
Abstract 1 

Whether modeling the evolution of a discrete or continuous character, the focal trait of interest 2 

does not evolve in isolation and require comparative methods that model multivariate evolution. 3 

Progress along these lines has involved modeling multivariate evolution of the same class of 4 

character and there are fewer options when jointly modeling traits when one character is discrete 5 

and the other is continuous. Here we develop such a framework to explicitly estimate the joint 6 

likelihood for discrete and continuous characters. Specifically, our model combines the 7 

probability of observing the continuous character under a generalized OU process with the 8 

probability of the discrete character under a hidden Markov model, linked by a shared underlying 9 

regime. We use simulation studies to demonstrate that this approach, hOUwie, can accurately 10 

evaluate parameter values across a broad set of models. We then apply our model to test whether 11 

fleshy and dry fruits of Ericaceae lineages are correlated with their climatic niche evolution as 12 

represented by the aridity index. Consistent with expectations, we find that dry fruits have higher 13 

rates of climatic niche evolution, that the climatic niche of fleshy fruits is more conserved, and 14 

dry fruits have a more humid climatic optimum. 15 

  16 



A common theme in comparative biology is the detection of causal, or least mechanistic, 17 

factors that affect the evolution of quantitative characters. Questions of how plant life habit 18 

influence genome size evolution (Beaulieu et al. 2012), how substrate use alters limb length 19 

evolution (Mahler et al. 2013), or how tooth morphology slowly changes in response to habitat 20 

and diet (Toljagić et al. 2018) are all examples of testing whether evolutionary changes in a 21 

discrete variable may have altered evolutionary trajectories of a continuously varying trait. One 22 

very common phylogenetic comparative approach for these types of questions is to employ an 23 

Ornstein-Uhlenbeck (OU) model, which assumes distinct regimes, described by the evolution of 24 

a discrete character, are known completely a priori (e.g., Butler and King 2004; Hansen et al. 25 

2008; Beaulieu et al. 2012), or assumes that “shifts” in regimes can be inferred directly from the 26 

distribution of the continuous trait (e.g. Ingram and Mahler 2013; Uyeda and Harmon 2014; 27 

Khabbazian et al. 2016). While these approaches are practical, the discrete trait is assumed the 28 

driving force underlying the evolution of the continuous character. However, dependence rarely 29 

flows just one way in evolution, and we suspect that as often as a discrete character causes 30 

change in the continuous character, continuous characters also influence discrete character 31 

evolution, or at the very minimum, can provide information about how they may be evolving in 32 

tandem.  33 

Progress along these lines has mostly involved acknowledging uncertainty in the 34 

evolution of the discrete character by fitting models over a large set of stochastically generated 35 

character mappings. That is, a large set of alternative reconstructions of the discrete character are 36 

obtained completely uninformed by the continuous trait’s evolution, then the likelihood of the 37 

continuous character becomes the average of the likelihoods across these maps (e.g., Revell 38 

2012). The advantage of this approach is that there is an explicit model for how regimes change 39 



through time, but the evolution of these regimes remains entirely independent of the continuous 40 

trait, and the probability of these regimes is not explicitly considered. For example, it is possible 41 

that the model that best fits the discrete data generates stochastic maps that does not provide a 42 

good fit to the continuous data.  43 

A promising approach was recently described for detecting adaptive codon evolution 44 

(Jones et al 2020), where a set of maps obtained for a discrete phenotype under a standard 45 

Markov process is optimized along with parameters associated with genotype properties, thus 46 

forcing an emergent dependency between the two. Similarly, May and Moore (2020) developed 47 

a joint model for discrete and continuous characters under a state-dependent Brownian motion 48 

model. Their approach takes advantage of prior probabilities within a Bayesian framework to 49 

accommodate variation in the “background” rate of evolution in the continuous trait (i.e., rate 50 

variation across lineages that is independent of the discrete character under consideration). The 51 

novel Bayesian pipeline recently developed by Tribble et al. (2021) is the first attempt that we 52 

are aware of for jointly modeling discrete and continuous traits under an OU framework. Their 53 

approach samples discrete stochastic mappings informed by the discrete trait along with regime 54 

mappings which were informed by the continuous trait while accounting for the potential of 55 

hidden variation. While a more effective test of correlation between discrete and continuous 56 

characters, one drawback is that they do not explicitly account for the joint probability of the 57 

discrete and continuous parameter estimates together. They assume that the combination of 58 

independently estimated discrete and continuous models produces a joint estimate. 59 

Here we develop and implement a framework that provides an explicitly joint estimate of 60 

the likelihood for a discrete and continuous character. Specifically, our model combines the 61 

probability of the continuous character given a particular regime evolving under a generalized 62 



OU process, and the probability of that discrete regime painting obtained from an expanded set 63 

of Markov models, integrated over many regime paintings. We demonstrate how our framework, 64 

which we call hOUwie, can be used to test hypotheses of correlated evolution between discrete 65 

and continuous characters while also accounting for hidden character states and unobserved 66 

variation. Finally, we apply several hOUwie models to test the correlated dynamics of the mode 67 

of seed dispersal and climatic niche evolution and compare our results to those that did not 68 

account for the potential joint evolution of discrete and continuous variables. 69 

 70 

Materials and Methods 71 

The hOUwie model 72 

Our model is composed of two processes: one describing the evolution of a discrete 73 

character and the other describing the evolution of a continuous character. To model the 74 

evolution of a single continuous character we use an Ornstein-Uhlenbeck (OU) model (Hansen 75 

1997; Butler and King 2004; Hansen et al. 2008; Beaulieu et al. 2012; Ho and Ané 2014a). 76 

Formally, the OU process is an Itô diffusion satisfying:  77 

𝑑𝑋(𝑡) 	= 	𝛼(𝜃(𝑡) 	− 	𝑋(𝑡)) 	+ 	𝜎𝑑𝐵(𝑡). 78 

Conceptually, this model combines the stochastic evolution of a trait through time with a 79 

deterministic component that models the tendency for a trait to evolve towards an “optimum.” In 80 

this model, the value of a trait, 𝑋(𝑡), is pulled towards an optimum, 𝜃(𝑡), at a rate scaled by the 81 

parameter 𝛼. The optimum, 𝜃(𝑡), is a piecewise constant on intervals and takes values in a finite 82 

set	{𝜃!}. This can represent the set of “selective regimes”, “regimes”, or Simpson’s “adaptive 83 

zones” (Cressler et al. 2015), though it is consistent with a variety of true underlying 84 

microevolutionary models (Hansen 2014). Additionally, random deviations are introduced by 85 



Gaussian white noise 𝑑𝐵(𝑡), which is distributed as a normal random variable with mean zero 86 

and variance equal to 𝜎"𝑑𝑡. Thus, 𝜎" is a constant describing the rate of stochastic evolution 87 

away from the optimum. We use the set of extensions introduced by Beaulieu et al. (2012) and 88 

implemented in the R package OUwie, which allows for multiple primary optima 𝜃(𝑡) in which 89 

both the pull strength (𝛼) and the rate of stochastic evolution (𝜎") can vary across the phylogeny. 90 

However, the algorithm used to calculate the likelihood described in Beaulieu et al. (2012) 91 

involves a computationally costly matrix inversion procedure. Here we implement a linear-time 92 

computation of the likelihood of Gaussian trait models following (Ho and Ané 2014a). To do 93 

this, we first transform the phylogeny such that its variance covariance matrix, 𝑉, is 3-point 94 

structured. We can write the variance covariance matrix of the untransformed phylogeny as 𝑉 =95 

𝐷#𝑉2 	𝐷#, where following Beaulieu et al. (2012) and Ho and Ané (2014), 96 

𝑉2!$ =	 3
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where, 𝑠& is the distance from the root to the beginning of the selective regime (𝛾) for the 𝜅 99 

number of selective regimes along the path from the root to the last common ancestor of 𝑖 and 𝑗, 100 

𝜅(𝑖, 𝑗), or from the root to the terminal tip	𝑖, 𝜅(𝑖). Our transformed phylogeny now has a variance 101 

covariance matrix 𝑉2!$ and diagonal matrix 𝐷#. We can then calculate the quadratic quantities and 102 

determinant of 𝑉 (Ho and Ané 2014a). The probability of our continuous trait is given by 103 

𝑙𝑜𝑔(𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓)) 	= 	𝑛 log(2𝜋) +	 log(𝑑𝑒𝑡(𝑉)) 	+	
𝑃′𝑉/-𝑃	 − 	2𝑃′𝑉/-𝑄	 + 	𝑄′𝑉/-𝑄

2 , 104 

where 𝑛 is the number of tips in the phylogeny (𝜓), 𝑃 is the continuous trait value of each 105 

species, and 𝑄 is the expected value of each species given the continuous trait model calculated 106 



following equation (11) of Beaulieu et al. (2012), D	is the discrete character data, 𝑧 is a particular 107 

regime mapping, and 𝜗 are the parameters of the hOUwie model.  108 

Next, we describe the calculation of the probability of the underlying regime structure, 𝛾, 109 

that is the joint probability of discrete characters (𝐷) and stochastic mapping (𝑧). This calculation 110 

is analogous to the pathway likelihood of Steel and Penny (2000). To calculate the probability of 111 

discrete characters (𝐷) and stochastic mapping (𝑧) we use an approximation. Our approximation 112 

relies on a finite number of degree-2 internodes and uses the standard Chapman-Kolmgorov 113 

equation to calculate the probabilities of beginning in a particular state 𝑖 and ending in state 𝑗 114 

