et al., 2015; Wu et al.,338

2016; Regos et al., 2018). Low transferability would indicate that the backcast or forecast suitability339

predictions do not accurately represent the species range and that habitat preference changes influenced340

the likelihood of occurrence. We used the 20% excluded from the opposite time period (1970-1979 for341

the current backcast and 2010-2019 for the historic forecast) model to test the transferability of our342

models over time. We also compared the geographic extents of suitable habitat based on the historic343

and current models for both species to determine whether the models agree on the range dynamics for344

their species (Fig 2). We used the sensitivity-specificity-sum-maximum threshold (Liu et al., 2005) to345

classify suitable habitat. We applied the suitability threshold to the contemporary prediction maps346

and the backcast/forecast prediction maps to generate predicted suitable habitat ranges in 1979 and347

2019. We then mapped changes in habitat suitability classifications to determine the range dynamics348

predicted by each model.349

• Deviations from the preregistered plan: We predicted habitat suitability in 1979 and 2019 instead350

of 1970 and 2018 to line up with the most recent years within our historic and current datasets.351

Analysis 2 (P1: different habitats): does the range of variables that characterize suitable habitat for352

GTGR differ from that of BTGR? We fit species distribution models for both species in 2018 to identify the353

variables that characterize suitable habitat. We planned to examine the raw distributions of these variables354

from known grackle occurrence points or extract information on how the predicted probability of grackle355

presence changes across the ranges for each habitat variable. The habitat variables for each species would356

be visualized in a figure that shows the ranges of each variable and how much the ranges of the variables357

overlap between the two species or not.358

• Final analysis: To determine changes in habitat preferences over time, we quantified the importance359

of each environmental predictor using the Gini index and calculated the partial dependence of each360

model to the environmental predictors. The Gini index quantifies the classification information gained361

when a predictor was included in our random forests, with more informative predictors receiving greater362

values (Strimas-Mackey et al., 2020). We calculated partial dependence by averaging the predicted363

habitat suitability across 1000 randomly selected checklists where one predictor was set to one of 25364

evenly spaced values across its observed range. We repeated the partial dependence calculation across365

all of the 25 values to create a partial dependence curve for every predictor. To compare partial366

dependence across predictors, we subtracted all partial dependence values by the minimum habitat367

suitability for each curve to obtain the marginal effect of each predictor.368

• Deviations from the preregistered plan: We did not compare the distribution of environmental369

values at observation points. Instead, we used predictor importance and the partial dependence of370

habitat suitability on each predictor because they are more informative metrics of habitat breadth.371

Predictor importance and the partial dependence of habitat suitability on each predictor take into372

account differences in sampling effort across geographic areas and predictor covariation. Comparing373

the distribution of environmental values at observation points would not have accounted for these374

confounding effects and would not take full advantage of the information available through our SDMs.375

Analysis 3 (P2: habitat breadth): has the habitat breadth of both species changed over time? We376

planned to count the number of different land cover categories each species is or was present in for 1970377

and 2018. To determine whether this influences their distributions, we would calculate how much area in378

the Americas is in each land cover category, which would then indicate how much habitat is suitable (based379

solely on land cover) for each species.380
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• Final analysis: We compared the proportion of observations located on each land cover class in381

addition to the number of different land cover classes that each species was observed on. Changes382

in the number of land cover classes either species was observed on would indicate that the habitat383

breadth had expanded, while changes in the frequency of land cover classes would indicate changes in384

the preference for different land cover classes.385

• Deviations from the preregistered plan: We compared species observations from 1970-1979 and386

2010-2019 instead of only using observations from 1970 and 2018 to use all data available.387

Analysis 4 (P3: habitat connectivity): has the habitat connectivity for both species increased over388

time? If the connectivity distances are smaller in 2018, this would indicate that habitat connectivity has389

increased over time. We planned to calculate the least cost path from the northern edge to the nearest390

suitable habitat patch. To compare the distances between 1970 and 2018, and between the two species,391

we would run two models where both have the distance as the response variable and a random effect of392

location to match the location points over time. The explanatory variable for model 1 will be the year (1970,393

