
Abstract 1 

Whether modeling the evolution of a discrete or continuous character, the focal trait of interest 2 

does not evolve in isolation and require comparative methods that model multivariate evolution. 3 

Progress along these lines has involved modeling multivariate evolution of the same class of 4 

character and there are fewer options when jointly modeling traits when one character is discrete 5 

and the other is continuous. Here we develop such a framework to explicitly estimate the joint 6 

likelihood for discrete and continuous characters. Specifically, our model combines the 7 

probability of observing the continuous character under a generalized OU process with the 8 

probability of the discrete character under a hidden Markov model, linked by a shared underlying 9 

regime. We use simulation studies to demonstrate that this approach, hOUwie, can accurately 10 

evaluate parameter values across a broad set of models. We then apply our model to test whether 11 

fleshy and dry fruits of Ericaceae lineages are correlated with their climatic niche evolution as 12 

represented by the aridity index. Consistent with expectations, we find that dry fruits have higher 13 

rates of climatic niche evolution, that the climatic niche of fleshy fruits is more conserved, and 14 

dry fruits have a more humid climatic optimum. 15 

  16 



A common theme in comparative biology is the detection of causal, or least mechanistic, 17 

factors that affect the evolution of quantitative characters. Questions of how plant life habit 18 

influence genome size evolution (Beaulieu et al. 2012), how substrate use alters limb length 19 

evolution (Mahler et al. 2013), or how tooth morphology slowly changes in response to habitat 20 

and diet (Toljagić et al. 2018) are all examples of testing whether evolutionary changes in a 21 

discrete variable may have altered evolutionary trajectories of a continuously varying trait. One 22 

very common phylogenetic comparative approach for these types of questions is to employ an 23 

Ornstein-Uhlenbeck (OU) model, which assumes distinct regimes, described by the evolution of 24 

a discrete character, are known completely a priori (e.g., Butler and King 2004; Hansen et al. 25 

2008; Beaulieu et al. 2012), or assumes that “shifts” in regimes can be inferred directly from the 26 

distribution of the continuous trait (e.g. Ingram and Mahler 2013; Uyeda and Harmon 2014; 27 

Khabbazian et al. 2016). While these approaches are practical, the discrete trait is assumed the 28 

driving force underlying the evolution of the continuous character. However, dependence rarely 29 

flows just one way in evolution, and we suspect that as often as a discrete character causes 30 

change in the continuous character, continuous characters also influence discrete character 31 

evolution, or at the very minimum, can provide information about how they may be evolving in 32 

tandem.  33 

Progress along these lines has mostly involved acknowledging uncertainty in the 34 

evolution of the discrete character by fitting models over a large set of stochastically generated 35 

character mappings. That is, a large set of alternative reconstructions of the discrete character are 36 

obtained completely uninformed by the continuous trait’s evolution, then the likelihood of the 37 

continuous character becomes the average of the likelihoods across these maps (e.g., Revell 38 

2012). The advantage of this approach is that there is an explicit model for how regimes change 39 



through time, but the evolution of these regimes remains entirely independent of the continuous 40 

trait, and the probability of these regimes is not explicitly considered. For example, it is possible 41 

that the model that best fits the discrete data generates stochastic maps that does not provide a 42 

good fit to the continuous data.  43 

A promising approach was recently described for detecting adaptive codon evolution 44 

(Jones et al 2020), where a set of maps obtained for a discrete phenotype under a standard 45 

Markov process is optimized along with parameters associated with genotype properties, thus 46 

forcing an emergent dependency between the two. Similarly, May and Moore (2020) developed 47 

a joint model for discrete and continuous characters under a state-dependent Brownian motion 48 

model. Their approach takes advantage of prior probabilities within a Bayesian framework to 49 

accommodate variation in the “background” rate of evolution in the continuous trait (i.e., rate 50 

variation across lineages that is independent of the discrete character under consideration). The 51 

novel Bayesian pipeline recently developed by Tribble et al. (2021) is the first attempt that we 52 

are aware of for jointly modeling discrete and continuous traits under an OU framework. Their 53 

approach samples discrete stochastic mappings informed by the discrete trait along with regime 54 

mappings which were informed by the continuous trait while accounting for the potential of 55 

hidden variation. While a more effective test of correlation between discrete and continuous 56 

characters, one drawback is that they do not explicitly account for the joint probability of the 57 

discrete and continuous parameter estimates together. They assume that the combination of 58 

independently estimated discrete and continuous models produces a joint estimate. 59 

Here we develop and implement a framework that provides an explicitly joint estimate of 60 

the likelihood for a discrete and continuous character. Specifically, our model combines the 61 

probability of the continuous character given a particular regime evolving under a generalized 62 



OU process, and the probability of that discrete regime painting obtained from an expanded set 63 

of Markov models, integrated over many regime paintings. We demonstrate how our framework, 64 

which we call hOUwie, can be used to test hypotheses of correlated evolution between discrete 65 

and continuous characters while also accounting for hidden character states and unobserved 66 

variation. Finally, we apply several hOUwie models to test the correlated dynamics of the mode 67 

of seed dispersal and climatic niche evolution and compare our results to those that did not 68 

account for the potential joint evolution of discrete and continuous variables. 69 

 70 

Materials and Methods 71 

The hOUwie model 72 

Our model is composed of two processes: one describing the evolution of a discrete 73 

character and the other describing the evolution of a continuous character. To model the 74 

evolution of a single continuous character we use an Ornstein-Uhlenbeck (OU) model (Hansen 75 

1997; Butler and King 2004; Hansen et al. 2008; Beaulieu et al. 2012; Ho and Ané 2014a). 76 

Formally, the OU process is an Itô diffusion satisfying:  77 

𝑑𝑋(𝑡) 	= 	𝛼(𝜃(𝑡) 	− 	𝑋(𝑡)) 	+ 	𝜎𝑑𝐵(𝑡). 78 

Conceptually, this model combines the stochastic evolution of a trait through time with a 79 

deterministic component that models the tendency for a trait to evolve towards an “optimum.” In 80 

this model, the value of a trait, 𝑋(𝑡), is pulled towards an optimum, 𝜃(𝑡), at a rate scaled by the 81 

parameter 𝛼. The optimum, 𝜃(𝑡), is a piecewise constant on intervals and takes values in a finite 82 

set	{𝜃!}. This can represent the set of “selective regimes”, “regimes”, or Simpson’s “adaptive 83 

zones” (Cressler et al. 2015), though it is consistent with a variety of true underlying 84 

microevolutionary models (Hansen 2014). Additionally, random deviations are introduced by 85 



Gaussian white noise 𝑑𝐵(𝑡), which is distributed as a normal random variable with mean zero 86 

and variance equal to 𝜎"𝑑𝑡. Thus, 𝜎" is a constant describing the rate of stochastic evolution 87 

away from the optimum. We use the set of extensions introduced by Beaulieu et al. (2012) and 88 

implemented in the R package OUwie, which allows for multiple primary optima 𝜃(𝑡) in which 89 

both the pull strength (𝛼) and the rate of stochastic evolution (𝜎") can vary across the phylogeny. 90 

However, the algorithm used to calculate the likelihood described in Beaulieu et al. (2012) 91 

involves a computationally costly matrix inversion procedure. Here we implement a linear-time 92 

computation of the likelihood of Gaussian trait models following (Ho and Ané 2014a). To do 93 

this, we first transform the phylogeny such that its variance covariance matrix, 𝑉, is 3-point 94 

structured. We can write the variance covariance matrix of the untransformed phylogeny as 𝑉 =95 

𝐷#𝑉2 	𝐷#, where following Beaulieu et al. (2012) and Ho and Ané (2014), 96 

𝑉2!$ =	 3
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where, 𝑠& is the distance from the root to the beginning of the selective regime (𝛾) for the 𝜅 99 

number of selective regimes along the path from the root to the last common ancestor of 𝑖 and 𝑗, 100 

𝜅(𝑖, 𝑗), or from the root to the terminal tip	𝑖, 𝜅(𝑖). Our transformed phylogeny now has a variance 101 

covariance matrix 𝑉2!$ and diagonal matrix 𝐷#. We can then calculate the quadratic quantities and 102 

determinant of 𝑉 (Ho and Ané 2014a). The probability of our continuous trait is given by 103 

𝑙𝑜𝑔(𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓)) 	= 	𝑛 log(2𝜋) +	 log(𝑑𝑒𝑡(𝑉)) 	+	
𝑃′𝑉/-𝑃	 − 	2𝑃′𝑉/-𝑄	 + 	𝑄′𝑉/-𝑄

2 , 104 

where 𝑛 is the number of tips in the phylogeny (𝜓), 𝑃 is the continuous trait value of each 105 

species, and 𝑄 is the expected value of each species given the continuous trait model calculated 106 



following equation (11) of Beaulieu et al. (2012), D	is the discrete character data, 𝑧 is a particular 107 

regime mapping, and 𝜗 are the parameters of the hOUwie model.  108 

Next, we describe the calculation of the probability of the underlying regime structure, 𝛾, 109 

that is the joint probability of discrete characters (𝐷) and stochastic mapping (𝑧). This calculation 110 

is analogous to the pathway likelihood of Steel and Penny (2000). To calculate the probability of 111 

discrete characters (𝐷) and stochastic mapping (𝑧) we instead use an approximation. Our 112 

approximation relies on a finite number of degree-2 internodes and uses the standard Chapman-113 

