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Abstract 72 

The temporal variability of ecological properties tends to decrease with spatial scale and levels 73 

of biological organization, but how does it propagate across trophic levels? We compiled 74 

metacommunity time-series datasets spanning basal resources to top predators from 355 75 

freshwater sites across three continents. Temporal variability in abundance decreased from 76 

producers to tertiary consumers mainly at the local scale. Population synchrony within sites 77 

increased with trophic level, whereas spatial synchrony among communities decreased. While 78 

climate and diversity controlled temporal variability similarly across trophic levels, the 79 

relationship between metacommunity variability and spatial synchrony was stronger for top 80 

consumers. Our results suggest that mobile predators can stabilize metacommunities by 81 

buffering variability originating at the base of food webs. This finding demonstrates that the 82 

trophic structure of metacommunities, which integrates variation in organismal body size, 83 

dispersal, and environmental tolerance, should be considered when investigating ecological 84 

stability. 85 

  86 
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Introduction 87 

The temporal variability of ecological properties (e.g., population biomass) tends to 88 

decrease with increasing spatial scale and levels of biological organization 1,2. For instance, 89 

fluctuations in fishery catch at the metapopulation level are often weaker than in any one of 90 

the constituent populations 3. Similarly, organismal abundance at a given patch tends to be 91 

more stable at the community than at the population level 4. However, most previous attempts 92 

to understand temporal variability and its drivers have done so at single trophic levels 1,5–7, 93 

resulting in a critical knowledge gap. Communities are connected to each other through the 94 

spatial flow of organisms in different trophic levels 8; thus, the spatial structure of multitrophic 95 

metacommunities may modulate temporal variability 9. For example, mobile top consumers can 96 

buffer temporal variability of an entire metacommunity if they move unhindered across the 97 

landscape, optimally foraging across heterogeneous resource patches that have asynchronous 98 

dynamics 10. Understanding how temporal variability propagates not only across spatial and 99 

organizational scales, but also along trophic levels, would increase realism in models of 100 

metacommunity dynamics, and could help identify controls on ecosystem stability. 101 

 A hierarchical framework for understanding temporal variability in metacommunities 102 

has been formalized only recently 11. This framework assumes that fluctuations in species 103 

populations within sites represent the lowest-level component of temporal variability – i.e., 104 

population variability. The amount of population variability that propagates to the aggregate 105 

community level is determined by the amount of synchrony (i.e., coordinated fluctuations) 106 

across the different populations in a landscape 12. In turn, metacommunity variability emerges 107 

from both aggregate community variability and spatial synchrony among local communities 11. 108 
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By virtue of this scaling, temporal variability tends to decrease as ecological properties are 109 

aggregated from local populations to regional metacommunities.  110 

The propagation of temporal variability across spatial scales and levels of organization 111 

has been explained, thus far, by mechanisms operating either at local or regional scale. At local 112 

scales, aggregate ecological properties tend to be more stable in more diverse communities 113 

due to statistical averaging among species that fluctuate independently through time 13. 114 

Negative covariance in the abundance of different populations due to biotic and abiotic 115 

interactions reduces temporal variation in aggregate ecological properties 14. Higher diversity 116 

also indirectly increases the chance of compensatory dynamics, unless species are highly 117 

functionally redundant: with more species, there will likely be a broader range of responses to 118 

environmental variation 15. At the regional scale, ecological properties (e.g., metacommunity 119 

total biomass) will vary more if spatially separated communities are synchronized, either via 120 

correlated fluctuations in the environment (i.e., Moran effect 16) or via a combination of strong 121 

dispersal and predator-prey cycles 17. Notably, organismal trophic position is generally 122 

associated with body size, dispersal strength, and response to environmental variation 18,19. 123 

Thus, the trophic structure of a metacommunity may determine the magnitude and drivers of 124 

its temporal variability—a hypothesis that has not been robustly tested.  125 

High-level mobile consumers can stabilize the temporal dynamics of metacommunities 126 

by coupling heterogeneous local food webs in space 10,20. This second hierarchical framework 127 

assumes that larger organisms tend to be at higher trophic levels, and demonstrate high 128 

mobility across the landscape, leaving low prey density patches for more profitable high-density 129 

patches 21. Within a large ecosystem or metacommunity, the spatial coupling of heterogeneous 130 
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local food webs guarantees a continuous supply of resources of different quality to mobile 131 

predators, making their temporal dynamics more stable. Such dynamics can also promote 132 

regional stability of resources as spatial heterogeneity in predation pressure can reduce spatial 133 

synchrony of organisms at lower trophic levels22. Merging these two views 11,20 may offer new 134 

opportunities to test hypotheses about how diversity, environmental fluctuations, and spatial 135 

fluxes interact with trophic levels to influence the propagation of temporal variability across 136 

space and across levels of organization 6.  137 

Here we compiled 30 temporal datasets on metacommunity dynamics spanning basal 138 

resources (e.g., phytoplankton) to top predators (e.g., piscivorous fish), comprising spatially 139 

replicated interannual time series sampled from 355 freshwater sites across three continents 140 

(Fig. S1). Merging the two hierarchical frameworks of temporal variability, we tested the 141 

following hypotheses: (H1) Temporal variability in abundance decreases with trophic position, 142 

as top consumers may buffer variability originating at the base of the food web. This hypothesis 143 

is based on the idea that top mobile consumers couple alternate among local food webs 144 

characterized by fast energy channels comprised mostly of strong interactions and slow 145 

channels mostly comprised of weak interactions 23. An alternative plausible expectation would 146 

be for higher trophic levels to exhibit higher population fluctuations due to environmental and 147 

demographic stochasticity affecting disproportionally taxa with larger body size and smaller 148 

population sizes 24. (H2) Species population synchrony within sites increases with trophic level, 149 

whereas spatial synchrony among communities decreases, as top mobile consumers may flock 150 

in heterogeneous resource patches through time. This hypothesis is supported by the idea that 151 

tracking heterogeneous resources should increase variability in the time that top consumers 152 
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spend in a patch, which should decrease spatial synchrony in resources at the regional scale but 153 

increase local predator synchrony 25. Finally, we tested if the strength and direction of 154 

relationships between temporal variability, synchrony, diversity, and environmental and spatial 155 

predictors depend on trophic level and spatial scale (Fig. S2). We hypothesized (H3a) a stronger 156 

role of environmental control in primary producer population variability and synchrony at the 157 

local scale, as their dynamics would be less affected by the spatial coupling of mobile top 158 

consumers, and (H3b) a stronger role of spatial connectivity on top consumer spatial synchrony 159 

and metacommunity variability at the regional scale (Fig. S2). We used the hierarchical 160 

partitioning framework proposed by Wang et al. 11 applied to metacommunities to test 161 

hypotheses H1 and H2. Next, we used structural equation modelling (SEM) applied to variability 162 

and synchrony components measured at two spatial scales to test hypothesis H3. 163 

 164 

Results 165 

Metacommunity variability partitions across scales and levels 166 

Temporal variability in abundance decreased with increasing trophic level (F = 27.18, df 167 

= 11, p < 0.001, R2 = 0.69; Fig. 1A), as hypothesized (H1). Pairwise contrasts indicated that 168 

population variability (Pv) differed among all trophic levels; community variability (Cv) differed 169 

among all trophic levels, except between producers and primary consumers; and 170 

metacommunity variability (Mv) of producers was higher than that of secondary and tertiary 171 

consumers (Table S1). Thus, temporal variability of tertiary consumers was lower than that of 172 

producers and primary consumers—from local populations to regional metacommunities. This 173 

same pattern was observed when we analyzed temporal variability and synchrony only within 174 
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datasets that included more than one trophic level (22 datasets encompassing a total of 300 175 

sites; Fig. 2A).   176 

These results indicate that the amount of population variability that propagated to 177 

community variability (i.e., Pv/Cv ratio) increased from producers to tertiary consumers: 54.7% 178 

of producer’s Pv propagated to the community level, compared to 82.6% for top consumers. In 179 

contrast, the amount of Cv propagating to metacommunity variability (i.e., Cv/Mv ratio) 180 

generally decreased from producers to tertiary consumers, with 66% of producer’s Cv (but only 181 

