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Abstract 

The temporal stability of ecological properties increases with spatial scale and levels of 

biological organization, but how does it propagate across trophic levels? We compiled 35 

metacommunity time-series datasets spanning basal resources (e.g., phytoplankton) to top 

predators (e.g., piscivorous fish) from 384 freshwater sites across three continents. We reveal 

how stability propagates from populations to metacommunities and across trophic levels 

through the complementary and opposing contributions of synchrony and variability. Temporal 

variability in abundance decreased from producers to tertiary consumers mainly at the local 

scale. Population synchrony within sites increased with trophic level, whereas spatial synchrony 

among communities decreased. The link between spatial synchrony and metacommunity 

variability was stronger for top consumers, but the indirect effects of environmental variables 

and diversity on temporal variability was consistent among spatial scales and trophic levels. We 

suggest that mobile predators can stabilize metacommunities if they buffer variability 

originating at the base of food webs. Our findings advance the notion that the trophic structure 

of metacommunities, which reflects organismal differences in body size, dispersal, and 

environmental tolerance, should be considered when investigating the propagation of 

ecological stability. 
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Introduction 

It is well recognized that temporal variability in ecological properties (e.g., population 

biomass, community richness, ecosystem metabolism) tends to decrease with increasing spatial 

scale and levels of biological organization (Kéfi et al. 2019; Hammond et al. 2020). For instance, 

fluctuations in fishery catch at the metapopulation level are often weaker than in any one of 

the constituent populations (Schindler et al. 2010). Similarly, organismal abundance at a given 

patch tends to be more stable at the community than at the population level (Doak et al. 1998). 

However, most previous attempts to understand temporal variability and its drivers have done 

so at single trophic levels (Kéfi et al. 2019 ; Xu et al. 2021; but see Steiner et al. 2005; Danet et 

al. 2021), resulting in a critical knowledge gap. Communities are connected to each other 

through the spatial flow of organisms that occupy different trophic levels (Leibold & Chase 

2018), thus, the hierarchical nature of multitrophic metacommunities may modulate temporal 

variability (Firkowski et al. 2022). For example, top mobile consumers can buffer temporal 

variability of an entire metacommunity if they move unhindered across the landscape, 

optimally foraging across heterogeneous resource patches that have asynchronous dynamics 

(McCann et al. 2005). Understanding how temporal variability propagates not only across 

spatial and organizational scales, but also across trophic levels, would increase realism in our 

models of metacommunity dynamics and could help identify controls on ecosystem stability. 

 A hierarchical framework for understanding temporal variability in metacommunities 

has been formalized only recently (Wang et al. 2019). This framework assumes that fluctuations 

in species populations within sites represent the lowest-level component of temporal variability 

– i.e., species population variability. The amount of population variability that propagates to the 
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aggregate community level is determined by the amount of synchrony (i.e., coordinated 

fluctuations) across the different populations in a landscape (Thibaut & Connolly 2013). In turn, 

metacommunity variability emerges from both aggregate community variability and spatial 

synchrony among local communities (Wang et al. 2019). By virtue of this scaling, temporal 

variability tends to decrease as ecological properties are aggregated from local populations to 

regional metacommunities.  

The propagation of temporal variability across spatial scales and levels of organization 

has been explained, thus far, by mechanisms operating either at local or regional scale. At local 

scales, aggregate ecological properties tend to be more stable in more diverse communities 

due to statistical averaging among species that fluctuate independently through time (portfolio 

effects; Schindler et al. 2015). Negative covariance in the abundance of different populations 

due to biotic and abiotic interactions also reduces temporal variation in aggregate ecological 

properties (compensatory dynamics; Gonzalez & Loreau 2009). Higher diversity also indirectly 

increases the chance of compensatory dynamics unless species are highly functionally 

redundant. With more species, there will likely be a broader range of responses to 

environmental variation (Mori et al. 2013). At the regional scale, ecological properties (e.g., 

metacommunity total biomass) will vary more if spatially separated communities are 

synchronized, either via correlated fluctuations in the environment (Moran effect; Steiner et al. 

2013) or via a combination of strong dispersal and predator-prey cycles (phase locking; Fox et 

al. 2011). Notably, organismal trophic position is generally associated with body size, dispersal 

strength, and response to environmental variation (Woodward et al. 2005; Jenkins et al. 2007). 
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Thus, the trophic structure of a metacommunity may determine the magnitude and drivers of 

its temporal variability—a hypothesis that has not been robustly tested, to our knowledge.  

High-level mobile consumers can also stabilize the temporal dynamics of 

metacommunities by coupling heterogeneous local food webs in space (McCann et al. 2005; 

Rooney et al. 2008). This hierarchical framework assumes that larger organisms tend to be at 

higher trophic levels, and demonstrate high mobility across the landscape, leaving low prey 

density patches for more profitable high-density patches (“the bird feeder effect”; Eveleigh et 

al. 2007). Within a large ecosystem, the spatial coupling of heterogeneous local food webs 

guarantees a continuous supply of resources of different quality to mobile predators, making 

their temporal dynamics more stable relative to organisms at lower trophic levels. Merging 

these two views (Rooney et al. 2008; Wang et al. 2019) offers new opportunities to test 

hypotheses about how diversity, environmental fluctuations, and spatial fluxes interact with 

trophic levels to influence the propagation of temporal variability across space and across levels 

of organization (Danet et al. 2021).  

Here we compiled 35 temporal data sets on metacommunity dynamics spanning basal 

resources (e.g., phytoplankton) to top predators (e.g., piscivorous fish), comprising spatially 

replicated interannual time series sampled from 384 freshwater sites across three continents. 

Merging the two hierarchical frameworks of temporal variability, we tested the following 

hypotheses: (H1) Temporal variability in abundance decreases with trophic position, as top 

consumers may buffer variability originating at the base of the food web. (H2) Species 

population synchrony within sites increases with trophic level, whereas spatial synchrony 

among communities decreases, as top mobile consumers may flock in heterogeneous resource 
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patches through time. This hypothesis is supported by the idea that tracking heterogeneous 

resources should increase variability in the time that top consumers spend in a patch, which 

should decrease spatial synchrony in resources at the regional scale but increase local predator 

synchrony (Vasseur & Fox 2009). Finally, we tested if the strength and direction of relationships 

between temporal variability, synchrony, diversity, and environmental and spatial predictors 

depend on trophic level and spatial scale. We hypothesized (H3a) a stronger role of 

environmental control in primary producer population variability and synchrony at the local 

scale, as their dynamics would be less affected by the spatial coupling of mobile top consumers 

(Fig. 1), and (H3b) a stronger role of spatial connectivity on top consumer spatial synchrony and 

metacommunity variability at the regional scale. We found that temporal variability in 

abundance decreases from producers to top consumers in freshwater ecosystems, especially at 

the local scale, because of the complementary and opposing contributions of different trophic 

levels to synchrony and variability within and across localities.    

