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Abstract 
Our understanding of the considerable variation in vertebrate brain size remains 
incomplete. Large brains are adaptive but brains require unusually high, near-constant 
energy inputs, and are prioritized energy targets. This trade-off also has understudied 
developmental consequences: immatures must develop a fully functional brain without 
already having one. We here propose that energy subsidies through parental provisioning 
solved this bootstrapping problem, and find strong empirical support. Parental provisioning 
also improves immature survival and facilitates evolutionary increases in brain size. We call 
for better integration of costs and benefits of brains, and reevaluation of the cognitive 
abilities used in comparative tests. 
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Introduction: expensive brains 
The brain has long been recognized as the organ that analyses and integrates the 

inputs from our senses, regulates our physiology, and generates the motor commands for 
our movements. In addition, it is responsible for everything between perception and action, 
i.e., cognition. Relative to body size, brain size is extremely variable across species. Mean 
brain sizes of ectothermic (fishes, amphibians and reptiles) and endothermic (birds and 
mammals) vertebrates differ by approximately an order of magnitude, but there is also 
remarkable variation within each of the five major vertebrate lineages (Figure 1). In 
addition, brains have tended to become larger over evolutionary time [1,2]. Understanding 
this enormous variation and these evolutionary trends in relative brain size is a major task 
for comparative biology and, given our own remarkably enlarged brains, for evolutionary 
anthropology as well. 

Brain size is generally positively correlated with the amount of sensory information 
(e.g., electrosensing in mormyroid fishes: [3]; stereoscopic vision in primates: [4,5]) or the 
level of motor control (e.g., number of legs in lizards: [6]; manipulation complexity in 
primates: [7]), suggesting that these enhanced sensorimotor functions alone may explain 
brain size changes without reference to greater cognitive abilities [8]. Nonetheless, 
comparative studies also show a clear link between relative brain size and more narrowly 
defined cognitive abilities, such as greater capacity for independent or social learning [9–
12], and thus greater domain-general intelligence [13,14] and executive functions, such as 
self-control [15,16]. Even more convincing evidence for an effect of brain size on narrow-
sense cognition would be intraspecific correlations between brain size and domain-general 
intelligence, because sensorimotor capacities do not vary systematically within species. 
Indeed, in humans, brain size explains a modest, but robust proportion of variation in 
intelligence [17,18], a result now replicated in chimpanzees [19] and chestnut-headed 
thrushes [20]. 

Obviously, one would expect these three sets of abilities (i.e., sensory information 
gathering, cognitive processing, and motor control) to have coevolved. For instance, perfect 
information without sophisticated cognitive processing and advanced abilities to act upon 
the world would not be adaptive. Brain size should therefore predict behavioral 
performance in fitness-enhancing activities. Indeed, larger-brained species are capable of 
extractive foraging [21], and tend to be more innovative in the foraging domain (primates: 
[22]; birds: [23]). They are also better at avoiding predators (mammals: [24]; birds: [25]) and 
more likely to survive when introduced into novel areas by humans (mammals: [26]; birds: 
[27]; reptiles and amphibians: [28]). When operating long enough, these effects could 
induce correlated evolution between brain size and maximum lifespan. In fact, comparative 
studies have confirmed this correlation for mammals [29,30], birds [31,32], and frogs [33], 
though not for reptiles [34]. A more indirect, but presumably evolutionarily important 
consequence of improved survival is that larger-brained species have more stable 
populations (primates: [35]; birds: [36]), and hence a reduced risk of local extinction [37]. 

All these findings indicate that increasing brain size should be adaptive under most 
conditions, as also suggested by the trend toward brain size increase over evolutionary time 
[1]. One might therefore expect that, once controlled for body size differences, brain sizes 
would be approximately the same across lineages. But this is not the case: major differences 
between closely related lineages exist, as between marsupials and placental mammals [38] 
or between prosimian and anthropoid primates [39], as do differences between more 
distantly related lineages with similar cognitive demands, such as between social carnivores 
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and anthropoid primates [40]. These differences imply that some brain-size related costs 
prevent the evolution of similar brain sizes in particular lineages, even if the overall 
evolutionary trend is up. Thus, a comprehensive explanation for the variation in brain size 
requires that we incorporate the fitness costs of increased brain (cf. [41]).  

The core idea underlying the expensive brain hypothesis [30] is that much of the 
unexplained variation is due to two unusual features of brains: their high energy use per 
unit weight [42–44], and above all, the fact that energy allocation to the brain cannot not be 
downregulated during times of starvation (brain sparing: [45,46]. Interruption of this 
constant energy flow to the brain generally has lasting negative consequences for brain 
development and cognitive performance [47,48]. 