Kolmgorov equation to calculate the probabilities of beginning in a particular state 𝑖 and ending 114 

in state 𝑗 (Pagel 1994) and is identical to a joint probability of a set of state reconstructions 115 

(Yang 2006). As the number of internodes increase, the amount of time between nodes decreases 116 

and the approximation improves (Rao and Teh 2013). The joint probability of a regime structure 117 

and the discrete character i 118 

𝑃(𝐷, 𝑧|𝑄, 𝜓) 	= 	𝑃(𝑥0|𝑄, 𝜓)	N𝑃(𝑧ℓ|𝑄, 𝑇ℓ)
2/-

ℓ,-

, 119 

where 𝐐 the instantaneous rate matrix (𝐐 ∈ 𝜗), 𝜓 is the phylogeny, 𝑃(𝑥0|𝐐, 𝜓) is the root state 120 

probability (Pagel 1994; Yang 2006; Maddison et al. 2007),	𝑛 is the number of external nodes 121 

(tips), internal nodes, and internodes (degree-2 nodes) summed, ℓ indicates a particular branch, 122 

𝑃(𝑧ℓ|𝐐, 𝑇ℓ) = 	 𝑒𝐐4ℓ 	𝟙&, where 𝟙& is an indicator function which ensures that we only use the 123 

probability of states indicated by the specific the regime mapping instead of summing over all 124 

possible state combinations. The continuous character probability requires the discrete state(s) to 125 

be defined along the entire branch, thus we place transitions halfway between any two nodes.  126 

 For each set of parameters evaluated during the maximum likelihood search, a set of 127 

possible mappings of discrete states and continuous regimes are generated to evaluate the 128 



discrete and continuous likelihoods. Ideally, we would calculate the likelihood by summing 129 

across all possible reconstructions (note that we want the sum across the reconstructions, not the 130 

single reconstruction with highest likelihood). The number of such reconstructions is very large,  131 

nstates(2*number of taxa-2)(1+number of degree two internodes per edge), 132 

which is particularly daunting as the sum must be calculated anew for every unique examined set 133 

of parameter values as part of search. We found in early work where we did look at this 134 

exhaustively that a few mappings made up the vast majority of the total likelihood, so we set up 135 

the analysis to focus on calculating total likelihood given the highest probability mappings. 136 

To do this, we first approximate the conditional state probabilities at nodes. The 137 

conditional state probability, unlike the more common marginal reconstruction or joint state 138 

reconstruction (Pupko et al. 2000; Felsenstein 2004; Yang 2006), calculates the probability that a 139 

node has a particular state value conditioned only on the observations of its descendants. For a 140 

particular focal node, we calculate the probability of the observing all pairwise descendant values 141 

given the OU model parameters, integrated over all possible rootward node states, and observed 142 

tipward discrete states (Fig. 1). Although this is only an approximation of the conditional state 143 

probabilities, it proves to be an essential improvement over the typical procedure of sampling 144 

many stochastic maps based solely on the discrete process. Next, the conditional probabilities of 145 

states at nodes are sampled starting with the root. Once the root is sampled, descendent states are 146 

sampled based on both the conditional ancestral values and the sampled ancestral state. This is 147 

achieved by multiplying the conditional probability of the node states by the probability of 148 

starting in the sampled rootward ancestral value and ending in any of the tipward states (the latter 149 

is calculated using familiar matrix exponentiation methods; e.g., Pagel 1994). Finally, under 150 

usual stochastic mapping procedures we would use rejection sampling (Nielsen 2002; Rao and 151 



Teh 2013) to simulate a path between the sampled rootward and tipward nodes. However, for 152 

increased computational efficiency, we opt to place transitions at pre-defined internodes. After 153 

nodes and internodes are sampled in step two, mappings are evaluated to ensure consistency with 154 

the discrete model (i.e., impossible transitions do not occur) and branches are painted based on 155 

the sampled nodes with transitions occurring half-way between nodes (and remember that a 156 

single edge may have multiple internodes placed on it). 157 



 158 

Figure 1. A visual representation of the algorithm underlying the calculation of conditional node 
probabilities and the adaptive sampling procedure. The goal of the procedure is to produce 
underlying regime paintings well suited to both the discrete and continuous character. a) select 
the focal node for which we will be calculating the joint conditional probabilities of the discrete 
and continuous characters. b) on each side of the node we select a pair of tips. c) the conditional 
probability of the observed discrete and continuous character is calculated for each discrete 
regime state with an ancestral continuous value equal to 𝜃 of that regime state. d) the conditional 
probability of the focal node is calculated as the average probability of each regime state for all 
pairs of observed tips. e) the conditional probabilities are calculated for all internal nodes. This 
can be turned off within hOUwie by setting the sample_nodes argument to false. f) A stochastic 
map is generating using forward simulation rejection sampling. g) adaptive sampling uses the 
highest joint probability of previously generated underling regimes to generate a set of ancestral 
continuous character values. This differs from previous ancestral values because instead of 
assuming the value 𝜃 for each regime state, it calculates the expected value given the root state 
and regime mapping for that particular node. h) we repeat steps d) through g) until the joint 
likelihood of the set of underlying regimes does not improve. 



 Our function for the joint probability of a continuous and a discrete character is, 159 

𝑃(𝑋, 𝐷|𝜗, 𝜓) = 	3𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓)𝑃(𝐷, 𝑧|𝜗, 𝜓),
5

 160 

where summing over all generated maps (𝑧), 𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓) is the probability of the continuous 161 

character (𝑋) given the discrete character data (𝐷), mapping (𝑧), hOUwie parameters (𝜗), and 162 

phylogeny (𝜓). 𝑃(𝐷, 𝑧|𝜗, 𝜓) is the joint probability of the discrete character data (𝐷) and 163 

stochastic mapping (𝑧) given the hOUwie parameters (𝜗) and phylogeny (𝜓). 164 

 165 

The hOUwie model space 166 

Our simulation studies examined 22 possible hOUwie model structures for a binary 167 

discrete character, although the possible number of models is significantly higher because any 168 

number of discrete characters and states can be modeled together. For the discrete component of 169 

the model, we assumed that transitions between the observed characters were equal. We 170 

constrained transitions between hidden states to be the same for observed states, but this 171 

constraint can be relaxed if desired. The continuous model structures allowable in hOUwie are a 172 

generalized form of those allowed in OUwie and now include models in which only 𝛼 varies 173 

(OUA), only 𝜎" varies (OUV), and combinations of an OU and BM process (OUBM1 and 174 

OUBMV). We note that the OUBM1 model within hOUwie differs from The Ornstein–175 

Uhlenbeck Brownian-motion (OUBM) model presented in Hansen et al. (2008) and Bartoszek et 176 

al. (2012) since the latter models are of multiple continuous characters, rather than different 177 

processes describing the same continuous character.  178 

The potential model structures range from completely character-dependent to character-179 

independent. Character-dependent (CD) models are models in which any continuous OU 180 

parameter differs between observed discrete state, whereas character-independent models (CID) 181 



test whether observed discrete states can be described by the same OU parameters. There are two 182 

types of character-independent model (Fig. 2). First, character-independent models include 183 

Figure 2. A state-transition diagram describing the model classes allowable in hOUwie. Each 
panel is comprised of observed discrete states 0 and 1 with possible hidden states A and B. 
Transitions between states are described with the 𝑞 parameter. Continuous model parameters 
appear in a box below the states they describe, and their association is displayed with a subscript 
specific to that state. a) A simple character independent model in which the two observed states 
do not influence the continuous character which will have the same 𝜃, 𝜎", 𝛼 throughout the 
phylogeny. b) A character dependent model in which the continuous character depends on the 
discrete character by virtue of 𝜃, 𝜎", 𝛼 being associated with a particular observed discrete state. 
c) A character independent model with rate heterogeneity. The two observed states (0 and 1) are 
not directly linked to the continuous character. However, the continuous character is still allowed 
to have multiple  𝜃, 𝜎", 𝛼 describing its evolution, but these parameters are associated with 
hidden states A and B. d) A hybrid model in which each combined observed and hidden state is 
allowed to have its own 𝜃, 𝜎", 𝛼. Under this model, the continuous character is linked to both 
character dependent differences (parameters associated with 0 and 1) and character independent 
differences (A and B). Though this diagram shows a binary observed and hidden character, either 
can have more states (up to 26 states for each in theory, though few datasets will have enough 
power to estimate the necessary number of parameters). 
 



structures where there are no differences between any OU parameters. Under this model the 184 

entire evolutionary history of the clade can be described by a single 𝛼, 𝜎", and 𝜃 (Fig. 2a). To 185 

combat this unrealistic assumption we introduce a character-independent model which allows for 186 

differences in the OU parameters to depend upon an unobserved hidden state (CID+) and has 187 

been shown to correct for the bias towards detecting correlation (Boyko and Beaulieu 2022). 188 

