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Abstract 12 

1. Relaxed clock Bayesian evolutionary inference (BEI) enables the co-estimation of phylogenetic 13 

trees and evolutionary parameters associated with models of character and lineage evolution. Fast 14 

advances in new model developments over the past decade have boosted BEI as a major 15 

macroevolutionary analytical framework using morphological and/or molecular data across vastly 16 

different study systems. However, there is a limited availability of bioinformatic tools to pre- and 17 

post-process data from BEI, such as identifying morphological data partitions, or statistically 18 

testing and creating publication quality plots of evolutionary hypotheses using the output from 19 

BEI. 20 

2. Here we introduce EvoPhylo, an R package to perform automated morphological character 21 

partitioning for phylogenetic analyses and analyze macroevolutionary parameter outputs from 22 

relaxed clock (time-calibrated) BEI.  23 

3. We present the theoretical background behind EvoPhylo’s functions and analytical tools for 24 

evolutionary hypothesis testing, its potential uses, and interpretation of its results with a series of 25 

vignettes and links to a step-by-step tutorial. 26 

 27 

4. EvoPhylo will facilitate utilization of Bayesian relaxed clocks as a tool for macroevolutionary 28 

inference across a wide range of users and fields of research, especially those that use 29 

morphological datasets. 30 

 31 

Keywords: Bayesian phylogenetics, character partitioning, evolutionary rates, selection, 32 

diversification rates, morphology, R. 33 
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1. INTRODUCTION 35 

Macroevolutionary research programs have historically relied upon the utilization of a 36 

given phylogenetic tree (or set of trees) to subsequently estimate the tempo and mode (rates and 37 

model) of morphological, ecological, and molecular traits (Morlon, 2014; Pennell & Harmon, 38 

2013). These techniques, known collectively as phylogenetic comparative methods (Felsenstein, 39 

1985), have revolutionized quantitative approaches to infer processes and patterns of evolution for 40 

a wide spectrum of living and fossil organisms across vastly different scales of time (Morlon, 2014; 41 

Pennell & Harmon, 2013; Slater & Harmon, 2013). In such approaches, evolutionary parameter 42 

estimates are obtained a posteriori from phylogenetic inference, and the structure of the 43 

phylogenetic tree (tree topology) and its branch lengths (as accumulated substitutions or as units 44 

of time) are used as input for downstream analyses and are necessarily treated as a fixed parameter. 45 

However, the true topology and branch lengths of phylogenetic trees are never known with 46 

certainty. Additionally, just as phylogenetic trees are necessary to estimate the tempo and mode of 47 

lineage and character evolution, understanding the tempo and mode of character and lineage 48 

evolution are also necessary to infer phylogenetic trees to begin with. 49 

Bayesian evolutionary inference (BEI) using relaxed clocks circumvent such conundrums 50 

by jointly estimating tree topology and branch lengths along with evolutionary parameters, 51 

including divergence times, evolutionary rates, and rates of lineage diversification, using 52 

molecular data, morphological data, or both (Drummond et al., 2006; Gavryushkina et al., 2017; 53 

Höhna et al., 2016; Lee et al., 2014; A. Wright et al., 2020). However, until recently it was not 54 

feasible to conduct such analyses beyond relatively small datasets due to: 1) the high 55 

computational burden of estimating joint posterior probabilities of dozens of parameters; 2) the 56 

limited availability of tree and clock models concomitant with a limited understanding of the 57 

performance; and 3) limited bioinformatics tools to assess evolutionary parameters output by such 58 

analyses. Fortunately, the last decade was marked by increased academic access to high 59 

performance computing facilities, including the CIPRES Gateway (Miller et al., 2012). 60 

Additionally, there have been major advances on tree modeling, such as the fossilized birth-death 61 

(FBD) tree model and its skyline variant (SFBD), which allow speciation, extinction and 62 

fossilization parameters to vary across time bins (Gavryushkina et al., 2014; Heath et al., 2014; 63 

Stadler, 2010, 2011; Zhang et al., 2016). More recently, performance studies revealed that these 64 

models can provide accurate estimates of macroevolutionary parameters, including net 65 

diversification, turnover, and fossil sampling rates (Luo et al., 2020; Warnock et al., 2020). 66 