 

Material and methods 

We compiled and reorganized metacommunity temporal data sets comprising spatially 

replicated time series of species spanning different trophic levels. We then used the 

hierarchical partitioning framework proposed by Wang et al. (2019) applied to 

metacommunities to test hypotheses H1 and H2. Next, we used structural equation modelling 

(SEM) applied to variability and synchrony components measured at two spatial scales (sites 

and metacommunities) to test hypothesis H3. We articulate each analytical step below. 
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Figure 1. Hypothesized propagation of temporal variability and synchrony (from populations to 

metacommunities) and their relationships with diversity, environmental variability and 

synchrony, and spatial connectivity. Directions of the arrows represent directions of each 

hypothesized causal relationship, and arrow widths represent their strength. Expected 

influences are positive unless indicated otherwise (with a “(-)”). Arrow colors represent 

relationships that are expected to be specific to a particular trophic level: green for primary 

producers, dark red for tertiary consumers. Black arrows indicate relationships that are 

expected to be similar across trophic levels. 

 

Data sets 

We collated 35 independent metacommunity data sets, comprising spatially replicated 

time series of counts of individual species (or genera) spanning those representing basal 

resources (e.g., phytoplankton) to top predators (e.g., piscivorous fish) across different 

geographies and climates of the globe (Fig. S1). A summary of each data set as well as a general 

description of data reorganization can be found in the supporting information.     

Our data included 10 metacommunities in lentic systems (ponds and lakes) and 25 in 

lotic systems (streams and rivers). Each data set contained at least 4 sites (max. = 30; mean = 
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11.35; median = 10) sampled for at least 5 years (max. = 36; mean = 12.8; median = 10). When 

the original data included multiple sampling events per year, we chose the summer month with 

the highest number of sites sampled.  

Each species was assigned to one trophic category: producers (including stream benthic 

algae, macrophytes, and phytoplankton; 53 site-level time series after filtering, see below), 

primary consumers (zooplankton [Cladocera and Copepoda], macroinvertebrates, and fish; 115 

site-level time series), secondary consumers (macroinvertebrates and fish; 208 site-level time 

series), and tertiary consumers (piscivorous fish; 173 site-level time series). We then 

reorganized the original data sets into trophic-level-specific metacommunities. For example, an 

original data set on fish could be subdivided into three data tables, one with primary consumers 

only, one with secondary, and another with tertiary consumers. This reorganization of data 

resulted in 59 data tables (producers = 5; primary consumers = 17; secondary = 22; tertiary = 

15). Finally, we removed sites with only 1 species, resulting in 549 sites (the same site could be 

part of more than one data table) and 54 trophic-level-specific metacommunities for analysis. 

Importantly, none of the original 35 data sets included information on all trophic levels. Thus, 

our inferences are based on analyses of trophic levels that were represented by different data 

sets. We recognize the simplification of trophic level categorization as we do not consider 

omnivory or variation in feeding strategies within a particular group. However, failing to 

simplify the data in this manner would have resulted in many combinations of 

metacommunities and trophic levels, most without any replication or temporal and spatial 

sampling completeness. As we aimed to investigate relationships that are theoretically 

expected along a complex gradient of trophic levels (Vander Zanden & Fetzer 2007) and 
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dispersal capacity (Rooney et al. 2008), we believe our strategy represents a useful 

compromise.  

We explicitly considered variation inherent to the original data by using two strategies. 

First, we estimated all variables (e.g., local diversity, population synchrony) used in our analysis 

within each of the 59 metacommunity-trophic level data sets. Second, we used mixed-effects 

models to quantify the relationships between these variables (see details below).  

    

Metacommunity variability partitions across scales and levels 

 To test hypotheses H1 and H2, we first partitioned temporal variability in total 

metacommunity abundance into its lower-level components for each of the 54 trophic-level-

specific metacommunities. For this, we used the framework proposed by Wang et al. (2019) 

that allows partitioning the variability of total metacommunity abundance (Mv) into two 

components – temporal variability of local community abundance (Cv) and spatial synchrony 

among those local communities (Csy). Cv was further partitioned into the variability of 

individual population abundances within sites (Pv) and synchrony among those local 

populations (Psy; Fig. 1). Thus, Mv = Cv x Csy = (Pv x Psy) x Csy. Temporal variability at a given 

level was defined as the coefficient of variation in abundance across years, where Cv was 

expressed as the weighted (by the temporal mean) average of community variability across 

sites and Pv was expressed as the weighted average of local population variability across 

species and patches. Csy was calculated as the annual variance of metacommunity abundance 

divided by the sum of temporal standard deviations of local community abundance. Species 

population synchrony was calculated as the annual variance of community abundance divided 
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by the squared sum of the standard deviations of the constituent species’ abundances. Psy was 

expressed as the weighted average of species synchrony across patches (see Wang et al. 2019 

for equations). Thus, there was one value of Mv, Cv, Pv, Csy, and Psy per each of the 54 trophic-

level-specific metacommunities. 

 We modeled partition values as a function of trophic and organizational levels with 

linear models. Because we were more interested in differences among trophic levels, when 

there was a relationship between variability or synchrony with trophic levels (global model with 

P < 0.05), we used estimated marginal means and specific pairwise contrasts corrected for 

multiple comparisons (Holm adjustment) to compare trophic levels. To do that we used the 

package emmeans (Lenth et al. 2022) in the R (v4.1.0; R Core Team 2021).    

 

Two-scale structural equation modelling 

Based on hypotheses H3a-b, we used local estimation structural equation modeling 

(SEM; Shipley 2000) to test the direct and indirect relationships among diversity, environmental 

and spatial predictors, variability and synchrony, and trophic levels at two spatial scales. We 

used two independent SEMs to maximize the statistical power of our test. First, we applied SEM 

to metacommunity partitions (regional-scale SEM; n = 54 trophic-level-specific 

metacommunities). Then, we applied SEM to variability and synchrony metrics estimated at the 

local scale, i.e., for individual sites within the trophic-level-specific metacommunities (local-

scale SEM; n = 549).  