52.5% of tertiary consumers’ CV) propagating to the metacommunity level.  182 

In support of hypothesis H2, these propagation trends were due to an interaction 183 

between trophic level and type of synchrony (F = 9.67, df = 3, P < 0.001). This result suggests 184 

that the scaling of variability observed across trophic levels was likely explained by a divergence 185 

or increasing gap between synchrony at the population level (i.e., synchrony among 186 

populations within sites) and at the community level (i.e., among communities across sites) (Fig. 187 

1B). While population synchrony generally increased from producers to tertiary consumers (all 188 

pairwise contrasts differed from each other, except between primary and secondary 189 

consumers; Table S3), community spatial synchrony decreased from primary to secondary and 190 

tertiary consumers (Fig. 1B; Table S3). Consequently, the general differences in variability 191 

among trophic levels were reduced at the metacommunity level. We note this general pattern 192 

was also observed when focusing on datasets that included more than one trophic level (Fig. 193 

2B).  194 

 195 

Sensitivity analyses 196 
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Because individual datasets differed in number of sites and years sampled, and previous 197 

studies showed these aspects can affect population variability estimates 26, we tested the 198 

strength of our inferences. First, we examined if variation in time series length and site 199 

replication could have influenced the observed patterns. Although variability and synchrony 200 

metrics were often positively related to time series length and negatively related to the site 201 

replication, none of these relationships showed a statistical interaction with trophic level (Fig. 202 

S5 and S6). This observation suggests that sampling heterogeneity effects were consistent 203 

across trophic levels, and thus unlikely to generate a spurious “propagation effect”. Second, to 204 

further examine if results would have differed under a reduced number of sites or years, we 205 

developed two sensitivity analyses that resampled sites (Fig. S7 and S8) or reduced time steps 206 

in the time series (Fig. S9) and ran the same set of analyses on those datasets (see Methods for 207 

details). We obtained the same patterns described above (see Figs. S7-S9 for details), 208 

confirming that variation in time series length or site replication did not drive propagation 209 

patterns. 210 

 211 

Connecting and uncovering the drivers of temporal variability  212 

The local-scale structural equation model (local-scale SEM) indicated that the strength of 213 

the positive relationship between community variability and population variability varied 214 

among trophic levels, partially supporting H3 (Fig. 3). As we are not aware of any statistical 215 

method that compares multigroup coefficients in SEM a posteriori, we interpret these 216 

differences among trophic levels qualitatively. Producers displayed the highest coefficient 217 

(0.98) for the path linking population to community variability, while consumers showed little 218 
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differences (0.34-0.45). The path coefficient linking species population synchrony to community 219 

variability did not vary among trophic levels (0.58). Additionally, we found the expected 220 

negative relationship between species population synchrony and local species richness, which 221 

did not vary among trophic levels (Fig. 3). However, contrary to our predictions, the positive 222 

relationship between population variability and precipitation seasonality did not vary among 223 

trophic levels (Fig. 3). Precipitation seasonality influenced slightly secondary and tertiary 224 

consumers in opposite ways, but we note this direct path was not part of our conceptual model 225 

(Fig. S2) and was included a posteriori to improve model fit.  226 

The regional-scale SEM indicated that the strength of the positive relationships between 227 

metacommunity variability and community variability, and between metacommunity variability 228 

and spatial synchrony, varied among trophic levels, and in both cases were null for producers 229 

(Fig. 3). While the strength of the relationship between metacommunity and community 230 

variability decreased with trophic levels (0.75 to 0.54), the relationship between 231 

metacommunity variability and community spatial synchrony increased with trophic levels (0.30 232 

to 0.73). Thus, in agreement with hypothesis H3b, the relationship between community spatial 233 

synchrony and temporal variability in metacommunity aggregate abundance was strongest for 234 

predators. This result confirmed the expectation that communities that are more spatially 235 

synchronous tend to also be more temporally variable at the regional scale—but notably, the 236 

strength of this relationship depends on the trophic level being analyzed.  237 

 238 

Discussion 239 
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Our broad-scale investigation suggests that temporal variability in abundance decreases from 240 

producers to top consumers in freshwater ecosystems (H1), but that differences in temporal 241 

variability among trophic levels are smaller or absent at the regional metacommunity scale. 242 

These patterns were consistent when we analyzed all datasets together and within datasets, 243 

suggesting that they were due to the complementary and opposing contributions of different 244 

trophic levels to variability and synchrony within and across localities (H2). While synchrony 245 

among populations within localities increased from producers to tertiary consumers, spatial 246 

synchrony across localities decreased. Our analyses also confirmed that the associations 247 

between community spatial synchrony and metacommunity variability was strongest for top 248 

consumers (H3b). However, in contrast to our expectation (H3a), the indirect effects of 249 

environmental variables on temporal variability at both local and regional scales were generally 250 

consistent among trophic levels. Our results thus indicate that the trophic structure of 251 

metacommunities, which generally reflects organismal differences in body size, dispersal 252 

strength, and response to environmental variation 18,19, should be more explicitly accounted for 253 

when attempting to understand the propagation of temporal ecological stability.  254 

The decrease in temporal variability from producers to tertiary consumers was not 255 

consistent from local populations to regional metacommunities; a result of variability and 256 

synchrony differing among trophic levels across the local and regional scales. Temporal 257 

variability can be expected to decrease with increasing organism body size in aquatic food webs 258 

at the local scale 27. This is because while primary consumers tend to obtain most of their 259 

resources from either phytoplankton or detritus in freshwater ecosystems, consumers at higher 260 

trophic levels tend to derive carbon from both local webs 23. These coupled heterogeneous 261 
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webs differ in the amount of energy entering through basal resources and interaction 262 

strengths, which guarantees that top consumers have access to asynchronous dynamics 263 

originating at the base of local food webs 23 – a mechanism widely recognized as a driver of 264 

stability 13. However, an increase in temporal variability from producers to tertiary consumers 265 

could also be expected. The high growth rates of small organisms at lower trophic levels and 266 

their larger population sizes could also counter the effects of perturbations and demographic 267 

stochasticity24. We thus think these alternative hypotheses deserve future investigation 268 

through a combination of modelling and appropriate observational data.   269 

Interestingly, at the local scale, the amount of variability propagated from the 270 

population to the community level was higher for tertiary consumers because fluctuations in 271 

abundances of tertiary species were highly synchronized locally, while the opposite manifested 272 

at the regional scale. Populations of higher trophic levels tend to congregate together on 273 

specific resource patches within the metacommunity while they are profitable 21, which 274 

explains the highest levels of local population synchrony among tertiary consumers, a result 275 

also supported by microcosm research 9. The local synchronizing effect of top consumers 276 

appears to weaken along the trophic chain within communities, leading to lower population 277 

synchrony within primary consumers and producers.  278 

In contrast to species population synchrony, tertiary consumers exhibited the lowest 279 

levels of community spatial synchrony. That is, temporal fluctuations in aggregate community 280 

abundance of top consumers were more desynchronized across localities. Top consumers will 281 

likely have asynchronous spatial dynamics at increasing spatial extents because the switching 282 

among spatially separated resource patches by mobile predators occurs in response to spatial-283 