(Pagel 1994) and is identical to a joint probability of a set of state reconstructions (Yang 2006). 115 

As the number of internodes increase, the amount of time between nodes decreases and the 116 

approximation improves (Rao and Teh 2013). The joint probability of a regime structure and the 117 

discrete character i 118 

𝑃(𝐷, 𝑧|𝑄, 𝜓) 	= 	𝑃(𝑥0|𝑄, 𝜓)	N𝑃(𝑧ℓ|𝑄, 𝑇ℓ)
2/-

ℓ,-

, 119 

where 𝐐 the instantaneous rate matrix (𝐐 ∈ 𝜗), 𝜓 is the phylogeny, 𝑃(𝑥0|𝐐, 𝜓) is the root state 120 

probability (Pagel 1994; Yang 2006; Maddison et al. 2007),	𝑛 is the number of external nodes 121 

(tips), internal nodes, and internodes (degree-2 nodes) summed, ℓ indicates a particular branch, 122 

𝑃(𝑧ℓ|𝐐, 𝑇ℓ) = 	 𝑒𝐐4ℓ 	𝟙&, where 𝟙& is an indicator function which ensures that we only use the 123 

probability of states indicated by the specific the regime mapping instead of summing over all 124 

possible state combinations. The continuous character probability requires the discrete state(s) to 125 

be defined along the entire branch, thus we place transitions halfway between any two nodes.  126 

 For each set of parameters evaluated during the maximum likelihood search, a set of 127 

possible mappings of discrete states and continuous regimes are generated to evaluate the 128 



discrete and continuous likelihoods. Ideally, we would calculate the likelihood by summing 129 

across all possible reconstructions (note that we want the sum across the reconstructions, not the 130 

single reconstruction with highest likelihood). The number of such reconstructions is very large,  131 

nstates(2*number of taxa-2)(1+number of degree two internodes per edge), 132 

which is particularly daunting as the sum must be calculated anew for every unique examined set 133 

of parameter values as part of search. We found in early work where we did look at this 134 

exhaustively that a few mappings made up the vast majority of the total likelihood, so we set up 135 

the analysis to focus on calculating total likelihood given the highest probability mappings. 136 

To do this, we first approximate the conditional state probabilities at nodes. The 137 

conditional state probability, unlike the more common marginal reconstruction or joint state 138 

reconstruction (Pupko et al. 2000; Felsenstein 2004; Yang 2006), calculates the probability that a 139 

node has a particular state value conditioned only on the observations of its descendants. For a 140 

particular focal node, we calculate the probability of the observing all pairwise descendant values 141 

given the OU model parameters, integrated over all possible rootward node states, and observed 142 

tipward discrete states (Fig. 1). Although this is only an approximation of the conditional state 143 

probabilities, it proves to be an essential improvement over the typical procedure of sampling 144 

many stochastic maps based solely on the discrete process. Next, the conditional probabilities of 145 

states at nodes are sampled starting with the root. Once the root is sampled, descendent states are 146 

sampled based on both the conditional ancestral values and the sampled ancestral state. This is 147 

achieved by multiplying the conditional probability of the node states by the probability of 148 

starting in the sampled rootward ancestral value and ending in any of the tipward states (the latter 149 

is calculated using familiar matrix exponentiation methods; e.g., Pagel 1994). Finally, under 150 

usual stochastic mapping procedures we would use rejection sampling (Nielsen 2002; Rao and 151 



152 

Figure 1. A visual representation of the algorithm underlying the calculation of conditional node 
probabilities and the adaptive sampling procedure. The goal of the procedure is to produce 
underlying regime paintings well suited to both the discrete and continuous character. a) select 
the focal node for which we will be calculating the joint conditional probabilities of the discrete 
and continuous characters. b) on each side of the node we select a pair of tips. c) the conditional 
probability of the observed discrete and continuous character is calculated for each discrete 
regime state with an ancestral continuous value equal to 𝜃 of that regime state. d) the conditional 
probability of the focal node is calculated as the average probability of each regime state for all 
pairs of observed tips. e) the conditional probabilities are calculated for all internal nodes. This 
can be turned off within hOUwie by setting the sample_nodes argument to false. f) A stochastic 
map is generating using forward simulation rejection sampling. g) adaptive sampling uses the 
highest joint probability of previously generated underling regimes to generate a set of ancestral 
continuous character values. This differs from previous ancestral values because instead of 
assuming the value 𝜃 for each regime state, it calculates the expected value given the root state 
and regime mapping for that particular node. h) we repeat steps d) through g) until the joint 
likelihood of the set of underlying regimes does not improve. 

 



Teh 2013) to simulate a path between the sampled rootward and tipward nodes. However, for 153 

increased computational efficiency, we opt to place transitions at pre-defined internodes. After 154 

nodes and internodes are sampled in step two, mappings are evaluated to ensure consistency with 155 

the discrete model (i.e., impossible transitions do not occur) and branches are painted based on 156 

the sampled nodes with transitions occurring half-way between nodes (and remember that a 157 

single edge may have multiple internodes placed on it). 158 

 Our function for the joint probability of a continuous and a discrete character is, 159 

𝑃(𝑋, 𝐷|𝜗, 𝜓) = 	3𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓)𝑃(𝐷, 𝑧|𝜗, 𝜓),
5

 160 

where summing over all generated maps (𝑧), 𝑃(𝑋|	𝐷, 𝑧, 𝜗, 𝜓) is the probability of the continuous 161 

character (𝑋) given the discrete character data (𝐷), mapping (𝑧), hOUwie parameters (𝜗), and 162 

phylogeny (𝜓). 𝑃(𝐷, 𝑧|𝜗, 𝜓) is the joint probability of the discrete character data (𝐷) and 163 

stochastic mapping (𝑧) given the hOUwie parameters (𝜗) and phylogeny (𝜓). 164 

 165 

The hOUwie model space 166 

Our simulation studies examined 22 possible hOUwie model structures for a binary 167 

discrete character, although the possible number of models is significantly higher because any 168 

number of discrete characters and states can be modeled together. For the discrete component of 169 

the model, we assumed that transitions between the observed characters were equal. We 170 

constrained transitions between hidden states to be the same for observed states, but this 171 

constraint can be relaxed if desired. The continuous model structures allowable in hOUwie are a 172 

generalized form of those allowed in OUwie and now include models in which only 𝛼 varies 173 

(OUA), only 𝜎" varies (OUV), and combinations of an OU and BM process (OUBM1 and 174 

OUBMV). We note that the OUBM1 model within hOUwie differs from The Ornstein–175 



Uhlenbeck Brownian-motion (OUBM) model presented in Hansen et al. (2008) and Bartoszek et 176 

al. (2012) since the latter models are of multiple continuous characters, rather than different 177 

processes describing the same continuous character.  178 

 179 
Figure 2. A state-transition diagram describing the model classes allowable in hOUwie. Each 
panel is comprised of observed discrete states 0 and 1 with possible hidden states A and B. 
Transitions between states are described with the 𝑞 parameter. Continuous model parameters 
appear in a box below the states they describe, and their association is displayed with a subscript 
specific to that state. a) A simple character independent model in which the two observed states 
do not influence the continuous character which will have the same 𝜃, 𝜎", 𝛼 throughout the 
phylogeny. b) A character dependent model in which the continuous character depends on the 
discrete character by virtue of 𝜃, 𝜎", 𝛼 being associated with a particular observed discrete state. 
c) A character independent model with rate heterogeneity. The two observed states (0 and 1) are 
not directly linked to the continuous character. However, the continuous character is still allowed 
to have multiple  𝜃, 𝜎", 𝛼 describing its evolution, but these parameters are associated with 
hidden states A and B. d) A hybrid model in which each combined observed and hidden state is 
allowed to have its own 𝜃, 𝜎", 𝛼. Under this model, the continuous character is linked to both 
character dependent differences (parameters associated with 0 and 1) and character independent 
differences (A and B). Though this diagram shows a binary observed and hidden character, either 
can have more states (up to 26 states for each in theory, though few datasets will have enough 
power to estimate the necessary number of parameters). 