Relaxed clocks can also provide reliable rate estimates even with highly limited taxonomic 67 

sampling (Ho et al., 2005), and a variety of new clock models have been proposed (Bielejec et al., 68 

2014; Fourment & Darling, 2018; Zhang, 2021). As a result of these advances, there has been a 69 

recent boost in macroevolution studies using BEI to infer evolutionary parameters for various 70 

modern and extinct lineages representing datasets of various compositions and sizes (King et al., 71 

2017; Lee et al., 2013, 2014; Simões, Vernygora, et al., 2020; Simões & Pierce, 2021; A. Wright 72 

et al., 2020).  73 
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Bioinformatics tools to explore the rich amount of data output from BEI have also been 74 

thoroughly expanded. Such tools include software and packages to analyze the posterior trace files 75 

between multiple runs or MCMC chains, such as the standalone program Tracer (Rambaut et al., 76 

2018) and the R package RWTY (Warren et al., 2017), or to visualize and plot divergence times 77 

and rates of evolution parameters on trees, including FigTree (Rambaut, 2018), DensiTree (R. R. 78 

Bouckaert, 2010), the R package ggtree (Yu et al., 2017). However, there are few tools currently 79 

available to extract, plot, summarize statistically, and conduct further downstream analyses from 80 

evolutionary parameters obtained from relaxed clock BEI. These include statistically testing the 81 

difference of evolution rates between clock partitions and/or evolutionary lineages, how such 82 

differences impact our understanding of the mode of selection upon those lineages, or the rate of 83 

diversification dynamics across time—but see RevGadgets (Tribble et al., 2022) for a recent 84 

implementation of the latter for outputs from the software package RevBayes (Höhna et al., 2016). 85 

Additionally, differently from molecular data—e.g., (Duchêne et al., 2014; Lanfear et al., 2016)—86 

there are limited attempts to pre-process morphological datasets to detect data partitions that 87 

should be analyzed using independent evolutionary clock models for BEI.  88 

Here we introduce EvoPhylo, an R package to perform pre- and post-processing of the 89 

input and output from BEI. It includes automated partitioning of phenotypic (i.e., morphological) 90 

character data for BEI, and statistical tools to plot and analyze macroevolutionary parameter 91 

outputs from clock (time-calibrated) BEI analyses. In this paper, we present the theoretical 92 

background behind EvoPhylo and describe its potential uses, overall functionality, and the 93 

interpretation of its results through demonstration with real datasets and links to online vignettes 94 

with step-by-step tutorials. 95 

 96 

2. CHARACTER PARTITIONING 97 

2.1 Clustering method 98 

A common approach to data partitioning (i.e., clustering) is the extraction of Euclidean distances 99 

between data points, from which a distance matrix “D” is calculated, and subsequently used to 100 

detect data partitions (clusters) using K-means, or ordination approaches such as principal 101 

coordinate analysis (PCoA). Indeed, the first attempts to automatically partition morphological 102 

characters have explored these approaches (Goswami & Polly, 2010; Lanfear et al., 2016). 103 

However, recent studies have indicated that Euclidean distances can be extremely sensitive to 104 

missing data, and alternative choices such as Gower distances (Gower, 1971) provide more 105 

suitable alternatives for the handling of missing data (Lehmann et al., 2019; Lloyd, 2016). This 106 

issue creates a subsequent problem for estimating clusters using K-means, as the latter depends on 107 

a Euclidean-based distance matrix. Further, K-means are based on measuring the distance between 108 

samples and cluster centroids (i.e., the center of mass or mean vector of the cluster). The mean 109 

vector is particularly sensitive to outliers (as any other mean estimate) (Rencher & Christensen, 110 

2012), making its use especially problematic for small-sized clusters or clusters of drastically 111 

different sizes, which are to be expected from most standard sized morphological datasets.  112 
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EvoPhylo uses Gower distances to create the inter-character distance matrix “D” and 113 

conducts a clustering analysis of morphological data with partitioning around medoids (PAM, also 114 

known as K-medoids), which can estimate clusters (i.e., partitions) using Gower distances, 115 

following its first implementation by Simões & Pierce (2021). PAM is analogous to K-means, but 116 

the resulting clusters are centered around medoids instead of around centroids, making them less 117 

sensitive to outliers and heterogeneous cluster sizes (Budiaji & Leisch, 2019; Rencher & 118 

