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Abstract 
Quantitatively linking the composition and function of microbial communities is a major 

aspiration of microbial ecology. It is also a critical step in the path towards engineering 

synthetic consortia and manipulating natural microbiomes. The functions of microbial 

communities are collective properties that emerge from a complex web of molecular 

interactions between individual cells, which in turn lead to population-level interactions 

among strains and species. Incorporating this complexity into predictive models has been 

highly challenging. A similar problem of predicting phenotype from genotype has been 

addressed for decades in the field of quantitative genetics, leading to advances in the 

fields of protein and molecular engineering. By analogy to the genotype-phenotype 

landscape, an ecological community-function (or structure-function) landscape could be 

defined that maps community composition and function. In this piece, we present an 

overview of our current understanding of these community landscapes, their uses, 

limitations, and open questions. We argue that exploiting the parallels between both 

landscapes could bring powerful predictive methodologies from evolution and genetics 

into ecology, providing a boost to our ability to engineer and optimize microbial consortia. 
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Introduction.  
 

Microorganisms have colonized every habitat on earth, forming complex and diverse 

ecosystems that play critical roles throughout the biosphere. Besides their many 

environmental roles, microbial communities have also been harnessed for 

biotechnological applications at least since the dawn of the neolithic revolution. The 

biotechnological applications of microbial consortia are growing from their traditional roles 

in food and drink (Belda et al., 2017; Blasche et al., 2021; May et al., 2019; Wolfe et al., 

2014), to contemporary uses in biofuel production (Alper and Stephanopoulos, 2009; 

Jiang et al., 2020; Minty et al., 2013; Senne de Oliveira Lino et al., 2021), the valorization 

of discarded plant materials (Hu et al., 2017; Maleki et al., 2018; Weng et al., 2008), 

bioremediation (Piccardi et al., 2019; Swenson et al., 2000a; Zanaroli et al., 2010), crop 

fertilization (Baas et al., 2016, 2020), and many more (Ergal et al., 2020; Macia et al., 

2016; Roell et al., 2019; Sgobba and Wendisch, 2020).  

 

Relative to monocultures, microbial communities offer multiple advantages in 

biotechnology. Among these, they permit specialization and division of labor (Roell et al., 

2019; Thommes et al., 2019) avoiding physiological and cellular tradeoffs and other 

constraints that limit the efficiency of many biochemical processes. Communities may 

also contain much more genetic diversity than one would find in a single organism due to 

genome size limitations. This diversity can enable communities to remain resilient to 

perturbations that single strains might not survive (Erkus et al., 2013). Finally, microbial 

consortia form spontaneously through evolutionary and ecological processes that are 

very difficult to avoid, even when a monoculture is started from a single isogenic 

population and propagated under otherwise sterile laboratory conditions (Good et al., 

2017; Kinnersley et al., 2009; Rozen and Lenski, 2000). Even in environments supplied 

with a single limiting resource, diversity and coexistence always seem to find a way, 

suggesting that a community is the natural endpoint of microbial systems both in natural 

and synthetic conditions (Dal Bello et al., 2021; Estrela et al., 2021a, 2021b; Goldford et 

al., 2018; Mancuso et al., 2021). Learning how to manipulate and engineer microbial 

consortia is therefore critical to realizing the biotechnological potential of microorganisms. 
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Despite growing interest, our ability to engineer microbial consortia lags behind 

bioengineering efforts in other biological systems at or below the organismal level, such 

as proteins (Arnold, 2019; Lu et al., 2022) or metabolic and genetic networks (Wendisch 

et al., 2006; Yang et al., 2021).  One major reason is the nested hierarchical complexity 

present in a consortium. Specifically, the collective properties and services provided by 

microbial consortia (i.e. their "functions") emerge from the contributions of individual 

community members and their interactions with one another and their environment. The 

physiological traits of individual taxa dictate interactions, and these traits depend on 

genomic diversity, regulatory variation, and life-history. Community functions then 

emerge from the collective action of these interactions, which are often non-linear and 

historically contingent. This means that parsing the mapping from structure to function 

from a detailed accounting of each process in the community is an immense task even 

for relatively simple consortia. Amidst this complexity, how are we to approach the 

problem of community design and control? 

  

Mapping community composition to function can draw inspiration from protein 
engineering. The field of molecular engineering has very similar goals and has 

encountered similar challenges. For instance, protein engineers seek to design enzymes 

with desirable catalytic activities (Bornscheuer et al., 2012; Chica et al., 2005; Kuchner 

and Arnold, 1997). The catalytic rate of an enzyme is encoded in its sequence of amino 

acids, and it is also a collective property of the enzyme that arises from a large number 

of local and long-range biophysical interactions between its amino acids. These 

interactions give rise to the folded structure of the enzyme and govern its stability and 

intermolecular dynamics. Engineering every possible amino acid interaction to produce a 

desired enzymatic function is obviously daunting, but even the simpler task of predictively 

connecting sequence with function has been a major open challenge in biophysics. 

However, this has not precluded our ability to engineer and optimize enzymatic function 

(Arnold, 2019; Bornscheuer et al., 2012; Chica et al., 2005). In the process of 

understanding the connection between amino acid sequence and function, protein 

engineering has benefited greatly from insights provided by the theory of fitness 
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landscapes (Bloom and Arnold, 2009; Romero and Arnold, 2009; Tracewell and Arnold, 

2009). Perhaps the most successful example is the development of directed evolution, 

which has enabled the top-down engineering of different kinds of proteins (Arnold, 2019).  