The potential model structures range from completely character-dependent to character-180 

independent. Character-dependent (CD) models are models in which any continuous OU 181 

parameter differs between observed discrete state, whereas character-independent models (CID) 182 

test whether observed discrete states can be described by the same OU parameters. There are two 183 

types of character-independent model (Fig. 2). First, character-independent models include 184 

structures where there are no differences between any OU parameters. Under this model the 185 

entire evolutionary history of the clade can be described by a single 𝛼, 𝜎", and 𝜃 (Fig. 2a). To 186 

combat this unrealistic assumption we introduce a character-independent model which allows for 187 

differences in the OU parameters to depend upon an unobserved hidden state (CID+) and has 188 

been shown to correct for the bias towards detecting correlation (Boyko and Beaulieu 2022). 189 

This addition allows for heterogeneity within the evolutionary process without the necessity of it 190 

being linked to a focal trait (Fig. 2c). In total we examine 22 unique model structures (2 CID, 10 191 

CD, and 10CID+).  192 

 193 

Simulation study 194 

For each of the 22 hOUwie model structures, we simulated 50 datasets for phylogenies of 195 

25, 100, and 250 taxa for a total of 3300 unique datasets. Phylogenies were pure birth 196 

phylogenetic trees with 𝜆 = 1, rescaled tree height to 1, and the root state was fixed to state 1. 197 

The parameters used to generate a phenotypic dataset depend on the structure of the generating 198 

model. For example, an OUM model and OU1 model can have identical 𝑞!$ , 𝛼, and	𝜎", but they 199 

must differ in 𝜃 or else OUM will collapse into OU1. The simulating parameters were chosen to 200 

match Beaulieu et al. (2012) with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- =201 

2, and	𝜃" = 0.75 (Fig. 3). Once a phylogeny and phenotypic dataset were simulated, we fit our  202 



models to assess parameter estimation accuracy and model selection power. Although this 203 

represents a small subset of the potentially vast parameter space available to OU models, the 204 

Figure 3. A visual representation of binary discrete character hOUwie model types. Discrete 
time forward simulations are conducted starting in the red state and the distribution of the 
continuous character is plotted on the right as a histogram and density plot. Each line represents 
a continuous character value at some time. Transitions occur at colored points and each line is 
colored by the current discrete state. 100 time-steps are simulated with the same parameters as 
our simulation study (𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75). 
The highlighted line was randomly chosen from the set in which at least one discrete state 
transition occurred.  
 



behavior of these models has been thoroughly characterized and thus we chose parameters within 205 

the range of typical identifiability (Beaulieu et al. 2012; Ho and Ané 2014a; Cressler et al. 2015). 206 

Additionally, because hOUwie uses a variable number of mappings, we evaluate changing the 207 

number of stochastic maps. We fit each model using 25, 100, and 250 stochastic mappings per 208 

likelihood evaluation. Each dataset was evaluated using the true generating model, a BM1, an 209 

OU1, and either the character-dependent or character-independent counterpart to the generating 210 

model. For example, if the data were simulated under a character-dependent OUM model where 211 

the value of 𝜃-and	𝜃" depend on the observed character, a character-independent OUM model 212 

would also be fit as part of the model set. Under the CID+ OUM model, a variable 𝜃 is still 213 

allowed, but it is unlinked to the focal character and thus should provide a more reliable 214 

character independent null hypothesis than BM1 or OU1 (Beaulieu and O’Meara 2016; Uyeda et 215 

al. 2018; May and Moore 2020; Boyko and Beaulieu 2022). 216 

 217 

The impact of climatic variables on seed dispersal 218 

For sedentary organisms, such as plants, dispersal is mainly limited to a brief stage of 219 

their life cycle and mediated mainly through the movement of seeds (Levin et al. 2003). 220 

Generally, the expectation is that seeds dispersed by frugivores are going to be dispersed to 221 

environments more like their parents’ environment, whereas abiotically dispersed seeds are 222 

likely to be more erratic in their dispersal patterns (Schupp 1993; Westoby et al. 1996). 223 

Furthermore, it has been proposed that adaptations for frugivorous dispersal is linked to tropical 224 

and subtropical biomes, because in these warmer and wetter habitats, large trees create shady 225 

environments where competition for light is more important. A shadier habitat then imposes a 226 

selective pressure for larger seeds because more nutrients are needed for germination and initial 227 



survival (Foster and Janson 1985). However, the evolution of larger seeds comes with a tradeoff 228 

as they have a significantly lower dispersal potential (Howe and Smallwood 1982). Thus, we 229 

might expect that the climatic variables of a habitat influence the probability of transitioning 230 

between abiotic and biotic modes of dispersal, with transition rates from abiotic to biotic being 231 

greater in less arid environments.  232 

Here we use dry or fleshy fruit morphology as a proxy for abiotic or biotic seed dispersal 233 

(Lorts et al. 2008) to evaluate three predictions outlined in Vasconcelos et al. (2021), but 234 

specifically measuring the aridity index. First, we expect that the climatic optima for fleshy fruits 235 

will be more humid compared to dry fruits (θ678 < θ9:;<=8). Second, we expect that dry fruits 236 

will have faster rates of climatic niche evolution (σ678" > σ9:;<=8" ). Finally, we expect that the 237 

climatic niches of fleshy fruits will be more conserved through time (α678 < α9:;<=8). We apply 238 

several hOUwie models to test these hypotheses and compare our results to those discussed in 239 

Vasconcelos et al. (2021). We expect that any differences found between this study and 240 

Vasconcelos et al. (2021) are because we can explicitly account for the joint probability of the 241 

discrete and continuous characters. We focus our attention on Ericaceae specifically because 242 

Vasconcelos et al. (2021) found two counter-intuitive results. Namely, they found that the 243 

phenotypic optima of dry fruits were more humid than fleshy fruited lineages, and that the rate of 244 

climatic evolution was greater in fleshy fruits than dry fruits.  245 

We included 25 hOUwie models within our model set: 2 CID, 10 CD, 10 CID+, and 3 246 

HYB. Gaultheria is technically a dry-fruited genus within Ericaceae but has a persistent fleshy 247 

calyx that attracts frugivores (Stevens et al. 2004). However, since we are interested in the 248 

association between dispersal and fruit type, we code this as fleshy fruited within our dataset. 249 

Models are evaluated using the sample size corrected Akaike Information Criterion (AICc) and 250 



model averaging is conducted when discussing how our results relate to our hypotheses 251 

(Burnham and Anderson 2002). Measurement error is included for each model fit as within 252 

species variance (the sample-sized weighted average of the individual species variances 253 

following Labra et al. (2009) and Vasconcelos et al. (2021)). We evaluate then model averaged 254 

parameter estimates of 𝜃, 𝜎", and 𝛼 for fleshy and dry fruited lineages, as they relate to our 255 

hypotheses and compare our results to Vasconcelos et al. (2021). Finally, we conduct a 256 

parametric bootstrap of 100 simulated datasets to evaluate the standard error of our model 257 

averaged parameter estimates. 258 

 259 

Results 260 

Simulation study 261 

For character-independent (CID) models, our heuristic adaptive sampling algorithm, 262 

which uses information from the discrete and continuous characters to guess at mappings, 263 

consistently produced more probable mappings than using purely discrete mappings for all 264 

models examined. On average, adaptive sampling produced mappings which were roughly 38 265 

log likelihood units better than purely discrete sampling when examining joint probabilities. This 266 

was driven primarily by the improved continuous probabilities which were on average 38.4 log 267 

likelihood units better. In contrast, the discrete probability of each mapping was similar with 268 

discrete-only simulations producing maps that were on average 0.39 log likelihood units better 269 

(Table 1; Fig. S1). For character-dependent models, the difference was negligible (not shown). 270 

This is because when the discrete and continuous character are strongly linked, discrete-only 271 

mappings will match the continuous character’s distribution quite well.  272 

 273 



Table 1. A comparison of the effectiveness of the adaptive sampling procedure and standard 274 
discrete only sampling of maps. Regardless of the sampling procedure, all probabilities are 275 
calculated in the same way and so any differences in probabilities reflects each procedure’s 276 
ability to generate appropriate mappings. 50 regime mappings are used to calculate the likelihood 277 
of the parameters. A higher loge likelihood is better (that is, -16.43 is better than -16.48; 10.54 is 278 
better than 9.19)For each model type, data are simulated following our methods with 𝑞!$ =279 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75. The generating parameters are 280 
used to evaluate probability of each dataset and thus the probabilities represented here are not 281 
necessarily the same as those derived from the MLE. Generally, adaptive sampling improves the 282 
joint estimate by improving the probability of the continuous character and is most effective for 283 
variable 𝜃 models. As expected, discrete only sampling produces regime paintings which better 284 
reflect the discrete character than adaptive sampling, but the difference is minor. 285 