14 
 

temporal variation in resource densities 20. The movement of top consumers from low prey 284 

density patches for more profitable high-density patches should also promote more spatially 285 

asynchronous fluctuations in resources, which should in turn decrease prey variability at the 286 

regional scale. Recent experimental evidence suggests that the extinction of a top predator led 287 

to more unstable communities due to an increase in synchrony of lower trophic levels caused 288 

by mesopredator pressure 28. We thus suggest that top mobile consumers can be seen as 289 

stabilizers of their abundances and of entire metacommunities.    290 

The local-scale SEM showed that community diversity dampened population synchrony 291 

and that this relationship was consistent among trophic levels. A recent meta-analysis reported 292 

strong support for the negative indirect effect of local diversity on community variability 293 

through population synchrony 7. More diverse communities tend to be more temporally stable 294 

due to two non-exclusive mechanisms, which our analysis cannot resolve. First, fluctuations in 295 

the abundance of some species can be compensated for by fluctuations of other species due to 296 

biotic interactions or opposing responses to environmental variation, maintaining aggregate 297 

ecological properties more stable through time 14. Second, statistical averaging among species 298 

that fluctuate independently through time may also lead to a similar pattern of ‘risk 299 

dampening’ 13. Interestingly, the positive relationship between population synchrony and 300 

aggregate community variability, which mediated the indirect relationship between diversity 301 

and community variability, was also consistent among trophic levels. Thus, by considering both 302 

direct and indirect paths, we suggest that the influence of diversity on aggregate community 303 

variability at the local scale holds even if the number of species within trophic levels varies.  304 
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Similarly, the path linking precipitation seasonality to population variability was 305 

consistent among trophic levels. Precipitation seasonality weakly increased population 306 

variability. However, the path linking population variability to community variability was 307 

statistically different among trophic levels. While the standardized coefficients did not differ 308 

strongly among consumers (ranged from 0.34 to 0.45), the relationship was clearly stronger for 309 

producers (0.98). More seasonal environments may have species more adjusted to the timing 310 

of environmental events compared to locations with less predictable seasonality 29. 311 

Fluctuations in per capita population growth tend to be affected by the short-term effects of 312 

environmental forcing 30, especially among smaller organisms. Thus, our results suggest that 313 

populations are more temporally variable among years in seasonal environments and that this 314 

relationship might vary across trophic levels, as organisms with different lifespans should 315 

evolve different life history strategies to cope with the frequency of environmental fluctuations 316 

31.  317 

Our results lend support to hypothesis H3b, as we found that the strength of the 318 

relationship between metacommunity variability and community spatial synchrony increased 319 

from producers to tertiary consumers. The stronger relationship between community spatial 320 

synchrony and metacommunity variability for tertiary consumers indicates that the lowest 321 

levels of community spatial synchrony were essential to maintain the decreasing trend of 322 

temporal variability from producers to top consumers. In contrast to hypothesis H3b, however, 323 

neither synchrony in precipitation nor spatial connectivity played a role as a driver of 324 

community spatial synchrony. This result is surprisingly because evidence supporting the 325 

influence of the Moran effect on the dynamics of freshwater ecosystems has been 326 
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accumulating recently. For example, flow management for hydropower can spatially 327 

synchronize invertebrate metacommunities along regulated sections of dammed rivers, 328 

benefiting species better adapted to fast flows 32. Similarly, drought can lead to regional quasi-329 

extinction of species with lower resistance and resilience abilities by synchronizing stream 330 

metapopulations 33. We cannot discard, however, that the lack of relationship between 331 

community spatial synchrony and environmental predictors was due to the use of climatic 332 

variables only. For example, ecosystem productivity is one of the key drivers of ecological 333 

stability (i.e., paradox of enrichment34). Even though, considering results both from 334 

metacommunity partitioning analyses and two-scale SEMs, we suggest that the ability of mobile 335 

consumers to move across patches may sometimes counteracts the effects of environmental 336 

variability on population variability, and of environmental synchrony on community spatial 337 

synchrony 20.           338 

Our SEMs did not include all paths seen in previous studies. For example, we did not link 339 

metacommunity variability, indirectly through community spatial synchrony, or directly, to 340 

spatial beta-diversity. While some previous studies have suggested that high beta-diversity can 341 

cause low spatial synchrony 35,36, others have suggested that it is temporal turnover (a form of 342 

temporal variability) that drives beta-diversity 37, and others suggested this relationship may be 343 

due to pure sampling effects 38. We think spatial and temporal turnover and spatial synchrony 344 

are all consequences of an interaction among environmental forcing, the various forms of 345 

stochasticity, and dispersal 8, and that they likely represent different facets of temporal stability 346 

39. Thus, we built our conceptual model focusing on paths supported by theory as 347 

representations of causal relationships. A second potential caveat is the chosen frequency of 348 
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observations (annual). Organisms in different trophic levels differ in lifespan and generation 349 

times—from days or weeks (e.g., phytoplanktonic and zooplanktonic organisms) to years 350 

(fishes). Although it is challenging to completely rule out this caveat, most data on fish temporal 351 

variability spanned at least 10 years, which we deem long enough to represent trends across 352 

generations and relative to environmental cycles. Also, measurements of temporal variability 353 

are not biased if sampling rates are slow relative to system dynamics 40. A third potential caveat 354 

is the scarcity of datasets comprising three or more trophic levels. We addressed this caveat by 355 

analyzing temporal variability and synchrony within datasets that included more than one 356 

trophic level and found that the general patterns observed with the full data hold. Thus, these 357 

relationships seem to be real, and not an artifact resulting from variation in sampling methods. 358 

We urge, however, efforts to prioritize sampling or collation of time-series data on complete 359 

food webs.    360 

 Our study has implications for the understanding of temporal variability in multitrophic 361 

metacommunities, as well as for how it is influenced by environmental change. We showed 362 

that temporal variability in abundance, one of the facets of temporal stability, decreases from 363 

producers to top predators across levels of biological organization, but that differences among 364 

trophic levels tend to equalize at the regional scale. Given that species at higher trophic levels 365 

are more susceptible to extinction than species at lower trophic levels 41 and that 366 

environmental change tends to increase environmental homogeneity 42, the propagation of 367 

stability across spatial scales and trophic levels cannot be taken for granted. Our work advances 368 

the notion that temporal stability is an emergent property of ecosystems that may be 369 

threatened in complex ways by both human and climate-driven biodiversity loss. 370 
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 371 

Methods 372 

Datasets 373 

We collated 30 independent metacommunity datasets, comprising spatially replicated 374 

time series of counts of individual species (or genera) spanning those representing basal 375 

resources (e.g., phytoplankton) to top predators (e.g., piscivorous fish) across different 376 

geographies and climates of the globe (Fig. S1). A summary of each dataset can be found in the 377 

supporting information.     378 

Our data included 5 metacommunities in lentic systems (lakes) and 25 in lotic systems 379 

(streams and rivers). We only used data on metacommunities in which local communities were 380 

physically connected – i.e., stream networks and sites within lakes. None of the relationships 381 

described for temporal variability or synchrony differed among ecosystem types (lotic vs. lentic; 382 

Fig. S3 and S4). Each dataset contained at least 4 sites (max. = 30; mean = 11.83; median = 383 

11.50) sampled for at least 5 years (max. = 30; mean = 11.93; median = 10). When the original 384 

data included multiple sampling events per year, we chose the summer month with the highest 385 

number of sites sampled. We removed unidentified taxa and taxa identified at higher than 386 

genus level from all datasets.  387 

Within each dataset, we only retained sites that were sampled at least 70% of all years 388 

and years that included at least 70% of all sites. We tried higher percentages of site and time 389 

completeness and found that 70% maximized the number of sites, years and metacommunities 390 

retained. Within each metacommunity, years with missing data were imputed with the median 391 

of species abundance for the respective year or site. We also estimated stability metrics by 392 
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modifying Wang et al. 11 code to allow for missing data – i.e., average population, community 393 

and metacommunity variability were estimated with incomplete time series (for more details, 394 

see Supp. Material). We compared matrices containing estimates of variability and synchrony 395 