This addition allows for heterogeneity within the evolutionary process without the necessity of it 189 

being linked to a focal trait (Fig. 2c). In total we examine 22 unique model structures (2 CID, 10 190 

CD, and 10CID+).  191 

 192 

Simulation study 193 

For each of the 22 hOUwie model structures, we simulated 50 datasets for phylogenies of 194 

25, 100, and 250 taxa for a total of 3300 unique datasets. Phylogenies were pure birth 195 

phylogenetic trees with 𝜆 = 1, rescaled tree height to 1, and the root state was fixed to state 1. 196 

The parameters used to generate a phenotypic dataset depend on the structure of the generating 197 

model. For example, an OUM model and OU1 model can have identical 𝑞!$ , 𝛼, and	𝜎", but they 198 

must differ in 𝜃 or else OUM will collapse into OU1. The simulating parameters were chosen to 199 

match Beaulieu et al. (2012) with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- =200 

2, and	𝜃" = 0.75 (Fig. 3). Once a phylogeny and phenotypic dataset were simulated, we fit our 201 

models to assess parameter estimation accuracy and model selection power. Although this 202 

represents a small subset of the potentially vast parameter space available to OU models, the 203 

behavior of these models has been thoroughly characterized and thus we chose parameters within 204 

the range of typical identifiability (Beaulieu et al. 2012; Ho and Ané 2014a; Cressler et al. 2015). 205 

Additionally, because hOUwie uses a variable number of mappings, we evaluate changing the 206 



number of stochastic maps. We fit each model using 25, 100, and 250 stochastic mappings per 207 

likelihood evaluation. Each dataset was evaluated using the true generating model, a BM1, an 208 

Figure 3. A visual representation of binary discrete character hOUwie model types. Discrete 
time forward simulations are conducted starting in the red state and the distribution of the 
continuous character is plotted on the right as a histogram and density plot. Each line represents 
a continuous character value at some time. Transitions occur at colored points and each line is 
colored by the current discrete state. 100 time-steps are simulated with the same parameters as 
our simulation study (𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75). 
The highlighted line was randomly chosen from the set in which at least one discrete state 
transition occurred.  
 



OU1, and either the character-dependent or character-independent counterpart to the generating 209 

model. For example, if the data were simulated under a character-dependent OUM model where 210 

the value of 𝜃-and	𝜃" depend on the observed character, a character-independent OUM model 211 

would also be fit as part of the model set. Under the CID+ OUM model, a variable 𝜃 is still 212 

allowed, but it is unlinked to the focal character and thus should provide a more reliable 213 

character independent null hypothesis than BM1 or OU1 (Beaulieu and O’Meara 2016; Uyeda et 214 

al. 2018; May and Moore 2020; Boyko and Beaulieu 2022). 215 

 216 

The impact of climatic variables on seed dispersal 217 

For sedentary organisms, such as plants, dispersal is mainly limited to a brief stage of 218 

their life cycle and mediated mainly through the movement of seeds (Levin et al. 2003). 219 

Generally, the expectation is that seeds dispersed by frugivores are going to be dispersed to 220 

environments more like their parents’ environment, whereas abiotically dispersed seeds are 221 

likely to be more erratic in their dispersal patterns (Schupp 1993; Westoby et al. 1996). 222 

Furthermore, it has been proposed that adaptations for frugivorous dispersal is linked to tropical 223 

and subtropical biomes, because in these warmer and wetter habitats, large trees create shady 224 

environments where competition for light is more important. A shadier habitat then imposes a 225 

selective pressure for larger seeds because more nutrients are needed for germination and initial 226 

survival (Foster and Janson 1985). However, the evolution of larger seeds comes with a tradeoff 227 

as they have a significantly lower dispersal potential (Howe and Smallwood 1982). Thus, we 228 

might expect that the climatic variables of a habitat influence the probability of transitioning 229 

between abiotic and biotic modes of dispersal, with transition rates from abiotic to biotic being 230 

greater in less arid environments.  231 



Here we use dry or fleshy fruit morphology as a proxy for abiotic or biotic seed dispersal 232 

(Lorts et al. 2008) to evaluate three predictions outlined in Vasconcelos et al. (2021), but 233 

specifically measuring the aridity index. First, we expect that the climatic optima for fleshy fruits 234 

will be more humid compared to dry fruits (θ678 < θ9:;<=8). Second, we expect that dry fruits 235 

will have faster rates of climatic niche evolution (σ678" > σ9:;<=8" ). Finally, we expect that the 236 

climatic niches of fleshy fruits will be more conserved through time (α678 < α9:;<=8). We apply 237 

several hOUwie models to test these hypotheses and compare our results to those discussed in 238 

Vasconcelos et al. (2021). We expect that any differences found between this study and 239 

Vasconcelos et al. (2021) are because we can explicitly account for the joint probability of the 240 

discrete and continuous characters. We focus our attention on Ericaceae specifically because 241 

Vasconcelos et al. (2021) found two counter-intuitive results. Namely, they found that the 242 

phenotypic optima of dry fruits were more humid than fleshy fruited lineages, and that the rate of 243 

climatic evolution was greater in fleshy fruits than dry fruits.  244 

We included 25 hOUwie models within our model set: 2 CID, 10 CD, 10 CID+, and 3 245 

HYB. Gaultheria is technically a dry-fruited genus within Ericaceae but has a persistent fleshy 246 

calyx that attracts frugivores (Stevens et al. 2004). However, since we are interested in the 247 

association between dispersal and fruit type, we code this as fleshy fruited within our dataset. 248 

Models are evaluated using the sample size corrected Akaike Information Criterion (AICc) and 249 

model averaging is conducted when discussing how our results relate to our hypotheses 250 

(Burnham and Anderson 2002). Measurement error is included for each model fit as within 251 

species variance (the sample-sized weighted average of the individual species variances 252 

following Labra et al. (2009) and Vasconcelos et al. (2021)). We evaluate then model averaged 253 

parameter estimates of 𝜃, 𝜎", and 𝛼 for fleshy and dry fruited lineages, as they relate to our 254 



hypotheses and compare our results to Vasconcelos et al. (2021). Finally, we conduct a 255 

parametric bootstrap of 100 simulated datasets to evaluate the standard error of our model 256 

averaged parameter estimates. 257 

 258 

Results 259 

Simulation study 260 

For character-independent (CID) models, our heuristic adaptive sampling algorithm, 261 

which uses information from the discrete and continuous characters to guess at mappings, 262 

consistently produced more probable mappings than using purely discrete mappings for all 263 

models examined. On average, adaptive sampling produced mappings which were roughly 38 264 

log likelihood units better than purely discrete sampling when examining joint probabilities. This 265 

was driven primarily by the improved continuous probabilities which were on average 38.4 log 266 

likelihood units better. In contrast, the discrete probability of each mapping was similar with 267 

discrete-only simulations producing maps that were on average 0.39 log likelihood units better 268 

(Table 1; Fig. S1). For character-dependent models, the difference was negligible (not shown). 269 

This is because when the discrete and continuous character are strongly linked, discrete-only 270 

mappings will match the continuous character’s distribution quite well.  271 

Most character-dependent models (CD) had lower overall deviations from the generating model 272 

across all model types. The RMSE was largest for alpha at 1.76 and 1.65 (if variable alpha) and 273 

errors were generally higher for more complex models. All other parameters had relatively 274 

similar RMSE, ranging from 0.1 for discrete the rate to 0.75 for 𝜎"". The BMV (BM with 275 

variable 𝜎), OUV (OU with variable 𝜎), OUA (OU with variable 𝛼), and OUM (OU with 276 

variable 𝜃) models generally had the lowest errors, but there were some biases present (Table 2). 277 



Most notably, alpha was biased upwards for OUM and OUV models and under variable alpha 278 

models (OUA, OUMA, OUVA, OUMVA), the difference between the alpha estimates tended to 279 

be larger than the generating parameter difference. The more complex models had larger error 280 

variances but showed similar biases as the simple models. Finally, OUBM models showed a 281 

significantly downward biased 𝛼, suggesting BM like processes (Fig. S2). 282 

Table 1. A comparison of the effectiveness of the adaptive sampling procedure and standard 283 
discrete only sampling of maps. Regardless of the sampling procedure, all probabilities are 284 
calculated in the same way and so any differences in probabilities reflects each procedure’s 285 
ability to generate appropriate mappings. 50 regime mappings are used to calculate the likelihood 286 
of the parameters. A higher loge likelihood is better (that is, -16.43 is better than -16.48; 10.54 is 287 
better than 9.19)For each model type, data are simulated following our methods with 𝑞!$ =288 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75. The generating parameters are 289 
used to evaluate probability of each dataset and thus the probabilities represented here are not 290 
necessarily the same as those derived from the MLE. Generally, adaptive sampling improves the 291 
joint estimate by improving the probability of the continuous character and is most effective for 292 
variable 𝜃 models. As expected, discrete only sampling produces regime paintings which better 293 
reflect the discrete character than adaptive sampling, but the difference is minor. 294 