2018), and for model 2 it would be the species (GTGR, BTGR). If we would be able to find data for these394

variables before 1970 across the Americas, we would additionally run models using the oldest available data395

to estimate the range of connected habitat earlier in their range expansion.396

• Final analysis: We used Circuitscape version 4.0.5 (Anatharaman et al., 2020) to determine whether397

changes in access to habitat due to connectivity could explain range shifts in BTGR or GTGR. Cir-398

cuitscape uses electrical circuit theory, treating a landscape as an electrical circuit with different land-399

scape features offering different levels of resistance. We created our resistance surfaces using the results400

of our SDMs, which is a common practice when experimental data on species movement through a401

landscape is not available (Beier et al., 2011; Justen et al., 2021; de Sousa Miranda et al., 2021). We402

converted habitat suitability to resistance using a negative exponential function because this function403

performs well for avian species (Trainor et al., 2012). Our final resistance surface had values ranging404

from 1 to 100, with 1 as the minimum resistance value. To calculate connectivity across the entire405

species range, we used a method that does not require a priori selection of habitat patches. Connec-406

tivity estimates are more dependent on node location when close to a node, so we created a buffer407

surrounding the ranges for each species and selected random points from the perimeter of this buffer408

for our nodes in Circuitscape (Koen et al., 2014). The buffer removed the correlation between node409

location and connectivity values within the checklist ranges, resulting in connectivity values that were410

only dependent on the resistance map. We used a buffer that was 600 km removed from the edge of the411

checklist ranges and used 18 randomly selected nodes. We then simulated current between each node412

using the pairwise function in Circuitscape and used the summed accumulated current as our metric413

of connectivity. We defined regions within the 75th percentile of the accumulated current values as414

high connectivity areas because the rank of suitability values, rather than the magnitude of suitability415

values, are the most transferable feature of SDMs (Guillera-Arroita et al., 2015). We chose the 75th416

percentile as our threshold based on Bonnin et al., (2020).417

• Deviations from the preregistered plan: We did not calculate the least cost path between habitat418

patches because we did not have experimental data on species movement nor did we have a priori suit-419

able habitat patches for either species. We used Circuitscape 4.0.5 instead to quantify the accumulated420

current as a measure of ease of movement through the landscape.421
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Results422
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Figure 3. Predicted suitability maps and discrimination ability of SDMs. (A) Maps display areas where predicted suitability424

is greater than the maximum-sensitivity-specificity thresholds for each model (GTGR Current: 0.4440, BTGR Current: 0.4780,425

GTGR Historic: 0.4635, BTGR Historic: 0.3935). Darker shaded regions are predictions made using the historic environment426

(Historic and Current Backcast) and lighter regions are predictions made using the current environment (Historic Forecast and427

Current). The northern edge of BTGR range is expanded in a map insert for clarity. Overall, the areas of lighter color indicate428

changes in habitat availability from 1979-2019, as predicted by each model. (B) The ability of each model to predict the presence429
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or absence of BTGR (blues) or GTGR (reds) using Cohen’s kappa (agreement between presence or absence classification for430

model and true presence or absence) and AUC (area under the sensitivity-specificity curve). The models were tested using431

either test data excluded from the training data set (historic and current predictions) or test data from the opposing temporal432

period (backcast and forecast predictions). Error bars signify one standard deviation in the values across 10 replicates. The433

high values of BTGR Historic, Current Backcast, and Current, and GTGR Historic and Current indicate that these models434

are accurate, while the lower values of BTGR Historic Forecast and GTGR Historic Forecast and Current Backcast indicate435