These peculiar features mean that the upper bound of brain size could be 
determined by the organism’s ability to sustain the energy turnover needed to grow or 
maintain the brain in response to cognitive opportunities in the ecological or social 
environment. Thus, according to the expensive brain hypothesis, brain size should partly or 
largely depend on how much energy a given species can provide to its brain without 
significant dips over time. Reduced energy inputs can arise due to tradeoffs with other 
energetically costly functions, such as digestion [43] or to ecologically imposed limitations 
on overall energy acquisition, in particular the inability to adequately deal with periods of 
unavoidable food scarcity. Heldstab et al. [49] recently reviewed the extensive empirical 
support for this hypothesis. In sum, the expensive brain hypothesis helps to explain why 
brain size does not always correspond to expectations based on social or ecological 
demands and opportunities. This conclusion holds even if controlled for taxonomic variation 
in neuron densities [50,51]. 
 
 
The expensive brain: developmental aspects 

With the expensive brain hypothesis’ credentials established, we want to focus on a 
so far largely neglected implication. Immature endothermic vertebrates, with their relatively 
large brains [1], face a seemingly insurmountable bootstrapping problem (Figure 2) for 
several reasons. 

First, brains are unusual organs in that they must acquire their cognitive and motor 
functions through learning and therefore perform poorly relative to adult brains before they 
are fully grown and differentiated. In mammals, brain growth, though not differentiation, is 
largely completed around weaning [52]. Accordingly, many species tend to reach adult-level 
ecological skills such as the recognition of the values of specific food items and processing 
techniques around weaning [53–55], although the most complex skills, including tool use, 
are reached much later [56]. Among primates, the development of food/object 
manipulation techniques follow a fixed trajectory of increasing complexity, which also holds 
phylogenetically. Larger-brained primate species, while reaching more complex techniques 
as adults, acquire each lower level technique at a later age than smaller-brained species, 
and thus experience an overall slowdown of skill development [53]. As a result, although 
harvesting rates of juveniles are often similar to adults for the simpler food, they tend to be 
lower for complex techniques, such as extractive foraging [57], especially when tool-
supported. 

Birds differ strongly from mammals in that both brain and body growth are 
completed very early [58]. Nonetheless, their reproductive activity starts much later in life 
(potentially years: [59]), suggesting that the time needed for skill learning limits the age at 
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which adulthood is reached. Comparative work found that birds indeed reach adult-level 
ecological skills around the age at first reproduction, both for feeding [54,60] and for 
predator recognition [61,62]. Overall, therefore, immatures in most birds and many 
mammals are ecologically less competent than adults, and some undergo a long phase of 
learning before reaching adult levels (birds: [63,64]; mammals: [53,54], even after brain 
growth has been completed. 

Second, immature birds and especially mammals are in a phase of high ecological 
risk for two main reasons. They are less experienced and often smaller, which exposes them 
to higher risk of predation or disease [57,62]. They are also generally socially subordinate to 
adults, and thus may be peripheralized, either socially or in terms of habitat quality. They 
consequently face particularly high mortality risks, especially at higher population densities 
[65,66]. These two processes together indicate that the bootstrapping problem gets worse 
as a species’ relative brain size increases. 

Third, immatures have relatively higher brain maintenance costs than adults, at least 
in mammals. Not only are juveniles smaller and less experienced, they are also more 
encephalized than adults because brain growth is completed before somatic growth is [67]. 
This forces them to allocate a larger proportion of their energy budget on maintaining the 
brain (see [68] for humans). In addition, they face extra costs. The creation and pruning of 
numerous synaptic connections mean that differentiating brains are more costly per unit 
weight than mature brains [44,69]. Finally, in both birds and mammals proper brain 
development requires play, which is often quite vigorous and therefore energetically 
expensive. Indeed, species with more post-natal brain growth (and thus larger adult brains) 
play more [70]. We are not aware of similarly extensive comparisons in birds (but see [71]). 

This combination of the high time and energy costs of brain growth and lower rates 
of energy acquisition needed to sustain this growth due to insufficient ecological skills or 
social disadvantages constitutes the catch-22 of large-brained species. We propose that an 
increase in parental provisioning has enabled species to overcome the concomitant 
bootstrapping problem and subsequently evolve larger brain size. Here we define parental 
provisioning as the sum of the energetic investment into the young, directly (in eggs, 
through gestation, lactation or provisioning of food), or indirectly (by carrying or huddling to 
keep warm).  

As explained in Box 1, the parental provisioning hypothesis builds upon, yet greatly 
extends, the maternal energy hypothesis [72], which was more limited in its scope and 
initially based on a very different evolutionary logic, and perhaps because of this, failed to 
become integrated into more recent approaches. 