(trophic-level-specific metacommunity by variability and synchrony metrics matrix) from these 396 

two approaches (median vs. missing data allowed) with a Procrustes analysis and found they 397 

were highly correlated (r = 0.99). We thus concluded that the median-based imputation was 398 

robust. 399 

Each species was assigned to one trophic category: producers (including stream benthic 400 

algae, macrophytes, and phytoplankton; 23 site-level time series after filtering, see below), 401 

primary consumers (zooplankton [Cladocera and Copepoda], macroinvertebrates, and fish; 97 402 

site-level time series), secondary consumers (macroinvertebrates and fish; 208 site-level time 403 

series), and tertiary consumers (piscivorous fish; 173 site-level time series). We then 404 

reorganized the original datasets into trophic-level-specific metacommunities. For example, an 405 

original dataset on fish could be subdivided into three data tables, one with primary consumers 406 

only, one with secondary, and another with tertiary consumers. This reorganization of data 407 

resulted in 54 data tables (producers = 4; primary consumers = 13; secondary = 22; tertiary = 408 

15). Finally, we removed sites with only 1 species, resulting in 501 sites (the same site could be 409 

part of more than one data table) and 49 trophic-level-specific metacommunities for analysis.  410 

Importantly, none of the original datasets included information on all trophic levels. 411 

Thus, our inferences are based on analyses of trophic levels that were represented by different 412 

datasets – e.g., producers from dataset A and tertiary consumers from dataset B. We recognize 413 

the simplification of trophic level categorization as we do not consider omnivory or variation in 414 
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feeding strategies within a particular group. However, failing to simplify the data in this manner 415 

would have resulted in many combinations of metacommunities and trophic levels, most 416 

without any replication or temporal and spatial sampling completeness. As we aimed to 417 

investigate relationships that are theoretically expected along a complex gradient of trophic 418 

levels 43 and dispersal capacity 20, we believe our strategy represents a useful compromise.  419 

We explicitly considered variation inherent to the original data by using four strategies. 420 

First, we estimated all variables (e.g., local diversity, population synchrony) within each of the 421 

49 metacommunity-trophic level datasets. Second, we used mixed-effects models to quantify 422 

the relationships between these and potential confounding variables (e.g., length of the time 423 

series; see details below). Third, we estimated and analyzed variability and synchrony metrics 424 

for datasets that included more than one trophic level. Two datasets included information on 425 

primary to tertiary consumers, while seven and thirteen datasets included information on 426 

primary to secondary and secondary to tertiary consumers, respectively. Fourth, we ran a 427 

sensitivity analysis to investigate the potential effect of the number of sites per 428 

metacommunity and time series length on variability and synchrony metrics (see details below).  429 

     430 

Metacommunity variability partitions across scales and levels 431 

 To test hypotheses H1 and H2, we first partitioned temporal variability in total 432 

metacommunity abundance into its lower-level components for each of the 49 trophic-level-433 

specific metacommunities. For this, we used the framework proposed by 11 that allows 434 

partitioning the variability of total metacommunity abundance (Mv) into two components – 435 

temporal variability of local community abundance (Cv) and spatial synchrony among those 436 
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local communities (Csy). Cv was further partitioned into the variability of individual population 437 

abundances within sites (Pv) and synchrony among those local populations (Psy). Thus, Mv = Cv 438 

x Csy = (Pv x Psy) x Csy. Temporal variability at a given level was defined as the coefficient of 439 

variation in abundance across years, where Cv was expressed as the weighted (by the temporal 440 

mean) average of community variability across sites and Pv was expressed as the weighted 441 

average of local population variability across species and patches. Csy was calculated as the 442 

annual variance of metacommunity abundance divided by the sum of temporal standard 443 

deviations of local community abundance. Species population synchrony was calculated as the 444 

annual variance of community abundance divided by the squared sum of the standard 445 

deviations of the constituent species’ abundances. Psy was expressed as the weighted average 446 

of species synchrony across patches (see Wang 11 for equations). Thus, there was one value of 447 

Mv, Cv, Pv, Csy, and Psy per each of the 49 trophic-level-specific metacommunities. 448 

 We modeled partition values as a function of trophic and organizational levels with 449 

linear models. Because we were more interested in differences among trophic levels, when 450 

there was a relationship between variability or synchrony with trophic levels (global model with 451 

P < 0.05), we used estimated marginal means and specific pairwise contrasts corrected for 452 

multiple comparisons (Holm adjustment) to compare trophic levels. To do that we used the 453 

package emmeans 44 in the R 45.    454 

 455 

Sensitivity analysis  456 

Our exploratory analyses indicated that that some of the variability metrics were negatively 457 

related to the number of sites sampled – although there was no interaction between the 458 
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number of sites and trophic groups (Fig. S6). To investigate the potential effect of site 459 

replication and time series length further, we ran two sensitivity analyses in which variability 460 

and synchrony were estimated for metacommunity with only 8 sites and with only 11 years. 461 

First, we got all datasets with more than 7 sites (the maximum number of sites of the trophic 462 

group [producers] with the minimum number of sites) and sampled 8 sites randomly from each 463 

one of them. We repeated this process 1000 times, and each time we estimated the variability 464 

and synchrony metrics. We averaged these 1000 values and compared these "rarefied" 465 

estimates with the estimates obtained using the full data. To investigate the potential effect of 466 

time series length, we used a standardized reduced time series – 11 years only (the maximum 467 

number of years of the trophic group [tertiary consumers] with the minimum number of years). 468 

We did not rarefy time series length (but rather truncated raw time series), as we wanted to 469 

preserve the time series nature of the population and community data (ignoring temporal 470 

autocorrelation would have likely affected variability estimates). 471 

 472 

Two-scale structural equation modelling 473 

Based on hypotheses H3a-b (Fig. S2), we used local estimation structural equation 474 

modeling (SEM) 46 to test the direct and indirect relationships among diversity, environmental 475 

and spatial predictors, variability and synchrony, trophic levels at two spatial scales. We fitted 476 

different models following our hypotheses but using different variables to represent the direct 477 

and indirect relationships. For example, we represented the direct path between local 478 

environmental variability and population variability by using temperature seasonality in one 479 

candidate model, and precipitation seasonality in another. We used AICc, model weight, and 480 
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delta AICc to compare alternative models. When different models were equally plausible (i.e., 481 

delta AIC < 2), we chose the one with the highest total R2 value and with residuals that did not 482 

show strong patterns. 483 

We performed multigroup SEM analysis 47 to test whether the relationships among 484 

predictor and response variables varied between trophic groups. Multigroup SEM can be 485 

thought as an Analysis of Covariance (ANCOVA). For example, let’s consider the following 486 

model: population synchrony ~ local diversity * trophic level. If there is an interaction between 487 

the two predictor variables, one should interpret the relationship between population 488 

synchrony and local diversity (standardized coefficient) for each trophic level. When that was 489 

the case, we represented the multiple pathways with different colors to indicate that the 490 

relationship between a response and a predictor variable depended on trophic level (Fig 3). 491 

We used two independent SEMs to maximize the statistical power of our test. First, we 492 

applied SEM to metacommunity partitions (regional-scale SEM; n = 49 trophic-level-specific 493 

metacommunities). Then, we applied SEM to variability and synchrony metrics estimated at the 494 

local scale, i.e., for individual sites within the trophic-level-specific metacommunities (local-495 

scale SEM; n = 501).  496 

To estimate variability and synchrony metrics at the local scale, we used the same 497 

equations as in 11, but without averaging variability or synchrony across sites. Therefore, the 498 

temporal variability of aggregate community abundance at each site (Cv_local) was defined as 499 

the coefficient of variation of summed species abundance within the site. We estimated 500 