Model 
class 

Model type Sampling 
procedure 

Discrete marginal 
𝑙𝑜𝑔,	likelihood 

Continuous marginal 
𝑙𝑜𝑔,	likelihood 

Joint 𝑙𝑜𝑔, 
likelihood 

C
ID

+  

BMV  adaptive sampling -16.48 10.54 -10.59 
discrete only -16.43 9.19 -10.59 

OUA  adaptive sampling -15.46 44.34 25.14 
discrete only -15.53 43.11 24.96 

OUV adaptive sampling -30.89 47.86 12.17 
discrete only -30.14 46.00 12.11 

OUVA  adaptive sampling -11.88 36.91 21.14 
discrete only -11.17 36.27 21.08 

OUM adaptive sampling -11.94 57.57 39.08 
discrete only -11.19 53.56 32.21 

OUMA adaptive sampling -9.94 35.01 17.39 
discrete only -9.38 2.19 -20.48 

OUMV adaptive sampling -19.96 20.77 -15.64 
discrete only -14.76 -2.92 -25.83 

OUMVA adaptive sampling -13.91 25.47 7.48 
discrete only -13.23 26.36 4.48 

OUBM1 adaptive sampling -14.26 42.20 24.39 
discrete only -14.88 40.89 24.22 

OUBMV adaptive sampling -19.17 49.10 18.84 
discrete only -19.01 33.45 7.71 

 286 

 287 

 288 

 289 

 290 



Table 2. The average accuracy of hOUwie parameter estimates across several model classes and 291 
types as measured by root-mean-square error (RMSE). RMSE is calculated for each model type 292 
by taking the square root of the mean squared error (MSE), where MSE is the average squared 293 
difference between the MLE and the simulating parameters. Data is generated with 𝑞!$ =294 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75, and for phylogenies with 25, 295 
100, and 250 taxa. Finally, model fits use either 25, 100, or 250 stochastic maps per likelihood 296 
iteration. The table shown here calculates RMSE integrating over all phylogenetic tree sizes and 297 
number of stochastic maps (n=8217). Dashes indicate a parameter that is not estimated for a 298 
given model type. Generally, character independent (CID+) models had higher errors than 299 
character dependent (CD) models. The greatest errors occurred when estimating alpha in variable 300 
alpha models for both CD and CID+ model classes. Estimates of the optimum and transition 301 
rates generally had the lowest errors. 302 

Model 
class 

Model 
type 

RMSE 
𝑞 

RMSE 
𝛼! 

RMSE 
𝛼" 

RMSE 
𝜎!" 

RMSE 
𝜎"" 

RMSE 
𝜃! 

RMSE 
𝜃" 

C
D

 

BMV 0.12 - - 0.10 0.28 0.22 - 
OUV 0.11 1.27 - 0.15 0.33 0.05 - 
OUA 0.12 1.55 1.63 0.11 - 0.06 - 
OUM 0.13 1.49 - 0.10 - 0.07 0.13 
OUVA 0.09 1.44 1.11 0.14 0.98 0.06 - 
OUMV 0.16 1.82 - 0.16 0.32 0.07 0.17 
OUMA 0.15 2.11 2.48 0.28 - 0.12 0.50 
OUMVA 0.18 1.62 1.12 0.12 1.07 0.76 1.06 
OUBM1 0.1 2.64 - 0.08 - 0.08 - 
OUBMV 0.09 2.29 - 0.13 2.37 0.08 - 

C
ID

+ 

BMV 0.05 - - 0.27 10.11 0.24 - 
OUV 0.04 1.13 - 0.32 1.83 0.05 - 
OUA 0.05 2.93 1.34 0.33 - 0.07 - 
OUM 0.09 2.53 - 0.15 - 0.44 0.20 
OUVA 0.05 1.26 1.11 0.27 13.44 0.07 - 
OUMV 0.1 2.50 - 0.16 2.12 1.30 0.68 
OUMA 0.05 8.28 1.27 0.23 - 5.88 0.8 
OUMVA 0.07 5.54 1.24 0.20 9.37 8.76 1.35 
OUBM1 0.05 3.33 - 0.32 - 0.14 - 
OUBMV 0.05 3.50 - 0.27 8.79 0.14 - 

 303 

Most character-dependent models (CD) had lower overall deviations from the generating 304 

model across all model types. The RMSE was largest for alpha at 1.76 and 1.65 (if variable 305 

alpha) and errors were generally higher for more complex models. All other parameters had 306 

relatively similar RMSE, ranging from 0.1 for discrete the rate to 0.75 for 𝜎"". The BMV (BM 307 

with variable 𝜎), OUV (OU with variable 𝜎), OUA (OU with variable 𝛼), and OUM (OU with 308 



variable 𝜃) models generally had the lowest errors, but there were some biases present (Table 2). 309 

Most notably, alpha was biased upwards for OUM and OUV models and under variable alpha 310 

models (OUA, OUMA, OUVA, OUMVA), the difference between the alpha estimates tended to 311 

be larger than the generating parameter difference. The more complex models had larger error 312 

variances but showed similar biases as the simple models. Finally, OUBM models showed a 313 

significantly downward biased 𝛼, suggesting BM like processes (Fig. S2). 314 

Character-independent models with rate heterogeneity models generally performed well 315 

in terms of parameter estimates, but as expected, due to their inherit uncertainty, CID+ models 316 

had larger errors than CD models. The largest error was estimates of 𝜎""which had an RMSE of 317 

8.5, although the median error value was only 0.03, suggesting that the large RMSE is driven by 318 

a long rightward tail of the estimates. Like CD models, 𝛼- and 𝛼" consistently showed the 319 

largest RMSE at 3.6 and 1.2. In general, 𝛼 was underestimated with medians of -0.4 and -1.4 320 

below the simulating values of 3 and 1.5. This means that models for CID+ models tended to be 321 

more BM like even under an OU generated data (Fig. S2). Increasing the number of taxa 322 

examined improved both CD and CID+ performance. The RMSE for 𝛼 was nearly cut in half 323 

between when moving from 25 tips to 250 tips from 5.2 to 2.8 under CID+ models (Table 3). 324 

Nonetheless, some parameters continued to be estimated poorly, such as 𝜎"". Interestingly, 325 

increasing the number of stochastic maps improved CID+ performance, but did not substantially 326 

improve estimation under CD models (Fig. S2c).  327 

 328 

 329 

 330 



Table 3. Average AIC weight as the number of taxa increases for each model class. Gray cells 331 
indicate the AIC weight of the generating model class. In general, as the number of taxa 332 
increases the average support for the generating model class increases. 333 

Generating 
model class 

nTaxa AICwt BM1 AICwt OU1 AICwt CD AICwt CID+ 
C

D
 25 0.12 0.22 0.51 0.15 

100 0.06 0.22 0.70 0.02 
250 0.02 0.14 0.82 0.02 

C
ID

+ 25 0.28 0.35 0.24 0.14 
100 0.21 0.4 0.23 0.15 
250 0.11 0.34 0.32 0.22 

 334 

Generally, evidence of CD when it was the generating model was consistent across all 335 

model types. The lowest support for the OUA and OUBM1 models at an average AICwt of 0.31 336 

and 0.13. For complex models, such as OUMVA, model support for was 0.81 and highest for 337 

OUMV at 0.97. CID+ models fared worse in terms of generating consistent support even when 338 

they were the generating model. Models which were difficult to estimate under character 339 

dependence were difficult to find consistent support for under character independence. The most 340 

extreme case was OUA model for which CID+ model was never chosen as the best supported 341 

model. However, models which performed well for CD tended to perform well under CID+. For 342 

example, OUM models garnered consistent support when with an average AICwt of 0.733 343 

(Table S1; Fig. S3). While the best model under AICc need not be the generating model (for 344 

example, for a small dataset a simpler model may lose less information than the generating 345 

model) given the size of the simulated trees and distinctness of the models we expect the 346 

generating model to generally be the best. 347 

For both CD and CID+ models, support improved when increasing the number of tips 348 

analyzed. Support for a CD model when CD was the generating model increased from 𝑤>? =349 

0.5 to 𝑤>? = 0.67	to 𝑤>? = 0.79 for 25, 100, 250 tips and support for a CID+ model when it 350 

was the generating model increased from 𝑤>@?A = 0.11	to 𝑤>@?A = 0.15 to 𝑤>@?A = 0.22 351 



(Table 3). Similarly, increasing the number of regime maps generally improved the fit, but not as 352 

much as increasing the number of tips. We found that the false evidence of correlation (as 353 

measured by the average AICwt of a character-dependent model when character-independence 354 

was the generating model) was generally not an issue for variable 𝜃 models (OUM*). Variable 𝜃 355 

models had average AICwts for false character-dependence ranging from 0.03 to 0.23 and for 356 

none of our simulations models was a CD model best supported. Under a simple OUM model, 357 

CID+ models helped correct any potential bias with an average AICwt of 0.68. However, false 358 

evidence of correlation was an issue for variable 𝜎!"and 𝛼! models. False support for CD as 359 

measured by AIC weight ranged from 0.34 to 0.44 when 𝜃 was fixed and 𝛼! and/or 𝜎!" varied. 360 

Although CID+ models did not garner much support when these models were fit, OU1 and BM1 361 

models served as reasonable null hypotheses in these cases. In general, we found that when CID 362 

models were the generating model, evidence of CID was strongest and when CD models were 363 

the generating model, evidence of character dependence was strongest. This suggests that the 364 

effect of rate heterogeneity causing false correlations is not as pronounced as other comparative 365 

methods (Maddison and FitzJohn 2015; Rabosky and Goldberg 2015). 366 

 367 

Seed dispersal and climatic evolution 368 

We found evidence of a character-dependent model over either a simple or hidden state 369 

character-independent model, suggesting a link between the climatic niche of Ericaceae lineages 370 

and their fruit type (Table S2). The best supported models were OUMVA and OUVA with AIC 371 

weights of 0.41 and 0.32 respectively. This suggests that there were character dependent 372 

differences in phenotypic optima, rates of evolution, and overall phylogenetic signal. To evaluate 373 

support for our hypotheses we examined the model averaged parameter estimates (Table 4). The 374 



estimated optimum 0.81 𝑙𝑛(𝐴𝐼)	(± 0.28) for fleshy fruits suggests a more arid environment for 375 

their optimal habitat, and the 0.97 𝑙𝑛(𝐴𝐼) (± 0.011) of dry fruits corresponds to a more humid 376 

environment (Middleton and Thomas 1997), where AI is measured as mean annual precipitation 377 

(P) dived by average annual potential evapotranspiration (PET). However, both optima 378 

correspond to non-dryland humid environments. Both 𝜎"and 𝛼 interact to create tip variance, so 379 

in addition to 𝜎", we measured the stationary variance 𝑉 = B.