 
Box1: The maternal energy hypothesis: the rise, fall and resurrection of an idea 

Martin [72] noted that the allometric scaling relationship with body size among 
placental mammals has the same exponent for both brain size and basal metabolic rate. This 
pattern suggested to him that “the resources channeled to the embryo from the mother” acted 
as a constraint on the brain size of a given species. The lower scaling exponent for brain size 
in birds and reptiles was attributed to their oviparity, and thus found to be consistent with this 
maternal energy effect. Initial attempts to test its predictions therefore focused on this 
allometric scaling. They were not favorable. First, Pagel and Harvey [73] stressed that the 
slope of the brain-body relationship depends on the taxonomic level at which they were 
estimated, and is much lower than that of basal metabolic rate at the most relevant level, that 
of the species. Second, the allometric slope also varies among different lineages within 
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mammals [74], without any indication that this covaries with similar patterns in basal 
metabolic rates. Finally, the slope is much higher in birds than the hypothesis predicted [75]. 

More direct tests were also not favorable. The precocial-altricial contrast in birds is 
inconsistent with this model, because precocial species have smaller relative adult brain size 
but have much more developed brains at hatching than altricial ones [75]. Likewise, maternal 
metabolic rate did not predict neonatal brain size or gestation length in a large sample of 
mammals [76] (but see [77] for a rebuttal).  

These negative outcomes reduced the appeal of the hypothesis, and attention soon 
turned to other predictors of brain size variation, perhaps also because no compelling 
argument was offered as to why the burden of building an offspring’s brain necessarily had to 
fall on mothers. 

Subsequent development of the hypothesis moved away from interspecific scaling 
relationships. Focusing on placental mammals, Martin [78] suggested that the pattern of 
correlations among “body size, brain size, basal metabolic rate, and gestation period indicates 
that the primary link is between maternal metabolic capacity and the developing brain of the 
offspring.” Thus, the hypothesis directly linked gestation length and maternal metabolic rate 
to neonatal brain size (cf. [79]). Perhaps the emphasis remained on gestation because he [72] 
had suggested that in primates most brain growth is completed at birth. Although this may be 
correct for the number of neurons [80], neonatal brains in many species are less than half of 
adult size (e.g., [52,81]), especially in great apes and humans [82]. Moreover, brain 
differentiation (including myelination) is usually postnatal and among the most expensive 
aspects of brain development [44,69]. Thus, a proper test of the maternal energy hypothesis 
would require the inclusion of postnatal maternal investment in the form of lactation and 
(where relevant) provisioning. 

Martin [78] also argued that the rate of maternal investment acts as a constraint on 
brain size, which, he suggested, leaves no room for variation in investment that produces 
adaptive variation in adult brain size. Thus, he argued for a constraint interpretation rather 
than one invoking an optimum balance between costs and benefits (which would allow 
selection to adjust rate of investment and thus duration of dependence or litter size). Due to 
the “primary link between the basal metabolic rate of the mother and the developing brain of 
her offspring,” he argued that any links between a species’ brain size and ecology or social 
organization would be “a secondary consequence”, so that “there may be no very tight 
relationship between relative brain size and specific behavioral capacities.” Subsequent 
research has shown that adaptive explanations are supported for both the links with ecology 
[83,84] and social organization [85] and with cognitive performance [13,14]. This stance 
effectively reduced the appeal of the hypothesis.  

Martin [77] expanded the hypothesis’s scope by including lactation, whereas Martin 
and Isler [86] also discussed the importance of the overall duration of investment independent 
of metabolic turnover by the mother, reinforcing the conclusion that “development of the 
brain is heavily dependent on resources provided by the mother” ([77], p. 54). Unfortunately, 
these extensions garnered little attention. 

Numerous comparative analyses have examined the link between adult or neonate 
brain size and life-history parameters in various groups, especially mammals (e.g., 
[29,30,87]; see also [31] for birds). Many studies found that larger-brained species take 
longer to reach adulthood (see also [81]). Although this points to competition between the 
growth of the brain and that of the body [88], such competition would arise regardless of 
maternal inputs and therefore in itself does not confirm the maternal energy hypothesis. 
However, one of the comparative studies [89] related their findings to the maternal energy 
hypothesis, when they found that “evolutionary changes in pre- and postnatal brain growth 
correlate specifically with duration of the relevant phases of maternal investment (gestation 
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and lactation, respectively)” (see also [90]). They coined the developmental cost hypothesis 
to explain this pattern (which could be read as merely referring to competition between the 
growth of the brain and the body), rather than directly referring to the maternal energy 
hypothesis. 
 All these results suggest that a modified version of the hypothesis may be viable if it 
considers all phases of maternal investment, including postnatal provisioning and other forms 
of energetic investment by both mothers and allomothers, and in addition to the rate of 
energetic investment also includes the duration of investment per individual offspring. 
Another adjustment should be that it regards the process as an adaptive strategy (and not a 
constraint) to achieve the species’ optimum brain size. Most importantly, however, it must 
provide a theoretical argument as to why parental investment is so critical to begin with. The 
parental provisioning hypothesis is meant to provide all of this. 

