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Abstract 12 

Policy makers require high-level summaries of biodiversity change. However, deriving such 13 

summaries from raw biodiversity data is a complex process involving several intermediary stages. In 14 

this paper, we describe a workflow for generating annual estimates of species’ occupancy at national 15 

scales from raw species occurrence data, which can be used to construct a range of policy-relevant 16 

biodiversity indicators. We describe the workflow in detail: from data acquisition, data assessment 17 

and data manipulation, through modelling, model evaluation, application and dissemination. At each 18 

stage, we draw on our experience developing and applying the workflow for almost a decade to 19 

outline the challenges that analysts might face. These challenges span many areas of ecology, 20 

taxonomy, data science, computing and statistics. In our case, a key output of the workflow is annual 21 

estimates of occupancy, with measures of uncertainty, for over 5,000 species in each of several 22 

defined “regions” (e.g., countries, protected areas, etc.) of the United Kingdom from 1970-2019. This 23 

product corresponds closely to the notion of a species distribution “Essential Biodiversity Variable” 24 

(EBV). Throughout the paper, we note where the workflow can be adapted to other situations (e.g., 25 

geographic regions or data types). We also highlight areas where the workflow can be improved; in 26 

particular, we suggest incorporation of methods to diagnose biases in the species occurrence data, 27 

to understand whether and to what extent these bias downstream products, and to mitigate them if 28 

needed. Finally, we compare the data products generated using our workflow to the first generation 29 

of species distribution EBVs and the “idealized” product as defined by others. Going forward, we 30 

hope that this paper can act as a template for research groups around the world seeking to develop 31 

similar data products. 32 

Introduction 33 

Information on the status of biodiversity and trends thereof is needed to monitor progress towards 34 

biodiversity targets and evaluate the effectiveness of conservation action. The rudiments of this 35 

information are primary (raw) data, but policy makers require high-level summaries such as 36 

indicators. The route from raw data to biodiversity indicator is not straightforward because the data 37 

typically derive from disparate sources and are heterogeneous in terms of sampling protocol, extent 38 

and resolution (grain size). To bridge this gap, the Group on Earth Observations Biodiversity 39 

Observation Network (GEO BON) conceptualised Essential Biodiversity Variables (EBVs; Pereira et al., 40 

2013) as intermediary products that synthesise the available information in a common spatial, 41 

temporal and taxonomic framework. Several categories of EBV have been characterised to 42 

summarise the major dimensions of biodiversity and biodiversity change: Genetic composition, 43 

Species populations (abundance or distribution), Species traits, Community composition, Ecosystem 44 

structure, and Ecosystem function (Pereira et al., 2013). Taken together, these EBVs form a key 45 

component of a global information infrastructure for biodiversity (Peterson and Soberón, 2018). For 46 

example, EBV-type data products underpin multinational biodiversity syntheses, such as the IPBES 47 

Global Assessment, Global Biodiversity Outlook, and the Biodiversity Indicators Partnership 48 

dashboard, and are increasingly being used at national and local levels (Vihervaara et al., 2017). 49 

Species population EBVs characterise species’ populations along the axes of taxonomy, space, and 50 

time (Jetz et al., 2019; Kissling et al., 2018). One way to view species population EBVs is as three-51 

dimensional grids in which each cell denotes the status of some species’ population in some spatio-52 

https://www.bipindicators.net/


temporal unit – the species-space-time cube (Fig. 2; Jetz et al., 2019; Kissling et al., 2018; Schmeller 53 

et al., 2017). Within each cell, population status may be quantified using one of two state variables: 54 

abundance, i.e., an index of the number of individuals present; or occurrence, i.e., whether at least 55 

one individual is present (or the probability thereof). The choice of state variable determines the 56 

specific category of EBV; that is, the species abundance or species distribution EBV, respectively. 57 

Abundance is often the preferred measure of species’ population status (occurrence simply being a 58 

summary of abundance), but data on species' abundances are expensive and complicated to collect. 59 

Hence, for most taxa, places, and time periods – and therefore most cells in the species-space-time 60 

cube – occurrence is the only feasible measure of species’ populations.  61 

Populating the species-space-time cube with information on species’ occurrences requires data and 62 

models. Structured monitoring data are the gold standard but are not available for most taxa in most 63 

parts of the world. Instead, analysts must rely on unstructured, presence-only, data of the types held 64 

in biological collections or collected through citizen science initiatives. These data are available for 65 

more cells in the species-space-time cube than structured data, but not all cells; and the data are 66 

typically heterogeneous (Robin J Boyd et al., 2022a). Hence, modelling is required. Several types of 67 

model might be considered: correlative habitat suitability models (Amini Tehrani et al., 2021); 68 

deductive habitat suitability models, which are based on expert advice about habitat associations 69 

(e.g., https://mol.org/indicators/habitat); or models with a temporal component that estimate 70 

changes in species’ occupancy (Outhwaite et al., 2020). These models vary in their suitability for the 71 

populating the spatial and temporal axes of the species-space-time cube, and the optimal choice is 72 

not always clear. 73 

Moving beyond the choice of data and model, there is a growing literature on the multitude of steps 74 

required to create, evaluate and disseminate species distribution EBVs and derivatives such as 75 

biodiversity indicators. Kissling et al. (2018) and Jetz et al. (2019) proposed high-level workflows for 76 

developing species population EBVs (distribution and abundance). Hardisty et al. (2019) produced 77 

the “Bari Manifesto” comprising ten steps for producing interoperable EBVs of all categories. 78 

Rapacciuolo et al. (2021) proposed four general steps for mitigating the unstructured nature of 79 

community-contributed (or citizen science) data and using them to create indicators. These 80 

contributions have provided a framework for constructing species distribution and other EBVs. 81 