Cv_local independently for each of the 49 trophic-level-specific metacommunities and obtained 501 

one value of Cv_local per site. For the local scale, we also partitioned community variability into 502 
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its lower components, population variability within sites (Pv_local), defined as the weighted 503 

average CV of population abundance of the species present within the local community, and 504 

synchrony among those local populations within sites (Psy_local), defined as the synchrony in 505 

abundance among the species present within the local community. The two SEMs were 506 

conceptually linked by community variability. However, for the local-scale SEM community 507 

variability was estimated for each site (Cv_local), whereas for the regional-scale SEM, it was 508 

averaged within each metacommunity (Cv). 509 

For the regional-scale SEM, we fitted Gaussian linear mixed models with the response 510 

and predictor variables, with metacommunity identity as a random effect. Regional diversity 511 

was dropped from the model, and variability and synchrony were log-transformed prior to 512 

analyses to improve model fit. For the local-scale SEM, we fitted Gaussian linear mixed effects 513 

models with the response and predictor variables, with metacommunity identity and a variable 514 

identifying the trophic-level-specific metacommunity as random effects. The fit and evaluation 515 

of the model followed the same procedures described for regional-scale SEM. For this SEM, we 516 

also included time series length as an explanatory variable for population variability because 517 

exploratory analyses indicated that variability metrics were sensitive to it (Fig. S5). The 518 

goodness of fit of each SEM was evaluated with a test of directed separation (Fisher’s C 519 

statistic; alpha ≥ 0.05). The SEMs were fitted with lme4 48 and piecewiseSEM 47 in R. 520 

 521 

Environmental and spatial predictors 522 

For the local-scale SEM, we used measures of temperature and precipitation seasonality 523 

as predictors of population variability. We expected that more seasonal sites would have lower 524 
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levels of population variability across years, as species may be more tolerant to the wider 525 

environmental fluctuations present in any given year and because we only used summer 526 

months. Local, direct measures of thermal and hydrologic regimes would have been ideal, but 527 

these data were not available. We therefore gathered data on average temperature and 528 

precipitation seasonality (bio4 and bio15, respectively) data from the WorldClim database 49. 529 

Temperature seasonality is calculated as the standard deviation of month temperature within a 530 

year * 100, whereas precipitation seasonality is the coefficient of variation of month 531 

precipitation within a year.  532 

Air temperature has been shown to be a good proxy for water temperature – 533 

particularly in systems not strongly affected by snowmelt 50,51. Thus, changes in air temperature 534 

can affect food web dynamics, by for example, increasing the demand for food resources and 535 

thus leveling the rates of herbivory and predator-prey interactions 52. With regards to 536 

precipitation, food webs are strongly influenced by changes in precipitation amounts and 537 

regimes, because water limits the flux of biomass across trophic levels and govern the loss of 538 

species and interactions, particularly among predators 53. Also, under scenarios of reduced 539 

precipitation and increased drying conditions, lakes might suffer from reduced hydrological 540 

connectivity, which in turn influences food web structure due to changes on species diversity 54. 541 

Two measures of spatial synchrony in mean maximum and mean minimum temperature 542 

and precipitation were used as predictors in the regional-scale SEM. We used ~4 km resolution 543 

temperature and precipitation data from the TerraClimate database, a monthly generated 544 

product of climate and climatic water balance for global terrestrial surfaces for the period 1958 545 

– 2015 55. We extracted monthly mean values at the spatial coordinates of the sampling sites, 546 



26 
 

from 1958 to the last year in which community was sampled within each dataset. Spatial 547 

synchrony in temperature and in precipitation was then estimated as the mean Kendall rank 548 

correlation between each pair of sites. One metacommunity had all values of spatial synchrony 549 

set to 1 because its spatial extent was lower than 4 km2. We decided to include seven decades 550 

of data instead of restricting the data to the study period of each dataset to get a broad and 551 

comparable characterization of environmental variation across sites.  552 

For the regional-scale SEM, we also estimated one metric of spatial connectivity, 553 

network closeness centrality 56, and used it as a predictor of community spatial synchrony. 554 

Closeness centrality was calculated for each site within a metacommunity as the sum of the 555 

length of the shortest paths between the site and all other sites in the metacommunity. The 556 

more central a site is, the closer it is to all other sites. Considering that our data were 557 

heterogeneous with regards to Euclidean vs watercourse connectivity (connected river 558 

networks vs. sites within lakes), all sites within a metacommunity were considered connected 559 

and only the Euclidean spatial distance between them was included as a weight between each 560 

pair of sites. This procedure resulted in one value of distance-weighted closeness for each site 561 

within each metacommunity, which were averaged so that we had a value of closeness for each 562 

metacommunity. Thus, metacommunities with higher values of closeness centrality had shorter 563 

Euclidean paths among their sites.    564 

 565 

Data availability: The data and code supporting the results are archived in Zenodo 566 

(10.5281/zenodo.6591419).                                               567 

 568 
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 724 
Figures  725 

 726 

 727 

Figure 1. Spatial and trophic scaling of temporal variability (A) and synchrony (B). Plots with 728 
different colors represent the distribution of values as a density shape of aggregated variability 729 
or synchrony at the population, community and metacommunity levels. The overall median 730 

value per plot is represented by the solid line. Raw data values are shown inside each density 731 
shape. Statistics describing specific pairwise contrasts corrected for multiple comparisons to 732 
compare trophic levels are available in Table S1 and S3. Trophic levels include producers and 733 
primary, secondary, and tertiary consumers. 734 
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 736 

 737 

Figure 2. Spatial and trophic scaling of temporal variability (A) and synchrony (B) within 738 
metacommunities with more than one trophic level. Dots represent average variability or 739 
synchrony per metacommunity. Line types indicate the number of trophic levels monitored in 740 
each metacommunity: dotted lines indicate metacommunities with primary to tertiary 741 
consumers (n = 2); dashed lines indicate metacommunities with primary to secondary 742 
consumers (n = 7); and solid lines indicate metacommunities with secondary to tertiary 743 

consumers (n = 13). Paired t-tests indicated that (A) temporal variability of secondary 744 
consumers was higher than that of tertiary consumers, but only at the population and 745 
community levels, and (B) population synchrony was higher than community spatial synchrony 746 
for both secondary and tertiary consumers (Table S2). Color legend is as in Figure 1. 747 
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 750 

 751 

Figure 3. Results of multigroup structural equation models (SEM) at local and regional scales 752 
(separated by the horizontal gray dashed line). Dashed and solid arrows indicate relationships 753 
associated with p < 0.05 and > 0.05, respectively. Colored lines represent relationships that 754 
varied among trophic groups. The numbers associated with the lines represent SEM linear 755 

standardized coefficients. Local-scale SEM (n = 501; Fisher's C = 9.65; P-value = 0.14; df = 6). 756 
Regional-scale SEM (n = 49; Fisher's C = 9.31; P-value = 0.16; df = 6). Detailed description of all 757 
statistics is given in Table S4 and S5. 758 
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Supplementary Information Text 27 
 28 
Methods 29 
Dealing with missing data 30 