To estimate variability and synchrony metrics at the local scale, we used the same 

equations as in Wang et al. (2019), but without averaging variability or synchrony across sites. 
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Therefore, the temporal variability of aggregate community abundance at each site (Cv_local) 

was defined as the coefficient of variation of summed species abundance within the site. We 

estimated Cv_local independently for each of the 54 trophic-level-specific metacommunities 

and obtained one value of Cv_local per site. For the local scale, we also partitioned community 

variability into its lower components, population variability within sites (Pv_local), defined as 

the weighted average CV of population abundance of the species present within the local 

community, and synchrony among those local populations within sites (Psy_local), defined as 

the synchrony in abundance among the species present within the local community. The two 

SEMs were conceptually linked by community variability. However, for the local-scale SEM 

community variability was estimated for each site (Cv_local), whereas for the regional-scale 

SEM, it was averaged within each metacommunity (Cv). 

We built each SEM following our conceptual model (Fig. 1). We then fitted different 

models following that structure but using different variables to represent the direct and indirect 

relationships. For example, we represented the direct path between local environmental 

variability and population variability by using temperature seasonality in one candidate model, 

and precipitation seasonality in another. We used AICc, model weight, and delta AICc to 

compare alternative models. When different models were equally plausible (i.e., delta AIC < 2), 

we chose the one with the highest total R2 value and with residuals that did not show strong 

patterns. 

For the regional-scale SEM, we fitted Gaussian linear mixed models with the response 

and predictor variables as described in Figure 1, and with metacommunity identity as a random 

effect. Local diversity, variability and synchrony were log-transformed prior to analyses to 
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improve model fit. For the local-scale SEM, we fitted Gaussian linear mixed effects models with 

the response and predictor variables as described in Figure 1, and with metacommunity identity 

and a variable identifying the trophic-level-specific metacommunity as random effects. The fit 

and evaluation of the model followed the same procedures described for regional-scale SEM.  

We performed multigroup SEM analysis (Lefcheck 2016) to test whether the 

relationships among predictor and response variables varied between trophic groups. That is, 

we tested which paths had similar strength and direction, and which varied between trophic 

groups. The goodness of fit of each SEM was evaluated with a test of directed separation 

(Fisher’s C statistic; alpha ≥ 0.05). The SEMs were fitted with lme4 (Bates et al. 2015) and 

piecewiseSEM (Lefcheck 2016) in R. 

 

Environmental and spatial predictors 

Two measures of spatial synchrony in mean maximum and mean minimum temperature 

and precipitation were used as predictors in the regional-scale SEM. Local, direct measures of 

thermal and hydrologic regimes would have been ideal, but these data were not available. We 

therefore used ~4 km resolution temperature and precipitation data from the TerraClimate 

database, a monthly generated product of climate and climatic water balance for global 

terrestrial surfaces for the period 1958 – 2015 (Abatzoglou et al. 2018). We extracted monthly 

mean values at the spatial coordinates of the sampling sites, from 1958 to the last year in which 

data was sampled within each data set. Spatial synchrony in temperature and in precipitation 

was then estimated as the mean Kendall rank correlation between each pair of sites. One 

metacommunity had all values of spatial synchrony set to 1 because its spatial extent was lower 
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than 4 km2. We decided to include seven decades of data instead of restricting the data to the 

study period of each data set to get a broad and comparable characterization of environmental 

variation across sites.  

For the regional-scale SEM, we estimated one metric of spatial connectivity, network 

closeness centrality (Erős et al. 2012), and used it as a predictor of community spatial 

synchrony. Closeness centrality was calculated for each site within a metacommunity as the 

sum of the length of the shortest paths between the site and all other sites in the 

metacommunity. The more central a site is, the closer it is to all other sites. Considering that 

our data were heterogeneous with regards to Euclidean vs watercourse connectivity 

(connected river networks vs. isolated lakes), all sites within a metacommunity were considered 

connected and only the Euclidean spatial distance between them was included as a weight 

between each pair of sites. This procedure resulted in one value of distance-weighted closeness 

for each site within each metacommunity, which were averaged so that we had a value of 

closeness for each metacommunity. Thus, metacommunities with higher values of closeness 

centrality had shorter Euclidean paths among their sites.    

For the local-scale SEM, we used measures of temperature and precipitation seasonality 

as predictors of population variability. We expected that more seasonal sites would have lower 

levels of population variability across years, as species may be more tolerant to the wider 

environmental fluctuations present in any given year and because we only used summer 

months. We gathered data on average temperature and precipitation seasonality (bio4 and 

bio15, respectively) data from the WorldClim database (Fick & Hijmans 2017).   
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Results 

Metacommunity variability partitions across scales and levels 

Temporal variability decreased with increasing trophic level (F = 22.16, df = 11, p < 

0.001, R2 = 0.62; Figure 2A), as hypothesized (H1). Pairwise contrasts indicated that population 

variability at the regional scale differed among all trophic levels; community variability of 

producers and primary consumers was higher than that of tertiary consumers; and 

metacommunity variability of producers was higher than that of secondary and tertiary 

consumers (Table S1). Thus, temporal variability of tertiary consumers was lower than that of 

producers and primary consumers—from local populations to regional metacommunities.  
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Figure 2. The spatial and trophic scaling of temporal variability (A) and synchrony (B). Plots with 

different colors represent the distribution of values as a density shape of aggregated variability 

or synchrony at the population, community and metacommunity levels. The overall average 

value per plot is represented by the solid line. Raw data values are shown inside each density 

shape. Statistics describing specific pairwise contrasts corrected for multiple comparisons to 

compare trophic levels are available in Table S2. Trophic levels include producers and primary, 

secondary, and tertiary consumers. 

 

We observed an interaction between trophic level and type of synchrony (F = 13.8, df = 

3, P < 0.001). Specifically, while population synchrony increased from producers to tertiary 

consumers (all pairwise contrasts differed from each other, Table S2), community spatial 

synchrony decreased from primary to tertiary consumers (Fig. 2B), partially supporting 

hypothesis H2. None of the relationships described above, either for temporal variability or 

synchrony, differed among ecosystem types (lotic vs. lentic), nor depended on time series 

length or number of sites within the metacommunity (Fig. S2-S5).  