Model 
class 

Model type Sampling 
procedure 

Discrete marginal 
𝑙𝑜𝑔,	likelihood 

Continuous marginal 
𝑙𝑜𝑔,	likelihood 

Joint 𝑙𝑜𝑔, 
likelihood 

C
ID

+  

BMV  adaptive sampling -16.48 10.54 -10.59 
discrete only -16.43 9.19 -10.59 

OUA  adaptive sampling -15.46 44.34 25.14 
discrete only -15.53 43.11 24.96 

OUV adaptive sampling -30.89 47.86 12.17 
discrete only -30.14 46.00 12.11 

OUVA  adaptive sampling -11.88 36.91 21.14 
discrete only -11.17 36.27 21.08 

OUM adaptive sampling -11.94 57.57 39.08 
discrete only -11.19 53.56 32.21 

OUMA adaptive sampling -9.94 35.01 17.39 
discrete only -9.38 2.19 -20.48 

OUMV adaptive sampling -19.96 20.77 -15.64 
discrete only -14.76 -2.92 -25.83 

OUMVA adaptive sampling -13.91 25.47 7.48 
discrete only -13.23 26.36 4.48 

OUBM1 adaptive sampling -14.26 42.20 24.39 
discrete only -14.88 40.89 24.22 

OUBMV adaptive sampling -19.17 49.10 18.84 
discrete only -19.01 33.45 7.71 



Table 2. The average accuracy of hOUwie parameter estimates across several model classes and 295 
types as measured by root-mean-square error (RMSE). RMSE is calculated for each model type 296 
by taking the square root of the mean squared error (MSE), where MSE is the average squared 297 
difference between the MLE and the simulating parameters. Data is generated with 𝑞!$ =298 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75, and for phylogenies with 25, 299 
100, and 250 taxa. Finally, model fits use either 25, 100, or 250 stochastic maps per likelihood 300 
iteration. The table shown here calculates RMSE integrating over all phylogenetic tree sizes and 301 
number of stochastic maps (n=8217). Dashes indicate a parameter that is not estimated for a 302 
given model type. Generally, character independent (CID+) models had higher errors than 303 
character dependent (CD) models. The greatest errors occurred when estimating alpha in variable 304 
alpha models for both CD and CID+ model classes. Estimates of the optimum and transition 305 
rates generally had the lowest errors. 306 

Model 
class 

Model 
type 

RMSE 
𝑞 

RMSE 
𝛼! 

RMSE 
𝛼" 

RMSE 
𝜎!" 

RMSE 
𝜎"" 

RMSE 
𝜃! 

RMSE 
𝜃" 

C
D

 

BMV 0.12 - - 0.10 0.28 0.22 - 
OUV 0.11 1.27 - 0.15 0.33 0.05 - 
OUA 0.12 1.55 1.63 0.11 - 0.06 - 
OUM 0.13 1.49 - 0.10 - 0.07 0.13 
OUVA 0.09 1.44 1.11 0.14 0.98 0.06 - 
OUMV 0.16 1.82 - 0.16 0.32 0.07 0.17 
OUMA 0.15 2.11 2.48 0.28 - 0.12 0.50 
OUMVA 0.18 1.62 1.12 0.12 1.07 0.76 1.06 
OUBM1 0.1 2.64 - 0.08 - 0.08 - 
OUBMV 0.09 2.29 - 0.13 2.37 0.08 - 

C
ID

+ 

BMV 0.05 - - 0.27 10.11 0.24 - 
OUV 0.04 1.13 - 0.32 1.83 0.05 - 
OUA 0.05 2.93 1.34 0.33 - 0.07 - 
OUM 0.09 2.53 - 0.15 - 0.44 0.20 
OUVA 0.05 1.26 1.11 0.27 13.44 0.07 - 
OUMV 0.1 2.50 - 0.16 2.12 1.30 0.68 
OUMA 0.05 8.28 1.27 0.23 - 5.88 0.8 
OUMVA 0.07 5.54 1.24 0.20 9.37 8.76 1.35 
OUBM1 0.05 3.33 - 0.32 - 0.14 - 
OUBMV 0.05 3.50 - 0.27 8.79 0.14 - 

 307 

Character-independent models with rate heterogeneity models generally performed well 308 

in terms of parameter estimates, but as expected, due to their inherit uncertainty, CID+ models 309 

had larger errors than CD models. The largest error was estimates of 𝜎""which had an RMSE of 310 

8.5, although the median error value was only 0.03, suggesting that the large RMSE is driven by 311 

a long rightward tail of the estimates. Like CD models, 𝛼- and 𝛼" consistently showed the 312 



largest RMSE at 3.6 and 1.2. In general, 𝛼 was underestimated with medians of -0.4 and -1.4 313 

below the simulating values of 3 and 1.5. This means that models for CID+ models tended to be 314 

more BM like even under an OU generated data (Fig. S2). Increasing the number of taxa 315 

examined improved both CD and CID+ performance. The RMSE for 𝛼 was nearly cut in half 316 

between when moving from 25 tips to 250 tips from 5.2 to 2.8 under CID+ models (Table 3). 317 

Nonetheless, some parameters continued to be estimated poorly, such as 𝜎"". Interestingly, 318 

increasing the number of stochastic maps improved CID+ performance, but did not substantially 319 

improve estimation under CD models (Fig. S2c).  320 

Table 3. Average AIC weight as the number of taxa increases for each model class. Gray cells 321 
indicate the AIC weight of the generating model class. In general, as the number of taxa 322 
increases the average support for the generating model class increases. 323 

Generating 
model class 

nTaxa AICwt BM1 AICwt OU1 AICwt CD AICwt CID+ 

C
D

 25 0.12 0.22 0.51 0.15 
100 0.06 0.22 0.70 0.02 
250 0.02 0.14 0.82 0.02 

C
ID

+ 25 0.28 0.35 0.24 0.14 
100 0.21 0.4 0.23 0.15 
250 0.11 0.34 0.32 0.22 

 324 

Generally, evidence of CD when it was the generating model was consistent across all 325 

model types. The lowest support for the OUA and OUBM1 models at an average AICwt of 0.31 326 

and 0.13. For complex models, such as OUMVA, model support for was 0.81 and highest for 327 

OUMV at 0.97. CID+ models fared worse in terms of generating consistent support even when 328 

they were the generating model. Models which were difficult to estimate under character 329 

dependence were difficult to find consistent support for under character independence. The most 330 

extreme case was OUA model for which CID+ model was never chosen as the best supported 331 

model. However, models which performed well for CD tended to perform well under CID+. For 332 

example, OUM models garnered consistent support when with an average AICwt of 0.733 333 



(Table S1; Fig. S3). While the best model under AICc need not be the generating model (for 334 

example, for a small dataset a simpler model may lose less information than the generating 335 

model) given the size of the simulated trees and distinctness of the models we expect the 336 

generating model to generally be the best. 337 

For both CD and CID+ models, support improved when increasing the number of tips 338 

analyzed. Support for a CD model when CD was the generating model increased from 𝑤>? =339 

0.5 to 𝑤>? = 0.67	to 𝑤>? = 0.79 for 25, 100, 250 tips and support for a CID+ model when it 340 

was the generating model increased from 𝑤>@?A = 0.11	to 𝑤>@?A = 0.15 to 𝑤>@?A = 0.22 341 

(Table 3). Similarly, increasing the number of regime maps generally improved the fit, but not as 342 

much as increasing the number of tips. We found that the false evidence of correlation (as 343 

measured by the average AICwt of a character-dependent model when character-independence 344 

was the generating model) was generally not an issue for variable 𝜃 models (OUM*). Variable 𝜃 345 

models had average AICwts for false character-dependence ranging from 0.03 to 0.23 and for 346 

none of our simulations models was a CD model best supported. Under a simple OUM model, 347 

CID+ models helped correct any potential bias with an average AICwt of 0.68. However, false 348 

evidence of correlation was an issue for variable 𝜎!"and 𝛼! models. False support for CD as 349 

measured by AIC weight ranged from 0.34 to 0.44 when 𝜃 was fixed and 𝛼! and/or 𝜎!" varied. 350 

Although CID+ models did not garner much support when these models were fit, OU1 and BM1 351 

models served as reasonable null hypotheses in these cases. In general, we found that when CID 352 

models were the generating model, evidence of CID was strongest and when CD models were 353 

the generating model, evidence of character dependence was strongest. This suggests that the 354 

effect of rate heterogeneity causing false correlations is not as pronounced as other comparative 355 

methods (Maddison and FitzJohn 2015; Rabosky and Goldberg 2015). 356 



Seed dispersal and climatic evolution 357 

We found evidence of a character-dependent model over either a simple or hidden state 358 

character-independent model, suggesting a link between the climatic niche of Ericaceae lineages 359 

and their fruit type (Table S2). The best supported models were OUMVA and OUVA with AIC 360 

weights of 0.41 and 0.32 respectively. This suggests that there were character dependent 361 

differences in phenotypic optima, rates of evolution, and overall phylogenetic signal. To evaluate 362 

support for our hypotheses we examined the model averaged parameter estimates (Table 4). The 363 

estimated optimum 0.81 𝑙𝑛(𝐴𝐼)	(± 0.28) for fleshy fruits suggests a more arid environment for 364 

their optimal habitat, and the 0.97 𝑙𝑛(𝐴𝐼) (± 0.011) of dry fruits corresponds to a more humid 365 

environment (Middleton and Thomas 1997), where AI is measured as mean annual precipitation 366 

(P) dived by average annual potential evapotranspiration (PET). However, both optima 367 

correspond to non-dryland humid environments. Both 𝜎"and 𝛼 interact to create tip variance, so 368 

in addition to 𝜎", we measured the stationary variance 𝑉 = B.