This history also illustrates how a hypothesis that was initially based on totally 
different premises could, based on empirical results and new theoretical insights, gradually 
morph into a very different one, with a new conceptual foundation and a modified set of 
predictions. However, presumably because the associations with the initial label lingered, the 
modified hypothesis did not catch on. 

 
 
Evaluating the parental provisioning hypothesis 
Provisioning and brain growth rates 

The parental provisioning hypothesis is consistent with fundamental brain growth 
patterns (Figure 3). Across vertebrates, brain growth rates often show a sharp slowdown 
after a period of rapid growth [2,91,92]. Parental provisioning can explain this pattern. In 
mammals, the initial period of rapid growth of the brain is generally isometric with that of 
the body [2,39,91]. In precocial species, born with relatively large brains [52], its growth 
slows down after birth, whereas in altricial mammals, growth tends to be highest soon after 
birth. In both precocial and altricial mammals, brain growth is completed by the end of 
parental provisioning, i.e., weaning [39,52,80], although subsequent differentiation may 
continue.  

In birds, brain growth is completed by the time offspring fledge in altricial species 
[93,94], and thus entirely paid for by parental provisioning. In both mammals and altricial 
birds, parental provisioning therefore provides the developing offspring with a neurological 
endowment that lasts them a lifetime. Precocial birds face more of a bootstrapping problem 
than altricial ones, because there is little or no post-hatching provisioning. This explains 
why, they have slower post-hatching brain growth than altricial species, and achieve smaller 
relative brain size among adults (Figure 3; [75]). 

In other vertebrates, parental provisioning is far more limited. In most fishes, 
provisioning is entirely through eggs [95], and brain growth is high only during the very brief 
period before reserves in the egg are depleted, and slows down soon after hatching [92]. 
However, since so much of the brain still needs to be developed, the brain growth trajectory 
remains steeper than for the endothermic vertebrates, as illustrated in Figure 3, and species 
with indeterminate growth retain the same slopes throughout life.  

The overall pattern is therefore consistent with the prediction that rates of brain 
growth are steep only during the parental provisioning phase and are reduced thereafter. 
 
Provisioning and brain size: comparative tests 
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To establish that variation in the intensity and duration of parental provisioning is 
linked to adult brain size we need comparative tests. To start with birds, precocial and 
altricial species differ in brain size, with altricial species having larger brains for their body 
size than precocial species [75]. While long known [96], this difference has never been 
satisfactorily explained. The parental provisioning hypothesis links it to the amount of 
provisioning beyond egg size. In a study of 1176 bird species, Griesser et al. [97] confirmed 
that the duration of provisioning relative to age at fledging strongly affects adult brain size. 
In addition, their analysis revealed that the socio-cognitive or eco-cognitive variables 
traditionally used in comparative analyses did not explain much variation once parental 
provisioning was included, suggesting that these variables arose as byproducts of the 
general ability to occupy a skill-intensive niche and provision the young (see below). 

Around 90% of bird species show biparental provisioning [98], and the modest 
variation in the number of caretakers does not affect relative brain size [97]. Among 
mammals, well over 80% of species have uniparental provisioning by the mother [99]. 
Nonetheless, there is enough variation to permit testing the effect of the number of 
caretakers by comparing species with maternal care only (the majority) with those with 
additional direct care by males and non-reproducing helpers. In this case, care is considered 
to be either provisioning or carrying (which also alleviates the mother’s energy burden). 
Allomaternal care contributes to larger relative brain sizes in the species involved, with the 
effect of male care being stronger than that of helpers [100], arguably because the male 
always helps whereas the number of helpers is highly variable. These findings are therefore 
also fully consistent with the parental provisioning hypothesis. In a recent analysis of 
marsupial brain size variation, Todorov et al. [101] found that the only variable with 
explanatory value was litter size, which, given that size at birth and growth rates are rather 
uniform in this lineage, is consistent with the parental provisioning hypothesis. 

Studies of cartilaginous fishes (Chondrichthyes: sharks, rays, skates and sawfish) 
showed that species with matrotrophy, i.e., where young are supported beyond the yolk 
inside the egg, show larger relative brain size than those without it, at least for species up to 
100 kg [102,103]. Although highly suggestive, the authors consider this support preliminary 
because the effect does not hold for the largest species. 

Post-hatching parental provisioning is virtually absent among the largely ectothermic 
lineages (fishes, amphibians and reptiles), with a few exceptions [95]. The relatively large 
brains of the cartilaginous fishes therefore suggests that parental provisioning may also 
partially account for the major gap in relative brain size between endotherms and most 
ectotherms (Figure 1). Parental investment among most ectotherms is very much smaller, 
since their investment stops at egg deposition and their eggs are tiny [104] compared to 
weanlings in mammals and fledglings in birds. As a result, the great majority of ectothermic 
young face the full bootstrapping problem on their own, given that the reserves contained 
in their eggs are quite limited [92,104]. However, tests of the parental provisioning 
hypothesis for the few radiations in ray-finned fishes (Actinopterygii), amphibians and 
reptiles with variation in it are urgently needed. 