However, as noted by Fernández et al. (2020), “At present, fully operational workflows that facilitate 82 

the automated and widespread production of EBVs are missing”.  83 

In this paper we describe the steps of an operational and relatively mature workflow for generating 84 

periodic estimates of species occupancy over large spatial and temporal extents—a species 85 

distribution EBV—from presence-only species occurrence data. Our paper is not intended to be a 86 

review of the field of EBVs, which is covered elsewhere (e.g., Jetz et al., 2019; Kissling et al., 2018). 87 

Rather, we document the decision-making process at each so they can be replicated and adapted by 88 

others. The paper is aimed at scientists working on national biodiversity infrastructures and 89 

researchers developing biodiversity indicators. The details and examples pertain to our experience 90 

working with citizen science groups and government agencies in the UK, but the general principles 91 

are widely applicable. For each of the eight steps (Figure 1), we begin with a general statement of 92 

the challenges that analysts might face, before describing the details of how we overcome them. The 93 

steps in our workflow relate to, but are not directly equivalent to, the frameworks cited above: we 94 

have chosen a structure that best encapsulates the practicalities of what we do. Having described 95 



each step in our workflow, we explain how these are implemented on a regular basis to update the 96 

EBV. We then discuss the “ideal” vs “minimal” requirements for species distribution EBVs [see Jetz et 97 

al. (2019) and Kissling et al. (2018)], noting which of the ideal criteria our product satisfies, and 98 

finally, the limitations of our current workflow and priorities for future development.  99 

The workflow 100 



 101 



Figure 1. A schematic representation of our workflow as applied in the UK. In this case study, the 102 

raw data are biological records provided by taxon-specific schemes and societies, and the 103 

downstream products include regional and national indicators. Icons from Flaticon. MCMC denotes 104 

Markov Chain Monte Carlo methods used to fit the occupancy-detection models.  105 

Raw data acquisition  106 

The first task when constructing a species distribution EBV is to obtain reliable data on species’ 107 

occurrences for as many cells in the species-space-time cube as possible. Many data types might be 108 

considered: preserved specimens from museums and herbaria (Jönsson et al., 2021), observational 109 

data documenting sightings of some taxon (Sullivan et al., 2014), and more modern forms of 110 

monitoring such as passive (e.g., acoustic) sensors and eDNA (August et al., 2015), amongst others. 111 

These data types have different properties, which has important implications for how they are 112 

treated downstream.  113 

Data sources vary in terms of their reliability. For example, records from preserved specimens are 114 

generally reliable in terms of taxonomic identity but lack precise information on where and when 115 

they were collected. On the other hand, community-contributed data (e.g. from eBird) often come 116 

with precise information on where and when they were collected, but are more likely to contain 117 

misidentifications. Many data providers have procedures to identify dubious records: GBIF—a global 118 

data aggregator—flags records with various spatial, temporal and taxonomic issues; eBird (Sullivan 119 

et al., 2014) flags “unusual” records which are then reviewed by regional experts; and iNaturalist 120 

designates only those records which have been photographed and accepted by the community as 121 

“research grade”. Analysts should consider the reliability of the available records when deciding 122 

whether they are suitable for further analysis. 123 

In our workflow, we use observational species occurrence data. These data comprise information on 124 

the four “Ws” of biological recording: What was seen, Where, When and by Whom (Isaac and 125 

Pocock, 2015). Whilst providing the same information (the four “Ws”), the data derive from 126 

disparate sources such as structured surveys, atlas projects and mass participation projects aiming to 127 

engage audiences with a range of expertise. Hence, they comprise a mix of “opportunistic” records, 128 

checklists and inventories as well as structured monitoring with a defined protocol and repeated 129 

sampling of the same location between years (Pocock et al., 2015).  130 

In the UK we are fortunate in that biological recording has a wide taxonomic coverage: there are 131 

more than 80 schemes and societies, each focussing on the compilation and review of records for a 132 

taxonomic group of interest (Baker et al., 2021; Pocock et al., 2015). Through collaboration with 133 

these schemes, we have access to >24 million records for >10,000 species of bryophyte, lichen, 134 

insect and non-insect invertebrate (noting that many species are removed downstream; see Data 135 

manipulation). It should be noted that we treat the data from each scheme, and hence for each 136 

taxonomic group (e.g., bees, bryophytes, spiders, etc.), independently (hereafter “datasets”). 137 

Treating the datasets in this way has several advantages, which we describe throughout. 138 

Data assessment 139 

Constructing a species distribution EBV is a matter of statistical inference: the analyst does not 140 

possess data on all cells in the species-space-time cube, so must instead rely on a sample (Fig. 2A, B). 141 

If this sample is not representative of the spatial, temporal and taxonomic dimensions of the cube, 142 



or sampling was heterogeneous in those cells with data, then there is a risk that the resultant 143 

occupancy estimates will be biased. It is therefore crucial to assess the representativeness of the 144 

available data. 145 

146 
Figure 2. Progression of the species-space-time cube through various stages in the workflow. Grey 147 

cells indicate a lack of information, green cells indicate that data is available, and blue cells indicate 148 

that information on species’ occupancy has been inferred through statistical modelling. Cube A 149 

represents the raw data. Note that data are available for many cells, but that the cells vary in size, 150 

which indicates variable spatial and temporal resolutions. Cube B represents the EBV-ready dataset 151 

(sensu Kissling et al., 2018), which is obtained after the data manipulation stage. At this step, 152 

spatially and temporally imprecise data have been removed, which is reflected by a common cell 153 

size, but also by the fact that fewer cells are populated. Cube C represents the modelled/derived 154 