Directed evolution involves an assisted exploration of the genotype-phenotype map in 

search for genotypes of desired or optimized functionality (this map is often referred to as 

the fitness landscape in the context of directed evolution where an objective function -i.e. 

"fitness" can be externally imposed). This assisted search is implemented through a 

process that mimics that of evolution by the iterative application of sequence 

randomization followed by selection on expressed phenotypes (Arnold, 2019).  

  

In addition to the algorithmic explorations of fitness landscapes, a complementary 

approach has been to infer the principles of protein design by examining the statistics of 

sequence variation in naturally occurring proteins - effectively learning the landscape from 

extant variation. This approach has enabled the synthetic design of functional enzymes 

(Russ et al., 2020), inferring folds (Morcos et al., 2011), and insights into evolvability 

(Stiffler et al., 2015) and allostery (Raman et al., 2016). One key insight from this body of 

work is that within the astronomically large space of possible protein sequences, natural 

functional proteins inhabit a much lower-dimensional subspace (Halabi et al., 2009). This 

result means that engineering proteins does not require an exhaustive search of 

sequence space (an impossible task) but instead a constrained search within a low-

dimensional subspace. It is intriguing to note that this inherent low-dimensionality is also 

observed in biological systems at higher scales of organization, such as behavior 

(Berman et al., 2013; Jordan et al., 2013), developmental programs (Alba et al., 2021), 

and even microbial communities (Raman et al., 2019).   

  

Can we extend the theory of fitness landscapes to study and engineer microbial 

community function? An important challenge is that, unlike molecular systems, microbial 

communities are made up of multiple self-replicating individual genotypes, each 

possessing their own fitness landscapes. It is therefore not immediately obvious how the 

idea of fitness landscapes may be extended to entire communities. In particular, any 

notion of fitness at the community level is not clearly defined given the independent 
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replication of genotypes rather than communities as a whole. While this is true, 

community-level selection can be applied under artificial conditions, where an arbitrary  

fitness function can be applied (Blouin et al., 2015; Sánchez et al., 2021; Swenson et al., 

2000b). More broadly, for a landscape to exist it is not necessary that the scalar property 

that is being mapped to the composition of the community  be defined in terms of fitness; 

it can instead be any collective function of the community (Chang et al., 2021a; Mueller 

Ulrich G. et al.; Wright et al., 2019). 

 

In recent years, a small but growing body of work has started to extend the theory of 

fitness landscapes to communities and suggested ways in which it may help us guide the 

design of microbial consortia (Baranwal et al., 2022; Gould et al., 2018; Sánchez et al., 

2021; Sanchez-Gorostiaga et al., 2019; Senay et al., 2019). Examples range from fruit-

fly microbial consortia whose function is the host's lifespan and other life-history traits 

(Arora et al., 2020), to sugarcane biorefinery consortia whose function is the amount of 

ethanol produced during a single-batch fermentation (Senne de Oliveira Lino et al., 2021). 

These and other studies (Bittleston et al., 2020; Clark et al., 2021; Eble et al., 2021; 

George and Korolev, 2021; Gopalakrishnappa et al., 2022; Gould et al., 2018; Sanchez-

Gorostiaga et al., 2019; Senay et al., 2019; Xie and Shou, 2021; Xie et al., 2019) have 

formally defined the structure-function (or composition-function, or community-function) 

landscape as the empirical map between community composition and function in a given 

habitat and set of conditions. The structure of a microbial consortium is given by the list 

of all it genotypes g = {g1,g2,...,gn} and their respective abundances xg = {x1,x2,...,xn}. If a 

molecular fitness landscape is a map between a genotype g (where g represents the DNA 

sequence of the molecule) and a quantitative phenotype P (i.e. P(g)), a community 

structure-function landscape can be conceptualized as the map between the abundance 

vector xg and a collective function F of the consortium F(xg).  
  

To make this concept useful and productive, it is critical that we identify and understand 

the similarities and differences between structure-function landscapes and molecular 

fitness landscapes. The goal of this paper is to synthesize our current understanding of 

the community structure-function landscape, highlighting promising directions and open 
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questions. We start by drawing parallels between genetic interactions (epistasis) in simple 

genetic landscapes, and their ecological analogs in simple structure-function landscapes. 

We then discuss how various concepts from fitness landscape theory may be generalized 

to communities. Finally, we discuss under what conditions an ecological structure-

function landscape is defined, so that a collective property of interest can be said to 

depend uniquely on species composition. Our focus is eminently practical, and we focus 

on those ideas and methods from fitness landscape theory that, in addition to providing 

ecological insights, may help us guide our efforts to engineer and manage community 

services and functions. We also highlight how “landscape thinking” (Wagner, 2019) may 

provide a helpful theoretical framework to help us conceptualize the challenges 

associated with engineering microbial consortia. 

  

A simple example of landscape thinking in community function: An ecological 
parallel to epistasis. To develop our intuition of how fitness landscape theory may be 

extended to microbial communities, it is useful to start from the simplest scenario. The 

simplest genotype-phenotype map consists of two mutations, a->A and b->B, which 

define four possible genotypes: the "wild-type" (ab), the two single-mutants: (Ab and aB), 

and the double mutant (AB) (Fig. 1A). One then needs a null model that describes how 

both mutations combine their effects when they act independently on the phenotype. 