 
 
Implications of parental provisioning’s effect on brain size 
Parental provisioning and immature survival 

Given the high energetic costs of brains, especially of relatively large ones, it is hard 
to imagine brain size not to be under strong selection. A species’ brain size should thus be 
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adaptive, but this is not easy to demonstrate. The comparative tests reviewed above show 
that increased brain size improves adult survival, but also slows down development. 
However, the resolution of comparative tests is limited when it comes to reproductive rates, 
which to an unknown extent reflect external conditions such as food, weather, and 
population densities. Thus, it remains unclear to what extent the reduced reproductive 
rates in larger-brained birds and mammals can be attributed to brain size. Yet, higher costs 
of reproduction are likely, given that they make larger neonates and thus have longer 
interbirth intervals [30]. As a result, this leaves us guessing whether the overall balance of 
these effects means that brain size changes are adaptive. 

Arguably the most important reason for this uncertainty is that there are currently 
no published comparative analyses on one important component. The greatest fitness cost 
of increased brain size appears to be the slower maturation, which increases generation 
time and thus reduces fitness and so the likelihood of positive selection on increased brain 
size. Even more importantly, this delay should also tend to reduce survival until adulthood. 
However, it is conceivable that parental provisioning improves survival to the point of 
countervailing these negative effects on fitness. 

Here, we offer a preliminary analysis for primates, using published information on 18 
species in 13 genera for which the relevant information from populations in undisturbed 
natural habitats has been published (Figure 4; for details, see supplementary materials). We 
find that brain size, as expected, improves first-year survival (Figure 4.a). However, it also 
improves survival until the age at first reproduction (Figure 4.b), in spite of the longer time 
needed to reach this point. In fact, a multiple regression (Table 1) shows that survival to age 
at first reproduction is positively affected by brain size but negatively by body size, which 
reflects bigger species taking more time to reach adult size, which should, ceteris paribus, 
reduce survival. The behavioral mechanism responsible for this remarkable pattern must be 
parental provisioning and protection.  

This striking increase in immature survival, together with the previously documented 
increase in adult survival reviewed above, goes a long way to reassure us that brain size is 
indeed adaptive in a given species’ natural habitat. However, future work must test whether 
this result generalizes beyond primates. 

 
Selection and brain size 

The importance of parental provisioning also invites us to rethink how to integrate 
the various costs and benefits in selection on brain size. One can in principle recognize three 
sets of cognitive abilities, here defined broadly to also include sensory and motor abilities. A 
first set of abilities acts to maintain the adult brain (box A in Figure 5) by guaranteeing a 
stable energy supply to the brain. A second set enables adequate parental provisioning, and 
so serves to construct the adult brain (box B in Figure 5). The third set of cognitive abilities 
produces the cognitive performance that is responsible for the successful survival and 
reproduction of its bearer (box C in Figure 5). Selection will favor an optimum brain size at 
which fitness is maximized. The size at which this optimum is reached depends on many 
details of the ecological and social environment, the species’ bauplan, and especially on the 
extent to which these three sets of cognitive skills overlap. 

In the worst case, sets A and B show no overlap with set C. In that case, which may 
arise if particular selective pressures only produce highly domain-specific cognitive modules, 
selection on enlarged brain size will be very difficult. More likely, however, the variables 
that enable a species to pay for their brains (A and B) and those that allow it to thrive more 
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generally (C) show a large overlap, with only few, if any, adult social and ecological skills 
being distinct. A recent analysis of birds [97] found that, once parental provisioning was 
controlled for, the correlations between brain size and the commonly measured cognitive 
abilities, such as group size, duration of social bonds or climatic factors, practically 
disappeared from the model, apart from ecological behavior patterns directly that affect 
energy balance, such as long-distance migration [105]. This result suggests that the socio- 
and eco-cognitive skills affecting adult performance and driving parental provisioning are 
largely similar, perhaps because selection favors domain-general cognitive processes, such 
as general intelligence and executive functions [16,22]. In addition, it suggests that some of 
the variables traditionally thought to affect brain size are perhaps not the main selective 
pressures. They may feature in analyses merely because they are available for many species. 