EBV (sensu Kissling et al., 2018). We use occupancy-detection models to infer information on 155 

species’ occupancy in every sampled cell in B, then calculated the proportion of those cells that are 156 

occupied in each “region” (e.g. country within UK).  157 

Several tools are emerging to assess biases and other uncertainties in species occurrence data (Boyd 158 

et al., 2021; Robin J Boyd et al., 2022b; Zizka et al., 2019, 2021). One example is the R package 159 

occAssess, which takes a dataset and returns several heuristics indicating the potential for spatial, 160 

temporal, taxonomic and environmental biases (Boyd et al., 2021; Box 1). Whilst data-driven 161 

heuristics are useful, they are not a substitute for a thorough consideration of how such biases might 162 

impact on the estimates of species’ distributions and how they change over time. New “risk-of-bias" 163 

assessments, first developed in medicine and related areas, are now being considered in ecology 164 

(Boyd et al., 2022): we see assessments of this nature as an important component of EBV workflows 165 

in future.  166 

Box 1. Computer infrastructure and codebase.  167 

Our workflow is underpinned by a virtual research environment —"DataLabs" 
[https://datalab.datalabs.ceh.ac.uk/]— accessible via a web browser. DataLabs is a tailorable, 
cloud-based research platform that supports end-to-end analysis and increases collaboration by 
allowing users (e.g., scientists, practitioners and stakeholders) to share working environments, 
code, data and visualizations from anywhere in the world. It is a realisation of the ‘data science 
lab’ concept introduced in Hollaway et al. (2020). DataLabs uses JASMIN (the Natural Environment 
Research Council’s high performance computing facility) as the host computing platform, giving 
researchers seamless access to computer clusters, while taking advantage of the cloud scalability 
(Salama et al., 2022). 
 

https://datalab.datalabs.ceh.ac.uk/
https://jasmin.ac.uk/


Inputs to and outputs of the analyses are stored on what we call the “Object Store”. The Object 
Store is an S3 compatible object-based storage system that manages data as objects referenced 
by a globally unique identifier, with attached metadata, and underpins JASMIN and DataLabs. 
These objects exist in a single flat domain, allowing the Object Store to scale out much more easily 
than a traditional shared file system. The Object Store therefore ensures that our raw data and 
data products are easy to store, locate and access through DataLabs. All data products are 
archived on the Object Store, currently totalling >2,100GB across 55 model runs.  
Models are fitted on DataLabs, and, where necessary, computer clusters are used to speed up 
processing. Clusters can be created within DataLabs for smaller tasks, or JASMIN’s cluster facility – 
LOTUS – for larger jobs. LOTUS has direct access to the object store and vice versa, so data do not 
need to be copied between them manually.  
 
Our workflow sits on an extensive codebase comprising four R packages, which are openly 
available on GitHub. The first is occAssess: this package facilitates screening of the species 
occurrence data for obvious potential biases (i.e., step 2 in our workflow). Next is sparta (August 
et al., 2020b), which contains all the code needed to prepare data for, and run, the occupancy 
models (i.e., steps 3-5 in our workflow), as well as other methods (e.g. Frescalo: Hill, 2012). sparta 
also contains helper functions for viewing model outputs. The third package, BRCindicators 
(August et al., 2022), contains methods for combining individual species’ outputs to generate 
composite indicators (i.e., step 7 in our workflow). This package has been designed to work with 
the outputs of sparta, but also supports other data formats. The final package is wrappeR (Boyd et 
al., 2022c), which wraps around the BRCindicators package and a range of functions to streamline 
the processing of occupancy model outputs into multispecies indicators (i.e., steps 6 and 7 in our 
workflow). 
 
Using DataLabs, JASMIN, the Object Store and the R packages listed above, we have developed an 
extensive pipeline that is collaborative, repeatable, efficient and FAIR. 

 168 

Risk of bias assessments will reveal where mitigating action must be taken. This could include 169 

manipulating the data (e.g., thinning; Inman et al., 2021), attempting to correct for the biases 170 

statistically (van Strien et al., 2019), leveraging additional probability (random) samples where they 171 

are available (Isaac et al., 2020), redefining the extent and/or resolutions of the species-space-time 172 

cube to better reflect data availability (Pescott et al., 2019), or simply acknowledging that the data 173 

do not permit inference and proceeding with descriptive statistics instead. These steps generally 174 

come under the Data Manipulation and Modelling stages below.  175 

Initial ROBITT assessments have revealed a lack of representativeness along all axes of the species-176 

space-time cube. This can be explained at least in part by the fact that most of the scheme data were 177 

collected opportunistically, i.e., without a formal protocol. A corollary is that the distribution of 178 

sampling effort has varied across taxa, space and time in a non-random fashion (Pescott et al., 2019). 179 

For example, recorders have tended to preferentially sample accessible areas and rare species, and 180 

sampling intensity has generally increased over time (Isaac and Pocock, 2015). We outline steps that 181 

have been taken to try and mitigate these biases, and where additional action is required, below.  182 

Data manipulation  183 

Having assessed the raw data for biases, the next step is to prepare those data for modelling. This 184 

data manipulation step includes harmonisation to common spatial, temporal and taxonomic 185 

resolutions, cropping the data to the desired extents in those dimensions, and other types of 186 



(dis)aggregation and filtering. Note that for simplicity we present our workflow as linear, but it will 187 

likely be necessary to revisit the data assessment stage if the data are modified appreciably at this 188 

stage (e.g. if the data are substantially coarsened or reduced in extent). 189 

Our choice of resolution is informed by several factors. First, we consider the resolution(s) at which 190 

the data were recorded. Second, we consider the trade-off between coverage (the proportion of 191 

each dimension in the species-space-time cube for which we have data) and resolution (Rapacciuolo 192 

et al., 2021). Finally, we consider assumptions related to our modelling framework; for example, the 193 

spatial and temporal resolution at which it is reasonable to assume population closure. At present, 194 

we unify the raw data at the species-level (with some exceptions due to taxonomic separation 195 

difficulties), 1km (British Ordnance Survey grid) and day-level resolution. This involves discarding 196 

imprecise records and duplicates—both true duplicates, i.e. multiple records of the same 197 

observation, and records that become duplicates at the specified resolution, i.e. same date, species 198 

and 1km grid square (henceforth “site”). However, acknowledging that the ecological and data 199 

generation processes differ among taxonomic groups, it may be preferable to move beyond our 200 