"'
. As predicted, we found that 380 

Ericaceae lineages with dry fruits were more variable in their climatic niche evolution (𝜎CDE" =381 

0.011	𝑙𝑛(𝐴𝐼)"𝑀𝑌/-, 𝑉CDE = 0.37	𝑙𝑛(𝐴𝐼)") compared to fleshy fruits (𝜎FGH(IE" =382 

0.007	𝑙𝑛(𝐴𝐼)"𝑀𝑌/-, 𝑉FGH(IE = 0.15	𝑙𝑛(𝐴𝐼)"). Additionally, the strength of pull of fleshy fruited 383 

lineages was greater than dry fruited lineages (𝛼FGH(IE = 0.022𝑀𝑌/- 	> 	𝛼CDE = 0.014𝑀𝑌/-). 384 

This corresponds to phylogenetic half-lives of 𝑡-
"J ,CDE = 46.4	MY	and 𝑡-

"J ,FGH(IE = 30.3	MY 385 

which are 38% and 25% of the total tree height respectively. Transitions to fleshy fruit occurred 386 

at 0.0015 transitions per million years which is more than 4.3 times faster than transitions to dry 387 

fruits (0.0004 transitions per million years). The waiting time n-
K
o of fleshy fruits (2,500	𝑀𝑌) 388 

was substantially longer than that of dry fruits (667	𝑀𝑌). Given that the total branch length in 389 

the tree is 10,120	𝑀𝑌, we expect that lineages were typically under the fleshy fruit regime and 390 

evolving towards a preference for more humid environments. Perhaps for this reason we found 391 

that, on average, lineages were in more arid environments than predicted by the model (average 392 

difference of 0.19 AI), with some species expected to be in much more humid environments 393 

(difference between current AI and optimal AI ranged from -4.4 to 0.85).  394 



 395 

 396 
Table 4. Model averaged parameter estimates and standard errors for Ericaceae aridity index and 397 
fruit type data. Models with higher AIC weights contribute more overall to the parameter values. 398 

The units for 𝛼, 𝜎", and 𝜃 are L
LM4

 ÷ 𝑡𝑖𝑚𝑒, n L
LM4

o
"
, and L

LM4
 respectively. P is the average annual 399 

precipitation and PET is average annual potential evapotranspiration. Rates of 𝑞 are measured in 400 
transitions per million years.  401 

Continuous parameter estimates 
Discrete parameter estimates  𝛼 𝜎" 𝜃 

Dry 0.015 
(±0.0059) 

0.011 
(±0.0043) 

0.97 
(±0.011) 

𝑞#$%	'(	)*+,-% 0.0015 
(±0.00058) 

Fleshy 0.023 
(±0.011) 

0.007 
(±0.002) 

0.81 
(±0.28) 

𝑞)*+,-%	'(	#$% 00036 
(±0.000086) 

 402 
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Figure 4. a) Ericaceae phylogeny for which we had data (n=309). b) Ln aridity index dataset 
where each bar is colored by dry (brown) and fleshy (green) fruit type. c) Model averaged 
parameter estimates with standard error calculated from 100 parametric bootstraps.  
 



Discussion 404 

Phylogenetic comparative methods have been widely applied to study discrete and 405 

continuous characters separately. Due primarily to computational limitations there are few 406 

options which jointly evaluate both classes of character. The hOUwie framework proposed here 407 

overcomes these limitations, and we demonstrate how it is used to test hypotheses of correlated 408 

evolution between discrete and continuous characters while accounting for hidden character 409 

states and unobserved variation. Our model jointly models discrete and continuous characters by 410 

linking both via a common regime painting. However, unlike other similar methods, our 411 

likelihood formula explicitly calculates the probability of the underlying regimes. This has the 412 

advantage of describing the discrete character evolution probabilistically and allows information 413 

from the discrete and continuous characters to jointly contribute to the overall likelihood.  414 

 415 

Relationship to existing methods 416 

Considerable progress has been made towards more realistic models of continuous 417 

character evolution within the last two decades. Continuous character models which initially 418 

relied on either single rate Brownian motion or simple Ornstein-Uhlenbeck models (Felsenstein 419 

1985; Hansen 1997) have seen several extensions to allow for heterogeneity in the evolutionary 420 

process as well as the deterministic influence of underlying independent variables. Generally, 421 

these models can be classified as either being “hypothesis driven” or “data driven” (Martin et al. 422 

2022). Hypothesis driven models are those which require a priori hypotheses regarding where 423 

evolutionary rates may differ throughout the phylogeny. These include models which have 424 

extended simple single-rate BM to incorporate rate variation based on discrete regime mappings 425 

(e.g., O’Meara et al. 2006; Thomas et al. 2006; Revell and Collar 2009; Caetano and Harmon 426 



2017) or more generalized Ornstein-Uhlenbeck models where parameters are allowed to vary 427 

based on an underlying regime mapping (e.g., Butler and King 2004; Bartoszek et al. 2012; 428 

Beaulieu et al. 2012). In contrast, several methods have focused on the development of data 429 

driven, shift-detection methods (which may indeed be used in testing hypotheses, but these 430 

hypotheses are not directly used in creating the regime map). These methods utilize an Ornstein-431 

Uhlenbeck process to automatically detect where in the phylogeny evolutionary rates and 432 

phenotypic optima shift (Ingram and Mahler 2013b; Uyeda and Harmon 2014; Khabbazian et al. 433 

2016; Bastide et al. 2017). Furthermore, some recently developed methods have allowed for rate 434 

variation without the assumption of constant regimes at all. Instead, these models assume the 435 

rates themselves evolve and change throughout the phylogeny under various Brownian motion-436 

like processes (Lemey et al. 2010; Eastman et al. 2013; Revell 2021; Martin et al. 2022) or single 437 

optima Ornstein-Uhlenbeck processes (Hansen et al. 2008; Mitov et al. 2019). The method 438 

presented here is most like the latter group. hOUwie attempts to explicitly model the evolution of 439 

rate shifts according to regimes which jointly influence discrete and continuous character 440 

evolution. The regimes themselves are never fixed a priori and each is evaluated as a partial 441 

contribution to the overall probability of the data. The advantage of this approach is that it 442 

acknowledges the uncertainty in the underlying regime paintings and allows them to change 443 

through time.  444 

Additionally, unlike hOUwie, the “hypothesis driven” or “data driven” models do not 445 

explicitly account for the joint modeling of the discrete and continuous characters. Most progress 446 

in this area has, until recently, been made via phylogenetic logistic regressions (Ives and Garland 447 

2010) or threshold models in which the discrete character is modeled by a continuously varying 448 

unobserved lability (Felsenstein 2012; Revell 2014; Cybis et al. 2015). However, these models 449 



rely on more simplistic evolutionary models without character independent rate heterogeneity 450 

(such as single rate Brownian motion). This lack of character independent rate heterogeneity has 451 

recently been recognized as a potential source of inflated correlation between discrete and 452 

continuous characters. Such was the reasoning for the MuSSCRat model (May and Moore 2020). 453 

Like hOUwie, MuSSCRat allows for character-independent rate heterogeneity following a 454 

multiple rate Brownian motion model to be directly contrasted against character correlation to 455 

correct for potential biases towards correlation. However, the way the underlying discrete 456 

character is calculated in hOUwie, as well as how rate heterogeneity is modeled, differs 457 

substantially from May and Moore (2020). Finally, Tribble et al. (2021) has recently developed a 458 

method which is similar to the one presented here. One of the primary differences between 459 

hOUwie and the Bayesian pipeline discussed in Tribble et al. (2021) is how discrete character 460 

evolution is treated. Specifically, Tribble et al. (2021) assumed that character-independent 461 

mappings are generated under the same parameters which best fit their focal discrete character. 462 

In contrast, hOUwie allows the free estimation of character-independent discrete rates which best 463 

fit both discrete and continuous data. This difference may lead to biases against null models in 464 

the Tribble et al. (2021) approach since the character-independent regimes are forced to follow a 465 

character-dependent discrete model.  466 

 467 

Character-independent models and null hypotheses 468 

There is a growing appreciation that comparing constant-rate null models to variable-rate 469 

alternative models will consistently favor rate heterogeneity, regardless of whether there is a 470 

genuine association with a focal variable (Maddison and FitzJohn 2015; Rabosky and Goldberg 471 