Typically, the null model assumes that mutations act additively on the phenotype (or 

multiplicatively, depending on the scale). The deviation between the phenotype of the 

double mutant AB and its expected value under the null, interaction-free model, is known 

as the pairwise "epistasis" between those mutations (Fig. 1A). Thus defined, epistasis 

gives us a metric of interactions between mutations. 

 

Interactions can similarly be defined in other combinatorial systems that are not genetic, 

and in fact the term"epistasis" has been used to describe systems as diverse as drug 

interactions (Tekin Elif et al., 2016; Wood et al., 2012) or combinations of stressors 

(Beppler Casey et al., 2016), among others (Tekin et al., 2018). In recent years, we (and 

others) have extended it to ecological systems as well (Eble et al., 2021; Gould et al., 

2018; Guo and Boedicker, 2016; Sanchez, 2019; Sanchez-Gorostiaga et al., 2019; Senay 
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et al., 2019; Senne de Oliveira Lino et al., 2021), and the underlying idea was already 

present in earlier efforts to model the emergence of community function (Chen et al., 

2009; Eng and Borenstein, 2019). 

 

 
Fig. 1. Species interactions create non additive effects on community function. (A) In population 

genetics, two mutations A and B are said to interact when their phenotypic effects do not combine additively 

(or multiplicative, depending on the scale). This interaction is quantified by the deviation from additivity 

(referred to as the epistasis, 𝜀). (B) Empirical measurements have found that the function of pairwise 

microbial co-cultures is often described by the sum of the functions in monoculture, as exemplified here by 

the amylolytic activities (in hr-1) of monocultures and pairwise co-culture of B. mojavensis and B. 

thuringiensis (Data from (Sanchez-Gorostiaga et al., 2019)). Other pairs, however, exhibit marked 

deviations. For instance, the pair formed by B. thuringiensis and P. polymyxa (C) has an amylolytic rate 

that far exceeds the expected value if both species acted independently. Three different types of interactions 

may cause this deviation from the situation where species functional contributions are additive (D). For 

instances, the enzymes and other molecules secreted by each species may interact with one another either 

enhancing or limiting their amylolytic activity (Biochemical interactions, E). Alternatively, a species may 

promote (or suppress) the growth of its partner, limiting the size of its population and thus, potentially, its 

net expression of amylases (F). Finally, a population of one species may impact the per-capita expression 

of amylases by another, similarly impacting the net production of this function (G). 
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In ecology, the simplest type of consortium is one containing just two different genotypes, 

g1 and g2. We could inoculate identical habitats with either cells from just one of those 

genotypes (g1), the other (g2), or both (g1 and g2), and measure a function of interest of 

each habitat after some defined incubation time. We could then establish a null model 

that would describe the function of the pairwise consortium if both species did not interact 

with one another in any way (Sanchez-Gorostiaga et al., 2019). By analogy with the 

epistasis concept in genetics, the deviation between the function of the pairwise 

consortium and the expected value under the null model, which assumes no interactions, 

is defined as the functional interaction between both genotypes, an ecological equivalent 

of epistasis. 

  

To illustrate this idea, in Fig. 1B-C, we present a recent empirical example of a simple 

structure-function landscape. In this example, drawn from ref. (Sanchez-Gorostiaga et al., 

2019), the function of interest is the rate of starch degradation by extracellularly amylase 

enzymes secreted by different strains of the phylum Bacillota. Biochemical modeling tells 

us that these enzymes should combine additively, a point that was confirmed empirically 

(Sanchez-Gorostiaga et al., 2019). Therefore, in the absence of any interactions the 

amylolytic rate function of any consortium should be the sum of the functions of each 

genotype in monoculture. Indeed, many genotype pairs were very well described by this 

interaction-free model (e.g., as shown in Fig. 1B, the one formed by B. mojavensis and 

B. thuringiensis). The (surprising) effectiveness of simple additive models has been 

reported in other systems, as a recent study showed similar success with an additive 

regression model for predicting fluxes of nitrate and nitrite through synthetic denitrifying 

communities (Gowda et al., 2022). Interestingly though, other genotype pairs in the starch 

degrading communities, deviated markedly from the additive model (Fig. 1C), indicating 

the existence of strong, pairwise functional interactions between them. These interactions 

indicate the presence of “epistasis”-like interactions in these simple community-function 

landscapes (Sanchez-Gorostiaga et al., 2019).  
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What is the mechanistic basis of these pairwise interactions? In general, functional 

interactions may arise from three different mechanisms (Fig. 1D-F) (Sanchez-Gorostiaga 

et al., 2019). First, the functional contributions of each community member may interact 

with each other. For instance, going back to the secreted enzyme example that is serving 

as illustration, enzymes secreted by two species may act independently on the substrate, 

in which case their catalytic rates will be additive. However, some enzymes act 

synergistically on their substrate, as is the case of endo- and exo-cellulases: the former 

create new substrates for the latter, reaching an activity together that is higher than the 

sum of each of them separately (Kim et al., 2014). The enzymes secreted by each species 

may also act antagonistically, for instance by aggregating (and therefore inhibiting) one 

another. These deviations from additivity may be called “abiotic” interactions, as they 

would occur even if no cells were present. The second type of interaction involves 

changes in the amount contributed by a given genotype to the community function. For 

instance, a genotype may either promote or inhibit the per-capita functional contribution 

by another genotype, altering its behavior. These “behavioral” interactions may include 

chemical signaling from one species that modifies the behavior of another (Mickalide and 

Kuehn, 2019). Alternatively, a genotype may affect the growth (and therefore the total 

number of cells in the population) of another genotype. These “population” interactions 

can also alter the collective function of the ecosystem in a context-dependent manner. 