It is clear that more work is needed to identify the critical cognitive skills. Still, one 
conclusion can safely be drawn. Fundamentally, the brain must pay for itself. Accordingly, if 
particular cognitive adaptations from sets A and B also directly improve the organism’s 
energy balance and so allow brain size to expand, selection is more likely to favor their 
emergence. This condition holds as much for adult survival, for instance by avoiding 
starvation, as for parental provisioning. As a result, eco-cognitive abilities are more likely to 
favor brain size increases than socio-cognitive ones [49,84,106], although this does not 
mean that selection on socio-cognitive abilities is impossible. First, as suggested above, 
whenever some of the ecologically selected cognitive improvements are domain-general, 
cognition will be improved in the social domain as well. Second, ecological and social 
cognition interact where the quality of pair bonds affects the quality of parental 
provisioning (cf. [85]), where the social structure sets the number of tolerant role models 
and so affects how readily immatures can learn ecological skills, or where adult role models 
become active participants in the immatures’ skill acquisition through teaching [107,108]. 
Finally, when the socio-cognitive abilities cause disproportionate increases in reproductive 
success, they may outweigh the reduction in survival due to the uncompensated increased 
energy costs (although over time the social advantage will often erode due to being 
frequency-dependent). 

The fact that the same cognitive abilities may serve to pay for energetic costs and 
produce direct fitness benefits raises a methodological problem. Most conventional 
methods for analyzing comparative data assume a unilateral flow of causality from various 
variables representing fitness costs or benefits to the trait of interest. In this case, 
depending on the stage of lineage evolution, brain size will be involved in a number of 
feedback loops (cf. Figure 5), and thus both respond to and drive the surrounding landscape 
of eco-social and life-history traits. Modelling evolutionary brain size trajectories that follow 
such complex patterns requires new methods. These may include models for more robust 
and accurate estimation of shifts in the rate of change in variables across large phylogenies 
[109–111]. Likewise, we need causal models, such as structural equation modelling or d-
separation path analysis [112], that allow for more accurate placement of variables as 
causes or effects in multivariate networks of traits.  

Promising insights into the evolution of brain sizes will also likely emerge from the 
ongoing re-evaluation of the importance of variation in comparative analyses: methods 
focusing both on average patterns as well as the drivers of variance around trends (e.g., 
heteroscedasticity of brain-body size allometries observed across vertebrate taxa) are now 
able to incorporate phylogenetic relationships between species [113,114], providing new 
tools to disentangle the evolutionary history of brain sizes. 
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Parental provisioning and the potential for encephalization 
 Interspecific brain-body allometries have long been explained as reflecting one 
major process [1,115], as artifacts of non-adaptive genetic correlations [116], or even as 
statistical artifacts [73]. However, none of these explanations is strongly supported 
[117,118]. Thus, the taxonomic variation in allometric slopes requires a new explanation, 
couched in terms of variable selective responses by brain, body or both to new challenges. 
The parental provisioning hypothesis may make a significant contribution to this debate. 

Parental provisioning serves to overcome the problem of having to construct a large, 
expensive brain without already having one (the bootstrapping problem). The logic of the 
expensive brain therefore suggests that lineages with more parental provisioning may more 
readily satisfy the preconditions for major evolutionary increases in brain size 
(encephalization), whereas those with very limited parental provisioning may remain caught 
in rather low-cognition niches. Marsh’s rule, which states that over evolutionary time 
species tend to become more encephalized (i.e., brains becoming larger relative to body 
size: [1]), may therefore apply most strongly to lineages with parental provisioning. Where 
this process is accompanied by enough adaptive variation in body size within a given 
lineage, this produces steeper slopes of the brain-body relationship (where both are log-
transformed) at higher taxonomic levels among extant species, known as the taxon-level 
effect [117].  

One obvious way to test this prediction is to compare the slope of the brain-body 
allometry in precocial and altricial bird lineages. Fully precocial species do not provision 
their young beyond the resources provided in the egg, so their young would face the full 
bootstrapping problem on their own, whereas altricial species provision their young. In 
precocials, therefore, the bootstrapping problem may moderate selection on increased 
brain size, whereas those in altricial lineages have the opportunity to response to such 
selection by increasing their provisioning. As a result, we would expect steeper slopes for 
the brain-body allometry among altricial birds than among precocial ones. 

Earlier results, produced for other purposes, provide a preliminary test. Nealen and 
Ricklefs [115] estimated the exponents of the brain-body allometry (i.e., the slopes of the 
log[brain]- log[body] regression) at multiple taxonomic levels. Their results revealed steeper 
slopes at the level of orders, families and even genera among altricial taxa than among 
precocial ones. A more recent study [97] replicated this result with a modern phylogeny and 
a larger sample: a highly significant interaction effect between body weight and 
development mode on brain size revealed that altricial species have a far steeper slope. To 
illustrate this effect, Figure 6 shows the slope differences between altricial and precocial 
bird orders and families (based on ordinary least-squares regression). 