2015; Beaulieu and O’Meara 2016; Uyeda et al. 2018; O’Meara and Beaulieu 2021; Boyko and 472 



Beaulieu 2022). This problem, termed the “straw-man effect” by May and Moore (2020), has 473 

been demonstrated to lead to nearly 100% error rates for evidence of discrete character 474 

correlation (Maddison and FitzJohn 2015; Boyko and Beaulieu 2022), and has severely biased 475 

evidence towards state-dependent speciation and extinction (Rabosky and Goldberg 2015; 476 

Beaulieu and O’Meara 2016). Given these often-overwhelming error rates in other comparative 477 

methods, we expected to find a similarly consistent bias towards correlation between discrete and 478 

continuous characters. However, we found that support for single rate character-independent null 479 

models was greater than character-dependent models even when simulated under character-480 

independent models with rate heterogeneity. Although the inclusion of explicit multi-rate 481 

character independent models (CID+) models did help reduce evidence of false correlation in 482 

some cases, by and large, simplistic null models performed admirably. This is not to say that the 483 

error rates for discrete and continuous character correlation should be dismissed outright. If our 484 

simulations correctly assess that nearly one-third of results find false evidence of a correlation 485 

between continuous character rates of evolution and discrete characters, then better null models 486 

are certainly needed. But, in comparison to the profound effect that model misspecification has 487 

had in other comparative analyses (Beaulieu and O’Meara 2016; Boyko and Beaulieu 2022), the 488 

joint models tested here have substantially lower error rates. 489 

We suspect that part of the reason that the correlation between discrete and continuous 490 

characters is less susceptible to “straw-man” effects than other PCMs is related to the 491 

inefficiency of sampling potential maps from the univariate stochastic mapping model. A 492 

common approach to fitting OU models involves simulating many stochastic maps to represent 493 

underlying regimes from parameters estimated only from the discrete character (Revell 2013). 494 

The resulting distribution of underlying regimes will therefore reflect a distribution appropriate 495 



for the discrete character, but not necessarily suitable for the continuous character. This is 496 

especially true if the continuous character is unlinked to the focal discrete character. Indeed, we 497 

found that if the discrete and continuous characters are unlinked, most stochastic maps, even 498 

though good descriptions of the discrete characters, were completely inadequate representations 499 

of continuous regimes. Thus, any joint model with these maps contributed little to the overall 500 

likelihood. Under our simulation protocol, for a typical run, 90% of the total likelihood for the 501 

best set of parameters came from just 2% of the attempted maps.  502 

In some ways the substantial contributions of only a few underlying regimes to the 503 

overall likelihood is good. First, it makes spurious links between a randomly distributed discrete 504 

character and a continuous character more unlikely since associations between regimes and 505 

continuous variables tend to be specific. This ultimately reduces the potential “straw-man” 506 

effect. Second, the continuous characters can inform the placement of shared regimes and 507 

therefore shift detection methods, where the continuous data are all that provides information 508 

about regimes shifts (Ingram and Mahler 2013; Uyeda and Harmon 2014; Khabbazian et al. 509 

2016; Bastide et al. 2017), may be appropriate across a broad range of scenarios. However, this 510 

property also makes sampling a good set of regimes to get an accurate estimate of the likelihood 511 

difficult and is why the development of our adaptive sampling heuristics was necessary. 512 

Adaptive sampling, in combination with our approximation of the joint conditional distributions, 513 

helped make parameter estimation more accurate. Increasing the amount of sampled regime 514 

mappings is useful in improving precision (Fig. S1), at the cost of longer run time. 515 

 516 

 517 

 518 



Interplay of continuous, discrete, and hidden traits 519 

In many studies that deal with the correlation of discrete and continuous traits, it is often 520 

assumed that the discrete trait functions as the independent trait and the continuous trait as the 521 

dependent trait. This assumption is baked into methods that map the discrete trait first and then 522 

analyze the continuous trait given these mappings, but it would be easy to fall into this form of 523 

thinking even with hOUwie, which does not have this assumption. Instead, hOUwie can help 524 

understand whether and how traits are correlated. For example, one could see if mammal body 525 

size correlates with trophic level: are hypercarnivores larger on average than herbivores? It could 526 

be that an herbivorous (discrete character) beaver evolves a taste for meat and then grows bigger 527 

(continuous character) so it can take down bigger prey; it could be that once things get to be the 528 

size of a bison (continuous character) they start adding more and more rodents to their diet, 529 

eventually becoming carnivores (discrete character). Causality can go both directions, and of 530 

course both traits may be evolving based on some other third trait and not functionally related to 531 

each other.  532 

hOUwie is part of a series of hidden state models developed by our research groups (i.e., 533 

Beaulieu et al. 2013; Beaulieu and O’Meara 2016; Caetano et al. 2018; Boyko and Beaulieu 534 

2021, 2022; Vasconcelos et al. 2022). One misconception we have noted in use of these methods 535 

is the thought that there is a single, discrete, hidden character in the biology. These models do 536 

model a single hidden character (with potentially many states), but this could be reflecting 537 

multiple characters evolving together or other factors that change in a heritable manner through 538 

time. It is a way to allow heterogeneity, especially by factors that vary by clades. With hOUwie, 539 

this heterogeneity can affect the discrete trait, the continuous trait, both, or neither.  540 

 541 



Seed dispersal and climatic niche evolution in Ericaceae 542 

Here we revaluated three hypotheses related to climatic niche evolution and seed 543 

dispersal and found that: (1) the climatic optima of dry fruits was more humid than fleshy fruits 544 

(𝜃FGH(IE < 𝜃CDE), (2) lineages with dry fruits had faster rates of climatic niche evolution (𝜎CDE" >545 

𝜎FGH(IE" ), and (3) climatic niches of fleshy fruits are more conserved through time (𝛼CDE <546 

𝛼FGH(IE). In contrast to previous findings, the higher rate and stationary variance of climatic niche 547 

evolution for dry seeds matched our original hypothesis (Vasconcelos et al. 2021). This is to be 548 

expected because abiotically dispersed seeds are likely to be more erratic in their dispersal 549 

patterns (Schupp 1993; Westoby et al. 1996). Additionally, that our results differ from previous 550 

findings (Vasconcelos et al. 2021) suggests that jointly modeling climatic niche evolution 551 

alongside fruit type changed our parameter estimation in a meaningful way.  552 

Our final hypothesis, which stated that fleshy, biotically dispersed, seeds are more likely 553 

to be associated with humid environments, was not supported. However, it has been suggested 554 

that a trade-off between seed persistence, seed size, and dispersal strategies can be also common 555 

in arid environments (Venable and Brown 1988; Nunes et al. 2017). Specifically, large seed size 556 

may occasionally help withstand unfavorable conditions associated with increased aridity (Nunes 557 

et al. 2017). With an increased seed size, biotic seed dispersal and fleshy fruits, may become 558 

necessary for seed dispersal. This may be the case for Styphelieae, which is distributed in the 559 

arid Australian heathland and, of all predominately fleshy-fruited groups, lies the furthest from 560 

the inferred aridity optima. Additionally, it has been found that the proportion of abiotically 561 

dispersed seeds increases as elevation increases, due to the decreasing availability of frugivores 562 

(Chapman et al. 2016). Given that several radiations of Ericaceae lineages are associated with 563 

montane habitats (Schwery et al. 2015), it may be that the distribution of dry and fleshy fruits are 564 



a consequence of elevation rather than being directly linked to climatic niche evolution. Finally, 565 

it has been noted Ericaceae lineages are often found in well-leached soils and epiphytic habitats 566 

(Schwery et al. 2015). If associations with soil type are more important than links to climatic 567 

optima, we may expect that fruit-dependent climatic optima are consequence of unmodeled 568 

factors. Although our modeling explicitly considers hidden variables that may lead to rate 569 

heterogeny, if the proposed hidden variable (soil condition) is closely linked to our modeled 570 

variable (aridity), then we may not be able to detect the presence of hidden variation. This may 571 

be the case between soil condition and aridity (Moreno-Jiménez et al. 2019). 572 

 573 

Caveats and possible extensions 574 

There are three important caveats to our proposed modeling framework. First, our 575 

discrete mapping probability, 𝑃(𝐷, 𝑧|𝜗, 𝜓), is only an approximation. What we calculate is the 576 

probability of starting in a particular state 𝑖 and ending a particular state 𝑗, summed over all 577 

possible paths. However, the continuous model probability is based off a particular pathway 578 

history that is defined throughout the entire branch (Hansen 1997). Ultimately, this means that 579 

the underlying regimes are not treated identically for the continuous and discrete characters. The 580 

second caveat is that we do not force hOUwie to sum over all possible mappings 𝑧. This is 581 

because the number of mappings will grow exponentially as the number of nodes and internodes 582 

increases and the computation will quickly become infeasible (see Jones et al. 2020). Although 583 

this may not be entirely necessary since we have shown that only a small percentage of possible 584 

mappings contribute to the overall joint probability. Nonetheless, an ideal solution could be the 585 

use Markov-Modulated Ornstein-Uhlenbeck models (Huang et al. 2016) since this would remove 586 

the need for a regime mapping approach, but these have yet to be applied in phylogenetic 587 



comparative biology. hOUwie currently only deals with one discrete and one continuous trait at a 588 

time – a set of discrete traits can be handled by converting them to a single multistate character, 589 

but incorporating multiple continuous traits requires adding correlations between them. Finally, 590 

it is possible to extend hOUwie to include state-dependent speciation and extinction dynamics 591 

which have been shown to influence the distribution of discrete characters (Maddison 2006) and 592 

would therefore influence continuous characters if the two were linked. However, this extension 593 

would require a different calculation of the underlying regime mapping probability. Approaches 594 

for stochastically mapping SSE models already exist (Freyman and Höhna 2019), so the largest 595 

remaining challenge of this extension would be generating high joint probability mappings. 596 