Christensen, 2012). 119 

To define how many clusters the data could be partitioned into, various PAM partitioning 120 

schemes are tested and the quality of each clustering scheme is determined using the silhouette 121 

index (Si) approach (Rousseeuw, 1987), a method that estimates how well an object falls within 122 

its cluster compared to other clusters (Fig. 1). The PAM partitioning schemes to be tested should 123 

range from K=2 to a large number of partitions (user-defined, default K = 10). The best partitioning 124 

scheme from PAM+Si can be exported into a Nexus file with the cluster_to_nexus function, 125 

including the list of characters and their respective partitions (Fig. 2). The contents can be copied 126 

and pasted directly into a Mr. Bayes commands block for a partitioned clock Bayesian inference 127 

analysis. 128 

 129 

                                                                                 130 
Fig. 1. Silhouette index plot indicating the higher quality of clustering when the number of 131 

partitions (k) = 3. 132 

  133 

2.2 Selecting best candidate partitioning scheme  134 

For further (and independent) testing of the quality of the chosen partitioning scheme, we also 135 

provide a graphic visualization approach based on a Barnes-Hut t-Distributed Stochastic Neighbor 136 

Embedding (t-SNE) (Van Der Maaten & Hinton, 2008). More traditional ordination procedures, 137 

such as principal components analysis (PCA, for continuous data) or PCoA (for discrete data), can 138 

preserve the linear relationship between data points at a lower dimensionality. However, because 139 

those procedures try to preserve the local distances between data points, they become less efficient 140 

at characterizing the overall structure of high dimensional data. Here, it is more important to reduce 141 

the local linear distance between similar (neighboring) data points while maximizing the distance 142 

### 1. Generate distance matrix 

#Load data matrix and 

#produce a Gower distance matrix 

d_matrix <- get_gower_dist( 

  "DataMatrix.nex", 

   numeric = FALSE) 

 

### 2. Estimate optimal number of partitions 

sw <- get_sil_widths( 

   dist_matrix, 

   max.k = 10) 

plot(sw, color = "blue", size = 1) 
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between distant datapoints (Van Der Maaten & Hinton, 2008); for such cases, nonlinear ordination 143 

procedures are preferred for observing the overall data structure in a reduced number of 144 

dimensions. t-SNE has been demonstrated to be more efficient at preserving both local and global 145 

structures when reducing high dimensional data into only two or three dimensions compared to 146 

other nonlinear ordination procedures (Van Der Maaten, 2009), thus offering an important 147 

advantage over previously utilized graphic approaches to determine morphological clusters such 148 

as PCoA.  149 

EvoPhylo combines PAM+Si clustering with t-SNE within the function make_clusters, by 150 

allowing the user to request displaying the distance between data points and in ordination space 151 

through the argument tsne=TRUE. Users can choose the representation of two or more dimensions 152 

and also the variable theta, which controls the speed/trade off accuracy of t-SNE calculations, 153 

through the tsne_dim and tsne_theta arguments, respectively. 154 

EvoPhylo automatically colors individual data points in the t-SNE plots according to the 155 

partitioning scheme identified with PAM+Si, allowing users to quickly verify if both strategies 156 

converge on the number and composition of each character partition. This is the case with the 157 

example dataset used here from Simões & Pierce (2021) (Fig. 2). If there is a mismatch between 158 

the partitioning scheme from PAM+Si and that displayed in the t-SNE plots, we recommend re-159 

plotting t-SNEs using another coloring scheme for the data points, such as one based on 160 

anatomically defined character partitions. The latter can be accomplished by directly utilizing 161 

arguments within the Rtsne function of the Rtsne package (Krijthe, 2015). If there is a closer 162 

correspondence between tSNEs and anatomical partitioning as compared to PAM+Si and tSNEs, 163 

it is reasonable to follow anatomical partitioning. 164 

 165 

 166 

                                                                             167 
Fig. 2. Plot of identified morphological partitions using tSNE of the first two dimensions with 168 

data points colored according to the partitioning scheme determined by PAM+Si. 169 