"'
. As predicted, we found that 369 

Ericaceae lineages with dry fruits were more variable in their climatic niche evolution (𝜎CDE" =370 

0.011	𝑙𝑛(𝐴𝐼)"𝑀𝑌/-, 𝑉CDE = 0.37	𝑙𝑛(𝐴𝐼)") compared to fleshy fruits (𝜎FGH(IE" =371 

0.007	𝑙𝑛(𝐴𝐼)"𝑀𝑌/-, 𝑉FGH(IE = 0.15	𝑙𝑛(𝐴𝐼)"). Additionally, the strength of pull of fleshy fruited 372 

lineages was greater than dry fruited lineages (𝛼FGH(IE = 0.022𝑀𝑌/- 	> 	𝛼CDE = 0.014𝑀𝑌/-). 373 

This corresponds to phylogenetic half-lives of 𝑡-
"J ,CDE = 46.4	MY	and 𝑡-

"J ,FGH(IE = 30.3	MY 374 

which are 38% and 25% of the total tree height respectively. Transitions to fleshy fruit occurred 375 

at 0.0015 transitions per million years which is more than 4.3 times faster than transitions to dry 376 

fruits (0.0004 transitions per million years). The waiting time n-
K
o of fleshy fruits (2,500	𝑀𝑌) 377 

was substantially longer than that of dry fruits (667	𝑀𝑌). Given that the total branch length in 378 



the tree is 10,120	𝑀𝑌, we expect that lineages were typically under the fleshy fruit regime and 379 

evolving towards a preference for more humid environments. Perhaps for this reason we found 380 

that, on average, lineages were in more arid environments than predicted by the model (average 381 

difference of 0.19 AI), with some species expected to be in much more humid environments 382 

(difference between current AI and optimal AI ranged from -4.4 to 0.85).  383 

Table 4. Model averaged parameter estimates and standard errors for Ericaceae aridity index and 384 
fruit type data. Models with higher AIC weights contribute more overall to the parameter values. 385 

The units for 𝛼, 𝜎", and 𝜃 are L
LM4

 ÷ 𝑡𝑖𝑚𝑒, n L
LM4

o
"
, and L

LM4
 respectively. P is the average annual 386 

precipitation and PET is average annual potential evapotranspiration. Rates of 𝑞 are measured in 387 
transitions per million years.  388 

Continuous parameter estimates 
Discrete parameter estimates  𝛼 𝜎" 𝜃 

Dry 0.015 
(±0.0059) 

0.011 
(±0.0043) 

0.97 
(±0.011) 

𝑞#$%	'(	)*+,-% 0.0015 
(±0.00058) 

Fleshy 0.023 
(±0.011) 

0.007 
(±0.002) 

0.81 
(±0.28) 

𝑞)*+,-%	'(	#$% 00036 
(±0.000086) 
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Figure 4. a) Ericaceae phylogeny for which we had data (n=309). b) Ln aridity index dataset 
where each bar is colored by dry (brown) and fleshy (green) fruit type. c) Model averaged 
parameter estimates with standard error calculated from 100 parametric bootstraps.  
 



Discussion 389 

Phylogenetic comparative methods have been widely applied to study discrete and 390 

continuous characters separately. Due primarily to computational limitations there are few 391 

options which jointly evaluate both classes of character. The hOUwie framework proposed here 392 

overcomes these limitations, and we demonstrate how it is used to test hypotheses of correlated 393 

evolution between discrete and continuous characters while accounting for hidden character 394 

states and unobserved variation. Our model jointly models discrete and continuous characters by 395 

linking both via a common regime painting. However, unlike other similar methods, our 396 

likelihood formula explicitly calculates the probability of the underlying regimes. This has the 397 

advantage of describing the discrete character evolution probabilistically and allows information 398 

from the discrete and continuous characters to jointly contribute to the overall likelihood.  399 

 400 

Relationship to existing methods 401 

Considerable progress has been made towards more realistic models of continuous 402 

character evolution within the last two decades. Continuous character models which initially 403 

relied on either single rate Brownian motion or simple Ornstein-Uhlenbeck models (Felsenstein 404 

1985; Hansen 1997) have seen several extensions to allow for heterogeneity in the evolutionary 405 

process as well as the deterministic influence of underlying independent variables. Generally, 406 

these models can be classified as either being “hypothesis driven” or “data driven” (Martin et al. 407 

2022). Hypothesis driven models are those which require a priori hypotheses regarding where 408 

evolutionary rates may differ throughout the phylogeny. These include models which have 409 

extended simple single-rate BM to incorporate rate variation based on discrete regime mappings 410 

(e.g., O’Meara et al. 2006; Thomas et al. 2006; Revell and Collar 2009; Caetano and Harmon 411 



2017) or more generalized Ornstein-Uhlenbeck models where parameters are allowed to vary 412 

based on an underlying regime mapping (e.g., Butler and King 2004; Bartoszek et al. 2012; 413 

Beaulieu et al. 2012). In contrast, several methods have focused on the development of data 414 

driven, shift-detection methods (which may indeed be used in testing hypotheses, but these 415 

hypotheses are not directly used in creating the regime map). These methods utilize an Ornstein-416 

Uhlenbeck process to automatically detect where in the phylogeny evolutionary rates and 417 

phenotypic optima shift (Ingram and Mahler 2013b; Uyeda and Harmon 2014; Khabbazian et al. 418 

2016; Bastide et al. 2017). Furthermore, some recently developed methods have allowed for rate 419 

variation without the assumption of constant regimes at all. Instead, these models assume the 420 

rates themselves evolve and change throughout the phylogeny under various Brownian motion-421 

like processes (Lemey et al. 2010; Eastman et al. 2013; Revell 2021; Martin et al. 2022) or single 422 

optima Ornstein-Uhlenbeck processes (Hansen et al. 2008; Mitov et al. 2019). The method 423 

presented here is most like the latter group. hOUwie attempts to explicitly model the evolution of 424 

rate shifts according to regimes which jointly influence discrete and continuous character 425 

evolution. The regimes themselves are never fixed a priori and each is evaluated as a partial 426 

contribution to the overall probability of the data. The advantage of this approach is that it 427 

acknowledges the uncertainty in the underlying regime paintings and allows them to change 428 

through time.  429 

Additionally, unlike hOUwie, the “hypothesis driven” or “data driven” models do not 430 

explicitly account for the joint modeling of the discrete and continuous characters. Most progress 431 

in this area has, until recently, been made via phylogenetic logistic regressions (Ives and Garland 432 

2010) or threshold models in which the discrete character is modeled by a continuously varying 433 

unobserved lability (Felsenstein 2012; Revell 2014; Cybis et al. 2015). However, these models 434 



rely on more simplistic evolutionary models without character independent rate heterogeneity 435 

(such as single rate Brownian motion). This lack of character independent rate heterogeneity has 436 

recently been recognized as a potential source of inflated correlation between discrete and 437 

continuous characters. Such was the reasoning for the MuSSCRat model (May and Moore 2020). 438 

Like hOUwie, MuSSCRat allows for character-independent rate heterogeneity following a 439 

multiple rate Brownian motion model to be directly contrasted against character correlation to 440 

correct for potential biases towards correlation. However, the way the underlying discrete 441 

character is calculated in hOUwie, as well as how rate heterogeneity is modeled, differs 442 

substantially from May and Moore (2020). Finally, Tribble et al. (2021) has recently developed a 443 

method which is similar to the one presented here. One of the primary differences between 444 

hOUwie and the Bayesian pipeline discussed in Tribble et al. (2021) is how discrete character 445 

evolution is treated. Specifically, Tribble et al. (2021) assumed that character-independent 446 

mappings are generated under the same parameters which best fit their focal discrete character. 447 

In contrast, hOUwie allows the free estimation of character-independent discrete rates which best 448 

fit both discrete and continuous data. This difference may lead to biases against null models in 449 

the Tribble et al. (2021) approach since the character-independent regimes are forced to follow a 450 

character-dependent discrete model.  451 

 452 

Character-independent models and null hypotheses 453 

There is a growing appreciation that comparing constant-rate null models to variable-rate 454 

alternative models will consistently favor rate heterogeneity, regardless of whether there is a 455 

genuine association with a focal variable (Maddison and FitzJohn 2015; Rabosky and Goldberg 456 

2015; Beaulieu and O’Meara 2016; Uyeda et al. 2018; O’Meara and Beaulieu 2021; Boyko and 457 



Beaulieu 2022). This problem, termed the “straw-man effect” by May and Moore (2020), has 458 

been demonstrated to lead to nearly 100% error rates for evidence of discrete character 459 

correlation (Maddison and FitzJohn 2015; Boyko and Beaulieu 2022), and has severely biased 460 

evidence towards state-dependent speciation and extinction (Rabosky and Goldberg 2015; 461 