BTGR Historic and GTGR Historic and Current models have poor transferability.436

Habitat Availability437

We first compared how habitat availability has changed for BTGR and GTGR by predicting habitat suitabil-438

ity across each species range using environmental data from 1979 and 2019. We validated these predictions439

using presence-absence data set aside from the current and historic datasets. If habitat availability was the440

most important factor in determining the range dynamics of either species, then the current models should441

be sufficient to predict the expected range dynamics, the current and historic models should agree on the442

locations of suitable habitat, and the current models should be transferable to the historic dataset. Alter-443

natively, if changes in habitat preference or connectivity were important for the species range dynamics, the444

current and historic models should disagree and be mutually non-transferrable.445

Habitat availability for BTGR has remained the same across most of its range according to both the current446

and historic models, and the current model is highly transferable. BTGR remained restricted to the coasts447

of the Gulf of Mexico and Atlantic Ocean, but habitat suitability increased within the interior of Florida and448

on the northern edge of the species range, increasing the total suitable area from 180,406 km2 to 199,912449

km2 in the historic model, and from 111,218 km2 to 163,243 km2 in the current model (Fig 3A; see Fig S2450

for suitability values). The models disagreed on the northern extent of suitable habitat, with the historic451

model reaching the southern tip of Delaware, while the current model predicted that suitable habitat reached452

farther north to Long Island. The current model recreated existing species range definitions, including a453

known break in the species range on the western edge of the Florida panhandle (Post et al., 1996). The454

current model was also highly transferable, with little difference between the prediction accuracy using the455

current or historic datasets (∆Kappa = 0, ∆AUC = -0.026, Fig 3B), while the historic model had lower456

transferability (∆Kappa = -0.226, ∆AUC = -0.049). The accuracy of the current model indicates that457

environmental change is sufficient to predict changes in habitat suitability, and the low transferability of the458

historic model could be due to greater geographic bias caused by the smaller sample size (Fig S1). Our models459

show that the BTGR range has remained largely stable except for an expansion along the northeastern coast460

of the US and that habitat availability was likely the major driver of range dynamics in BTGR.461

Habitat availability for GTGR has expanded, but the current and historical models disagree on the extent462

and location of this expansion and are mutually non-transferrable. The historic model restricted the GTGR463

range to 198,175 km2 in southern Texas, matching previous reports of the species range in the 1970s (Wehtje,464

2003), and predicted minor reductions in range to 181,281 km2 (Fig 3A, Fig S2). The current model instead465

predicted suitable habitat existed in both time periods across the known range expansion of GTGR (Wehtje,466

2003) in the central and southwestern US, with further expansions within central California, Colorado,467

Kansas, and southeastern Texas. Suitable habitat expanded from 322,750 km2 in 1979 to 547,694 km2 in468

2019, however this expansion included areas that were suitable within the historic model. Neither model469

had high transferability (current: ∆Kappa = -0.184, ∆AUC = -0.061; (historic: ∆Kappa = -0.203, ∆AUC470

= -0.177, Fig 3B). The disagreement between our models indicates that environmental change alone cannot471

explain the range expansion of GTGR. Each model accurately predicted the species range within its own472

time period, but failed to predict the known changes in that range. Together, our models predict that the473

GTGR range has more than doubled in the past 40 years, but indicate that changes to habitat preferences474

or connectivity likely played a larger role than habitat availability in shaping range dynamics.475
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Habitat Preferences476

We next compared the changes in habitat preferences of BTGR and GTGR by measuring the importance of477

each environmental predictor to the current and historic models for each species and quantifying the marginal478

effect that changing the value of these predictors had on habitat suitability. Differences in which predictors479

are most important or how predictors influence habitat suitability describe differences in the niches predicted480

by our models. We also quantified how frequently each species was observed on different land cover classes481

between the current and historic datasets to test for changes in the breadth of land cover classes used by482

either species.483

BTGR Historic BTGR Current GTGR Historic GTGR Current
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Figure 4. Importance of environmental predictors for BTGR and GTGR historic and current SDMs. Relative predictor485

importance measures how informative the predictors were for classifying presence or absence points within each model (% total486