 170 

### 3. Calculate partitions (clusters) 

#PAM+Si (plotted using t-SNE) 

clusters <- make_clusters( 

    dist_matrix,  

    k = 3, tsne = TRUE,  

    tsne_dim = 2) 

 

plot(clusters, nrow = 1,  

     max.overlaps = 12) 

 

#Write partitions to Nexus file 

cluster_to_nexus(clusters, 

    file = "Clusters_Nexus.txt") 
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2.3 Data treatment and import  171 

Categorical data (such as discrete morphological characters) should be treated as factors 172 

when imported to calculate character distances, as the symbols used to represent different character 173 

states are arbitrary (e.g., could be equally represented by letters, such as for DNA data). If 174 

continuous variables are used as phylogenetic characters, those should be read in from a separate 175 

file and treated as numeric data, since input values for each state (e.g., 0.234; 2.456; 3.567; etc.) 176 

represent true distances between data points.  177 

Additionally, most morphological datasets have a portion of inapplicable or missing 178 

characters, which introduce problems to calculate distance matrices. Inapplicable and missing data 179 

(typically scored as “-” and “?”, respectively) are interpreted as extra states relative to numerical 180 

symbols typically used for different character states (“0”, “1”, “2”, etc.). Therefore, there are a few 181 

options users may follow for handling morphological phylogenetic datasets to account for 182 

inapplicable/missing data before importing it into EvoPhylo. Users may either convert 183 

inapplicable/missing to “NA” or they may choose to keep the original symbols.  184 

As demonstrated by the example provided in the online vignette, converting 185 

inapplicable/missing conditions to “NA” introduces “NaN” scores to every pairwise comparison 186 

involving two characters with “NA” when calculating a distance matrix. Statistical tests and 187 

clustering methods cannot utilize such matrices with “NaN” as data entries, and so the removal of 188 

observations contributing to excessive NaN would have to be performed—such as done by the 189 

package Claddis (Lloyd, 2016) when calculating an inter-taxon distance matrices to estimate 190 

morphospace. However, removing observations with excessive inapplicable/missing data is not 191 

possible for character partitioning because each character in the dataset must be assigned to at least 192 

one partition (regardless of the amount of missing or inapplicable data). Furthermore, comparisons 193 

between any characters in which one character has an “NA” score will result in a distance of 0 194 

between these same characters (Table 2 in the online vignette). Therefore, the implicit assumption 195 

with this strategy is that unknown characters contribute 0 distance (i.e., unknown states are 196 

assumed to be equal to the known states), which biases the distance matrix by minimizing the 197 

overall distance between characters to the lowest possible values.  198 

Alternatively, users may keep the original inapplicable/missing data (although all must be 199 

represented by the same symbol, e.g., all as “?”), and such states will be treated as a distinct 200 

categorical variable relative to numeric symbols. As a result, pairwise comparisons with characters 201 

with unknown states avoid the introduction of ‘NaN” in the distance matrix. This approach 202 

assumes that unknown states are always different from any known states, which will bias the 203 

distance matrix by increasing the overall distance between characters. Fortunately, however, 204 

Gower distances (as used here) are normalized by the number of variables in the dataset (number 205 

of taxa in this case) (Gower, 1971), which reduces this bias. For instance, in a simple comparison 206 

between two characters sampled from two taxa (A and B), e.g., character 6 (1,1) and character 7 207 

(NA, 1) from the example in the online vignette, the raw distance between these characters is 1.0, 208 

but the Gower distance between them is 1/2 = 0.5. Therefore, we recommend this approach to 209 

https://tiago-simoes.github.io/EvoPhylo/articles/theory.html
https://tiago-simoes.github.io/EvoPhylo/articles/theory.html
https://tiago-simoes.github.io/EvoPhylo/articles/theory.html
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calculate inter-character distance matrices, which only requires users to convert all 210 

inapplicable/missing scores in their datasets to “?” symbols before importing into EvoPhylo.  211 

We note, however, that there is no objective solution to the problem of inapplicable/missing 212 

data to estimate distance matrices, besides potentially negatively impacting the accuracy of 213 

phylogenetic analyses—e.g., (Vernygora et al., 2020; A. M. Wright & Hillis, 2014), but see 214 