The three types of interactions summarized in Fig. 1 D-F can be separated empirically 

(Sanchez-Gorostiaga et al., 2019). 

  

High-Order Functional Interactions. In communities with more than two species, 

functional interactions may be more complex than pairwise (Guo and Boedicker, 2016; 

Mickalide and Kuehn, 2019; Sanchez-Gorostiaga et al., 2019; Senne de Oliveira Lino et 

al., 2021). Consider, for instance, the example provided in Fig. 2, where the structure-

function landscape comprising every combinatorial consortia of three amylolytic bacteria 

is given (Sanchez-Gorostiaga et al., 2019). This landscape shows that co-culturing P. 

polymyxa with B. mojavensis or B. subtilis increases function beyond what we might 

expect from the additive model, indicating the presence of strong pairwise interactions. 

Yet, the beneficial effect of adding both B. mojavensis or B. subtilis to P. polymyxa is 



10 

negligible, as there is no additional benefit of adding those strains. This "diminishing 

returns'' effect indicates that the same genotype (e.g. B. subtilis) that is functionally 

"beneficial" when added to with P. polymyxa alone is functionally neutral when added to 

a consortium formed by P. polymyxa and B. mojavensis. The functional effect of adding 

a species to a consortium is thus different when two species, as opposed to one, are 

present. This would be the canonical definition of high-order epistasis if, instead of 

species and their functional effect, we were talking about mutations and their fitness effect 

(Poelwijk et al., 2019; Sanchez, 2019). 

 

Besides the example discussed above, high-order functional interactions (HOFIs) have 

been observed in the production of ethanol by sugarcane biorefinery consortia (Senne de 

Oliveira Lino et al., 2021), the extension of a host lifespan by Drosophila gut microbiome 

consortia (Gould et al., 2018), the metabolic activity of synthetic consortia (Guo and 

Boedicker, 2016), and, more recently, gene expression in simple defined communities 

(Morin et al., 2022). Just as they do in fitness landscapes, high-order functional 

interactions could have profound implications for the topography of structure-function 

landscapes. For instance, in sugarcane biorefinery consortia, HOFIs have been found to 

tone down the predominantly negative effects of pairwise interactions between bacteria 

on the net ethanol yield (Senne de Oliveira Lino et al., 2021). Based on pairwise 

interactions alone, we would have expected that as bacterial biodiversity increases in our 

bioreactors the ethanol yield would have collapsed. Yet, the opposite was true, and while 

most pairs of bacteria had negative effects in the ethanol yield, this detrimental effect 

vanished as communities increased in richness, reaching average levels that were 

comparable to those of pure yeast monocultures (Senne de Oliveira Lino et al., 2021). 

Despite this and other recent attempts to characterize high-order functional interactions 

(Eble et al., 2021; Gould et al., 2018; Sanchez-Gorostiaga et al., 2019), our understanding 

of the effect and implications of HOFIs is still very incomplete. When do they complicate 

and when do they simplify the navigability of structure-function landscapes? How do they 

affect the number and stability of functionally stable equilibria? These are still open 

questions, representing an open frontier in functional microbial ecology. 
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Fig. 2. High-order Functional Interactions in microbial consortia. We show an example of a third-order 

interaction that shapes the function of microbial consortia, in this case leading to diminishing returns. 

Adding either B. subtilis (S) or B. mojavensis (M) to a monoculture of P. polymyxa (P) dramatically 

enhances its function through a pairwise functional interaction. Yet, when we add either B. subtilis or B. 

mojavensis to the co-culture of P. polymyxa with the other partner, their impact on function is either neutral 

or negative. This shows that the functional effect of adding a species to a consortium may be different when 

a second species is present, indicating the existence of a High-Order Functional Interaction (HOFI).  

  

 

An ecological parallel to global epistasis and the emergence of simple Functional 
Effect Equations. Building predictive models of the structure-function landscape from 

the bottom-up, by combining additive, pairwise, third-order interactions, etc., is generally 

challenging. There is no guarantee that the complexity of interactions ends at the second 

or third-order (Sanchez-Gorostiaga et al., 2019), so the number of interactions that one 

would need to measure in order to build a predictive model of the landscape can blow up. 

An alternative is provided by defining global functional interactions in a way that is inspired 

by recent developments in quantitative genetics. Genetic interactions can be partitioned 
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as the sum of a "global epistasis" effect, where the fitness effect of a mutation is predicted 

by the fitness of the genetic background, and an "idiosyncratic epistasis" effect, which 

captures the part of the fitness effect of a mutation that depends on the genetic 

background while being independent of the background fitness (Reddy and Desai, 2021) 

(Fig. 3A).  

 

Can we extend this way of partitioning interactions to microbial consortia? In recent work, 

we have found that, indeed, the functional effects of adding a species to a consortium 

does often scale linearly with the function of the background consortium, in a way that is 

very similar to what has been observed in genetic systems (Díaz-Colunga et al., 2022). 