The code used to run Wang’s partitioning approach requires by default that the 31 
time series is complete for all sites. That is, all sites need to be sampled during all 32 
sampling events (but does not require yearly spacing). Some of the datasets we used 33 
did not conform to this requirement (but all had >70% sample completeness). We note 34 
that sample completeness is a requirement of the R function, not the partitioning method 35 
per se, and no publications (to our knowledge) have examined sample completeness 36 
may influence temporal variability and synchrony estimates. Thus, we proceeded to 37 
modify the R function to allow missing values. To illustrate what we did, let’s consider a 38 
vector of values describing the temporal variability of species A at a given site along 9 39 
years: A = {10, 14, 12, 18, 20, 14, 12, 18, 20}. Now let’s consider that one of these 40 
values went missing A’ = {10, NA, 12, 18, 20, 14, 12, 18, 20}. CV is calculated by diving 41 
the standard deviation by the mean of this vector: CV_A = sd(A) / mean(A) = 0.244. In R, 42 
to calculate CV_A’, one would need to allow for missing values: CV_A’ = sd(A’, na.rm = 43 
TRUE) / mean(A’, na.rm = TRUE) = 0.256. These values would be then averaged per 44 
site and then across sites to produce a value of population variability. 45 
 Our second approach to deal with missing values was to impute a median value 46 
to replace the “NA” in A’. In R, this would look like this: median (A’, na.rm = TRUE) = 16. 47 
Thus, the new vector would look like this A’’ = {10, 16, 12, 18, 20, 14, 12, 18, 20}. And 48 
thus, CV_A’’ = sd(A’’) / mean(A’’) = 0.239.  49 
 We estimated variability and synchrony metrics following the two approaches 50 
described above. The matrix the resulted from these analyses was a metacommunity 51 
(row) per metric (column). We compared the matrices obtained with the median versus 52 
missing values allowed with a Procrustes analysis and found that the Procrustes 53 
correlation coefficient between them was R=0.99 (p < 0.001). Thus, we concluded that 54 
either approach could be used. 55 
  56 
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Dataset description  57 
The numbers identifying each dataset (DS) correspond to the ID of the datasets used in 58 
the R code “01_Siqueira_etal_dataprep_stability_metrics.R”. 59 
 60 
DS. 5-18. These datasets correspond to basins 2080020590, 2080020620, 2080021030, 61 
2080022150, 2080023010, 2080030100, 2080030610, 2080030710, 2080031490, 62 
2080033020, 2080033080, 2080033120, 2080053790, 7080047060 in the data base 63 
RivFishTIME (Comte et al. 2021).  64 
 65 
These datasets were chosen based on their availability at the time of data analysis and 66 
considering both spatial and temporal completeness.    67 
Dataset owners: Public available 68 
Additional information about the dataset can be found here: Comte et al. (2021).  69 
 70 
DS. 19. The dataset consists of 28 wadable streams from a Maryland, USA. In these 71 
sites, stream fish were quantified annually, from 2000 through 2012, as sentinel sites 72 
within the larger Maryland Biological Stream Survey.  Full details regarding sampling 73 
methods can be found below. 74 
 75 
Dataset owners: Maryland Department of Natural Resources 76 
Data may be requested here: https://dnr.maryland.gov/streams/Pages/dataRequest.aspx 77 
Additional information about the dataset can be found here: 78 
https://dnr.maryland.gov/streams/Pages/mbss.aspx 79 
 80 
DS. 20-21. These datasets consist of 7 lakes (DS. 20) and 5 riverine systems (DS. 21) in 81 
Upper Paraná River basin, northwest of the state of Paraná State. In these sites, 82 
zooplankton was quantified annually, from 2000 through 2010.  83 
 84 
Dataset owner: Claudia Costa Bonecker (Nupelia, Maringá State University). 85 
 86 
Additional information about the dataset can be found here: Bonecker et al. (2020).  87 
 88 
DS. 22-24. (Removed from analysis after peer review). These datasets consist of 89 
Cladoceran and Copepod abundances from 13 lakes (DS. 22 = 4 lakes; DS. 23 = 4 90 
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lakes; DS. 24 = 5 lakes;) in the Experimental Lakes Area, Ontario, Canada. In these 91 
sites, zooplankton have been quantified on multiple dates in various years between 1969 92 
and 2018. 93 
 94 
Dataset owners: International Institute for Sustainable Development Experimental Lakes 95 
Area, https://www.iisd.org/ela/. 96 
 97 
Additional information about the dataset can be found here: https://www.iisd.org/ela/our-98 
data/metadata/zooplankton/. Contact mpaterson@iid-ela.org. 99 
 100 
DS. 25. This dataset consists of samples collected from the central region of Kentucky 101 
Lake, the last of eight impoundments on the Tennessee River system near Murray, KY, 102 
USA. The Kentucky Lake Long-term monitoring program collects samples every 16 days 103 
in conjunction with LANDSAT TM overflights at approximately 8-12 sites measuring a 104 
suite of approximately 40 limnological parameters. In these sites, zooplankton samples 105 
were quantified annually from 1988 until present. 106 
Dataset owners: Hancock Biological Station, Watershed Studies Institute, Murray State 107 
University, Murray, KY, USA.  108 
 109 
Additional information about the dataset can be found here: Yurista et al. (2001); Yurista 110 
et al. (2004).  111 
 112 
DS. 26-27. These datasets consist of seven lakes (DS. 26) and five riverine systems 113 
(DS. 27) in Upper Paraná River basin, northwest of the state of Paraná State. 114 
Phytoplankton was sampled quarterly from 2000 to 2018. 115 
 116 
Dataset owner: Luzia Cleide Rodrigues (Nupelia, Maringá State University). 117 
 118 
Additional information about the dataset can be found here: Rodrigues et al. (2015); 119 
Pineda et al. (2019). 120 
 121 
DS. 28. (Removed from analysis after peer review). This dataset consists of 30 small 122 
ponds, 1m2, dug in the autumn of 1994 at Hauxley Nature Reserve, in Northumberland, 123 
North-east England. The ponds are arranged across a hydrological gradient, most ponds 124 
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drying out for a period most years, but not always, and also linked by winter inundation 125 
flooding the field some years. The hydrological patterns were very dependent on 126 
variability in local weather. The animals (mostly invertebrates but very occasional 127 
amphibia) and plants were sampled every year from 1995 to 2014. The animals were 128 
recorded every late winter (January/February) and early summer (May/June), 129 
occasionally more often. Animals were recorded as presence/absence, all taxa including 130 
smaller crustacea such as Ostracoda and Cladocera, most identified to species, a few to 131 
just genus or Family. Plants were recorded to species, by quadrat point counts. 132 
 133 
Dataset owner: Dr Michael Jeffries, Department of Geography & Environmental 134 
Sciences, Northumbria University 135 
 136 
Additional information about the dataset can be found here: Jeffries (2010).  137 
 138 
DS. 29. This dataset consists of 7 sites along the Atna river watershed in Norway. Non-139 
diatom benthic algae were quantified (percent cover) annually (with few exceptions) at 140 
each site in autumn (end of August/September) since 1988. The sampled material was 141 
determined to the lowest taxonomic level possible, usually species. The Atna watershed 142 
is one of the few unaffected larger catchments in Norway and is used as unimpacted 143 
reference in many national and international projects.  144 
 145 
Dataset owner: Norwegian Institute for Water Research.  146 
 147 
Additional information about the dataset can be found here: 148 
http://doi.org/10.23728/b2share.177a0aedcfee4f3d82537bc3b72a3cc7 149 
 150 
DS. 30. (Removed from analysis after peer review). This dataset consists of Cladoceran 151 
and Copepod abundances from 5 lakes in the Northern Highlands Lake District, 152 
Wisconsin, USA. In these sites, zooplankton are quantified on multiple dates each year 153 
since 1982. Data used here are from 1982 through 2017.  154 
 155 
Dataset owners: North Temperate Lakes Long-Term Ecological Research program, 156 
lter.wisc.edu 157 
 158 
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Additional information about the dataset can be found here: Lead et al. (2018). 159 
https://doi.org/10.6073/pasta/8d5e19d0e9680fddc3402e148e377c1a (Accessed 160 
1/17/2020).  161 
 162 
DS. 31. This dataset consists of macroinvertebrate counts from 14 reference sites 163 
scattered along in 4 catchments of the Barcelona (Spain) region and located in Natural 164 
Parks: Llobregat, Besòs, Ter, and Tordera. Macroinvertebrates were collected two times 165 
per year (spring and summer) from 2013 to 2017 and using a multihabitat kick sampling. 166 
This dataset was extracted from the research contract “CARIMED: Effects of 167 
Environmental Change on Biological Communities in Mediterranean Rivers” 168 
(www.ub.edu/barcelonarius) funded by the regional administration “Diputació de 169 
Barcelona”. The main objective of CARIMED is to examine whether global 170 
environmental changes are affecting biological communities in Mediterranean 171 
ecosystems. This contract is the continuation of the first river quality monitoring studies 172 
in the region that started back in 1979. 173 
 174 
Dataset owners: Núria Bonada and Pau Fortuño. FEHM-Lab (Freshwater Ecology, 175 
Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències 176 
Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 177 
Barcelona, Catalonia/Spain 178 
 179 
Additional information about the dataset can be found here: 180 
https://doi.org/10.15470/yt2uex 181 
 182 
DS. 32. This dataset consists of 5 locations along the Kinzig river within the eLTER site 183 
Rhine-Main-Observatory as part of the Main-Kinzig district, state of Hesse, Germany. In 184 
these locations, macroinvertebrates were quantified annually, from 2010 through 2019.  185 
 186 
Dataset owners: Peter Haase (Department of River Ecology and Conservation, 187 
Senckenberg Society for Nature Research & University of Duisburg-Essen) 188 
 189 
Additional information about the dataset can be found here: DEIMS ID: 190 
https://deims.org/9f9ba137-342d-4813-ae58-a60911c3abc1 191 
 192 
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DS. 33. This dataset consists of four sites in the Quebra-Queixo reservoir, Uruguay 193 
basin, state of Santa Catarina, Brazil. Phytoplankton was sampled at least twice a year 194 
in the low-water season (July) and high-water season (January), from 2006 to 2016. 195 
 196 
Dataset owner: Luzia Cleide Rodrigues (Nupelia, Maringá State University). 197 
 198 
Additional information about the dataset can be found here: unpublished data. 199 
 200 
DS. 34. This dataset consists of benthic macroinvertebrate samples from ten 1st-to-3rd 201 
order reference sites in the Koutajoki catchment in northeastern Finland close to the 202 
Polar Circle (for more information, see Nilsson et al. 2022). Macroinvertebrates were 203 
collected once a year (autumn; September to early October) from 2000 to 2014, using 204 
multihabitat kick sampling. Sampling and species identification work has been supported 205 
by Oulanka Research Station and several consecutive grants by the Academy of 206 
Finland. The main objective of the project is to examine long-term variability of benthic 207 
invertebrate populations and communities in near-pristine reference streams in a north 208 
boreal river system. 209 
 210 
Dataset owners: Timo Muotka and Kaisa-Leena Huttunen (Ecology and Genetics, 211 
University of Oulu, Finland). 212 
 213 
Additional information about the dataset can be found here: Nilsson et al. (2022).  214 
 215 
DS. 35. This data dataset consists of zooplankton samples collected from sixteen sites 216 
in the western and central basins of Lake Erie (U.S. and Canada). At these sites, 217 
zooplankton was collected approximately biweekly between May and September. 218 
 219 
A protocol for sampling can be found here under methodology and data access: 220 
https://ael.osu.edu/researchprojects/lake-erie-plankton-abundance-study-lepas 221 
 222 
Dataset owner: Ohio Department of Natural Resources – Division of Wildlife, managed 223 
by Jim Hood, Dept. of Evolution, Ecology, and Organismal Biology, The Ohio State 224 
University.  225 
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Additional information about the dataset can be found here: Conroy, J.D., Kane, D.D., 226 
Dolan, D.M., Edwards, W.J., Charlton, M.N., Culver, D.A., 2005. Temporal trends in 227 
Lake Erie plankton biomass: role of external phosphorus loading and dreissenid 228 
mussels. Journal of Great Lakes Research 31(Suppl.2), 89-110. Data are available upon 229 
reasonable request to Jim Hood. 230 
 231 
  232 
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 233 
 234 