The propagation of temporal variability from populations to metacommunities varied 

among trophic levels (Figure 3A-C). The amount of Pv that was propagated to Cv increased from 

producers to tertiary consumers (Table 1). On average, 51.4% of producer population variability 

was propagated to community variability (Pv/Cv ratio), compared to 82.6% for top consumers 

(Table 1). This trend was due to increasing levels of species population synchrony from 

producers to tertiary consumers (Figure 2B), which increased the similarity of Cv and Pv 

estimates for tertiary consumers (Figure 3C; tertiary consumers are very close to the 

population-community variability identity line).  
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By contrast, the amount of Cv that was propagated to Mv generally decreased from 

producers to tertiary consumers (Table 1). On average, 70.9% of the variability in producer 

communities was propagated to metacommunity variability (Cv/Mv ratio), compared to 52.5% 

observed for tertiary consumers (Table 1). In support of hypothesis H2, this trend was due to 

higher ratio of community spatial synchrony to population synchrony of organisms in lower 

trophic levels (Figure 3B). Consequently, the general differences in variability among trophic 

levels were reduced at the metacommunity level – i.e., all trophic levels are more equally 

distant to the community-metacommunity variability identity line (Figure 3A). Together, these 

results indicate that decreasing variability from populations to metacommunities across trophic 

levels was mediated by a contrasting contribution of synchrony among populations and among 

communities.   

 

Table 1. Average amount of variability scaled up from lower- to upper-levels of organization 

(e.g., Pv/Cv ratio). Pv = variability of population abundance; Cv = variability of total community 

abundance; Mv = variability of total metacommunity abundance. 

Trophic level Pv/Cv ratio Cv/Mv ratio Pv/Mv ratio 

Producers 0.514 0.650 0.331 

Primary consumers 0.657 0.709 0.468 

Secondary consumers 0.730 0.540 0.392 

Tertiary consumers 0.826 0.525 0.435 

  

Connecting and uncovering the drivers of temporal variability  

As hypothesized (H3), the local-scale SEM indicated that the strength of the positive 

relationship between community variability and both population variability and species 
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population synchrony varied among trophic levels (Fig. 4). As we are not aware of any statistical 

method that compares multigroup coefficients in SEM a posteriori, we interpret these 

relationships qualitatively. Secondary consumers displayed the highest coefficient (0.43) for the 

path linking population to community variability, while the other trophic levels showed little 

differences (0.34-0.39). We also found that the path coefficient linking species population 

synchrony to community variability was highest for secondary consumers (0.76) and lowest for 

tertiary consumers (0.33), with producers and primary consumers being similarly high (0.64 and 

0.60, respectively). Overall, the standard linear coefficients for each trophic level were higher 

for the population synchrony-community variability path. Additionally, we found the expected 

negative relationship between local species richness and species population synchrony, which 

did not vary among trophic levels (Fig. 4). However, contrary to our predictions, the positive 

relationship between population variability and precipitation seasonality did not vary among 

trophic levels (Fig. 4).  
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Figure 3. Temporal variability (A, C) and synchrony (B) scaling relationships among different 

levels of biological organization and trophic levels, from populations to metacommunities. 
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Finally, the regional-scale SEM also indicated that the strength of the positive relationships 

between metacommunity variability and community variability, and between metacommunity 

variability and spatial synchrony, varied among trophic levels, and in both cases were null for 

producers (Fig. 4). While the strength of the relationship between metacommunity and 

community variability decreased with trophic levels (0.77 to 0.55), the relationship between 

metacommunity variability and community spatial synchrony strongly increased with trophic 

levels (0.27 to 0.73). Thus, in agreement with hypothesis H3b, the relationship between 

temporal variation in metacommunity aggregate abundance and community spatial synchrony 

was strongest for predators. This result confirmed the expectation that communities that are 

more spatially synchronous tend to also be more temporally variable at the regional scale—but 

notably, the strength of this relationship depends on the trophic level being analyzed.  

 

 

Figure 4. Results of multigroup structural equation models (SEM) at local and regional scales 

(separated by the horizontal gray dashed line). Dashed and solid arrows indicate relationships 

associated with p < 0.05 and > 0.05, respectively. Colored lines represent relationships that 
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varied among trophic groups. The numbers associated with the lines represent SEM linear 

standardized coefficients. Local-scale SEM (n = 549; Fisher's C = 11.65; P-value = 0.17; df = 8). 

Regional-scale SEM (n = 54; Fisher's C = 11.86; P-value = 0.16; df = 8). Detailed description of all 

statistics is given in Table S3 and S4. 

 

Discussion 

Our broad-scale investigation suggests that temporal variability in abundance decreases from 

producers to top consumers in freshwater ecosystems (H1), but that differences in temporal 

variability among trophic levels are smaller at the regional metacommunity scale. These 

patterns were due to the complementary and opposing contributions of different trophic levels 

to synchrony and variability within and across localities (H2). While synchrony among local 

populations increased from producers to tertiary consumers, spatial synchrony among 

separated communities decreased. Our analyses also confirmed that the associations between 

community spatial synchrony and metacommunity variability was strongest for top consumers 

(H3b). However, in contrast to our expectation (H3a), the indirect effects of environmental 

variables and diversity on temporal variability at both local and regional scales were consistent 

among trophic levels. Our results thus indicate that the trophic structure of metacommunities, 

which generally reflects organismal differences in body size, dispersal strength, and response to 

environmental variation (Woodward et al. 2005; Jenkins et al. 2007), should be more explicitly 

accounted for when attempting to understand the propagation of temporal ecological stability.  

 

Metacommunity variability partitions across scales and levels 
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The decrease in temporal variability from producers to tertiary consumers was not 

consistent from local populations to regional metacommunities; a result of variability and 

synchrony differing among trophic levels across the local and regional scales. At the local scale, 

the amount of variability propagated from the population to the community level was higher 

for tertiary consumers because fluctuations in abundances of tertiary species were highly 

synchronized, while the opposite manifested at the regional scale. Populations of higher trophic 

levels tend to congregate together on specific resource patches within the metacommunity 

while they are profitable (Eveleigh et al. 2007), which explains the highest levels of local 

population synchrony among tertiary and secondary consumers, a result also supported by 

microcosm research (Firkowski et al. 2022). The local synchronizing effect of top consumers 

appears to weaken along the trophic chain within communities, leading to lower population 

synchrony within primary consumers and producers.  