Keating (2020). We thus suggest avoiding or removing such characters from morphological 215 

phylogenetic datasets whenever possible as a general good practice.  216 

 217 

3. CLOCK RATES AND SELECTION MODE 218 

With the assumption that morphological evolution is mostly driven by adaptive change, it 219 

is possible to infer the mode of natural selection operating upon particular regions of the phenotype 220 

(e.g., morphological or morphological partitions) and across distinct clades in a phylogeny as a 221 

function of their morphological evolutionary rates (Baker et al., 2016; Revell et al., 2012; Simões 222 

& Pierce, 2021; Venditti et al., 2011). Evolutionary rates that are significantly accelerated relative 223 

to the background rates  provide support for positive or directional morphological selection in 224 

analogy with the 𝑑𝑁/𝑑𝑆 ratio in molecular evolution, whereas strongly decelerating rates indicate 225 

stabilizing selection, stasis or constraint (Baker et al., 2016; Yang, 2014). This concept was first 226 

applied to morphological traits using continuous data in phylogenetic comparative methods in the 227 

program BayesTraits (Baker et al., 2016) and later extended to discrete data and evolutionary rates 228 

estimated with Bayesian molecular or morphological clocks (Simões & Pierce, 2021), and it is the 229 

basis for inferring the strength and mode of selection in EvoPhylo.  230 

The original approach in BayesTraits takes the clock rate on every tree branch (Δ𝑣), which 231 

is then compared to the background rate of evolution (Δb), forming the rate scalar ratio (r = Δ𝑣 232 

/Δb), as defined by Baker et al., (2016). This measure is equivalent to the interpretation of relative 233 

rates of character evolution produced by relaxed Bayesian clocks, in which estimates greater than 234 

1 indicate rates above background rate levels (the base of the clock rate) and are therefore 235 

accelerating, whereas relative branch rate values less than 1 indicate values below background rate 236 

levels, implying a decrease in the rates of evolution in that branch (Ronquist et al., 2019).  237 

To draw evolution rates from Bayesian trees and infer selection mode, users must first use 238 

the function get_clockrate_table to extract relative clock rate values from every branch of a relaxed 239 

clock Bayesian inference tree—i.e., median or mean rate values embedded in summary tree files 240 

produced by relaxed clock Bayesian inference. An argument drop_dummyextant is available to 241 

allow users to automatically remove a “dummy” extant taxon introduced for the offsetting of all 242 

tree node ages when analyzing fossil-only datasets that incorporate uncertainty in the age of every 243 

tip age—see discussions in Simões & Pierce (2021) for further details.  244 
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                                                                                245 
 246 

 247 
 248 

Fig. 3. Summary statistics and plots for clock (evolutionary) rates by clade and clock partitions.  249 

 250 

### 1. Import summary tree  
tree<-treeio::read.mrbayes( 
    "MultiClockTree/Tree_3p.t")  
 
### 2. Get and export rate tables 
RateTable_Medians_no_clades <- 
    get_clockrate_table 
    (tree, summary = "median") 
 
write.csv(RateTable_Medians_no_clades,  
    file="RateTable_Medians.csv") 
 
### 3. Import rate table 
#with custom clade memberships added 
RateTable_Medians<- read.csv( 
    "RateTable_Medians_Clades.csv", 
    header = TRUE) 
 
### 4. Get summary stats 
#for each clade/clock partition 
clockrate_summary(RateTable_Medians,  
    "Sum_RateTable_Medians_Clades.csv",  
    digits=2) 
 
### 5. Plot rates by clock partition/clade 
# with stacked plots (viridis) 
clockrate_dens_plot(RateTable_Medians,  
    stack = TRUE, nrow = 3,  
    scales = "fixed")+ 
    ggplot2::scale_color_viridis_d() + 
    ggplot2::scale_fill_viridis_d() 
 