“one size fits all” approach in the future. One option would be to choose the spatial or temporal 201 

resolutions that result in the most even coverage (Box 3; Jönsson et al., 2021; Pescott et al., 2019) 202 

for each group. However, scale effects mean that estimates made at different resolutions are not 203 

directly comparable, so workflow design faces a trade-off between generality and specificity.  204 

Having discarded imprecise and duplicate records, we organise the remainder of the data into 205 

“detection histories”: dataframes indicating whether each species was recorded on each visit (a 206 

unique combination of site and date). This step has three purposes: 1) to reverse engineer the 207 

survey structure (i.e., visits to some place on some day); 2) to infer non-detections of each species 208 

(what Rapacciuolo et al. 2021 referred to as “borrowing strength across taxa”); and 3) to 209 

approximate sampling effort per visit using the list length, i.e., the number of species recorded on 210 

that visit (Franklin 1999; Szabo et al., 2010; van Strien et al., 2013). Arranging the data in this way is 211 

possible because we treat the records for each taxonomic group as a combined dataset.  212 

For many species, there is simply not enough data to estimate a trend in its distribution. A key 213 

question, therefore, is how to select which species should be taken forward to modelling in a way 214 

that introduces the fewest additional biases in the resulting data product. In the past, we used a 215 

subjective cut-off of 50 observations (Outhwaite et al., 2019). More recently, we have adopted 216 

thresholds based on the properties of those datasets that produce estimates with acceptable 217 

precision (Pocock et al., 2019). Specifically, we set thresholds for the number of observations in the 218 

most frequently observed years and the number of observation events that did not produce an 219 

observation of the focal species. An alternative approach would be to retain all species, even those 220 

which are likely to have low precision, to be transparent about our lack of knowledge about these 221 

species in downstream applications. Understanding the strengths and weaknesses of these choices is 222 

a priority as we further develop our workflow. Further research is required to explore whether these 223 

“rules of thumb” are transferrable, whether they are applicable to all taxa, or whether alternative 224 

selection criteria would be preferable.  225 

In addition to the taxonomic filters described above, we also remove data from poorly sampled 226 

portions of the species-space-time cube. We exclude sites visited in one year only, since these 227 

cannot inform on changes in status over time (Isaac et al., 2014). It has been proposed to exclude all 228 



lists with fewer than a certain number of species recorded (Kamp et al., 2016). This and other 229 

filtering techniques are designed to amplify the signal:noise ratio in the data, but filtering also has 230 

the potential to amplify spatial biases in the set of locations sampled, which are typically large 231 

(Hughes et al., 2020).  232 

Biases introduced through data manipulation could, in some cases, be mitigated by thinning, i.e., the 233 

removal of data from well-sampled as opposed to poorly sampled portions of the species-space-time 234 

cube. Thinning might also be used to address class imbalance (i.e., the ratio between detections and 235 

non-detections; Steen et al., 2020), or to reduce variation in sampling intensity over time (Hickling et 236 

al., 2006). Questions remain about the relative merits of retaining or removing data in the ways 237 

described above, and the optimal strategy will depend on the extent of the biases in the available 238 

data. 239 

Modelling 240 

For most, if not all, datasets, it is highly unlikely that reliable estimates of distributional trends at 241 

large (e.g., national) scales can be inferred from raw data alone. Rather, it is common to use 242 

statistical modelling to infer species’ occupancy (or occurrence) in sites and years in which they were 243 

not observed. In our workflow we derive the “modelled and derived EBV” (Kissling et al., 2018; Fig. 244 

2C) by fitting a type of occupancy-detection model to the detection histories described above. 245 

However, in some situations the available data will violate the assumptions of this model, in which 246 

case alternatives are available (Pescott et al., 2019). We expand on this point in the discussion.  247 

We use single species multi-season occupancy-detection models (Altwegg and Nichols, 2019), in 248 

which each year is considered one “season”. Other formulations, such as multispecies (Guzman et 249 

al., 2021; Ruiz-Gutierrez et al., 2010) and dynamic occupancy-detection models (Van Strien et al., 250 

2013)—which explicitly describe colonisation and extirpation—might be preferable in some 251 

circumstances. The model structure comprises two hierarchically coupled Generalized Linear 252 

Models: the first, the state sub model, describes species’ occupancy (i.e., presence vs absence); the 253 

second, the detection sub model, describes the data generation process. The key advantage of using 254 

occupancy-detection models is that they can, in the right circumstances, mitigate for uneven 255 

detectability  (Royle, 2006). 256 

State sub model 257 

The state sub model describes the proportion of sites occupied (occupancy) in a given region and 258 

year for the focal species. In general, we make separate estimates for each country of the UK by 259 

including a year effect for each of these “regions”, as well as for the UK as a whole (see the 260 

Applications section for extensions of this principle). The year effects are estimated using a random 261 

walk prior (Outhwaite et al., 2018), which reflects the fact that the occupancy status of most sites 262 

does not change from year to year. The state sub model also includes a random site effect 263 

(intercept) to allow for variation in occupancy status among grid squares (Isaac et al, 2014). 264 

Our models are fitted to data from the subset of sites for which records are available (Fig. 1). As 265 

noted above, the spatial coverage of the data is not representative of geographic or environmental 266 

space in the UK, which limits the degree to which our occupancy estimates can be described as 267 

nationally or regionally representative. We are currently exploring options to address the issue of 268 



unrepresentative sampling locations (e.g., by including environmental covariates). We briefly review 269 

these in Box 3. 270 

Detection sub model 271 

The detection sub model describes the probability that the focal species is detected given that it is 272 

present. The probability of detection is clearly contingent on sampling effort (Franklin, 1999), which 273 

must be accounted for. Ideally, we would have visit level meta-data to provide a proxy for sampling 274 

effort, e.g., time spent searching (Sullivan et al., 2014). However, the only data we currently have 275 

available are the number of species recorded from the focal taxonomic group, i.e., the list length 276 