GINI index). The predictor colors indicate whether a predictor was a measure of climate (yellow), observer effort (red), distance487

to water (blue), land cover classification (green), or elevation (gray).488

The most important predictors for the current BTGR model were mean temperature of the wettest quarter489

(accounting for 14.2% of the total average GINI index), elevation (11.8%), precipitation of the wettest month490

(9.1%), and deciduous forest land cover (8.4%; Fig 4). Habitat suitability increased as the mean temperature491

of the wettest quarter and precipitation of the wettest month increased and was highest when both elevation492

and deciduous forest land cover were close to zero (Fig 5; see Fig S3 for the full set of partial dependence493

plots). Our model indicates that the ideal habitats for BTGR are warm, low elevation habitats with high494

precipitation and low forest cover.495
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Figure 5. Partial dependence curves for the 12 most important environmental predictors across all models. The curves497

represent how changing each environmental predictor changes the encounter rate for the modeled species. The historic models498

are represented by the darker dashed lines and the current models are represented by the lighter solid lines. Shaded regions499

indicate one standard deviation. The differences between the historic and current models for each species present how the500

species niche has changed based on our models.501

The historic model for BTGR disagreed on the importance and effect of few predictors, supporting niche502

conservatism in the species. Both the historic and current models placed high importance on the mean503

temperature in the wettest quarter (12.4%; Fig 4), precipitation of the wettest month (12.4%), and deciduous504

forest cover (7.9%). However, the historic model prioritized the mean temperature of the driest quarter (9.7%,505

5.8% in the current model) and not elevation (4.8%). Among these predictors, only the mean temperature506

of the driest quarter had a different effect in the historic model than in the current model (Fig 5). Habitat507

suitability increased as the mean temperature of the driest quarter increased in both models, but the current508

model predicted that suitability would decrease beyond the observed temperature range of the historic model.509

Differences between the historic and current models do not indicate that the habitat preferences of BTGR510

have changed over time.511

BTGR was found in every land cover class except deciduous forests and ice/snow in both the historic and512

current time periods. BTGR was found more often in urban areas in the current time period, and less often513

in the land cover class that was the second most common in the historic time period: woody wetlands (Fig514

S4). BTGR was also found less often in croplands, which corresponds with a decrease in croplands across515

the checklist range. We found no evidence of any change in habitat breadth based on land cover classes for516

BTGR, agreeing with the results of our SDMs.517

The most important predictors for the current GTGR model were maximum temperature of the warmest518

month (15.5%; Fig 4), mean temperature of the wettest quarter (15.3%), mean temperature in the driest519

quarter (7.2%), and distance to coasts (6.8%). Habitat suitability increased as the maximum temperature of520
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the warmest month, mean temperature of the wettest quarter, and mean temperature of the driest quarter521

increased, while suitability was negatively related to the distance to coasts (Fig 5, Fig S3). Our model522

indicates that the ideal habitats for GTGR are warm areas not too far from coasts.523

The historic model for GTGR disagreed on the importance and effect of several predictors, supporting a524

niche shift for the species. The historic model agreed with the current model on the high importance of the525

maximum temperature of the warmest month (9.8%, Fig 4) and mean temperature of the wettest quarter526

(17.0%). However, the historic model prioritized the precipitation in the driest month (9.9% vs. 5.9% in the527

current model) and the distance to fresh water (7.9% vs. 2.7% in the current model), and not the distance528

to coasts (4.5%) nor the mean temperature in the driest quarter (4.3%). Habitat suitability increased as529

precipitation in the driest month increased, while the current model predicted the opposite trend (Fig 5).530

Habitat suitability was also greatest near fresh water, while the current model predicted little effect of531

the distance to fresh water. The two models also disagree on which land cover class was most important532

for GTGR. Urban cover was most important for the current model (4.8% vs. 3.6% in the historic model),533

while grassland cover (4.7% vs. 1.5% in the current model) was most important for the historic model.534