Examples include diminishing returns, as well as increasing costs, accelerated returns, 

and others (Fig. 3B). The existence of these global functional interaction patterns appears 

to be rather general in ecosystems as we also found them in plant and algal communities 

(Díaz-Colunga et al., 2022). Importantly, different species within a consortium tend to 

have different "Functional Effect Equations" describing their unique, global functional 

interaction patterns (Díaz-Colunga et al., 2022). How the particular global functional 

patterns exhibited by a species depend on its traits, as well as the traits of the species it 

interacts with, is still not well understood. In addition, it will be interesting to understand 

how this simple “global” epistasis emerges from the pairwise and potentially higher-order 

interactions in the consortia, extending and complementing the work that is currently 

being done to understand the origins of global epistasis in genetic fitness landscapes 

(Husain and Murugan, 2020; Otwinowski et al., 2018; Reddy and Desai, 2021; Wei and 

Zhang, 2019). 
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Fig. 3. An analog to global epistasis explains the functional effect of adding new species to microbial 

consortia.  (A) Research in quantitative genetics has shown that the fitness effect of a mutation often 

depends linearly on the fitness of the genetic background where it arises. Epistasis can thus be partitioned 

as the sum of a global component captured by such a linear fit (red), and an idiosyncratic component, not 

predictable from the fitness of the genetic background alone, represented by the residuals of that fit (green). 

Data from ref. (Khan et al., 2011). (B) An ecological parallel to global epistasis can be formulated: the 

effect on ecosystem function resulting from the addition of a species to a community (an ecological 

background) often scales linearly with the function of the ecological background itself. Species can have 
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less beneficial (or more deleterious) functional effects in backgrounds with higher functions (red lines), or 

vice-versa (blue lines). These regressions that capture the functional effect of adding a species to a gamut 

of different consortia have been termed “Functional Effect Equations” (FEEs) (Díaz-Colunga et al., 2022). 

In some cases, the functional effect of a species may be dominated by an idiosyncratic component rather 

than a global one (black lines). Data corresponds to butyrate production by synthetic gut microbial 

communities (Baranwal et al., 2022), biomass in plankton communities (Ghedini et al., 2022), above ground 

biomass in multi-species plant communities (Kuebbing et al., 2015), xylose oxidation by soil bacterial 

communities (Langenheder et al., 2010) and amylase secretion in bacterial consortia (Sanchez-Gorostiaga 

et al., 2019) (C) These functional trends can be exploited to predict the function of any combinatorial 

assemblage of species, and thus reconstruct entire ecological structure-function landscapes from a small 

subset of empirical observations. Data corresponds to the amount of pyoverdine secreted from newly 

assembled microbial consortia, whose function was predicted from a simple model that concatenates the 

Functional Effect Equations (FEEs) of each species as discussed in (Díaz-Colunga et al., 2022). 

 

  

The usefulness of the structure-function landscape concept. An important 

consequence of the existence of these predictive Functional Effect Equations is that they 

make it possible to predict with reasonable accuracy how adding a given species to a 

consortium will change its function. This illustrates what may be one of the most important 

benefits of bringing the concept of a structure-function landscape from genetics to 

ecological research: that we could apply the arsenal of analytical and statistical tools that 

have been developed in genetics to infer and navigate these landscapes. For instance, 

several machine learning methodologies have been developed in recent years to infer a 

full genotype-phenotype landscape from a small subset of measured genotype - 

phenotype relationships. These methods have found impressive success in predicting 

biological function from DNA sequence under constant environmental conditions 

(Romero et al., 2013; Tareen et al., 2022; Tonner et al., 2021). Adapting and applying 

these methodologies to microbial consortia is an exciting prospect (Baranwal et al., 2022), 

and its feasibility is encouraged by the success of simpler inference approaches. For 

instance, we have recently tested the predictive power of a simple model consisting of 

"stitching together" the Functional Effect Equations of all community members  (Díaz-

Colunga et al., 2022). This very simple approach does an excellent job at predicting 
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various community functions for the full set of all possible consortia one may form with a 

defined set of taxa. Importantly, the ability to predict the full structure-function landscape 

makes it possible to identify the community compositions that will maximize and minimize 

these functions, paving the way to engineering community functions from the bottom-up. 

The application of machine learning and neural networks to reconstruct community-

function landscapes from a limited set of observations is still in its infancy. However, 

promising results are being published (Baranwal et al., 2022), and the success of earlier 

regression-based approaches to predict the landscape of small consortia (Chen et al., 

2009) is also an encouraging sign. 

 

The landscape perspective allows one to approach the problem of community design from 

a statistical point of view. We propose that, from this perspective, the complex hierarchy 

of processes discussed above that influence the structure-function landscape might yield 

to simple descriptions. Indeed, our recent work suggests that taking this perspective can 

uncover simple rules for mapping genomes to phenotypes (Gowda et al., 2022) and 

community composition to emergent function  (Díaz-Colunga et al., 2022). Despite these 

advances, we do not yet have a clear picture of the topography of these structure-function 

landscapes and this will be important if what we wish is to optimize communities using 

evolutionary engineering approaches. 