In contrast to species population synchrony, secondary and tertiary consumers 

exhibited the lowest levels of community spatial synchrony. That is, temporal fluctuations in 

aggregate community abundance of top consumers were more desynchronized across 

localities. Top consumers will likely have asynchronous spatial dynamics at increasing spatial 

extents because the coupling of spatially separated resource patches by mobile predators 

occurs in response to spatial-temporal variation in resource densities (Rooney et al. 2008). 

Spatial coupling by top consumers should also promote more spatially asynchronous 

fluctuations in their prey – an effect that should decrease with decreasing trophic levels. Recent 

experimental evidence suggests that the extinction of a top predator led to more unstable 

communities due to a decrease in asynchrony of lower trophic levels caused by mesopredator 
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pressure (Rezende et al. 2021). We thus suggest that top mobile consumers can be seen as 

stabilizers of their abundances and of entire metacommunities.    

 

Connecting and uncovering the drivers of temporal variability  

The local-scale SEM showed that community diversity moderately dampened population 

synchrony and that this relationship was consistent among trophic levels. A recent meta-

analysis reported strong support for the negative indirect effect of local diversity on community 

variability through population synchrony (Xu et al. 2021). More diverse communities tend to be 

more temporally stable due to two non-exclusive mechanisms, which our analysis cannot 

resolve. First, fluctuations in the abundance of some species can be compensated for by 

fluctuations of other species due to biotic interactions or opposing responses to environmental 

variation, maintaining aggregate ecological properties more stable through time (compensatory 

dynamics; Gonzalez & Loreau 2009). Second, statistical averaging among species that fluctuate 

independently through time may also lead to a similar pattern of ‘risk dampening’ (portfolio 

effects; Schindler et al. 2015). Although the direct relationship between diversity and 

population synchrony varied little among trophic levels, we suggest that this is not the case for 

the indirect relationship between diversity and aggregate community variability. We found that 

the strength of path linking population synchrony to community variability was relatively similar 

among producers, primary and secondary consumers (0.64, 0.60, 0.76, respectively), but was 

clearly weaker for tertiary consumers (0.33). Thus, by considering both direct and indirect 

paths, we suggest that community variability of tertiary consumers might depend less on their 

diversity than other trophic levels.  
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In contrast to the indirect relationship between community variability and diversity, the 

paths linking precipitation seasonality to population (direct) and to community (indirect) 

variability were similar among trophic levels. Precipitation seasonality weakly increased 

population variability. Although the path linking population variability to community variability 

was statistically different among trophic levels, the standardized coefficients did not differ 

strongly (ranged from 0.34 to 0.43). More seasonal environments may have species more 

adjusted to the timing of environmental events compared to locations with less predictable 

seasonality (Tonkin et al. 2017). Fluctuations in per capita population growth tend to be 

affected by the short-term effects of environmental forcing (Loreau & de Mazancourt 2008). 

Thus, our results suggest that populations are more temporally variable among years in 

seasonal environments. The degree to which this result applies equally to all trophic levels 

needs to be further investigated, as organisms with different lifespans should evolve different 

life history strategies to cope with the frequency of environmental fluctuations (Lytle 2001).  

Our results lend support to hypothesis H3b, as we found that the strength of the 

relationship between metacommunity variability and community spatial synchrony increased 

from producers to tertiary consumers. In contrast to the hypothesis, however, only synchrony 

in precipitation but not spatial connectivity played a role as a driver of community spatial 

synchrony. This relationship indicates that fluctuations in community abundance can be 

determined by regional environmental forcing (Moran effect), independently of the overall 

spatial connectivity within the metacommunity. Evidence supporting the influence of the 

Moran effect on the dynamics of freshwater ecosystems has been accumulating recently. For 

example, flow management for hydropower can spatially synchronize invertebrate 
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metacommunities along regulated sections of dammed rivers, benefiting species better 

adapted to fast flows (Ruhi et al. 2018). Similarly, drought can lead to regional quasi-extinction 

of species with lower resistance and resilience abilities by synchronizing stream 

metapopulations (Sarremejane et al. 2021). Considering results both from metacommunity 

partitioning analyses and two-scale SEMs, we suggest that the ability of mobile consumers to 

move across patches may sometimes counteracts the effects of environmental variability on 

population variability, and of environmental synchrony on community spatial synchrony 

(Rooney et al. 2008). Also, the stronger relationship between community spatial synchrony and 

metacommunity variability for secondary and tertiary consumers indicates that the lowest 

levels of community spatial synchrony were essential to maintain the decreasing trend of 

temporal variability from producers to top consumers.            

Our SEMs did not include all paths seen in previous studies. For example, we did not link 

metacommunity variability, indirectly through community spatial synchrony, or directly to 

spatial beta-diversity. While some previous studies have suggested that high beta-diversity can 

cause low spatial synchrony (e.g., Wang & Loreau 2016; Hautier et al. 2020), others have 

suggested that it is temporal turnover (a form of temporal variability) that drives beta-diversity 

(Steiner & Leibold 2004), and others suggested this relationship may be due to pure sampling 

effects (Stegen et al. 2013). We think spatial and temporal turnover and spatial synchrony are 

all consequences of an interaction among environmental forcing, the various forms of 

stochasticity, and dispersal (Leibold & Chase 2018), and that they likely represent different 

facets of temporal stability (Lamy et al. 2021). Thus, we built our conceptual model focusing on 

paths supported by theory as representations of causal relationships. A second potential caveat 
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is the chosen frequency of observations (annual). Organisms in different trophic levels differ in 

life-span and generation times—from days or weeks (e.g., phytoplanktonic and zooplanktonic 

organisms) to years (fishes). Although it is challenging to completely rule out this caveat, most 

data on fish temporal variability spanned at least 10 years, which we deem long enough to 

represent trends across generations and relative to environmental cycles.  

 Our study has implications for the understanding of temporal stability in multitrophic 

metacommunities, as well as for how stability is influenced by environmental change. We 

showed that temporal variability in abundance, one of the facets of temporal stability, 

decreases from producers to top predators across levels of biological organization. Given that 

species at higher trophic levels are more susceptible to extinction than species at lower trophic 

levels (Estes et al. 2011) and that environmental change tends to increase environmental 

homogeneity (Ellis 2021), the propagation of stability across spatial scales and trophic levels 

cannot be taken for granted. Our work advances the notion that temporal stability is an 

emergent property of ecosystems that may be threatened in complex ways by both human and 

climate-driven biodiversity loss.                                               
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Supplementary information 1. The propagation of stability across spatial scales, organizational, 
and trophic levels in freshwater ecosystems (Siqueira et al.). 
 