While habitat suitability increased as urban cover increased for both models, the current model reached its535

maximum suitability by 25% urban cover, while the historic model did not reach similar suitability until536

almost 100% urban cover. The faster rate of suitability increase in the current model indicates that GTGR537

can use a wide variety of urban habitats, from moderate to highly urbanized areas, while the historic model538

indicates that GTGR only prefer highly urbanized habitat. Our models indicate that GTGR has shifted539

toward more arid habitat with greater variability in urban cover.540

GTGR was found in every land cover class except deciduous forests, mixed forests, and ice/snow in the541

historic sample, and every land cover class except deciduous forests and ice/snow in the current sample.542

There were more GTGR observations in the current sample on urban areas, croplands, and grasslands and543

less observations in water, shrublands, pastures, and evergreen forests (Fig S4). While the most common544

land cover classes GTGR was found to have shifted, there was no evidence that GTGR has expanded the545

breadth of land cover classes it could occupy. These results are consistent with our SDMs, which found the546

greatest change in preferences for climate factors.547

Connectivity548

To determine whether changes in connectivity between habitat patches could explain the rapid expansion549

of GTGR but not BTGR, we estimated the change in accumulated current across the range of each species550

between 1979 and 2019. Accumulated current summarizes the amount of movement through a cell, thus cells551

with higher current values are more suitable for movement and increase connectivity. We binned current552

values into high or low connectivity using the 75th percentile (Bonnin et al., 2020). Most cells within the553

75th percentile of current values based on the 1979 resistance surface remained within the 75th percentile554

for both species.555

Connectivity decreased for BTGR along the interior portion of its range (farther from the coasts) in the556

southern Atlantic states and the southern coast of Texas (Fig S5). However, connectivity increased along557

the Florida panhandle, the northern coast of North Carolina, and the areas surrounding New York City558

(New York State, New Jersey, and Connecticut). There were no isolated patches of high connectivity for559

BTGR, and changes in connectivity did not connect or isolate any habitat patches. Our model does not560

support connectivity changes contributing to the range dynamics of BTGR.561

Connectivity decreased for GTGR within the state of Arizona and along the northern extreme of the cells562

within the 75th percentile (Oregon, Nevada, Colorado, and Kansas). However, connectivity increased along563

the eastern extreme (Texas and Oklahoma) and the northern edges in Arizona and New Mexico (Fig S5).564

Only one region of high connectivity in Montana was isolated from the core of connected cells, and no565

areas became isolated or connected between 1979 and 2019. Similar to BTGR, our model does not support566

connectivity changes contributing to the range dynamics of GTGR.567
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Discussion568

We investigated how changes in habitat availability, habitat breadth, and connectivity contributed to differ-569

ential range dynamics in a sister-species pair. We found that the rapidly-expanding GTGR has increased570

their habitat breadth in the past 40 years, whereas BTGR goes where there is available habitat, which is571

consistent with the hypothesis that changes in behavioral traits may facilitate GTGR’s geographic range572

expansion (Fig 1). We found that the range dynamics of BTGR could be explained by changes in habitat573

availability due to climate change. The current GTGR niche contains more arid climate conditions and is574

less dependent on bodies of fresh water than in the past. Meanwhile, climate change in the northern extreme575

of BTGR range increased the area of suitable habitat, matching observed expansions of the species in that576

area. We found no evidence that changes in connectivity could have connected isolated patches of suitable577

habitat for either species.578

Our current BTGR model is consistent with past work showing that BTGR is highly restricted to coastal579

areas, and that an expansion into northern coastal areas could be due to climate changes. BTGR rarely occurs580

far from saltwater in the northern portion of their range, but can nest inland across Florida (Selander &581

Giller, 1961; Post et al., 1996). Our current model recreated this distribution and predicted the elevation and582

distance to coastline as highly important environmental limitations. The historical model did not recreate583

the same high suitability within the interior of Florida and had both elevation and distance to coastlines as584

less important. However, our historic model also had lower transferability and could have reduced accuracy585

due to a low sample size, which can inflate the impact of geographic bias in samples (Elith et al., 2010;586