(Franklin, 1999). If list length is a reasonable proxy for sampling intensity, including it as a covariate 277 

will improve model performance (Isaac et al., 2014). Parameterising the list length effect as a 278 

monotonic function (Szabo et al., 2010) is appropriate when the majority of records derive from 279 

checklists, in which zeros in the detection history represent genuine non-detections. However, in 280 

opportunistic datasets, zeros often represent selective reporting; it is therefore more appropriate to 281 

treat categories of list as distinct data types (Van Strien et al., 2013), which allows for the possibility 282 

that detection might be highest on short lists (e.g., if sampling is strongly preferential). Specifically, 283 

we estimate the difference in the logit of the probability of detection for lists of length 2-3 and 4+ 284 

relative to lists of length 1 (Outhwaite et al., 2019). Whilst this parameterisation is the most 285 

appropriate for opportunistic data, further work is required to explore the sensitivity of results to 286 

the choice of boundaries between categories of list, particularly for speciose groups and where there 287 

are strong gradients in species richness.  288 

Uneven sampling effort is only one source of heterogeneity in the data generation process. For any 289 

one species, there are at least three additional factors that might influence the probability of being 290 

observed and reported on a given list. Heterogeneity among observers is a particular source of 291 

concern for citizen science datasets (Lewandowski and Specht, 2015). These “observer effects” are 292 

usually discussed in the context of expertise in ecology (knowing where to look) and taxonomy 293 

(recognising what you see). A less-appreciated form of observer effects is variation in the probability 294 

that an observation will be reported. Selective reporting arises from of the tendency of some 295 

observers to record opportunistically, i.e., when something interesting or unusual is spotted. This 296 

behaviour would lead to an under-recording of commonly-encountered species (August et al., 297 

2020a). Accounting for observer identity has been shown to improve the performance of spatial 298 

distribution models (Johnston et al., 2018), so incorporation of observer effects in our workflow is 299 

desirable. At present we are hindered by the fact that observer identities are not regularised in most 300 

of the scheme datasets. The increased adoption of online recording technologies (e.g. iNaturalist – 301 

www.inaturalist.org; iRecord; www.brc.ac.uk/irecord) offers the potential for a solution in the longer 302 

term. A second important source of heterogeneity in detection probability is the observation date 303 

(most species have seasonal life-history). van Strien et al. (2013) addressed this problem by 304 

modelling the phenology of detection as a quadratic function of Julian date. Our experience is that 305 

the parameters of this function are not mutually identifiable; hence, we have explored modelling 306 

phenology using a Gaussian distribution, in which the mean and standard deviation of detection 307 

dates are estimated. The Gaussian function is suitable for many species with annual life-cycles, but 308 

not for long-lived or multi-voltine species, in which case a different formulation is required, perhaps 309 

involving splines (Crainiceanu et al., 2005) or via additional levels of the hierarchy (Direnzo et al., 310 

2021). Finally, detection is more likely on sites with abundant populations: ignoring this variation can 311 

lead to biased estimation in occupancy models (Royle and Nichols, 2003).  312 



Many datasets we encounter have few repeat visits to the same site on different dates in the same 313 

year, which are necessary for estimating detection probabilities. There has been some debate about 314 

whether it is appropriate to model detectability in this situation, or whether it is better to estimate 315 

occupancy naively (i.e., assuming detectability = 1; Guillera-Arroita et al., 2014; Welsh et al., 2013). 316 

This decision on how to proceed depends on what the analyst considers to be useful information. 317 

Where repeat visits are few, estimates of occupancy are likely to be uncertain because the model 318 

does not know whether non-detections reflect absences or low detectability (i.e., multiple samples 319 

from the joint posterior of the parameters might fit similarly well). On the other hand, estimating 320 

occupancy naively will introduce a bias, especially if there is variation in detection probabilities over 321 

time (Isaac et al 2014). We have chosen to estimate detectability but acknowledge this may 322 

introduce biases where there is heterogeneity in site selection, recorder behaviour and detectability 323 

(see above), and that it interacts with the a priori removal of species that are likely to produce 324 

uncertain trends. In future, we plan to assess the sensitivity of our outputs to these methodological 325 

decisions. 326 

Model fitting 327 

We fit the occupancy-detection models to the detection histories in a Bayesian framework using 328 

Markov Chain Monte Carlo (MCMC) implemented in JAGS (Plummer, 2003) via the R package sparta 329 

(August et al., 2020b). In Outhwaite et al. (2019) we ran each model on three chains for 20,000 330 

iterations with a burn in of 10,000 iterations and a thinning rate of three. In our most recent set, we 331 

used 32,000 iterations with a burn in of 30,000 and a thinning rate of six: the longer burn-in and 332 

higher thinning rate leads to improved mixing of the MCMC chains. These values were chosen to 333 

balance the trade-off between computation time and convergence, recognising that for some 334 

species there is insufficient data to achieve convergence for all parameters. Priors and hyperpriors 335 

are set to be uninformative (see Outhwaite et al 2018 for details) with two exceptions: a) the 336 

random walk in the state sub model (see above); and b) detection probability for single-species lists 337 

is set to have a prior mean of 0.12 (if recording was unselective and all species were equally 338 

detectable, then the probability of being recorded on a single species list would be 1/n, where n is 339 

the species richness of the average site).  340 

Model evaluation 341 

Having fitted statistical models to populate the species-space-time cube (Fig. 1C), the next step is to 342 

evaluate the performance of those models. Common measures of model performance include 343 

uncertainty and goodness-of-fit (i.e., the plausibility of the model given the data; MacKenzie and 344 