Beaulieu and O’Meara 2016). Given these often-overwhelming error rates in other comparative 462 

methods, we expected to find a similarly consistent bias towards correlation between discrete and 463 

continuous characters. However, we found that support for single rate character-independent null 464 

models was greater than character-dependent models even when simulated under character-465 

independent models with rate heterogeneity. Although the inclusion of explicit multi-rate 466 

character independent models (CID+) models did help reduce evidence of false correlation in 467 

some cases, by and large, simplistic null models performed admirably. This is not to say that the 468 

error rates for discrete and continuous character correlation should be dismissed outright. If our 469 

simulations correctly assess that nearly one-third of results find false evidence of a correlation 470 

between continuous character rates of evolution and discrete characters, then better null models 471 

are certainly needed. But, in comparison to the profound effect that model misspecification has 472 

had in other comparative analyses (Beaulieu and O’Meara 2016; Boyko and Beaulieu 2022), the 473 

joint models tested here have substantially lower error rates. 474 

We suspect that part of the reason that the correlation between discrete and continuous 475 

characters is less susceptible to “straw-man” effects than other PCMs is related to the 476 

inefficiency of sampling potential maps from the univariate stochastic mapping model. A 477 

common approach to fitting OU models involves simulating many stochastic maps to represent 478 

underlying regimes from parameters estimated only from the discrete character (Revell 2013). 479 

The resulting distribution of underlying regimes will therefore reflect a distribution appropriate 480 



for the discrete character, but not necessarily suitable for the continuous character. This is 481 

especially true if the continuous character is unlinked to the focal discrete character. Indeed, we 482 

found that if the discrete and continuous characters are unlinked, most stochastic maps, even 483 

though good descriptions of the discrete characters, were completely inadequate representations 484 

of continuous regimes. Thus, any joint model with these maps contributed little to the overall 485 

likelihood. Under our simulation protocol, for a typical run, 90% of the total likelihood for the 486 

best set of parameters came from just 2% of the attempted maps.  487 

In some ways the substantial contributions of only a few underlying regimes to the 488 

overall likelihood is good. First, it makes spurious links between a randomly distributed discrete 489 

character and a continuous character more unlikely since associations between regimes and 490 

continuous variables tend to be specific. This ultimately reduces the potential “straw-man” 491 

effect. Second, the continuous characters can inform the placement of shared regimes and 492 

therefore shift detection methods, where the continuous data are all that provides information 493 

about regimes shifts (Ingram and Mahler 2013; Uyeda and Harmon 2014; Khabbazian et al. 494 

2016; Bastide et al. 2017), may be appropriate across a broad range of scenarios. However, this 495 

property also makes sampling a good set of regimes to get an accurate estimate of the likelihood 496 

difficult and is why the development of our adaptive sampling heuristics was necessary. 497 

Adaptive sampling, in combination with our approximation of the joint conditional distributions, 498 

helped make parameter estimation more accurate. Increasing the amount of sampled regime 499 

mappings is useful in improving precision (Fig. S1), at the cost of longer run time. 500 

 501 

 502 

 503 



Interplay of continuous, discrete, and hidden traits 504 

In many studies that deal with the correlation of discrete and continuous traits, it is often 505 

assumed that the discrete trait functions as the independent trait and the continuous trait as the 506 

dependent trait. This assumption is baked into methods that map the discrete trait first and then 507 

analyze the continuous trait given these mappings, but it would be easy to fall into this form of 508 

thinking even with hOUwie, which does not have this assumption. Instead, hOUwie can help 509 

understand whether and how traits are correlated. For example, one could see if mammal body 510 

size correlates with trophic level: are hypercarnivores larger on average than herbivores? It could 511 

be that an herbivorous (discrete character) beaver evolves a taste for meat and then grows bigger 512 

(continuous character) so it can take down bigger prey; it could be that once things get to be the 513 

size of a bison (continuous character) they start adding more and more rodents to their diet, 514 

eventually becoming carnivores (discrete character). Causality can go both directions, and of 515 

course both traits may be evolving based on some other third trait and not functionally related to 516 

each other.  517 

hOUwie is part of a series of hidden state models developed by our research groups (i.e., 518 

Beaulieu et al. 2013; Beaulieu and O’Meara 2016; Caetano et al. 2018; Boyko and Beaulieu 519 

2021, 2022; Vasconcelos et al. 2022). One misconception we have noted in use of these methods 520 

is the thought that there is a single, discrete, hidden character in the biology. These models do 521 

model a single hidden character (with potentially many states), but this could be reflecting 522 

multiple characters evolving together or other factors that change in a heritable manner through 523 

time. It is a way to allow heterogeneity, especially by factors that vary by clades. With hOUwie, 524 

this heterogeneity can affect the discrete trait, the continuous trait, both, or neither.  525 

 526 



Seed dispersal and climatic niche evolution in Ericaceae 527 

Here we revaluated three hypotheses related to climatic niche evolution and seed 528 

dispersal and found that: (1) the climatic optima of dry fruits was more humid than fleshy fruits 529 

(𝜃FGH(IE < 𝜃CDE), (2) lineages with dry fruits had faster rates of climatic niche evolution (𝜎CDE" >530 

𝜎FGH(IE" ), and (3) climatic niches of fleshy fruits are more conserved through time (𝛼CDE <531 

𝛼FGH(IE). In contrast to previous findings, the higher rate and stationary variance of climatic niche 532 

evolution for dry seeds matched our original hypothesis (Vasconcelos et al. 2021). This is to be 533 

expected because abiotically dispersed seeds are likely to be more erratic in their dispersal 534 

patterns (Schupp 1993; Westoby et al. 1996). Additionally, that our results differ from previous 535 

findings (Vasconcelos et al. 2021) suggests that jointly modeling climatic niche evolution 536 

alongside fruit type changed our parameter estimation in a meaningful way.  537 

Our final hypothesis, which stated that fleshy, biotically dispersed, seeds are more likely 538 

to be associated with humid environments, was not supported. However, it has been suggested 539 

that a trade-off between seed persistence, seed size, and dispersal strategies can be also common 540 

in arid environments (Venable and Brown 1988; Nunes et al. 2017). Specifically, large seed size 541 

may occasionally help withstand unfavorable conditions associated with increased aridity (Nunes 542 

et al. 2017). With an increased seed size, biotic seed dispersal and fleshy fruits, may become 543 

necessary for seed dispersal. This may be the case for Styphelieae, which is distributed in the 544 

arid Australian heathland and, of all predominately fleshy-fruited groups, lies the furthest from 545 

the inferred aridity optima. Additionally, it has been found that the proportion of abiotically 546 

dispersed seeds increases as elevation increases, due to the decreasing availability of frugivores 547 

(Chapman et al. 2016). Given that several radiations of Ericaceae lineages are associated with 548 

montane habitats (Schwery et al. 2015), it may be that the distribution of dry and fleshy fruits are 549 



a consequence of elevation rather than being directly linked to climatic niche evolution. Finally, 550 

it has been noted Ericaceae lineages are often found in well-leached soils and epiphytic habitats 551 

(Schwery et al. 2015). If associations with soil type are more important than links to climatic 552 

optima, we may expect that fruit-dependent climatic optima are consequence of unmodeled 553 

factors. Although our modeling explicitly considers hidden variables that may lead to rate 554 

heterogeny, if the proposed hidden variable (soil condition) is closely linked to our modeled 555 

variable (aridity), then we may not be able to detect the presence of hidden variation. This may 556 

be the case between soil condition and aridity (Moreno-Jiménez et al. 2019). 557 

 558 

Caveats and possible extensions 559 

There are three important caveats to our proposed modeling framework. First, our 560 

discrete mapping probability, 𝑃(𝐷, 𝑧|𝜗, 𝜓), is only an approximation. What we calculate is the 561 

probability of starting in a particular state 𝑖 and ending a particular state 𝑗, summed over all 562 

possible paths. However, the continuous model probability is based off a particular pathway 563 

history that is defined throughout the entire branch (Hansen 1997). Ultimately, this means that 564 

the underlying regimes are not treated identically for the continuous and discrete characters. The 565 

second caveat is that we do not force hOUwie to sum over all possible mappings 𝑧. This is 566 

because the number of mappings will grow exponentially as the number of nodes and internodes 567 

increases and the computation will quickly become infeasible (see Jones et al. 2020). Although 568 

this may not be entirely necessary since we have shown that only a small percentage of possible 569 

mappings contribute to the overall joint probability. Nonetheless, an ideal solution could be the 570 

use Markov-Modulated Ornstein-Uhlenbeck models (Huang et al. 2016) since this would remove 571 

the need for a regime mapping approach, but these have yet to be applied in phylogenetic 572 



comparative biology. hOUwie currently only deals with one discrete and one continuous trait at a 573 

time – a set of discrete traits can be handled by converting them to a single multistate character, 574 

but incorporating multiple continuous traits requires adding correlations between them. Finally, 575 

it is possible to extend hOUwie to include state-dependent speciation and extinction dynamics 576 

which have been shown to influence the distribution of discrete characters (Maddison 2006) and 577 

would therefore influence continuous characters if the two were linked. However, this extension 578 

would require a different calculation of the underlying regime mapping probability. Approaches 579 

for stochastically mapping SSE models already exist (Freyman and Höhna 2019), so the largest 580 

remaining challenge of this extension would be generating high joint probability mappings. 581 