Anderson & Gonzalez, 2011; Guillera-Arroita et al., 2016; Yates et al., 2018). Both models predict increased587

suitability in the northern portion of the species range, which matches past observations (Selander & Giller,588

1961) and general trends observed in several bird species that track their optimal conditions as anthropogenic589

climate change has altered environments (Vitousek et al., 1997; Thomas, 2010; Tomiolo & Ward, 2018).590

The changes in species range we found in GTGR matched those predicted by previous researchers, but we591

found that the range expansion was primarily due to changes in the climate niche expanded into rather592

than land cover preferences. Selander & Giller (1961) note that, along the northern range edge, GTGR has593

expanded into new arid prairie habitat but was highly restricted to human settlements and farms in these594

areas. GTGR requires access to open habitat and standing water across their range (Selander & Giller, 1961),595

and human land use change and irrigation could meet these needs. Our models did find that GTGR preferred596

habitat close to bodies of freshwater in the historic but not the current time period, suggesting that GTGR597

can now survive farther from open water. The current GTGR model also predicted higher suitability in598

areas with more cropland and pasture, but neither land cover class had high predictor importance. Instead,599

precipitation in the wettest and driest months marked the greatest difference between the current and600

historic models. Wehtje (2003) proposed that lower nest predation and abundant food in human modified601

environments could allow GTGR to support populations within otherwise suboptimal climate conditions.602

GTGR could use the same land cover classes in both time periods, but current populations have novel ways603

to use human altered environments to expand their climate niche.604

It remains unclear why GTGR has expanded its niche while BTGR has not. Both BTGR and GTGR are605

highly adaptable species with similar foraging habits. Human-associated species like BTGR and GTGR that606

use urban habitats are typically more behaviorally flexible and better suited to use new environments than607

other species (Sol et al., 2002; 2005; 2013; Wong & Candolin, 2015). There could be meaningful differences in608

the degree of flexibility between these species or other factors that limit the ability of BTGR to expand to new609

habitats. The greater nest-site specificity of BTGR could be a limiting factor, though nest site plasticity610

does exist in the species (Post et al., 1996). Further studies are needed to compare ecologically relevant611

differences in flexibility, exploration, dispersal, and reproductive behaviors between these two species.612

Our results demonstrate vastly different niche dynamics within closely related species and illustrate the613

divergent responses species can have to anthropogenic change. Phylogenetic signal of niche conservatism614

is strongest within short evolutionary timescales (Pearman et al., 2008), yet we found distinct niches for615

sister-species ~2 million years diverged (Powell et al., 2008) and evidence for a further niche shift within616

one species. The distinct niche dynamic of each species also represents opposing responses to anthropogenic617

change: BTGR has shifted its range in response to climate change, while the rapidly expanding GTGR has618
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acclimated to new climates possibly due to human land-use change. Species with similar responses to BTGR619

could be more vulnerable to future climate change (Thomas, 2010), while GTGR parallels rapidly expanding620

introduced species, despite being native to North America (Peer, 2011). The habitat breadth expansion of621

GTGR also confounds our ability to project how the species range will change in the future, and could have622

implications for a projected expansion in the common grackle (Quiscalus quiscalus, Capainolo et al., 2021).623

Identifying the mechanism of range dynamics in both species expands the knowledge of the complex and624

changing factors that shape species ranges globally.625

The high accuracy of our SDMs when cross validated on their own datasets and the transferability of the626

current BTGR model support the use of SDMs as tools to study how species ranges change over time. While627

improving model transferability remains a challenge for SDMs (Vaughan & Ormerod, 2005; Yates et al.,628