Bailey, 2004). Goodness-of-fit is typically evaluated using the data to which the model was fitted 345 

(training data). However, it is often useful to assess the degree to which a model matches 346 

independent data, or other forms of evidence.  347 

For some species, there is insufficient information in the data to derive useful measures of change 348 

for all regions. Notwithstanding the a priori exclusion criteria described above, it is sometimes useful 349 

to exclude these species a posteriori. Several tools are available to assess this information content. 350 

One is the degree to which the parameter estimates from the MCMC chains have converged upon a 351 

common distribution. The Gelman-Rubin “Rhat” (Gelman and Rubin, 1992) is a convenient measure 352 

of convergence. A related measure of information content is the precision of the occupancy and 353 

trend estimates, which captures the degree to which the data have overcome the minimally 354 

informative prior. We assess precision and convergence, but do not exclude species based on these 355 



criteria: we reason that this will not bias downstream applications and that it is more transparent to 356 

propagate the uncertainty. In other situations, it might be preferable to remove species based on 357 

these metrics. 358 

Goodness-of-fit is typically evaluated by comparing some fit statistic (e.g. X2) describing the 359 

discrepancy between the predictions and observations with those from a reference distribution 360 

(Warton et al., 2017). The reference distribution is calculated by simulating many datasets under the 361 

model and calculating the equivalent fit statistics; that is, calculating the fit statistics that would be 362 

obtained if the model is a perfect representation of the system. Reference distributions may be 363 

constructed via bootstrapping for models analysed using classical inference (MacKenzie and Bailey, 364 

2004), or as a natural by-product of the MCMC algorithm for models analysed in a Bayesian 365 

framework (Gelman et al., 1996; Royle et al., 2007). The latter approach, often called a “posterior 366 

predictive check”, can be used to calculate the posterior probability that the model provides a better 367 

fit to the simulated data than the observations (Kéry and Royle, 2016): this is often called a Bayesian 368 

P-value.  369 

We have used the Bayesian P-value to evaluate our models in the past (Outhwaite et al., 2020). 370 

However, it has been shown to have limited ability to detect a lack of fit (Wright et al., 2019), and 371 

provides no information on which components of the model fit well or poorly (Warton et al., 2017). 372 

Residual plots, constructed for both the occupancy and detection components of the model (e.g., 373 

Warton et al., 2017), provide a promising alternative for diagnosing lack of fit.  374 

Precision and goodness-of-fit are useful measures of model performance, but where the available 375 

data contain unmodelled heterogeneity (as in our case), neither necessarily indicates a model’s 376 

accuracy. For this reason, it would also be useful to consider independent model evaluation using 377 

either independent data or elicitation of expert opinion. In the past we have asked data providers 378 

whether model outputs are plausible (Powney et al., 2019), but formalised expert elicitation would 379 

be more objective (Mukherjee et al., 2018). 380 

Populating the species-space-time cube 381 

For each species, the software used to fit our models (see box 1) produces large samples from the 382 

posterior distribution of each parameter. For most applications, occupancy in each year for each 383 

region and species are the quantities of interest. We therefore extract 1,000 samples of the 384 

posterior distributions of occupancy for each species and region of interest to populate the final 385 

species-space-time cube (Fig. 1C). By retaining 1,000 samples, we can produce a point estimate 386 

(usually mean occupancy) and credible intervals for each cell of the cube, whilst allowing parameter 387 

uncertainty to be propagated, e.g. to multispecies indicators.  388 

Applications 389 

Having populated the species-space-time cube, the next step is to apply the cube for scientific 390 

research and to inform policy (Jetz et al., 2019). Here, we focus on the applications for which our 391 

workflow was designed; these all involve the estimation of temporal trends in species’ occupancy.  392 

Species trends 393 

Estimates of occupancy for each species in each year across some spatial domain can be extracted 394 

from the species-space-time cube. These can be used to calculate temporal change as mean annual 395 

growth rates or linear trends. Species-level trends are useful for identifying correlates of range 396 



contractions and expansions (Bowler et al., 2021; Powney et al., 2014), tracking the spread of 397 

invasive species and their effects of native taxa (Roy et al., 2012), and conducting species Red List 398 

assessments (Maes et al., 2015), amongst other applications.  399 

Multispecies indicators 400 

Species’ occupancy or trends thereof can be “averaged” over some set of taxa to produce 401 

multispecies indicators. For many applications, the geometric mean is a sufficient summary statistic 402 

(Outhwaite et al., 2020). More complex methods propagate the uncertainty from the individual 403 

species’ trends, can handle missing values and can incorporate smoothing (Freeman et al., 2020; 404 

Soldaat et al., 2017); these are now preferred for national biodiversity indicators in the UK. 405 

We have produced indicators for several taxonomic groupings and regions. These include the UK 406 

indicator of pollinating insects (JNCC, 2021a), an index of “priority species” at both UK (JNCC, 2021b) 407 

and England levels, and an index of terrestrial occupancy for ~2000 species in Scotland. Multispecies 408 

indicators of this type are perhaps the most important derivative of the species-space-time cube 409 

because they can be used to track progress towards biodiversity targets. 410 

Comparing trends 411 

As described above, our models include terms for regions within the UK. This provides a flexible way 412 

to assess regional variation in trends of specific groups, or to evaluate the impact of differing land 413 

management strategies (e.g., comparing between land cover types, or between grid squares inside 414 

vs outside protected areas; Cooke et al., in prep.). In this way, our data products can be tailored to 415 

spatio-temporal resolutions that are most useful for decision-makers and policy creation (Jetz et al., 416 