### 7. Get rate linear models 
p1<- clockrate_reg_plot(RateTable_Medians,  
    clock_x = 1, clock_y = 2) 
p2<- clockrate_reg_plot(RateTable_Medians,  
    clock_x = 1, clock_y = 3) 
p3<- clockrate_reg_plot(RateTable_Medians,  
    clock_x = 2, clock_y = 3) 
 
p1 + p2 + p3 + plot_layout(nrow = 1) 
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At this stage, rate tables must have customizable clade names (specific for each dataset and 251 

tree topology). This can be done within R or by exporting rates tables to a CSV file (and edited in, 252 

e.g., Microsoft Excel) and manually adding a "clade" column using the tree node numbers as 253 

reference; a sample dataset of this kind is provided with EvoPhylo and can be called with 254 

rate_table_clades_means. The new rates tables with added clade names must then be used for 255 

downstream analyses. Detailed examples are provided in the online vignette. 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 
Fig. 4. Relative rates of evolution and inferred mode of selection across morphological 274 

partitions. Scale bars indicates evolutionary rate thresholds for inferring selection mode: 1 275 

standard deviation (weak) and 3 standard deviation (very strong) evidence for positive (red 276 

spectrum) or stabilizing (blue spectrum) modes of selection at each branch for every 277 

morphological partition. 278 

 279 

### 1. Import and transform mean rate table with custom clade memberships  
RateTable_Means<- read.csv("RateTable_Means_Clades.csv", header = TRUE) 
RatesByClade <- clock_reshape(RateTable_Means) 
 
### 2. Import all log (.p) files from all runs and combine them 
Comb_posterior3p <- combine_log("LogFiles3p", burnin = 0.25, downsample = 2500) 
 
### 3. Pairwise t-tests of Rate values 
RateSign_tests<- get_pwt_rates(RateTable_Means, Comb_posterior3p) 
 
### 4. Plot selection strength on the summary tree using thresholds for each clock partition 
S1<-plot_treerates_sgn(tree, Comb_posterior3p, 
  clock = 1,               #Show rates for clock partition 1 
  summary = "mean",        #sets summary stats to get from summary tree nodes 
  branch_size = 1.5, tip_size = 3,                           #sets size for tree elements 
  xlim = c(-450, -260), nbreaks = 8, geo_size = list(3, 3),  #sets geoscale 
  threshold = c("1 SD", "3 SD"))                             #sets selection threshold 
 
#Repeat previous step for clock partitions 2 and 3 (objects S2 and S3) 
 
S1|S2|S3 

 

https://tiago-simoes.github.io/EvoPhylo/articles/rates-selection.html
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Summary statistics of evolutionary rates for each designated clade or clock partition can 280 

be extracted from the rates tables and summarized and plotted using the functions 281 

clockrate_summary and clockrate_dens_plot, respectively (Fig. 3). Linear regression models 282 

between clock rates are available through the clockrate_reg_plot function (Fig. 3), enabling the 283 

user to verify the degree of correlation between separate clock partitions. These correlations can 284 

be used as the basis to test, for instance, correlated evolution among separate morphological 285 

partitions and thus act as a test for evolutionary integration among such partitions (Simões et al., 286 

2020). For plotting individual clock rates and their variance throughout branches in summary 287 

evolutionary trees, we suggest several functions available in the package ggtree (Yu et al., 2017). 288 

In order to infer selection mode, users must obtain posterior estimates for the base of the 289 

clock rate value, which are reported in parameter log files from Bayesian inference software. 290 

Extracting this parameter from parameter files—and other parameters to be used later for FBD 291 

diversification rates (see more below)—requires importing all parameter files and combining them 292 

into a single file. This is done with the function combine_log, which also allows users to drop 293 

samples from generations in the beginning of each log file (i.e., discarded as burn-in) and/or 294 

downsampled to reduce the size of the output object (Fig. 4). Hence, combine_log is functionally 295 

analogous to LogCombiner from the BEAST2 software package (Bouckaert et al., 2019), but 296 

specifically targeted to parameter files produced by Mr. Bayes. In practice, users can also use 297 

LogCombiner to combine parameter log (.p) files from Mr. Bayes, but we chose to include a 298 

standalone function for this purpose to avoid dependency on external software and to conduct all 299 

analyses in this pipeline within the R environment. 300 

Once rate tables (with customized clade names) and a single parameter file are available, users 301 

can deploy the get_pwt_rates function, which converts relative rates to absolute rate values and 302 

compares rates across every branch and every clock partition to the base of the clock rate 303 

(background rate), to measure the degree of rate deviation from background levels (Fig. 4). 304 