 235 
 236 
Fig. S1. Geographical distribution of the 30 metacommunities used in this study. Dots 237 
indicating the position of metacommunities are of the same color, but due to 238 
superimposing of spatially closed sites, some of them appear darker. 239 
 240 
  241 
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 242 
 243 

 244 
 245 
Fig. S2. Hypothesized propagation of temporal variability and synchrony (from 246 
populations to metacommunities) and their relationships with diversity, environmental 247 
variability and synchrony, and spatial connectivity. Directions of the arrows represent 248 
directions of each hypothesized causal relationship, and arrow widths represent their 249 
strength. Expected influences are positive unless indicated otherwise (with a “(-)”). Arrow 250 
colors represent relationships that are expected to be specific to a particular trophic 251 
level: green for primary producers, dark red for tertiary consumers. Black arrows indicate 252 
relationships that are expected to be similar across trophic levels. 253 
 254 
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 256 

 257 

 258 
 259 
Fig S3. Metacommunity-level estimates of temporal variability (A to C) and synchrony 260 
(D-E) across levels of organization and in lotic and lentic systems. Key to y-axis: Len = 261 
lentic; Lot = lotic; Pri = primary; Sec = secondary; Ter = tertiary; Prod = producers; Con = 262 
consumers.  263 
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 265 

 266 
 267 
Fig S4. Site-level estimates of temporal variability (A-B) and synchrony (C) across levels 268 
of organization and in lotic and lentic systems. Colors and codes as in Fig. S3.  269 
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 271 

 272 

 273 
 274 
Fig S5. Relationship of temporal variability (A-C) and synchrony (D-E) with the length of 275 
the time series in years (number of time steps) in each dataset. The p-value refers to a 276 
linear relationship between the response variable and an interaction between trophic 277 
level and number of time years. The grey regression line indicates a relationship 278 
between the response variable in the y-axis and number of years. 279 
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 281 

 282 

 283 
 284 
Fig S6. Relationship of temporal variability (A-C) and synchrony (D-E) with number of 285 
sites in each dataset. The p-value refers to a linear relationship between the response 286 
variable and an interaction between trophic level and number of sites. The grey 287 
regression line indicates a relationship between the response variable in the y-axis and 288 
number of sites. 289 
 290 
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 292 

 293 
Fig S7. Assessing potential site replication effects on temporal variability metrics 294 
(sensitivity analysis 1). The spatial scaling of temporal variability in the full dataset (Full) 295 
and in datasets with rarefied number of sites (Rarefied; maximum number of sites = 8) 296 
for secondary and tertiary consumers. Plots with different colors represent the 297 
distribution of values as a density shape of aggregated variability at the population, 298 
community and metacommunity levels. The median value per distribution is represented 299 
by the solid line. Raw data values are shown inside each density shape. Pearson’s 300 
correlation coefficient among full and rarefied data averaged r=0.95 (range: 0.87-301 
0.99), confirming that inferences on variability components across trophic levels 302 
are not influenced by variation in site replication. 303 
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 305 

 306 
Fig S8. Assessing potential site replication effects on synchrony metrics (sensitivity 307 
analysis 1). The spatial scaling of synchrony in the full dataset (Full) and in datasets with 308 
rarefied number of sites (Rarefied; maximum number of sites = 8) for secondary and 309 
tertiary consumers. Plots with different colors (key as described in Fig. 1) represent the 310 
distribution of values as a density shape of synchrony at the population and community. 311 
The median value per distribution is represented by the solid line. Raw data values are 312 
shown inside each density shape. Pearson’s correlation coefficient among full and 313 
rarefied data averaged r=0.96 (range: 0.92-0.99), confirming that inferences on 314 
synchrony components across trophic levels are not influenced by variation in 315 
site replication. 316 
 317 
 318 
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 321 