2019) without the need to go back to the raw data.  417 

Functional diversity 418 

Occupancy estimates can be combined with species’ trait data to estimate patterns of functional 419 

diversity in space or time. Using this approach, Greenop et al. (2021) assessed changes in pollination 420 

and pest control functions in Great Britain. This example demonstrates the potential of our workflow 421 

to inform on policy-relevant questions about ecosystem health, or to provide for other EBV 422 

categories (community composition, ecosystem functioning) (Pereira et al., 2013). 423 

Dissemination 424 

The final step in our workflow is to disseminate the outputs of the preceding stages to the relevant 425 

audiences. This might include policy makers, collaborators and the wider scientific community. We 426 

suggest that the dissemination stage should follow two general principles. First, data products 427 

should be FAIR: findable, accessible, interoperable and reusable (Wilkinson, 2016). Ensuring EBV 428 

data sets are FAIR means that they can be can easily be found and accessed by others, they use 429 

common standards that allow them to be combined with other EBV data sets, and they have 430 

appropriate metadata data describing the data and how it was generated (Box 2). Second, data 431 

products should be tailored to the target audience, the details of the use-case (e.g., species trends or 432 

multispecies indicators), and in an appropriate format (e.g., data and code versus interactive 433 

visualisation).  434 

Box 2. Metadata.  435 



We save EBVs at several points in our workflow (Fig. 2). Each time data are saved, metadata are 
stored in .rdata or .rds format. The model outputs for each species include metadata embedded 
as attributes in the R object (see the sparta package Box 1). These metadata include the name of 
the species modelled; the temporal and spatial coverage; the regions modelled and the quantity 
of data available in each region for the focal species; the model type, parameters and BUGS code; 
the Sparta version used; the date the model was fitted and the modeller who fitted it; the R 
session information; and provenance. Provenance is a free text field used to capture the rationale 
for the model run and/or to summarise data acquisition steps.  
In addition to the species-level metadata, we store metadata at the “run” level (i.e. for all species 
in a taxonomic group). These files are generated, and updated, using the createMetadata function 
in the wrappeR package (Box 1), which summarises the input and output files from the Object 
Store (Box 1). The run-level metadata propagates metadata from the species level, where 
applicable, as well as summarising higher level metadata, such as the number of species 
modelled. Propagation of metadata means that the EBV data products shown in Fig. 2 retain 
information about the raw data from which they were derived and the model configuration, thus 
being reproducible. Run-level metadata is subsequently used by functions in the BRCindicators 
package (Box 1) to create multispecies indicators based on the latest model outputs.   

 436 

Working in a large team, the primary audience for our datasets is people within the same 437 

organisation (UK Centre for Ecology and Hydrology). For this audience, we have built a computing 438 

environment that facilitates collaborative working (Box 1) supported by comprehensive metadata 439 

(Box 2). This computing environment allows controlled access by the wider scientific community via 440 

shared Notebooks in DataLabs (Box 1; Hollaway et al., 2020). We have also published occupancy 441 

trends for 5,293 species under an open government license with an accompanying data paper 442 

(Outhwaite et al., 2019; Outhwaite et al., 2019). 443 

For non-technical audiences—such as staff in government agencies, NGOs and some members of the 444 

schemes who supplied the raw data—we have developed R Shiny web applications deployed via 445 

DataLabs (Box 1). These allow those users to browse outputs graphically without needing to 446 

download the underlying data.  447 

We typically share our data products with policy-makers through reports. Examples include the 448 

triennial State of Nature reports and national biodiversity indicators. Typically, these reports 449 

document multispecies indicators for a taxonomic group and region of interest. The figures and the 450 

underlying data (indicator values plus uncertainty for each year, etc.) are made openly accessible 451 

(e.g., JNCC 2021a). 452 

A priority for future development is to standardise our dissemination formats and improve 453 

interoperability. Hardisty et al. (2019) developed a road map for achieving the vision of 454 

interoperable EBVs in what they called the “Bari Manifesto”. We cannot act on the Bari Manifesto 455 

unilaterally; rather, we must work with the EBV community to develop data standards. We would 456 

also like to develop APIs (Application Programming Interfaces) that provide access to our EBV 457 

datasets, in much the same way as existing APIs provide access to raw observations (e.g., iNaturalist 458 

and GBIF). 459 



Implementing the workflow 460 

It is likely that users will want to update their species-space-time cube and downstream products 461 

over time. In our case, we implement most stages of the workflow annually. This reflects the fact 462 

that we are funded to produce national indicators of species’ distributions annually. However, we 463 

have neither the resources nor the data to update every taxonomic group each year. Typically, a 464 

handful of the ~30 taxonomic groups are updated, so for most groups the data are a few years out of 465 

date. Resourcing constraints mean that the Data assessment and Model evaluation steps are 466 

implemented less frequently, but we are working to change this. 467 

Discussion 468 

We have provided a step-by-step description of the workflow that underpins our EBV-type data 469 

product and indicators of species’ distributions in the UK. This description spans the entire process – 470 

starting with the acquisition of raw data, through data assessment and data manipulation, modelling 471 

and model evaluation, and finally application and dissemination. Throughout, we hope to have given 472 

an honest appraisal of the strengths of our workflow and where it can be improved in future. As 473 

such, we hope that this paper will be a useful resource for other groups/organisations seeking to 474 

construct similar products.  475 

Applicability of the occupancy-detection model 476 

Our workflow is built around the occupancy-detection model, but this will not be the most 477 

appropriate method in all situations (Box 3). If the available data are severely biased at fine scales, 478 

then it will be necessary to work at coarser resolutions at which those biases are less evident 479 

(Pescott et al., 2019). However, the occupancy-detection model assumes that species’ occupancy at 480 

each site does not change within “closure periods” (here one year); as the definitions of the site and 481 

closure period become coarser, this assumption becomes less tenable. Likewise, it becomes less 482 

realistic to suppose that repeat visits to a site pertain to the same location. Where alternative 483 

analytical approaches are deemed more appropriate, the general structure of our workflow will still 484 

apply, but the detail will differ.  485 

Comparison with the first generation of species distribution EBVs 486 

Our data products differ from the first generation of species distribution EBVs in two key ways. First, 487 

our product pertains to >5,000 species, much more than most. Second, the majority of the first 488 

generation EBVs were constructed using correlative or deductive species distribution models (SDMs) 489 

that lack any temporal component (Amini Tehrani et al., 2021; Fernández et al., 2020; Velásquez-490 