Thresholds must be defined to establish the degree of rate deviation from background levels that 305 

will be used to indicate whether branches and/or morphological partitions are significantly 306 

accelerating or decelerating. EvoPhylo allows users to utilize flexible thresholds that take into 307 

account the dispersion of the distribution of the base rates obtained from the posterior parameter 308 

files. For instance, Simões & Pierce (2021) established ±1 standard deviation (1𝜎) from the 309 

background mean rate as their threshold: a rate of evolution on a given branch greater than the 310 

mean background rate +1 standard deviation (∆𝑣 >  𝜇Δ𝑣 + 1𝜎) indicates an instance of positive 311 

selection; a rate of evolution on a branch less than the mean background rate -1 standard 312 

deviation (Δ𝑣 <  µ𝛥𝑏 − 1𝜎) indicates an instance of stabilizing selection or stasis; and a rate of 313 

evolution on a branch within 1 standard deviation of the mean background rate (µ𝛥𝑏 − 1𝜎 <314 

Δ𝑣 <  µ𝛥𝑏 + 1𝜎) indicates an evolutionary rate not significantly different from the null 315 

hypothesis of neutral evolution. 316 

EvoPhylo allows users to compute multiple threshold levels across the tree using, e.g.,  one, 317 

two, three, or more standard deviations. Users can plot only one of these thresholds or all of them 318 

combined onto the evolutionary tree to assess the degree upon which clades are evolving faster or 319 

slower compared to background rates, with direct implications for interpreting the mode of 320 
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selection operating upon the morphological traits (Fig. 4). Hence, here we suggest the 321 

interpretation of the threshold values as: ±1𝜎 (p = 0.32), ±2𝜎 (p = 0.05), ±3𝜎 (p = 0.01) to 322 

indicate weak, strong, and very strong evidence for deviation from background rates, respectively. 323 

These thresholds can all be supplied to the plot_treerates_sgn function, which plots the summary 324 

Bayesian evolutionary tree across branches to infer selection mode.  325 

 326 

### 1. Reshape combined log file from previous steps. 
posterior3p_long <- FBD_reshape(Comb_posterior3p) 
 
### 2. Summary stats for FBD parameters by time bin 
t3.1 <- FBD_summary(posterior3p_long) 
 
### 3. Test for assumptions: normality and homoscedasticity for FBD parameters 
# Results = Shapiro-Wilk, Bartlett's  and Fligner-Killeen tests 
t3.2 <- FBD_tests1(posterior3p_long) 
 
### 4. Visualize deviations from normality and similarity of variances 
FBD_normality_plot(posterior3p_long) 
 
### 5. Test for significant FBD shifts between time bins for each FBD parameter 
#Results = Pairwise t-tests and Mann-Whitney tests 
t3.3 <- FBD_tests2(posterior3p_long) 

 327 
Fig. 5. Visualization of deviations from normality for each diversification parameter in the FBD 328 

model for every time bin. 329 

 330 
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4. DIVERSIFICATION RATES 331 

The skyline variation of the fossilized birth-death tree model (SFBD) (Zhang et al., 2016) has 332 

made it possible to answer some of the most fundamental questions in macroevolution within an 333 

integrated Bayesian evolutionary inference framework and involves estimating net diversification, 334 

relative extinction (turnover), and relative fossilization across time bins. It relaxes the assumption 335 

of previous versions of the FBD model in which all diversification parameters are assumed to be 336 

constant across the tree, which is unrealistic for deep time studies. As with the birth-death skyline 337 

model (Stadler, 2011), the process starts at the root/origin (𝑡0 𝑜𝑟 𝑡𝑚𝑡𝑐𝑎) and has a number (l) of 338 

rate shifting times (𝑡𝑖) [𝑡𝑖 (𝑖 = 1, … , 𝑙)]. The cutoff time 𝑥𝑐𝑢𝑡 represents the time after which no 339 

more fossils are sampled, and all lineages lead to extant taxa. FBD parameters must be constant 340 

within each time interval 𝑡𝑙 − 𝑡𝑙−1 (or time bins), but they are allowed to vary across them. In its 341 

current implementation, the specific rate shift time points must be prespecified by the user. The 342 

output of SFBD analyses includes posterior estimates for each FBD parameter for every time bin, 343 

thus revealing fundamental aspects of shift in organismal diversity rates across time. 344 