Concluding remarks 582 

The use of pre-defined discrete character mappings can be useful for testing hypotheses 583 

which rely on distinct, well-defined differences in the evolutionary histories of lineages. 584 

However, this approach assumes that the underlying mapping is known with complete accuracy 585 

and ignores the probabilistic nature of discrete regimes. hOUwie’s methodology integrates over 586 

the uncertainty of high probability character mappings and relies on the interpretation of 587 

parameter estimates from contrasting model structures to find evidence for hypotheses. Rather 588 

than assuming an a priori mapping, hOUwie can utilize the mutual information about the 589 

discrete and continuous characters to learn something about the underlying regimes evolution.  590 

  591 



Tables 592 

 Table 1. A comparison of the effectiveness of the adaptive sampling procedure and standard 593 
discrete only sampling of maps. Regardless of the sampling procedure, all probabilities are 594 
calculated in the same way and so any differences in probabilities reflects each procedure’s 595 
ability to generate appropriate mappings. 50 regime mappings are used to calculate the likelihood 596 
of the parameters. A higher loge likelihood is better (that is, -16.43 is better than -16.48; 10.54 is 597 
better than 9.19)For each model type, data are simulated following our methods with 𝑞!$ =598 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75. The generating parameters are 599 
used to evaluate probability of each dataset and thus the probabilities represented here are not 600 
necessarily the same as those derived from the MLE. Generally, adaptive sampling improves the 601 
joint estimate by improving the probability of the continuous character and is most effective for 602 
variable 𝜃 models. As expected, discrete only sampling produces regime paintings which better 603 
reflect the discrete character than adaptive sampling, but the difference is minor. 604 
 605 

Model 
class 

Model type Sampling 
procedure 

Discrete marginal 
𝑙𝑜𝑔,	likelihood 

Continuous marginal 
𝑙𝑜𝑔,	likelihood 

Joint 𝑙𝑜𝑔, 
likelihood 

C
ID

+  

BMV  adaptive sampling -16.48 10.54 -10.59 
discrete only -16.43 9.19 -10.59 

OUA  adaptive sampling -15.46 44.34 25.14 
discrete only -15.53 43.11 24.96 

OUV adaptive sampling -30.89 47.86 12.17 
discrete only -30.14 46.00 12.11 

OUVA  adaptive sampling -11.88 36.91 21.14 
discrete only -11.17 36.27 21.08 

OUM adaptive sampling -11.94 57.57 39.08 
discrete only -11.19 53.56 32.21 

OUMA adaptive sampling -9.94 35.01 17.39 
discrete only -9.38 2.19 -20.48 

OUMV adaptive sampling -19.96 20.77 -15.64 
discrete only -14.76 -2.92 -25.83 

OUMVA adaptive sampling -13.91 25.47 7.48 
discrete only -13.23 26.36 4.48 

OUBM1 adaptive sampling -14.26 42.20 24.39 
discrete only -14.88 40.89 24.22 

OUBMV adaptive sampling -19.17 49.10 18.84 
discrete only -19.01 33.45 7.71 

 606 
 607 

  608 

 609 



Table 2. The average accuracy of hOUwie parameter estimates across several model classes and 610 
types as measured by root-mean-square error (RMSE). RMSE is calculated for each model type 611 
by taking the square root of the mean squared error (MSE), where MSE is the average squared 612 
difference between the MLE and the simulating parameters. Data is generated with 𝑞!$ =613 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75, and for phylogenies with 25, 614 
100, and 250 taxa. Finally, model fits use either 25, 100, or 250 stochastic maps per likelihood 615 
iteration. The table shown here calculates RMSE integrating over all phylogenetic tree sizes and 616 
number of stochastic maps (n=8217). Dashes indicate a parameter that is not estimated for a 617 
given model type. Generally, character independent (CID+) models had higher errors than 618 
character dependent (CD) models. The greatest errors occurred when estimating alpha in variable 619 
alpha models for both CD and CID+ model classes. Estimates of the optimum and transition 620 
rates generally had the lowest errors. 621 

Model 
class 

Model 
type 

RMSE 
𝑞	

RMSE	
𝛼! 

RMSE 
𝛼" 

RMSE 
𝜎!" 

RMSE 
𝜎"" 

RMSE 
𝜃! 

RMSE 
𝜃" 

C
D

 

BMV 0.12 - - 0.10 0.28 0.22 - 
OUV 0.11 1.27 - 0.15 0.33 0.05 - 
OUA 0.12 1.55 1.63 0.11 - 0.06 - 
OUM 0.13 1.49 - 0.10 - 0.07 0.13 
OUVA 0.09 1.44 1.11 0.14 0.98 0.06 - 
OUMV 0.16 1.82 - 0.16 0.32 0.07 0.17 
OUMA 0.15 2.11 2.48 0.28 - 0.12 0.50 
OUMVA 0.18 1.62 1.12 0.12 1.07 0.76 1.06 
OUBM1 0.1 2.64 - 0.08 - 0.08 - 
OUBMV 0.09 2.29 - 0.13 2.37 0.08 - 

C
ID

+ 

BMV 0.05 - - 0.27 10.11 0.24 - 
OUV 0.04 1.13 - 0.32 1.83 0.05 - 
OUA 0.05 2.93 1.34 0.33 - 0.07 - 
OUM 0.09 2.53 - 0.15 - 0.44 0.20 
OUVA 0.05 1.26 1.11 0.27 13.44 0.07 - 
OUMV 0.1 2.50 - 0.16 2.12 1.30 0.68 
OUMA 0.05 8.28 1.27 0.23 - 5.88 0.8 
OUMVA 0.07 5.54 1.24 0.20 9.37 8.76 1.35 
OUBM1 0.05 3.33 - 0.32 - 0.14 - 
OUBMV 0.05 3.50 - 0.27 8.79 0.14 - 

 622 

 623 

 624 

 625 

 626 



Table 3. Average AIC weight as the number of taxa increases for each model class. Gray cells 627 
indicate the AIC weight of the generating model class. In general, as the number of taxa 628 
increases the average support for the generating model class increases. 629 

Generating 
model class 

nTaxa AICwt BM1 AICwt OU1 AICwt CD AICwt CID+ 
C

D
 25 0.12 0.22 0.51 0.15 

100 0.06 0.22 0.70 0.02 
250 0.02 0.14 0.82 0.02 

C
ID

+ 25 0.28 0.35 0.24 0.14 
100 0.21 0.4 0.23 0.15 
250 0.11 0.34 0.32 0.22 

 630 

 631 

Table 4. Model averaged parameter estimates and standard errors for Ericaceae aridity index and 632 
fruit type data. Models with higher AIC weights contribute more overall to the parameter values. 633 

The units for	𝛼,	𝜎", and 𝜃 are L
LM4

 ÷ 𝑡𝑖𝑚𝑒, n L
LM4

o
"
, and L

LM4
 respectively. P is the average annual 634 

precipitation and PET is average annual potential evapotranspiration. Rates of 𝑞 are measured in 635 
transitions per million years.  636 

Continuous parameter estimates Discrete parameter estimates  𝛼 𝜎" 𝜃 

Dry 0.015 
(±0.0059) 

0.011 
(±0.0043) 

0.97 
(±0.011) 

𝑞#$%	'(	)*+,-% 0.0015 
(±0.00058) 

Fleshy 0.023 
(±0.011) 

0.007 
(±0.002) 

0.81 
(±0.28) 

𝑞)*+,-%	'(	#$% 00036 
(±0.000086) 

  637 



Figures 638 

 639 

Figure 1. A visual representation of the algorithm underlying the calculation of conditional node 640 
probabilities and the adaptive sampling procedure. The goal of the procedure is to produce 641 
underlying regime paintings well suited to both the discrete and continuous character. a) select 642 
the focal node for which we will be calculating the joint conditional probabilities of the discrete 643 
and continuous characters. b) on each side of the node we select a pair of tips. c) the conditional 644 
probability of the observed discrete and continuous character is calculated for each discrete 645 
regime state with an ancestral continuous value equal to 𝜃 of that regime state. d) the conditional 646 
probability of the focal node is calculated as the average probability of each regime state for all 647 
pairs of observed tips. e) the conditional probabilities are calculated for all internal nodes. This 648 
can be turned off within hOUwie by setting the sample_nodes argument to false. f) A stochastic 649 
map is generating using forward simulation rejection sampling. g) adaptive sampling uses the 650 
highest joint probability of previously generated underling regimes to generate a set of ancestral 651 
continuous character values. This differs from previous ancestral values because instead of 652 
assuming the value 𝜃 for each regime state, it calculates the expected value given the root state 653 
and regime mapping for that particular node. h) we repeat steps d) through g) until the joint 654 
likelihood of the set of underlying regimes does not improve.  655 