2018), using a combination of climate and land use data can improve model accuracy and transferability629

in some situations (Elith & Graham, 2009; Regos et al., 2019). Our results also stress the importance of630

testing model transferability before assuming niche conservatism for all species. While niche conservatism631

is a common pattern across species, assuming species will retain their niche through time can limit the632

usefulness of SDMs. When model transferability is tested, SDMs become a more effective tool for studying633

species ranges to both understand fundamental questions in ecology and evolution and set conservation634

priorities in the face of ongoing anthropogenic changes (Elith et al., 2010; Grenoullet & Comte, 2014; Sofaer635

et al., 2018; Chen et al., 2018).636

SDMs are accompanied by several limitations that are important to consider. SDMs are correlative in nature637

and are susceptible to biases in sample and parameter selection (Regos et al., 2019; Sofaer et al., 2018). Here,638

we used geographic undersampling and a balanced random forest design to reduce the impact of sampling639

bias and selected both climate and land cover parameters to include biologically relevant variables, but other640

potentially causative variables could remain. Recent work promotes the inclusion of biotic factors in SDMs641

such as pathogen, predator, or competitor species because interspecific dynamics can play a major role in642

determining species ranges (Gaston, 2003; Paquette & Hargreaves, 2021; Stephan et al., 2021). Future work643

could investigate how the presence of nest predators such as the fish crow (Corvus ossifragus), which overlaps644

in range with BTGR but not GTGR (Post et al., 1996), could also prevent BTGR from expanding its range.645

In conclusion, this investigation found support for the hypothesis that the range expansion of GTGR and646

range stability of BTGR is an example of niche shifting and niche conservatism in a sister-species pair.647

Despite the many similarities between these two species, they occupy distinct niches and had divergent648

responses to anthropogenic change. While BTGR range conformed to climate change, GTGR expanded649

across new human-altered environments. Our results are consistent with the hypothesis that behavioral650

flexibility may have allowed GTGR to expand their range by using new habitats. Further studies on how651

ecology, gene flow, and behavior created such different niche dynamics will shed light on the mechanisms652

that limited the BTGR but not the GTGR. This work will elucidate the role of behavior in shaping species653

ranges in our rapidly changing world.654
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Supplemental Figures878

BTGR Current GTGR Current

BTGR Historic GTGR Historic

879

Figure S1. Map of observation locations for BTGR or GTGR from Historic (1970-1979) and Current (2010-2019) eBird880

records. These locations are filtered for record quality.881

23



BTGR Current GTGR Current

0.00
0.25
0.50
0.75
1.00

Habitat Suitability

BTGR Historic GTGR Historic

882

Figure S2. Predicted habitat suitability using random forest models. Brighter colors indicate higher habitat suitability. The883

presented results are the average of the 10 replicates.884
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Figure S3. Partial dependence curves for environmental predictors across all models. The curves represent how changing each886

environmental predictor changes the encounter rate for the modeled species. The historic models are represented by the darker887
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dashed lines and the current models are represented by the lighter solid lines. Shaded regions indicate one standard deviation.888

The differences between the historic and current models for each species present how the species niche has changed based on889

our models.890
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Figure S4. Habitat breadth of BTGR and GTGR in 1970-1979 and 2010-2019 compared to the change in percent land cover892

area between each year range. The proportion of land cover measures what percent of observations for each species were located893

on each land cover class in the corresponding time frame. Both species were found more often in urban environments in the894

current time period, which also corresponds with a slight increase in the urban background area. Both species were also found895

less often in their previously second most common land cover type (woody wetland for BTGR and shrubland for GTGR).896
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Figure S5. Change in connectivity between 1979 and 2019 measured as change in accumulated current. Current values were898

divided into high and low categories based on whether the values were above or below the 75th percentile of current values899

for each map. Colors indicate whether the current values remained low between the two time steps (gray), went from high900

to low (magenta), went from low to high (blue), or remained high (green). The darker gray color indicates areas outside the901

range where checklists were selected for each species, and were excluded from the connectivity analysis. The regions that have902

remained highly connected are continuous for both species, which supports that changes in connectivity are not responsible for903

range changes in either species.904
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