  

The topography and navigability of an ecological structure-function landscape. The 

topography of a fitness landscape gives us a measure of its navigability by either evolution 

or other assisted search processes. Smooth single-peak landscapes are navigated more 

easily than rugged ones since there are a larger number of adaptive paths connecting a 

given genotype to the global fitness peak (Aguilar-Rodríguez et al., 2017; Nahum et al., 

2015). Smoothness is high when different mutations act independently, whereas 

ruggedness increases in the presence of interactions between mutations (epistasis). In 

particular, strongly positive interactions between deleterious mutations (reciprocal sign 

epistasis), play a key role in determining landscape navigability as they are necessary for 

the presence of multiple fitness peaks (Poelwijk et al., 2011). In multi-peaked fitness 
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landscapes evolutionary algorithms can become trapped on local optima and fail to find 

the global fitness peak. 

 

The simplest evolutionary algorithms used to navigate fitness landscapes involve an 

iterative two-step process consisting of a selection of the mutants of highest fitness, 

followed by sequence randomization. These belong to the class of “hill-climbing” search 

algorithms, which work particularly well for smooth landscapes. Rugged fitness 

landscapes with many distinct peaks, on the other hand, are more challenging to search 

through a hill-climbing approach (George and Korolev, 2021; Wittmann et al., 2021), 

because local information is not informative globally. By the same logic, the ruggedness 

of the ecological community-function landscape will also determine its navigability using 

analogous hill-climbing search algorithms, such as the directed evolution approaches 

reviewed in (Sánchez et al., 2021). For example, consider one configuration of a 

community that gives rise to a function  which is locally a maximum, meaning that any 

small change in composition reduces function. In a rugged landscape there will be many 

such optima and understanding the structure (community composition) to function map 

at one peak will not in general be informative as to the structure-function map at another 

peak. This means that those genotypes whose changing relative abundances have the 

greatest impact on function can and will be distinct from one local optimum to another. In 

principle any directed evolution algorithm may thus get stuck on a sub-optimal community 

and fail to find the optimal configuration of genotypes. 

  

Learning the landscape: A complementary approach to directed evolution for exploring 

the structure-function landscape is to attempt to learn the landscape via either regression 

or more sophisticated machine learning methods. In this approach one collects data on a 

large number of communities comprised of diverse genotypes and measures the function 

of interest. Learning the landscape then amounts to performing a regression with the 

following form: yi = F(xgi) where F is a proposed functional form stipulated by the 

regression being used (e.g. linear model, Random Forest) and yi  is the measured function 

(degradation rate, pathogen inhibition etc) for community with composition xgi.  Such an 

approach differs from a directed evolution approach because it posits a specific functional 
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form for the structure-function landscape. This statistical approach faces the challenges 

of any inference problem, including overfitting and model misspecification. 

  

Just as with the directed evolution approach, in a situation where the landscape is 

exceedingly rugged the regression approach will face challenges because the 

contributions of each genotype to the function may depend strongly on the community 

composition. In this scenario, any local optimum may be well approximated by a model, 

but this model may dramatically fail to predict function (Otwinowski and Plotkin, 2014) in 

the neighborhood of a different local optimum where the impact of adding or removing a 

given genotype may be very different and where the model has not been trained. Consider 

as an example- a set of species with a modest number of 50 genotypes. The full space 

of all possible communities comprising these genotypes is 250 or 1015 possible 

communities. If a space of this size is truly rugged and contains many local optima, 

learning the structure-function map would require enumerating each optimum and the 

genotypes that impact function around it, one by one. Even for 50 genotypes, this is a 

daunting task which may be feasible in theory but in practice it is prohibitive, even 

computationally. It is therefore crucial to ask what controls the ruggedness of these 

landscapes and what is known about how rugged they might be. 

  

The navigability of structure-function landscapes may be connected with global 
functional effects. In simple models of landscapes, such as the well-known Kaufmann 

NK-mode (Kauffman and Weinberger, 1989; du Plessis et al., 2016), the frequency of 

random epistatic (non-additive) interactions determines the ruggedness, with increasing 

epistasis driving more rugged landscapes. Critically, epistasis in the NK-model is random, 

with any site in a genotype equally likely to have an epistatic interaction with any other 

site. In the community structure-function context, high levels of epistasis would be 

analogous to many random, strong interactions between genotypes that impact function 

non-additively. Given the small handful of cases where a structure-function landscape 

has been enumerated, we simply cannot say yet if this type of epistasis is prevalent in 

community structure-function landscapes. This remains an important open question that 

should be addressed in future work. 
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However, recent studies on landscapes in proteins have revealed that ruggedness is not 

a necessary outcome of many strong epistatic interactions. Instead, some proteins have 

strong epistasis and smooth landscapes. How can this be? In proteins this occurs when 

a single “soft mode” dominates the physical dynamics of the system (Husain and 

Murugan, 2020). To understand what this means consider the normal modes of a protein, 

i.e. the coherent motions of all atoms in the protein in response to a perturbation. These 

modes, or oscillations, have different stiffness which dictates how they respond when the 

system is perturbed. We can think of a soft mode as a specific set of coherent motions of 

all atoms in a protein that are soft – in this case any perturbation to the protein causes 

the system to excite that mode.  