 597 

Concluding remarks 598 

The use of pre-defined discrete character mappings can be useful for testing hypotheses 599 

which rely on distinct, well-defined differences in the evolutionary histories of lineages. 600 

However, this approach assumes that the underlying mapping is known with complete accuracy 601 

and ignores the probabilistic nature of discrete regimes. hOUwie’s methodology integrates over 602 

the uncertainty of high probability character mappings and relies on the interpretation of 603 

parameter estimates from contrasting model structures to find evidence for hypotheses. Rather 604 

than assuming an a priori mapping, hOUwie can utilize the mutual information about the 605 

discrete and continuous characters to learn something about the underlying regimes evolution.  606 

  607 



Tables 608 

 Table 1. A comparison of the effectiveness of the adaptive sampling procedure and standard 609 
discrete only sampling of maps. Regardless of the sampling procedure, all probabilities are 610 
calculated in the same way and so any differences in probabilities reflects each procedure’s 611 
ability to generate appropriate mappings. 50 regime mappings are used to calculate the likelihood 612 
of the parameters. A higher loge likelihood is better (that is, -16.43 is better than -16.48; 10.54 is 613 
better than 9.19)For each model type, data are simulated following our methods with 𝑞!$ =614 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75. The generating parameters are 615 
used to evaluate probability of each dataset and thus the probabilities represented here are not 616 
necessarily the same as those derived from the MLE. Generally, adaptive sampling improves the 617 
joint estimate by improving the probability of the continuous character and is most effective for 618 
variable 𝜃 models. As expected, discrete only sampling produces regime paintings which better 619 
reflect the discrete character than adaptive sampling, but the difference is minor. 620 
 621 

Model 
class 

Model type Sampling 
procedure 

Discrete marginal 
𝑙𝑜𝑔,	likelihood 

Continuous marginal 
𝑙𝑜𝑔,	likelihood 

Joint 𝑙𝑜𝑔, 
likelihood 

C
ID

+  

BMV  adaptive sampling -16.48 10.54 -10.59 
discrete only -16.43 9.19 -10.59 

OUA  adaptive sampling -15.46 44.34 25.14 
discrete only -15.53 43.11 24.96 

OUV adaptive sampling -30.89 47.86 12.17 
discrete only -30.14 46.00 12.11 

OUVA  adaptive sampling -11.88 36.91 21.14 
discrete only -11.17 36.27 21.08 

OUM adaptive sampling -11.94 57.57 39.08 
discrete only -11.19 53.56 32.21 

OUMA adaptive sampling -9.94 35.01 17.39 
discrete only -9.38 2.19 -20.48 

OUMV adaptive sampling -19.96 20.77 -15.64 
discrete only -14.76 -2.92 -25.83 

OUMVA adaptive sampling -13.91 25.47 7.48 
discrete only -13.23 26.36 4.48 

OUBM1 adaptive sampling -14.26 42.20 24.39 
discrete only -14.88 40.89 24.22 

OUBMV adaptive sampling -19.17 49.10 18.84 
discrete only -19.01 33.45 7.71 

 622 
 623 

  624 

 625 



Table 2. The average accuracy of hOUwie parameter estimates across several model classes and 626 
types as measured by root-mean-square error (RMSE). RMSE is calculated for each model type 627 
by taking the square root of the mean squared error (MSE), where MSE is the average squared 628 
difference between the MLE and the simulating parameters. Data is generated with 𝑞!$ =629 
0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75, and for phylogenies with 25, 630 
100, and 250 taxa. Finally, model fits use either 25, 100, or 250 stochastic maps per likelihood 631 
iteration. The table shown here calculates RMSE integrating over all phylogenetic tree sizes and 632 
number of stochastic maps (n=8217). Dashes indicate a parameter that is not estimated for a 633 
given model type. Generally, character independent (CID+) models had higher errors than 634 
character dependent (CD) models. The greatest errors occurred when estimating alpha in variable 635 
alpha models for both CD and CID+ model classes. Estimates of the optimum and transition 636 
rates generally had the lowest errors. 637 

Model 
class 

Model 
type 

RMSE 
𝑞	

RMSE	
𝛼! 

RMSE 
𝛼" 

RMSE 
𝜎!" 

RMSE 
𝜎"" 

RMSE 
𝜃! 

RMSE 
𝜃" 

C
D

 

BMV 0.12 - - 0.10 0.28 0.22 - 
OUV 0.11 1.27 - 0.15 0.33 0.05 - 
OUA 0.12 1.55 1.63 0.11 - 0.06 - 
OUM 0.13 1.49 - 0.10 - 0.07 0.13 
OUVA 0.09 1.44 1.11 0.14 0.98 0.06 - 
OUMV 0.16 1.82 - 0.16 0.32 0.07 0.17 
OUMA 0.15 2.11 2.48 0.28 - 0.12 0.50 
OUMVA 0.18 1.62 1.12 0.12 1.07 0.76 1.06 
OUBM1 0.1 2.64 - 0.08 - 0.08 - 
OUBMV 0.09 2.29 - 0.13 2.37 0.08 - 

C
ID

+ 

BMV 0.05 - - 0.27 10.11 0.24 - 
OUV 0.04 1.13 - 0.32 1.83 0.05 - 
OUA 0.05 2.93 1.34 0.33 - 0.07 - 
OUM 0.09 2.53 - 0.15 - 0.44 0.20 
OUVA 0.05 1.26 1.11 0.27 13.44 0.07 - 
OUMV 0.1 2.50 - 0.16 2.12 1.30 0.68 
OUMA 0.05 8.28 1.27 0.23 - 5.88 0.8 
OUMVA 0.07 5.54 1.24 0.20 9.37 8.76 1.35 
OUBM1 0.05 3.33 - 0.32 - 0.14 - 
OUBMV 0.05 3.50 - 0.27 8.79 0.14 - 

 638 

 639 

 640 

 641 

 642 



Table 3. Average AIC weight as the number of taxa increases for each model class. Gray cells 643 
indicate the AIC weight of the generating model class. In general, as the number of taxa 644 
increases the average support for the generating model class increases. 645 

Generating 
model class 

nTaxa AICwt BM1 AICwt OU1 AICwt CD AICwt CID+ 
C

D
 25 0.12 0.22 0.51 0.15 

100 0.06 0.22 0.70 0.02 
250 0.02 0.14 0.82 0.02 

C
ID

+ 25 0.28 0.35 0.24 0.14 
100 0.21 0.4 0.23 0.15 
250 0.11 0.34 0.32 0.22 

 646 

 647 

Table 4. Model averaged parameter estimates and standard errors for Ericaceae aridity index and 648 
fruit type data. Models with higher AIC weights contribute more overall to the parameter values. 649 

The units for	𝛼,	𝜎", and 𝜃 are L
LM4

 ÷ 𝑡𝑖𝑚𝑒, n L
LM4

o
"
, and L

LM4
 respectively. P is the average annual 650 

precipitation and PET is average annual potential evapotranspiration. Rates of 𝑞 are measured in 651 
transitions per million years.  652 

Continuous parameter estimates Discrete parameter estimates  𝛼 𝜎" 𝜃 

Dry 0.015 
(±0.0059) 

0.011 
(±0.0043) 

0.97 
(±0.011) 

𝑞#$%	'(	)*+,-% 0.0015 
(±0.00058) 

Fleshy 0.023 
(±0.011) 

0.007 
(±0.002) 

0.81 
(±0.28) 

𝑞)*+,-%	'(	#$% 00036 
(±0.000086) 

  653 



Figures 654 

 655 

Figure 1. A visual representation of the algorithm underlying the calculation of conditional node 656 
probabilities and the adaptive sampling procedure. The goal of the procedure is to produce 657 
underlying regime paintings well suited to both the discrete and continuous character. a) select 658 
the focal node for which we will be calculating the joint conditional probabilities of the discrete 659 
and continuous characters. b) on each side of the node we select a pair of tips. c) the conditional 660 
probability of the observed discrete and continuous character is calculated for each discrete 661 
regime state with an ancestral continuous value equal to 𝜃 of that regime state. d) the conditional 662 
probability of the focal node is calculated as the average probability of each regime state for all 663 
pairs of observed tips. e) the conditional probabilities are calculated for all internal nodes. This 664 
can be turned off within hOUwie by setting the sample_nodes argument to false. f) A stochastic 665 
map is generating using forward simulation rejection sampling. g) adaptive sampling uses the 666 
highest joint probability of previously generated underling regimes to generate a set of ancestral 667 
continuous character values. This differs from previous ancestral values because instead of 668 
assuming the value 𝜃 for each regime state, it calculates the expected value given the root state 669 
and regime mapping for that particular node. h) we repeat steps d) through g) until the joint 670 
likelihood of the set of underlying regimes does not improve.  671 