An even more promising testing ground may be ectothermic vertebrates, which 
largely lack any post-hatching parental provisioning, even if some species guard young. 
Tsuboi et al. [92] reported that (phylogenetically corrected) brain-body allometry slopes at 
higher taxonomic levels are indeed clearly higher for birds (0.57) and mammals (0.59) than 
for fishes (0.50 for Actinopterygii and 0.41 for Chondrichthyes) and amphibians (0.46), 
though not for reptiles (0.56). Tests at lower taxonomic levels have not been done yet. 
While these will no doubt soon emerge, this preliminary survey supports the proposition 
that lineages with parental provisioning are more likely to experience strong 
encephalization, i.e., Marsh’s rule. 
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Conclusion: parental provisioning and brain size 

The data reviewed here prove the utility of expanding the expensive brain 
hypothesis by incorporating the costs of brain development and the ensuing bootstrapping 
problem for immatures. Comparative work does indeed show a strong effect of parental 
provisioning on brain size, and thus supports the notion that a species’ brain size depends 
on the parents’ ability to pay for the brain development of their young.  

The parental provisioning hypothesis argues that brain size is tightly linked to the 
ability of adults to avoid starvation, predation, and disease through cognitive means as well 
as their cognitively supported ability to garner the time and energy to provide their young 
with the energy needed to construct the brains needed for this. This provisioning comes 
with the essential benefit of improving immature survival (at least in primates). This 
hypothesis promises to explain a conservable part of the variation in brain size among the 
five major vertebrate lineages. It also indicates that where extensive parental provisioning 
did not evolve, the evolutionary potential for greater encephalization is reduced. 
Accordingly, the appearance of highly encephalized lineages, such as birds and mammals, 
had to wait until parental provisioning had established itself in their early representatives.  

Finally, the hypothesis draws attention to cognitive abilities underlying parental care 
as a major factor in cognitive evolution, and thus raises the broader question of which 
cognitive processes are the target of selection. More generally, it suggests that eco-
cognitive skills have played a major role, with socio-cognitive benefits perhaps arising 
mainly as a byproduct of ecological selection on more domain-general cognitive abilities. It 
even invites the speculation that the evolving brain creates its own cognitive opportunities 
rather than responding to cognitive demands imposed by the external environment, in a 
form of niche construction [119], through socially transmitted learned skills as well as 
physical modifications of the habitat. 
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Figure Legends 
 
Figure 1. 
Brain size-body size envelopes of the major vertebrate lineages to illustrate both intra-
lineage and inter-lineage variation. The long-dashed outlines represent the two 
endothermic lineages (birds and mammals), the dotted outlines represent fishes, and the 
solid outlines the two ectothermic tetrapod lineages (amphibians and reptiles). Redrawn 
after Tsuboi et al. (2018). 
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Figure 2.  
The bootstrapping problem for developing brains, which without help would likely face a 
long period of negative energy balance during immaturity. Before it is fully grown and 
differentiated, the brain does not provide full (adult-level) cognitive benefits (green curve). 
The costs of growing, differentiating and maintaining the brain rise early and may even 
exceed adult values due to higher relative brain size of immatures in mammals and costs of 
brain differentiation, before cognitive benefits, with their corresponding net energetic 
intake, stabilize at adult level. During adulthood, these benefits outweigh the brain’s 
maintenance costs by a clear margin. Parental provisioning can serve to overcome this 
bootstrapping problem. 
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Figure 3.  
Schematic depiction of brain growth relative to body growth in different vertebrates as a 
function of parental provisioning. The first phase (parental provisioning) shows the same, 
steep slope (virtually isometric: 1.0). After the end of parental provisioning, the slope 
becomes very low (ca 0.2) in mammals and altricial birds, whereas it become intermediate 
in precocial birds and ectotherms (ca 0.5) until adulthood is reached, and in most of the 
latter continues at the same relative rate after that due to indeterminate growth,  (Y-axis 
not to scale, to clarify slope differences). 
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Figure 4. 
Survival during first year (a) or until the age at first reproduction (b) as a function of residual 
(log-transformed) brain size of adult females in a sample of wild primate species with life-
table information. 
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Figure 5.  
Natural selection is expected to optimize brain size, by finding the optimum balance 
between the cognitive abilities (in the broad sense) required to pay for the costs (the 
maintenance of the adult brain [A] and its construction during development [B]) on the one 
hand, and the brain-size-dependent cognitive abilities that are translated into fitness (C) on 
the other. The three sets of cognitive abilities no doubt show high overlap, but their nature 
remains poorly studied. For birds, set A would presumably contain abilities such as 
migratory habits, food storing, extractive foraging, and communal roosting; set B abilities 
like predation avoidance (especially of nest contents), efficient foraging, habitat and nest 
site selection, flexibility, coordination ability; and set C many of the same abilities, but also 
avoidance of predation on adults, post-independence skill learning, optimal mate choice, 
and social skills. 
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Figure 6.  
Slopes of the brain-body allometries of altricial (gray bars) and precocial (white bars) orders 
and families of birds.  Data are taken from Griesser et al. (in review/Bioarxv). Criterion for 
inclusion > 5 species per order or family. Horizontal bars represent the median, red 
diamonds the mean, and boxes enclose the central 50% percentile range. The difference at 
the family level is significant (P<0.05). 
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Table 1. 
PGLS analysis of survival during 1st year (a) and until age at first reproduction (b) in a set of 
wild primates with all relevant information. Lambda (which quantifies the magnitude of the 
phylogenetic signal in the model residuals) is 0 in both cases. 
 