 

 
 
Fig. S1. Geographical distribution of the 35 metacommunities used in this study. Dots indicating 

the position of metacommunities are of the same color, but due to superimposing of spatially 

closed sites, some of them appear darker. 
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Fig S2. Metacommunity-level estimates of temporal variability (A to C) and synchrony (D-E) 
across levels of organization and in lotic and lentic systems. Key to y-axis: Len = lentic; Lot = 
lotic; Pri = primary; Sec = secondary; Ter = tertiary; Prod = producers; Con = consumers.  
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Fig S3. Site-level estimates of temporal variability (A-B) and synchrony (C) across levels of 
organization and in lotic and lentic systems. Colors and codes as in Fig. S1.  
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Table S1. Specific pairwise contrasts corrected for multiple comparisons (Holm adjustment) to 
compare temporal variability components among trophic levels… 
 
group1 group2 df statistic p.adj part 
Producers Primary 50 0.5422 0.5901 Mcv 
Producers Secondary 50 2.6320 0.0338 Mcv 
Producers Tertiary 50 3.6856 0.0028 Mcv 
Primary Secondary 50 3.0638 0.0141 Mcv 
Primary Tertiary 50 4.5226 0.0002 Mcv 
Secondary Tertiary 50 1.6381 0.2153 Mcv 
Producers Primary 50 1.1472 0.2568 Ccv 
Producers Secondary 50 2.2773 0.1083 Ccv 
Producers Tertiary 50 3.6689 0.0035 Ccv 
Primary Secondary 50 1.6399 0.2146 Ccv 
Primary Tertiary 50 3.6362 0.0035 Ccv 
Secondary Tertiary 50 2.1264 0.1153 Ccv 
Producers Primary 50 2.8230 0.0119 Pcv 
Producers Secondary 50 4.8140 0.0001 Pcv 
Producers Tertiary 50 7.0999 0.0000 Pcv 
Primary Secondary 50 2.8734 0.0119 Pcv 
Primary Tertiary 50 6.1771 0.0000 Pcv 
Secondary Tertiary 50 3.5262 0.0027 Pcv 
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Table S2. Specific pairwise contrasts corrected for multiple comparisons (Holm adjustment) to 
compare synchrony components among trophic levels… 
 
group1 group2 df statistic p.adj part 
Producers Primary 50 -3.353 0.005 Psyn 
Producers Secondary 50 -4.907 0.000 Psyn 
Producers Tertiary 50 -6.452 0.000 Psyn 
Primary Secondary 50 -2.219 0.037 Psyn 
Primary Tertiary 50 -4.490 0.000 Psyn 
Secondary Tertiary 50 -2.435 0.037 Psyn 
Producers Primary 50 -0.607 1.000 Csyn 
Producers Secondary 50 1.717 0.363 Csyn 
Producers Tertiary 50 1.724 0.363 Csyn 
Primary Secondary 50 3.431 0.007 Csyn 
Primary Tertiary 50 3.343 0.008 Csyn 
Secondary Tertiary 50 0.064 1.000 Csyn 
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Fig S4. Relationship of temporal variability (A-C) and synchrony (D-E) with the length of the time 
series in years (number of time steps) in each data set. The p-value refers to a linear 
relationship between the response variable and an interaction between trophic level and 
number of time steps. 
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Fig S5. Relationship of temporal variability (A-C) and synchrony (D-E) with number of sites in 
each data set. The p-value refers to a linear relationship between the response variable and an 
interaction between trophic level and number of time steps. 
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Table S3. Model summary statistics of the local-scale SEM (n = 549; Fisher's C = 11.65; P-value = 
0.17; df = 8). Psyn_local = population synchrony within sites; Pcv_local = population variability 
within sites; Ccv_local = aggregated community variability within sites; S = species richness; PS = 
precipitation seasonality. 
 
Constrained to the global model      
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Est. 
Psyn_local S -0.173 0.022 494 -7.814 < 0.0001 -0.408 
Pcv_local S -0.052 0.030 493 -1.748 0.081 -0.085 
Pcv_local PS 0.010 0.003 493 3.038 0.003 0.232 
        
Model-wide interactions      
Producers        
Ccv_local Psyn_local 1.166 0.142 46 8.223 < 0.0001 0.636 
Ccv_local Pcv_local 1.095 0.313 46 3.501 0.001 0.338 
Primary consumers       
Ccv_local Psyn_local 1.274 0.090 97 14.160 < 0.0001 0.604 
Ccv_local Pcv_local 0.789 0.112 97 7.065 < 0.0001 0.392 
Secondary consumers       
Ccv_local Psyn_local 1.067 0.086 188 12.441 < 0.0001 0.757 
Ccv_local Pcv_local 0.585 0.074 188 7.932 < 0.0001 0.434 
Tertiary consumers       
Ccv_local Psyn_local 0.737 0.120 156 6.152 < 0.0001 0.345 
Ccv_local Pcv_local 0.405 0.071 156 5.681 < 0.0001 0.328 
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Table S4. Model summary statistics of the regional-scale SEM (n = 54; Fisher's C = 11.86; P-value 
= 0.16; df = 8). Psyn = average population synchrony within the metacommunity; Pcv = average 
population variability within the metacommunity; Csyn = avegare community spatial synchrony 
within the metacommunity; Ccv = avegare community variability within the metacommunity; 
Mcv = metacommunity variability; S gamma = regional species richness; RPS = regional 
precipitation seasonality. 
 
Constrained to the global model      
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Est. 
Mcv S gamma -0.006 0.026 16 -0.226 0.824 -0.007 
Csyn Closeness  0.000 0.000 18 -0.355 0.727 -0.048 
Csyn RPS 0.412 0.185 33 2.230 0.033 0.361 
        
Model-wide interactions      
Producers        
Mcv Csyn 1.899 0.736 1 2.581 0.235 0.417 
Mcv Ccv 0.936 0.192 1 4.878 0.129 1.015 
Primary consumers       
Mcv Csyn 1.351 0.289 12 4.680 0.001 0.274 
Mcv Ccv 0.836 0.066 12 12.586 < 0.0001 0.772 
Secondary consumers       
Mcv Csyn 1.821 0.107 14 17.095 < 0.0001 0.541 
Mcv Ccv 1.330 0.085 14 15.736 < 0.0001 0.716 
Tertiary consumers       
Mcv Csyn 1.948 0.139 11 14.037 < 0.0001 0.726 
Mcv Ccv 1.673 0.155 11 10.829 < 0.0001 0.546 
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Supplementary information 2. The propagation of stability across spatial scales, organizational, 
and trophic levels in freshwater ecosystems (Siqueira et al.). 
 