Tibatá et al., 2018; also see e.g., https://portal.geobon.org/ebv-detail?id=5 and 491 

https://mol.org/indicators/habitat). In contrast, our occupancy models are temporally explicit. Both 492 

types of model can populate the spatial and temporal dimensions of the species-space-time cube: 493 

for occupancy models we would need to include spatial terms as SDMs do; projecting static SDMs to 494 

new time periods is possible by assuming a space-for-time substitution. 495 

Comparison with the “ideal” species distribution EBV 496 

Kissling et al. (2018) set out seven criteria for the “ideal” species distribution EBV; the data products 497 

produced using our workflow in the UK satisfy some but not all of these. The first is that both 498 



presence and absence data should be used. Technically, we work with presence-only data and infer 499 

non-detections based on assemblages of co-recorded species. The second criterion is that the EBV 500 

should be global in extent: our previous data products do not meet this criterion because we 501 

focused on the UK. The third criterion is that the EBV should have a fine spatial resolution; this is 502 

true of our EBV-ready dataset (Fig. 1B) but not our model derived EBV (Fig. 1C) which is coarsened 503 

during the modelling stage (by summing occupancy states across sites within each region). Our EBV 504 

satisfies the next two ideal criteria: we provide a continuous long-term time series spanning several 505 

decades, and the temporal resolution (annual) is sufficient to capture the focal species’ population 506 

dynamics. We are some way toward the criterion about taxonomic and ecological representation: 507 

we include a large pool of species (>5,000) spanning bryophytes, lichens, insects and non-insect 508 

invertebrates. However, there are other groups, such as mammals, birds, herpetofauna and vascular 509 

plants – for which occupancy data are available but which are not currently included in our EBV. We 510 

do satisfy the final criterion—that taxonomic dictionaries should be updated according to published 511 

checklists (e.g., species aggregates and synonyms). In our workflow taxon names align with the UK 512 

Species Inventory (UKSI; https://www.nhm.ac.uk/our-science/data/uk-species.html), which 513 

standardises checklists for more than 70,000 species and integrates with the GBIF backbone 514 

taxonomy. In summary then, the data products that we have produced in the UK fall somewhere 515 

between the minimal and ideal products as defined in Kissling et al. (2018). 516 

Whilst our previous data products do not constitute ideal species distribution EBVs, they are closer 517 

than most of the first generation, and it might be possible to get closer still using the existing 518 

pipeline. It would be relatively simple, for example, to increase the spatial and taxonomic extents 519 

where data are sufficient. Our current extents and resolutions reflect the aims of our research 520 

group.  521 

It is worth pointing out that the “ideal” species distribution EBV is likely unattainable, as 522 

acknowledged by Kissling et al. (2018). First, there are trade-offs between criteria. For example, 523 

working at a 1km spatial resolution precludes inclusion of species for which such precise data are not 524 

available. The stipulation that species distribution EBVs should be global and temporally explicit is 525 

also optimistic, given current data availability  (Hughes et al., 2020; Peterson and Soberón, 2018). 526 

For the foreseeable future, species distribution EBVs will be most useful if constrained in spatial or 527 

taxonomic domains, and/or if coarse resolutions are employed.  528 

Conclusion 529 

To tackle the ongoing biodiversity crisis, data products are needed that are accurate, synthetic, 530 

synoptic, and interoperable. Our workflow and paper represent a step towards this ambition, yet as 531 

noted, substantial challenges remain (Box 3). We hope that research groups around the world will 532 

adopt our workflow, but consider these challenges, which are likely to be more acute in regions 533 

sampled less comprehensively than the UK (e.g. Boyd et al., 2022a). In this way, we can make 534 

progress towards a better understanding of global biodiversity change.  535 

Box 3. Outstanding questions and priorities for future development of the workflow 536 

There remain outstanding questions at all stages in our workflow, the most pressing of which are 
outlined below. 

https://www.nhm.ac.uk/our-science/data/uk-species.html


Can we statistically correct for a wider range of biases in the species occurrence data? At 
present, we construct our EBV using an occupancy-detection model that does not mitigate all 
biases. Options to improve the models include extra terms in the state (e.g. environmental 
covariates) and observation sub models (especially if accompanied by additional metadata from 
data providers); weighting or thinning the data; and integration with structured datasets (where 
available), amongst others. 
How do we evaluate model adequacy? Implementing statistical fixes for data biases is one thing; 
assessing whether these were successful is another. Model evaluation is particularly difficult 
where the comparison data are biased, because a model with similar biases will appear to fit the 
data better than an unbiased one. More work is needed to understand which goodness-of-fit 
measures are most effective, and to establish best practices for leveraging independent 
information (e.g. from experts or structured data).  
What are the optimal species inclusion criteria and are they generalizable? For some species the 
data are so few that we can say little about their distributions. In this situation there are two 
options: 1) ignore the poorly-recorded species and focus on those with more data; or 2) accept 
the uncertainty and include all species to maximise taxonomic coverage. At present we drop 
species based on the “rules of thumb” described in the text, but it might be preferable to take a 
different approach in other circumstances. 
Is the one-size-fits-all approach appropriate? We estimate occupancy for each species at the 
same resolutions and extents using the same model. This “one-size-fits" all approach is relatively 
simple, easy to implement and produces comparable outputs. However, questions remain about 
whether more bespoke models that capture taxonomic idiosyncrasies might be more appropriate, 
and how best to combine the outputs of such models. 
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