 345 

### 5. Plot the distribution of each FBD parameter by time bin with a violin plot 
p1 <- FBD_dens_plot(posterior3p_long, parameter = "net_speciation", 
                    type = "violin", stack = FALSE, color = "red") 
p2 <- FBD_dens_plot(posterior3p_long, parameter = "relative_extinction", 
                    type = "violin", stack = FALSE, color = "cyan3") 
p3 <- FBD_dens_plot(posterior3p_long, parameter = "relative_fossilization", 
                    type = "violin", stack = FALSE, color = "green3") 
library(patchwork) 
p1 + p2 + p3 + plot_layout(nrow = 1) 

 346 
Fig. 6. Visualization of posterior estimates for each diversification parameter in the FBD model 347 

for every time bin. 348 

 349 

EvoPhylo includes specific functions to combine and assess posterior parameters estimates 350 

from parameter log files (combine_log, as described above), including FBD parameters. Using the 351 

FBD_summary function to assess the combined parameter log file, users can produce a summary 352 

table of each specific FBD parameter for every time bin. Subsequently, users can use FBD_tests1 353 

to assess the normality of the distribution for each FBD parameter in each time bin using the 354 

Shapiro-Wilk normality test and visual assessment of data distribution using FBD_normality_plot 355 
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(Fig. 5). Additionally, FBD_tests1 also runs a Bartlett and Fligner-Killeen tests of homogeneity of 356 

variances to assess homoscedasticity in the data. Finally, for testing between significant parameter 357 

rate shifts across time bins, EvoPhylo provides fast outputs of parametric (pairwise t-tests) and 358 

nonparametric (pairwise Wilcoxon rank sum, or Mann-Whitney) tests through the function 359 

FBD_tests2. To observe the final distribution of FBD parameters across each time bin, users can 360 

deploy FBD_dens_plot for each parameter of interest, using different plotting styles passed 361 

through ggplot2 (Wickham, 2016) (Fig. 6). 362 

5. CONCLUSIONS 363 

Relaxed clock Bayesian evolutionary inference (BEI) is a powerful multivariate statistical 364 

approach which enables jointly estimating tree topology and macroevolutionary parameters, such 365 

as divergence times, evolutionary rates, and rates of lineage diversification. Several advances in 366 

the past decade have made BEI increasingly feasible computationally and parameter rich by the 367 

incorporation of a vast array of new trees and clock models. As a result, BEI has been increasingly 368 

adopted by evolutionary biologists working with molecular, morphological, and combined datasets 369 

to estimate time-calibrated trees and macroevolutionary dynamics across the tree of life. However, 370 

the development of bioinformatics tools to preprocess morphological data and postprocess 371 

evolutionary parameter estimates from BEI have been somewhat limited. 372 

Here we introduce EvoPhylo, an R package to extract, plot, statistically summarize, and 373 

conduct further downstream analyses from evolutionary parameters obtained from relaxed clock 374 

BEI. This includes: automatically detecting partitions in morphological datasets, creating plots and 375 

summary statistics for clade and partition specific rates of morphological evolution, inferring 376 

significant shifts in evolutionary rates to infer the mode of selection across lineages and 377 

morphological partitions, and creating plots and statistically testing for shift in diversification 378 

parameters of the fossilized birth death model (net diversification, relative extinction, and relative 379 

fossilization) across time. The first version of EvoPhylo (v. 0.1) is designed to work with input and 380 

output data from the widely used software Mr. Bayes (Ronquist et al., 2012), but an upcoming 381 

release will expand its functionalities to also work with output data from the BEAST2 (Bouckaert 382 

et al., 2019) software package. EvoPhylo will thus facilitate macroevolutionary analyses using 383 

Bayesian relaxed clocks for a wide range of users and fields of research, especially those that use 384 

morphological datasets. 385 

 386 

5.1 Dependencies 387 

Evophylo depends on several R packages, in particular, ape (Paradis & Schliep, 2019), cluster 388 

(Maechler et al., 2012), deeptime (Gearty, 2021), ggplot2 (Wickham, 2016), ggrepel (Slowikowski 389 

et al., 2018), ggtree (Yu et al., 2017), patchwork  (Pedersen, 2019), treeio (Wang et al., 2020), 390 

Rtsne (Krijthe, 2015), and unglue (Fabri, 2020). 391 

 392 
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