Methods used in data cleaning 
 
Within each data set, we only retained sites that were sampled at least 70% of all years and 
years that included at least 70% of all sites. We tried higher percentages of site and time 
completeness and found that 70% maximized the number of sites, years and metacommunities 
retained. 
 
We removed unidentified taxa and taxa identified at higher than genus level from all data sets. 
 
Years with missing data were imputed with the median of species abundance for the respective 
year or site. We also estimated stability metrics by modifying Wang et al. (2019) code to allow 
for missing data. We compared matrices containing estimates of variability and synchrony 
(trophic-level-specific metacommunity by variability and synchrony metrics matrix) from these 
two approaches (median vs. missing data allowed) with a Procrustes analysis and found they 
were highly correlated (r = 0.99). We thus concluded that the median-based imputation was 
robust. 
 
 
Data set description  
The numbers are related with the data set used in the R code. 
 
DS. 5-18. These data sets correspond to basins 2080020590, 2080020620, 2080021030, 
2080022150, 2080023010, 2080030100, 2080030610, 2080030710, 2080031490, 2080033020, 
2080033080, 2080033120, 2080053790, 7080047060 in the data base RivFishTIME (Comte et 
al. 2021).  
 
These data sets were chosen based on their availability at the time of data analysis and 
considering both spatial and temporal completeness.    
Data set owners: Public available 
Additional information about the dataset can be found here: Comte, L., Carvajal-Quintero, J., 
Tedesco, P. A., Giam, X., Brose, U., Erős, T., ... & Olden, J. D. (2021). RivFishTIME: A global 
database of fish time-series to study global change ecology in riverine systems. Global Ecology 
and Biogeography, 30(1), 38-50. 
 
DS. 19. The data set consists of 28 wadable streams from a Maryland, USA. In these sites, 
stream fish were quantified annually, from 2000 through 2012, as sentinel sites within the 
larger Maryland Biological Stream Survey.  Full details regarding sampling methods can be 
found below. 
 
Data set owners: Maryland Department of Natural Resources 
Data may be requested here: https://dnr.maryland.gov/streams/Pages/dataRequest.aspx 
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Additional information about the dataset can be found here: 
https://dnr.maryland.gov/streams/Pages/mbss.aspx 
 
DS. 20-21. These data sets consist of 7 lakes (DS. 20) and 5 riverine systems (DS. 21) in Upper 
Paraná River basin, northwest of the state of Paraná State. In these sites, zooplankton was 
quantified annually, from 2000 through 2010.  
 
Data set owner: Claudia Costa Bonecker (Nupelia, Maringá State University). 
 
Additional information about the dataset can be found here: Bonecker, C.C., Diniz, L.P., Souza, 
L. De, Braghin, M., Moi, A., Deosti, S., Naomi, G., Aparecido, D., Julya, A., Machado, D.M., 
Felipe, L., Velho, M., 2020. Synergistic effects of natural and anthropogenic impacts on 
zooplankton diversity in a subtropical floodplain: a long-term study. Oecologia Australis 24, 
524–537. https://doi.org/10.4257/oeco.2020.2402.20 
 
DS. 22-24. These data sets consist of Cladoceran and Copepod abundances from 13 lakes (DS. 
22 = 4 lakes; DS. 23 = 4 lakes; DS. 24 = 5 lakes;) in the Experimental Lakes Area, Ontario, 
Canada. In these sites, zooplankton have been quantified on multiple dates in various years 
between 1969 and 2018. 
 
Data set owners: International Institute for Sustainable Development Experimental Lakes Area, 
https://www.iisd.org/ela/. 
 
Additional information about the dataset can be found here: https://www.iisd.org/ela/our-
data/metadata/zooplankton/. Contact mpaterson@iid-ela.org. 
 
DS. 25. This data set consists of samples collected from the central region of Kentucky Lake, the 
last of eight impoundments on the Tennessee River system near Murray, KY, USA. The Kentucky 
Lake Long-term monitoring program collects samples every 16 days in conjunction with 
LANDSAT TM overflights at approximately 8-12 sites measuring a suite of approximately 40 
limnological parameters. In these sites, zooplankton samples were quantified annually from 
1988 until present. 
Data set owners: Hancock Biological Station, Watershed Studies Institute, Murray State 
University, Murray, KY, USA.  
 
Additional information about the dataset can be found here:  
 
Yurista, P. M., D. S. White, G. W. Kipphut, K. Johnston, G. Rice, and S. P. Hendricks.  2004.  
Nutrient patterns in a mainstem reservoir, Kentucky Lake, USA, over a 10-year period.  Lake and 
Reservoir Management 20:148-163. https://doi.org/10.1080/07438140409354359 
  
Yurista, P.M., K. Johnston, G. Rice, G.W. Kipphut and D.S. White.  2001. Particulate organic 
carbon patterns in a mainstem reservoir, Kentucky Lake, USA.  Lake and Reservoir 
Management.  17:330-340. DOI: 10.1080/07438140109354139 
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DS. 26-27. These data sets consist of seven lakes (DS. 26) and five riverine systems (DS. 27) in 
Upper Paraná River basin, northwest of the state of Paraná State. Phytoplankton was sampled 
quarterly from 2000 to 2018. 
 
Data set owner: Luzia Cleide Rodrigues (Nupelia, Maringá State University). 
 