 

Experimental studies of proteins with soft mechanical modes have shown that mutations 

cause physical deformations along that soft mode (Husain and Murugan, 2020; Leo-

Macias et al., 2005). In essence, the protein can respond to any perturbation, be it 

physical or mutational, in only one way – along the soft mode. In the limit of small 

perturbations, any two perturbations simply add up to nudge the system along the soft 

mode. Thus, mutations are roughly additive in their impact on the physical locations of 

atoms in the protein. Epistasis is defined not in terms of the physical deformation of the 

protein, but instead as the impact of pairs of mutations on a function such as the catalytic 

activity or thermal stability. Both of these are complex functions of the physical locations 

of all atoms, so even though the impact of each mutation on physical locations is roughly 

additive, their impacts on thermal stability or catalysis are epistatic (Otwinowski et al., 

2018). However, and this is crucial, when a system possesses a soft mode, this strongly 

constrains the epistatic interactions between mutations in the system because the 

impacts of mutations are highly correlated (Husain and Murugan, 2020). Remarkably, the 

very same logic applies to gene regulatory networks. In this case, a network with a soft 

mode responds to diverse perturbations with a common change in the pattern of gene 

expression. In essence, the response of the regulatory network is constrained to be low-

dimensional. Low-dimensional landscapes present in systems with soft modes are less 

rugged and facilitate more rapid evolution that does not get trapped in local optima.  
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Returning to community-function landscapes in microbial communities, if the functional 

interactions between genotypes are random then we expect the landscape will be hard 

to navigate and directed evolution or landscape learning methods will face challenges. 

However, what if the community structure-function landscape possesses a soft mode as 

described above? In the community context, what would this entail? One analogy to the 

protein example above could be to consider the abundances of genotypes as analogs to 

physical locations of atoms in the protein. In this case, a soft mode would manifest as a 

coherent variation in abundances along, for example, a single dominant principle 

component. Perturbations to the community would then be constrained to drive 

abundance dynamics primarily along that mode. We note that such modes of variation 

have been observed in simple communities of a few species (Frentz et al., 2015; Hekstra 

and Leibler, 2012), and more recently also in host associate microbiomes (Raman et al., 

2019). In analogy to protein function, community function can and often is a non-linear 

function of abundances. In this case, the pattern of epistatic interactions between 

genotypes will be non-random and constrained. In this situation we could expect a 

structure-function landscape that is not rugged but instead smooth, potentially learnable 

via regression, and navigable by directed evolution. 

  

We stress that the above sketch of how the theory of fitness landscapes in proteins or 

gene regulatory networks might map to communities is at present speculative. Our goal 

here is to propose plausible scenarios for what might control the ruggedness of these 

landscapes given the many insights provided by fitness landscape theory applied to 

proteins, gene circuits, and other biological systems defined at lower levels of biological 

organization.  

  

Does community composition uniquely determine community function? Before we 

end, we would like to address what may appear to be the proverbial elephant in the room. 

While we hope we have convinced the reader that learning the map between community 

composition and function may have a transformative impact in our ability to understand 

and engineer microbial consortia, it may not be immediately obvious that such a map will 
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necessarily always exist. To what extent does ecological function measured at a given 

time depend on the composition of a community at that same time? This question is more 

nuanced than it might appear at first sight. For instance, an important function of microbial 

consortia is the production of extracellular molecules, from metabolites to secreted 

enzymes. The change in concentration of these secreted molecules depends on the rate 

at which they are produced, which indeed depends on the abundances of different 

members of the consortium as well as on their respective per-capita production rates (Fig. 

1). However, the concentration of secreted molecules also depends on the rates of 

molecular degradation, biochemical inactivation, diffusion out of the volume or area of 

interest, and other degradative processes which eliminate the target molecule and which 

do not necessarily depend on the current state of the community. This creates conditions 

for which the current state of the function of a community depends not just on its current 

composition, but rather on the history of assembly. This idea is perhaps best illustrated 

through a simple mathematical model. 

  

We can formally model the rate of accumulation of an extracellular molecule (say, an 

enzyme E) in a volume of interest as: 

  

dE/dt=h(z,xg)-𝜆(z,E) 

 

Where h(.) represents the rate of enzyme secretion as a function of the collection of  

environmental parameters z and the present species abundance vector xg, and 𝜆(.) 

represents the net rate of enzyme loss through all possible pathways. The latter should 

depend on the enzyme concentration E as well as on the environmental parameters 

captured in z (which may include the concentration of proteases, enzyme inhibitors, or 

other environmental parameters affecting the stability of the enzyme such as the pH). Of 

course, the environment and genotypes obey their own equations, which are an extension 

to higher dimensions of those introduced by Lewontin: 

 

dxg/dt = r(z,xg) 

dz/dt = k(z,xg) 



21 

  

Where r(.) and k(.) denote the dynamical equations governing the temporal evolution of 

xg and z, respectively. In general, there is no reason to expect that, if we integrate those 

equations, we should find that E is an explicit or even implicit mathematical function of xg 
alone, or even a function of xg and z. This reflects the fact, which should be true for many 

community-level traits, that the function of consortium at a given time is not, in general, 

uniquely defined by its composition at that time. Rather, it should be a result of the 

particular dynamical process of community assembly (i.e. the assembly history) that has 

led the community to its current compositional state and, similarly, of the dynamical 

history of the environmental parameters captured in z. 

 
Fig. 4. Conditions for the existence of an ecological structure-function map. For illustrative purposes, 

we use as an example a hypothetical case where we stabilize a community from a diverse initial pool of 

species through periodic transfers in the laboratory, and we measure an enzymatic function akin to the 

amylolytic activity discussed as an example in the main text (see also Fig. 1). The barplot shows the 

composition of the community at each transfer. The structure function map will exist in three scenarios: 1) 

if we map initial composition to function, assuming that the ecological dynamics are reproducible; 2) if we 

map final composition to function in a dynamically stable community, e.g. transfers 6-10; and 3) if we map 
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final composition to function in an unstable community, but only if the functional dynamics (enzyme 

concentration E and environmental parameters affecting its activity z, see main text) are fast compared to 

population dynamics. 