 322 
 323 
Fig S9. Assessing potential time series length effects on temporal variability and 324 
synchrony metrics (sensitivity analysis 2). The spatial and trophic scaling of temporal 325 
variability (A) and synchrony (B) estimated with datasets with less than 11 years of 326 
observations. Plots with different colors represent the distribution of values as a density 327 
shape of aggregated variability or synchrony at the population, community and 328 
metacommunity levels. The median value per distribution is represented by the solid 329 
line. Raw data values are shown inside each density shape. Trophic levels include 330 
producers and primary, secondary, and tertiary consumers. Pearson’s correlation 331 
coefficient among full and reduced time series within variability and synchrony 332 
components were all higher than r=0.98, confirming that inferences on synchrony 333 
and variability across trophic levels are not influenced by time series length. 334 
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 337 
Table S1. Specific pairwise contrasts corrected for multiple comparisons (Holm 338 
adjustment) to compare temporal variability components among trophic levels. 339 
 340 
group1 group2 df statistic p.adj part 
Producers Primary 45 0.7603 0.4511 Mcv 
Producers Secondary 45 3.3627 0.0048 Mcv 
Producers Tertiary 45 4.3797 0.0004 Mcv 
Primary Secondary 45 3.8099 0.0017 Mcv 
Primary Tertiary 45 5.2302 0.0000 Mcv 
Secondary Tertiary 45 1.7328 0.1800 Mcv 
Producers Primary 45 1.4110 0.1651 Ccv 
Producers Secondary 45 3.4469 0.0050 Ccv 
Producers Tertiary 45 4.8847 0.0001 Ccv 
Primary Secondary 45 2.9266 0.0161 Ccv 
Primary Tertiary 45 4.9938 0.0001 Ccv 
Secondary Tertiary 45 2.4125 0.0400 Ccv 
Producers Primary 45 2.7656 0.0082 Pcv 
Producers Secondary 45 5.5455 0.0000 Pcv 
Producers Tertiary 45 7.8276 0.0000 Pcv 
Primary Secondary 45 3.9409 0.0008 Pcv 
Primary Tertiary 45 7.2506 0.0000 Pcv 
Secondary Tertiary 45 3.8314 0.0008 Pcv 

 341 
  342 
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 343 
Table S2. Specific paired comparisons (paired t-tests) between the temporal variability of 344 
secondary and tertiary consumers at the population, community and metacommunity 345 
levels, and between population and community synchrony of producers, and secondary 346 
and tertiary consumers. These analyses were done on datasets (n =13; # of sites = 213) 347 
that included both secondary and tertiary consumers. Df = degrees of freedom; t = t 348 
statistic; p = p-value. 349 
 350 

Metric Paired comparison Condition 
Mean of the 
differences df t p 

Variability (CV) Secondary vs. Tertiary Population 0.243 12 3.988 0.001 

Variability (CV) Secondary vs. Tertiary Community 0.164 12 2.128 0.027 

Variability (CV) Secondary vs. Tertiary Metacommunity 0.074 12 1.111 0.144 

Synchrony Population vs. Community Primary -0.001 8 -0.020 0.492 

Synchrony Population vs. Community Secondary -0.202 21 -4.703 <0.001 

Synchrony Population vs. Community Tertiary -0.301 14 -8.064 <0.001 

 351 
  352 
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 353 
Table S3. Specific pairwise contrasts corrected for multiple comparisons (Holm 354 
adjustment) to compare synchrony components among trophic levels. 355 
 356 
group1 group2 df statistic p.adj part 
Producers Primary 45 -2.557 0.042 Psyn 
Producers Secondary 45 -3.716 0.003 Psyn 
Producers Tertiary 45 -5.202 0.000 Psyn 
Primary Secondary 45 -1.551 0.128 Psyn 
Primary Tertiary 45 -3.746 0.003 Psyn 
Secondary Tertiary 45 -2.497 0.042 Psyn 
Producers Primary 45 -0.399 1.000 Csyn 
Producers Secondary 45 1.612 0.447 Csyn 
Producers Tertiary 45 1.622 0.447 Csyn 
Primary Secondary 45 3.009 0.026 Csyn 
Primary Tertiary 45 2.952 0.026 Csyn 
Secondary Tertiary 45 0.062 1.000 Csyn 

 357 
  358 
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Table S4. Model summary statistics of the local-scale SEM (n = 501; Fisher's C = 9.65; 359 
P-value = 0.14; df = 6). Psyn_local = population synchrony within sites; Pcv_local = 360 
population variability within sites; Ccv_local = aggregated community variability within 361 
sites; S = species richness; PS = precipitation seasonality; LTS = length of the time 362 
series. 363 
 364 

Constrained to the global model      
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Est. 
Psyn_local S -0.1668 0.0212 451 -7.8804 0 -0.4522 

Pcv_local S -0.0212 0.03 450 -0.7061 0.4805 -0.0361 

Pcv_local PS 0.0104 0.0032 450 3.2849 0.0011 0.2315 

Pcv_local LTS 0.0413 0.0082 28 5.0242 < 0.0001 0.4801 

Ccv_local Psyn_local 1.0408 0.0596 448 17.4515 < 0.0001 0.5765 

      

Model-wide interactions      

Producers        

Ccv_local PS -0.011 0.006 15 -1.764 0.098 -0.218 

Ccv_local Pcv_local 2.883 0.860 15 3.351 0.004 0.978 

Primary consumers       

Ccv_local PS 0.003 0.005 81 0.733 0.466 0.043 

Ccv_local Pcv_local 0.801 0.149 81 5.383 < 0.0001 0.424 

Secondary consumers       

Ccv_local PS 0.011 0.004 186 2.396 0.017 0.151 

Ccv_local Pcv_local 0.604 0.073 186 8.302 < 0.0001 0.449 

Tertiary consumers       

Ccv_local PS -0.010 0.005 154 -2.019 0.045 -0.128 

Ccv_local Pcv_local 0.424 0.070 154 6.039 < 0.0001 0.344 

 365 
 366 
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Table S5. Model summary statistics of the regional-scale SEM (n = 49; Fisher's C = 368 
9.31; P-value = 0.16; df = 6). Psyn = average population synchrony within the 369 
metacommunity; Pcv = average population variability within the metacommunity; Csyn = 370 
average community spatial synchrony within the metacommunity; Ccv = average 371 
community variability within the metacommunity; Mcv = metacommunity variability; RPS 372 
= regional precipitation synchrony. 373 
 374 

Constrained to the global model      
Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Est. 
Csyn Closeness  0.0112 0.0065 18 1.7222 0.1022 0.2996 

Csyn RPS 0.1225 0.2352 28 0.5209 0.6065 0.1058 

        

Model-wide interactions      

Producers        

Mcv Csyn 1.2478 0.3124 1 3.9943 0.1562 0.7341 

Mcv Ccv 0.6979 0.1007 1 6.9295 0.0912 1.355 

Primary consumers       

Mcv Csyn 1.2749 0.2565 9 4.9699 0.0008 0.2971 

Mcv Ccv 0.7648 0.0578 9 13.2424 < 0.0001 0.7456 

Secondary consumers       

Mcv Csyn 1.8069 0.1096 15 16.4845 < 0.0001 0.5365 

Mcv Ccv 1.3531 0.0858 15 15.7736 < 0.0001 0.7282 

Tertiary consumers       

Mcv Csyn 1.9499 0.1233 12 15.8131 < 0.0001 0.7265 

Mcv Ccv 1.6704 0.1346 12 12.407 < 0.0001 0.5452 
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