Additional information about the dataset can be found here:  
Pineda A, Peláez Ó, Dias JD, et al (2019) The El Niño Southern Oscillation (ENSO) is the main 
source of variation for the gamma diversity of plankton communities in subtropical shallow 
lakes. Aquat Sci 81:49. https://doi.org/https://doi.org/10.1007/s00027-019-0646-z 
 
Rodrigues LC, Simões NR, Bovo-scomparin VMVM, et al (2015) Phytoplankton alpha diversity as 
an indicator of environmental changes in a neotropical floodplain. Ecol Indic 48:334–341. 
https://doi.org/10.1016/j.ecolind.2014.08.009 
 
DS. 28. This data set consists of 30 small ponds, 1m2, dug in the autumn of 1994 at Hauxley 
Nature Reserve, in Northumberland, North-east England. The ponds are arranged across a 
hydrological gradient, most ponds drying out for a period most years, but not always, and also 
linked by winter inundation flooding the field some years. The hydrological patterns were very 
dependent on variability in local weather. The animals (mostly invertebrates but very 
occasional amphibia) and plants were sampled every year from 1995 to 2014. The animals were 
recorded every late winter (January/February) and early summer (May/June), occasionally 
more often. Animals were recorded as presence/absence, all taxa including smaller crustacea 
such as Ostracoda and Cladocera, most identified to species, a few to just genus or Family. 
Plants were recorded to species, by quadrat point counts. 
 
Data set owner: Dr Michael Jeffries, Department of Geography & Environmental Sciences, 
Northumbria University 
 
Additional information about the dataset can be found here: Jeffries, M.J., (2010). The temporal 
dynamics of temporary pond macroinvertebrate communities over a 10-year period. 
Hydrobiologia, 661, 391-405. 
 
DS. 29. This data set consists of 7 sites along the Atna river watershed in Norway. Non-diatom 
benthic algae were quantified (percent cover) annually (with few exceptions) at each site in 
autumn (end of August/September) since 1988. The sampled material was determined to the 
lowest taxonomic level possible, usually species. The Atna watershed is one of the few 
unaffected larger catchments in Norway and is used as unimpacted reference in many national 
and international projects.  
 
Data set owner: Norwegian Institute for Water Research.  
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Additional information about the dataset can be found here: 
http://doi.org/10.23728/b2share.177a0aedcfee4f3d82537bc3b72a3cc7 
DS. 30. This data set consists of Cladoceran and Copepod abundances from 5 lakes in the 
Northern Highlands Lake District, Wisconsin, USA. In these sites, zooplankton are quantified on 
multiple dates each year since 1982. Data used here are from 1982 through 2017.  
 
Data set owners: North Temperate Lakes Long-Term Ecological Research program, lter.wisc.edu 
 
Additional information about the dataset can be found here: Lead PI N., J. Magnuson, S. 
Carpenter, E. Stanley. 2010. North Temperate Lakes LTER: Zooplankton - Trout Lake Area 1982 - 
current. Environmental Data Initiative. 
https://doi.org/10.6073/pasta/8d5e19d0e9680fddc3402e148e377c1a. Dataset accessed 
1/17/2020 
 
DS. 31. This data set consists of macroinvertebrate counts from 14 reference sites scattered 
along in 4 catchments of the Barcelona (Spain) region and located in Natural Parks: Llobregat, 
Besòs, Ter, and Tordera. Macroinvertebrates were collected two times per year (spring and 
summer) from 2013 to 2017 and using a multihabitat kick sampling. This data set was extracted 
from the research contract “CARIMED: Effects of Environmental Change on Biological 
Communities in Mediterranean Rivers” (www.ub.edu/barcelonarius) funded by the regional 
administration “Diputació de Barcelona”. The main objective of CARIMED is to examine 
whether global environmental changes are affecting biological communities in Mediterranean 
ecosystems. This contract is the continuation of the first river quality monitoring studies in the 
region that started back in 1979. 
 
Data set owners: Núria Bonada and Pau Fortuño. FEHM-Lab (Freshwater Ecology, Hydrology 
and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut 
de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia/Spain 
 
Additional information about the dataset can be found here: https://doi.org/10.15470/yt2uex 
 
DS. 32. This data set consists of 5 locations along the Kinzig river within the eLTER site Rhine-
Main-Observatory as part of the Main-Kinzig district, state of Hesse, Germany. In these 
locations, macroinvertebrates were quantified annually, from 2010 through 2019.  
 
Data set owners: Peter Haase (Department of River Ecology and Conservation, Senckenberg 
Society for Nature Research & University of Duisburg-Essen) 
 
Additional information about the dataset can be found here: DEIMS ID: 
https://deims.org/9f9ba137-342d-4813-ae58-a60911c3abc1 
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DS. 33. This data set consists of four sites in the Quebra-Queixo reservoir, Uruguay basin, state 
of Santa Catarina, Brazil. Phytoplankton was sampled at least twice a year in the low-water 
season (July) and high-water season (January), from 2006 to 2016. 
 
Data set owner: Luzia Cleide Rodrigues (Nupelia, Maringá State University). 
 
Additional information about the dataset can be found here: unpublished data. 
 
DS. 34. This data set consists of benthic macroinvertebrate samples from ten 1st-to-3rd order 
reference sites in the Koutajoki catchment in northeastern Finland close to the Polar Circle (for 
more information, see Nilsson et al. 2022). Macroinvertebrates were collected once a year 
(autumn; September to early October) from 2000 to 2014, using multihabitat kick sampling. 
Sampling and species identification work has been supported by Oulanka Research Station and 
several consecutive grants by the Academy of Finland. The main objective of the project is to 
examine long-term variability of benthic invertebrate populations and communities in near-
pristine reference streams in a north boreal river system. 
 
Data set owners: Timo Muotka and Kaisa-Leena Huttunen (Ecology and Genetics, University of 
Oulu, Finland). 
 
Additional information about the dataset can be found here: Nilsson, C., Muotka, T., Malmqvist, 
B. & Timm, H. 2022. The Fennoscandian shield. In: Tockner, K. et al. (eds). Rivers of Europe. 
Elsevier. 
 
DS. 35. This data dataset consists of zooplankton samples collected from sixteen sites in the 
western and central basins of Lake Erie (U.S. and Canada). At these sites, zooplankton was 
collected approximately biweekly between May and September. 
 
A protocol for sampling can be found here under methodology and data access: 
https://ael.osu.edu/researchprojects/lake-erie-plankton-abundance-study-lepas 
 
Data set owner: Ohio Department of Natural Resources – Division of Wildlife, managed by Jim 
Hood, Dept. of Evolution, Ecology, and Organismal Biology, The Ohio State University 
 
Additional information about the dataset can be found here: Conroy, J.D., Kane, D.D., Dolan, 
D.M., Edwards, W.J., Charlton, M.N., Culver, D.A., 2005. Temporal trends in Lake Erie plankton 
biomass: role of external phosphorus loading and dreissenid mussels. Journal of Great Lakes 
Research 31(Suppl.2), 89-110. Data are available upon reasonable request to Jim Hood. 
 
 