 

Does that mean that a function that uniquely maps community structure to function does, 

in general, not exist? It seems to follow from the above argument that, in general, it does 

not. Yet, there exist many important limits and cases of practical utility for which the 

function of a community at a given point in time can indeed be uniquely defined by its 

composition at that time. To illustrate these important scenarios, let us go back to the 

example given above, where the function of interest is the concentration of a target 

extracellular enzyme. For a structure-function landscape to be well-defined in this case, 

there should exist a function E(xg) that provides a 1:1 map between the concentration of 

secreted enzyme at a given time and the community composition at that time. One limit 

where this function exists occurs when the dynamics of E and z are very fast compared 

with the (population) dynamics of xg. In this limit, xg is approximately constant in the 

timescale required for E and z to equilibrate, and therefore E (and z) will find a local 

equilibrium for every value of xg before this changes significantly. Without loss of 

generality, let us consider the simple case where 𝜆(E,z)=𝜆(z)E. In the separation of 

timescales limit, we find that the form of the structure-function landscape is 

E(xg)=h(z*,xg)/𝜆(z*), where the relevant environmental variables captured in z also 

equilibrate rapidly, generally (though not necessarily) reaching a unique value (z*) for 

each xg. In this case, and save for special circumstances such as when there exist 

memory effects or hysteresis in the per-cell contribution to function, causing non-

linearities in k(xg,z*), every xg may be associated with a unique value of E. 

  

Although separation of timescales is a rather stringent limit that applies only to a narrow 

range of real-life scenarios, it brings up a larger point: that although the structure-function 

landscape is not defined in general, it may exist when communities are in steady-state. 

For many biotechnological applications, communities may be maintained in (or close to) 

steady-state by either placing them in a continuous culture device or through serial 

passaging (Fig. 4). In chemostats, both species composition and all environmental 
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parameters should reach steady state. Going back to the example discussed above, the 

concentration of our target enzyme E should be independent of assembly history and 

uniquely linked to the equilibrium concentration of xg (save for the hysteretic situation 

discussed in the previous paragraph). In the case of serially passaged consortia, 

empirical communities have been generally found to converge to a state of “generational 

stability” (Doulcier et al., 2020; Xie et al., 2019), at least when the passaging is done 

under constant conditions (Chang et al., 2021b; Estrela et al., 2021a, 2021c; Goldford et 

al., 2018; Sánchez et al., 2021). 

  

Another situation of interest in biotechnology is single-batch synthetic communities. 

These can be formed by co-inoculating multiple community members at defined initial 

abundances in a bioreactor. This consortium is then incubated for a given time period, at 

the end of which the function of interest is measured. Here, the requirement for having a 

well-defined structure-function landscape is that the population dynamics of the 

consortium within the batch are highly reproducible and converge deterministically to the 

same final community state at the time of harvest. In this case, the entire within-batch 

dynamics including both environmental and species abundance variables are uniquely 

determined by the starting abundances of the members of the consortium. Thus, each 

initial community state xg will be characterized by a single value of the function (i.e. E) at 

the time of harvest, which defines a 1:1 map between both (Fig. 4). Beyond any specific 

assumptions regarding the model above there is also empirical evidence for this last 

scenario. The primary evidence for this is the remarkable reproducibility and determinism 

of community structure and dynamics during community assembly. For example, a 

reproducible succession of three functional guilds reliably occurs on polysaccharide 

particles in marine communities (Enke et al., 2019). This suggests that given a specific 

niche to colonize, and a sufficiently diverse regional species pool, the structure of the 

assembled community is reproducible. This empirical observation suggests, but does not 

prove, that there are convergent ecological solutions to well-defined functional problems 

– degrading polysaccharides in this case. Similar results are observed in glucose and 

other small molecule enrichments (Estrela et al., 2021a; Goldford et al., 2018) and 

detailed more broadly in surveys of the functional classes of bacteria in the marine 
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microbiome (Louca et al., 2016, 2018). Likewise, host associated communities also 

exhibit highly conserved metagenomic structure from host to host (Louca et al., 2016, 

2018), suggesting that the functional landscape is a well-defined object with structure 

being tightly and reliably linked to function. What remains is to learn this mapping 

quantitatively and to leverage that knowledge to design and predict community behavior. 

  

Conclusion. It should be obvious to the reader that we are merely scratching the surface 

of a very rich and we believe potentially rather fruitful line of inquiry. Parallelisms between 

exploration of fitness landscapes in evolutionary engineering and the exploration of 

structure-function landscapes may provide important insights to our understanding of the 

mapping between community composition and function, and our ability to engineer 

microbial consortia. The field of quantitative genetics has built powerful methodologies to 

reconstruct and navigate genotype-phenotype maps, and it also has developed a strong 

conceptual and theoretical framework to understand the origins of these genetic 

landscapes. Extending these methods and ideas from quantitative genetics and computer 

science into microbial ecology could radically improve our ability to understand and 

engineer the function of microbial communities. We shall be most satisfied if this review 

contributes to stimulating some of these efforts. 
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