 

(a) Survival during first year 

variable estimate s.e. t  P 

Intercept +0.803 0.203 3.95 0.001 

Log brain mass (f) +0.284 0.055 5.21 0.0001 

Log body mass (f) -0.148 0.043 -3.41 0.004 

 
 
 

(b) Survival until age at first reproduction 

variable estimate s.e. t P 

Intercept +0.534 0.184 2.90 0.011 

Log brain mass (f) +0.418 0.049 8.46 <0.0001 

Log body mass (f) -0.212 0.039 -5.38 <0.0001 

 
 
  



 

 26 

Supplementary Materials 
 
Published data on Survival until Age at First Reproduction (AFR) and during first year for 18 
different primates species, along with their body mass and brain mass. References are listed 
below, along with notes on estimates. 
 

Genus Species 
Bo Wt 
ADF (kg) 

Br Wt 
ADF (g) AFR (yr) 

Surv -
AFR 

Surv-1st 
yr Source 

Propithecus 
diadema 
edwardsii 5.50 38.3 5.5 0.20 0.50 1 

Propithecus verreauxi 2.76 26.2 6.0 0.30 0.52 2 
Propithecus verreauxi 3.20 26.2 5.0 0.22 0.55 3 
Lemur catta 2.20 22.1 3.2 0.20 0.48 4 
Alouatta seniculus 5.20 55.4 5.1 0.35 0.79 5 
Alouatta palliata 5.35 51.2 4.0 0.35 0.74 6 
Cebus olivaceus 2.50 69.0 7.0 0.61 0.82 7 
Cebus capucinus 2.30 69.0 6.5 0.63 0.79 8 
Cebus nigritus 2.50 64.2 6.4 0.58 0.70 9 
Brachyteles arachnoides 8.33 119.4 8.5 0.61 0.95 10 
Presbytis  thomasi 6.70 57.7 5.4 0.30 0.54 11 
Papio cynocephalus 12.80 150.0 5.5 0.57 0.77 12 
Cercopithecus mitis 4.20 66.0 7.5 0.67 0.86 13 
Macaca fascicularis 3.50 63.2 5.2 0.62 0.81 14 
Macaca fuscata 8.03 96.8 6.1 0.58 0.75 15 
Hylobates lar 5.40 101.5 10.5 0.53 0.89 16 
Pongo pygmaeus 35.50 338.0 14.8 0.91 0.98 17 
Gorilla beringei 95.00 433.0 9.5 0.61 0.79 18 
Pan  troglodytes 34.00 357.0 14.0 0.70 0.83 19 

 
 
Sources: 
1. Pochron et al. 2004 
2. Richard et al. 2002 (Beza Mahafaly) (brain size taken from species mean value) 
3. Kappeler & Fichtel 2012 (Kirindy) (brain size taken from species mean value) 
4. Gould et al. 2003 (survival until AFR estimated) 
5. Robinson 1988 (data from Crockett) 
6. Fröhlich et al. 1981 
7. Robinson 1988 (brain size from Allen & Kay 2012). 
8. Bronikowski et al. 2011 (see also Perry et al. 2012). 
9. Janson et al. 2012 (body and brain for Cebus apella (closest relative, since robust, tufted capuchin; 

AFR from DiBitetti & Janson 2001) 
10. Bronikowski et al. 2011 (AFR from Martins & Strier 2004; brain size from Allen & Kay 2012) 
11. Wich et al. 2007 (brain size from P. melalophos- geographic sister species) 
12. Bronikowski et al. (2011) 
13. Bronikowski et al. (2011) 
14. van Noordwijk & van Schaik (1999) 
15. Takahata et al. (1998) (Yakushima; no survival until AFR for Kinkazan) 
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16. Reichard & Barelli (2008) & Reichard et al. (2012). Survival to AFR is average of a low and a high 
estimate: 0.46 given by Reichard & Barelli, and 0.60 based on Reichard et al. 2012). 

17. van Noordwijk et al. (2018) 
18. Bronikowski et al. 2011 
19. Wood et al. (2017) (Ngogo: the site least affected by disease and with no negative population 

growth) (AFR from Robson et al. 2006) 
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