 656 



 657 

Figure 2. A state-transition diagram describing the model classes allowable in hOUwie. Each 658 
panel is comprised of observed discrete states 0 and 1 with possible hidden states A and B. 659 
Transitions between states are described with the 𝑞 parameter. Continuous model parameters 660 
appear in a box below the states they describe, and their association is displayed with a subscript 661 
specific to that state. a) A simple character independent model in which the two observed states 662 
do not influence the continuous character which will have the same 𝜃, 𝜎", 𝛼 throughout the 663 
phylogeny. b) A character dependent model in which the continuous character depends on the 664 
discrete character by virtue of 𝜃, 𝜎", 𝛼 being associated with a particular observed discrete state. 665 
c) A character independent model with rate heterogeneity. The two observed states (0 and 1) are 666 
not directly linked to the continuous character. However, the continuous character is still allowed 667 
to have multiple  𝜃, 𝜎", 𝛼 describing its evolution, but these parameters are associated with 668 
hidden states A and B. d) A hybrid model in which each combined observed and hidden state is 669 
allowed to have its own 𝜃, 𝜎", 𝛼. Under this model, the continuous character is linked to both 670 
character dependent differences (parameters associated with 0 and 1) and character independent 671 
differences (A and B). Though this diagram shows a binary observed and hidden character, either 672 
can have more states (up to 26 states for each in theory, though few datasets will have enough 673 
power to estimate the necessary number of parameters). 674 

 675 



 676 

Figure 3. A visual representation of binary discrete character hOUwie model types. Discrete 677 
time forward simulations are conducted starting in the red state and the distribution of the 678 
continuous character is plotted on the right as a histogram and density plot. Each line represents 679 
a continuous character value at some time. Transitions occur at colored points and each line is 680 
colored by the current discrete state. 100 time-steps are simulated with the same parameters as 681 
our simulation study (𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75). 682 
The highlighted line was randomly chosen from the set in which at least one discrete state 683 
transition occurred.  684 



 685 

Figure 4. a) Ericaceae phylogeny for which we had data (n=309). b) Ln aridity index dataset 686 
where each bar is colored by dry (brown) and fleshy (green) fruit type. c) Model averaged 687 
parameter estimates with standard error calculated from 100 parametric bootstraps.  688 
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 859 

Supplementary Tables 860 

Table S1. AIC weights summarizing the average support for each model class when they are the 861 
generating model. Data is generated with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- =862 
2, and	𝜃" = 0.75 for phylogenies with 25, 100, and 250 taxa and model fits using either 25, 100, 863 
or 250 stochastic maps per likelihood iteration. When the generating model class is character 864 
dependent (CD) or character independent (CID+) we expect that the AICwt will be highest for 865 
that model when fit. Character dependent models generally show that pattern, however CID+ 866 
models generally perform poorly. An additional concern is datasets simulated by a character 867 
independent model with rate heterogeneity (datasets generated by a CID+ model) are best fit by 868 
CD models – which would be a spurious correlation. Although there was often some signal of 869 
character dependence in these models (AICwt of CD when CID+ is generating), most of the AIC 870 
weight was for simple character independent models (BM1 or OU1).  871 

Generating 
model class 

Generating 
model type 

AICwt 
of BM1 

AICwt 
of OU1 

AICwt 
of CD 

AICwt 
of CID+ 

Proportion 
generating model 
chosen as best  

C
D

 

BMV 0.18 0.17 0.64 0.02 0.62 
OUV 0.03 0.22 0.74 0.02 0.73 
OUA 0.07 0.56 0.31 0.06 0.15 
OUM 0.04 0.02 0.9 0.04 0.92 
OUVA 0.04 0.21 0.7 0.06 0.7 
OUMV 0.02 0.02 0.93 0.03 0.95 
OUMA 0.12 0.15 0.64 0.09 0.66 
OUMVA 0.05 0.13 0.76 0.06 0.76 
OUBM1 0.19 0.58 0.13 0.10 0.08 
OUBMV 0.07 0.20 0.71 0.02 0.73 

C
ID

+ 

BMV 0.36 0.28 0.33 0.03 0.01 
OUV 0.04 0.49 0.43 0.04 0.01 
OUA 0.06 0.56 0.37 0.02 0 
OUM 0.21 0.09 0.03 0.67 0.71 
OUVA 0.07 0.55 0.35 0.04 0.03 
OUMV 0.24 0.19 0.14 0.44 0.44 
OUMA 0.41 0.40 0.13 0.06 0.06 
OUMVA 0.24 0.39 0.21 0.16 0.15 
OUBM1 0.24 0.55 0.16 0.05 0.01 
OUBMV 0.23 0.37 0.30 0.10 0.08 

 872 
 873 
 874 
 875 
 876 
 877 
 878 



 879 
Table S2: Modeling results from the 25 models fit to Ericaceae aridity index and fruit type data. 880 
Model classes are character independent without rate heterogeneity (CID), character dependence 881 
(CD), character independence with rate heterogeneity (CID+), and mixed character dependent 882 
and character independence (HYB). Character dependent models suggest that climatic niche 883 
evolution will be linked to the fruit type. We found substantial support for OUVA (variable 𝜎" 884 
and 𝛼) and OUMVA (variable 𝜎", 𝛼, and 𝜃) models. np is the number of freely estimated 885 
parameters. lnLik is the joint likelihood of the MLE. DiscLik and ContLik are the marginal 886 
likelihood of the discrete and continuous datasets respectively, given the maximum joint 887 
likelihood estimate of the parameters. AIC is the Akaike information criterion, DAIC is the 888 
difference from the best fit model measured as the difference between each model’s AIC, and 889 
AICwt is the relative support for each model. 890 

Model class Model type np lnLik DiscLik ContLik AIC DAIC AICwt 

C
ID

 BM1 4 -243.89 -32.62 -206.67 495.78 39.07 0 
OU1 5 -225.5 -32.62 -188.28 461.01 4.30 0.05 

C
D

 

BMV 5 -243.78 -32.62 -207.08 497.56 40.85 0 
OUV 6 -225.49 -32.62 -188.47 462.98 6.27 0.02 
OUA 6 -224.95 -32.58 -189.48 461.9 5.19 0.03 
OUM 6 -224.12 -32.57 -187.79 460.24 3.53 0.07 
OUVA 7 -221.62 -32.58 -184.44 457.24 0.53 0.32 
OUMV 7 -224.05 -32.62 -188.15 462.10 5.39 0.03 
OUMA 7 -223.21 -32.58 -187.97 460.42 3.71 0.06 
OUMVA 8 -220.35 -32.60 -183.27 456.71 0 0.41 
OUBM1 5 -243.84 -32.57 -206.67 497.68 40.97 0 
OUBMV 6 -243.79 -32.61 -206.99 499.57 42.87 0 

C
ID

+ 

BMV 7 -244.80 -33.11 -205.78 503.59 46.89 0 
OUV 8 -228.77 -32.98 -190.16 473.55 16.84 0 
OUA 8 -226.42 -33.17 -188.53 468.84 12.13 0 
OUM 8 -226.43 -33.32 -189.07 468.87 12.16 0 
OUVA 9 -244.38 -33.43 -202.12 506.76 50.05 0 
OUMV 9 -225.20 -33.39 -182.88 468.39 11.68 0 
OUMA 9 -225.57 -32.68 -189.92 469.14 12.43 0 
OUMVA 10 -227.39 -33.13 -185.15 474.79 18.08 0 
OUBM1 7 -244.44 -33.16 -206.67 502.88 46.17 0 
OUBMV 8 -225.58 -32.71 -186.58 467.17 10.46 0 

H
Y

B
 BMS 9 -244.46 -33.08 -204.83 506.93 50.22 0 

OUM 10 -224.12 -32.67 -188.99 468.23 11.52 0 
OUMVA 16 -226.56 -33.03 -179.11 485.13 28.42 0 

 891 



Supplementary Figures 892 

 893 

Figure S1. Overlapping histograms comparing the effectiveness of the adaptive sampling 894 
procedure (blue) and standard discrete only sampling (red) of maps. Regardless of the sampling 895 
procedure, all probabilities are calculated in the same way and so any differences in probabilities 896 
reflects each procedure’s ability to generate appropriate mappings. 50 stochastic mappings are 897 
used to calculate the likelihood of the parameters. For each model type, data are simulated 898 
following our methods with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" =899 
0.75. Dashed line likelihood under generating map.  900 
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 902 

Figure S2. The raw difference of the maximum likelihood parameter estimates and the 903 
generating values depending on the a) model type, b) number of taxa in the dataset, and c) 904 
number of stochastic maps per iteration of the likelihood search. Generally, variable alpha 905 
models had the highest biases with alpha being consistently underestimated. As the number of 906 
taxa increased, estimation of CD model parameters was estimated with less error. The number of 907 
maps per iteration had the greatest effect on character independent models with rate 908 
heterogeneity.  909 
 910 



 911 
Figure S3. AIC weights summarizing the average support for particular model classes and model 912 
type when they are the generating model. Headings indicate the generating model type and 913 
model class. Data was generated with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- =914 
2, and	𝜃" = 0.75 for phylogenies with 25, 100, and 250 taxa and model fits using either 25, 100, 915 
or 250 stochastic maps per likelihood iteration. When the generating model class is character 916 
dependent (CD) or character independent (CID+) we expect that the AICwt will be highest for 917 
that model when fit.  918 
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