 672 



 673 

Figure 2. A state-transition diagram describing the model classes allowable in hOUwie. Each 674 
panel is comprised of observed discrete states 0 and 1 with possible hidden states A and B. 675 
Transitions between states are described with the 𝑞 parameter. Continuous model parameters 676 
appear in a box below the states they describe, and their association is displayed with a subscript 677 
specific to that state. a) A simple character independent model in which the two observed states 678 
do not influence the continuous character which will have the same 𝜃, 𝜎", 𝛼 throughout the 679 
phylogeny. b) A character dependent model in which the continuous character depends on the 680 
discrete character by virtue of 𝜃, 𝜎", 𝛼 being associated with a particular observed discrete state. 681 
c) A character independent model with rate heterogeneity. The two observed states (0 and 1) are 682 
not directly linked to the continuous character. However, the continuous character is still allowed 683 
to have multiple  𝜃, 𝜎", 𝛼 describing its evolution, but these parameters are associated with 684 
hidden states A and B. d) A hybrid model in which each combined observed and hidden state is 685 
allowed to have its own 𝜃, 𝜎", 𝛼. Under this model, the continuous character is linked to both 686 
character dependent differences (parameters associated with 0 and 1) and character independent 687 
differences (A and B). Though this diagram shows a binary observed and hidden character, either 688 
can have more states (up to 26 states for each in theory, though few datasets will have enough 689 
power to estimate the necessary number of parameters). 690 

 691 



 692 

Figure 3. A visual representation of binary discrete character hOUwie model types. Discrete 693 
time forward simulations are conducted starting in the red state and the distribution of the 694 
continuous character is plotted on the right as a histogram and density plot. Each line represents 695 
a continuous character value at some time. Transitions occur at colored points and each line is 696 
colored by the current discrete state. 100 time-steps are simulated with the same parameters as 697 
our simulation study (𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" = 0.75). 698 
The highlighted line was randomly chosen from the set in which at least one discrete state 699 
transition occurred.  700 



 701 

Figure 4. a) Ericaceae phylogeny for which we had data (n=309). b) Ln aridity index dataset 702 
where each bar is colored by dry (brown) and fleshy (green) fruit type. c) Model averaged 703 
parameter estimates with standard error calculated from 100 parametric bootstraps.  704 
  705 
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 875 

Supplementary Tables 876 

Table S1. AIC weights summarizing the average support for each model class when they are the 877 
generating model. Data is generated with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- =878 
2, and	𝜃" = 0.75 for phylogenies with 25, 100, and 250 taxa and model fits using either 25, 100, 879 
or 250 stochastic maps per likelihood iteration. When the generating model class is character 880 
dependent (CD) or character independent (CID+) we expect that the AICwt will be highest for 881 
that model when fit. Character dependent models generally show that pattern, however CID+ 882 
models generally perform poorly. An additional concern is datasets simulated by a character 883 
independent model with rate heterogeneity (datasets generated by a CID+ model) are best fit by 884 
CD models – which would be a spurious correlation. Although there was often some signal of 885 
character dependence in these models (AICwt of CD when CID+ is generating), most of the AIC 886 
weight was for simple character independent models (BM1 or OU1).  887 

Generating 
model class 

Generating 
model type 

AICwt 
of BM1 

AICwt 
of OU1 

AICwt 
of CD 

AICwt 
of CID+ 

Proportion 
generating model 
chosen as best  

C
D

 

BMV 0.18 0.17 0.64 0.02 0.62 
OUV 0.03 0.22 0.74 0.02 0.73 
OUA 0.07 0.56 0.31 0.06 0.15 
OUM 0.04 0.02 0.9 0.04 0.92 
OUVA 0.04 0.21 0.7 0.06 0.7 
OUMV 0.02 0.02 0.93 0.03 0.95 
OUMA 0.12 0.15 0.64 0.09 0.66 
OUMVA 0.05 0.13 0.76 0.06 0.76 
OUBM1 0.19 0.58 0.13 0.10 0.08 
OUBMV 0.07 0.20 0.71 0.02 0.73 

C
ID

+ 

BMV 0.36 0.28 0.33 0.03 0.01 
OUV 0.04 0.49 0.43 0.04 0.01 
OUA 0.06 0.56 0.37 0.02 0 
OUM 0.21 0.09 0.03 0.67 0.71 
OUVA 0.07 0.55 0.35 0.04 0.03 
OUMV 0.24 0.19 0.14 0.44 0.44 
OUMA 0.41 0.40 0.13 0.06 0.06 
OUMVA 0.24 0.39 0.21 0.16 0.15 
OUBM1 0.24 0.55 0.16 0.05 0.01 
OUBMV 0.23 0.37 0.30 0.10 0.08 

 888 
 889 
 890 
 891 
 892 
 893 
 894 



 895 
Table S2: Modeling results from the 25 models fit to Ericaceae aridity index and fruit type data. 896 
Model classes are character independent without rate heterogeneity (CID), character dependence 897 
(CD), character independence with rate heterogeneity (CID+), and mixed character dependent 898 
and character independence (HYB). Character dependent models suggest that climatic niche 899 
evolution will be linked to the fruit type. We found substantial support for OUVA (variable 𝜎" 900 
and 𝛼) and OUMVA (variable 𝜎", 𝛼, and 𝜃) models. np is the number of freely estimated 901 
parameters. lnLik is the joint likelihood of the MLE. DiscLik and ContLik are the marginal 902 
likelihood of the discrete and continuous datasets respectively, given the maximum joint 903 
likelihood estimate of the parameters. AIC is the Akaike information criterion, DAIC is the 904 
difference from the best fit model measured as the difference between each model’s AIC, and 905 
AICwt is the relative support for each model. 906 

Model class Model type np lnLik DiscLik ContLik AIC DAIC AICwt 

C
ID

 BM1 4 -243.89 -32.62 -206.67 495.78 39.07 0 
OU1 5 -225.5 -32.62 -188.28 461.01 4.30 0.05 

C
D

 

BMV 5 -243.78 -32.62 -207.08 497.56 40.85 0 
OUV 6 -225.49 -32.62 -188.47 462.98 6.27 0.02 
OUA 6 -224.95 -32.58 -189.48 461.9 5.19 0.03 
OUM 6 -224.12 -32.57 -187.79 460.24 3.53 0.07 
OUVA 7 -221.62 -32.58 -184.44 457.24 0.53 0.32 
OUMV 7 -224.05 -32.62 -188.15 462.10 5.39 0.03 
OUMA 7 -223.21 -32.58 -187.97 460.42 3.71 0.06 
OUMVA 8 -220.35 -32.60 -183.27 456.71 0 0.41 
OUBM1 5 -243.84 -32.57 -206.67 497.68 40.97 0 
OUBMV 6 -243.79 -32.61 -206.99 499.57 42.87 0 

C
ID

+ 

BMV 7 -244.80 -33.11 -205.78 503.59 46.89 0 
OUV 8 -228.77 -32.98 -190.16 473.55 16.84 0 
OUA 8 -226.42 -33.17 -188.53 468.84 12.13 0 
OUM 8 -226.43 -33.32 -189.07 468.87 12.16 0 
OUVA 9 -244.38 -33.43 -202.12 506.76 50.05 0 
OUMV 9 -225.20 -33.39 -182.88 468.39 11.68 0 
OUMA 9 -225.57 -32.68 -189.92 469.14 12.43 0 
OUMVA 10 -227.39 -33.13 -185.15 474.79 18.08 0 
OUBM1 7 -244.44 -33.16 -206.67 502.88 46.17 0 
OUBMV 8 -225.58 -32.71 -186.58 467.17 10.46 0 

H
Y

B
 BMS 9 -244.46 -33.08 -204.83 506.93 50.22 0 

OUM 10 -224.12 -32.67 -188.99 468.23 11.52 0 
OUMVA 16 -226.56 -33.03 -179.11 485.13 28.42 0 

 907 



Supplementary Figures 908 

 909 

Figure S1. Overlapping histograms comparing the effectiveness of the adaptive sampling 910 
procedure (blue) and standard discrete only sampling (red) of maps. Regardless of the sampling 911 
procedure, all probabilities are calculated in the same way and so any differences in probabilities 912 
reflects each procedure’s ability to generate appropriate mappings. 50 stochastic mappings are 913 
used to calculate the likelihood of the parameters. For each model type, data are simulated 914 
following our methods with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- = 2, and	𝜃" =915 
0.75. Dashed line likelihood under generating map.  916 
 917 
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 918 

Figure S2. The raw difference of the maximum likelihood parameter estimates and the 919 
generating values depending on the a) model type, b) number of taxa in the dataset, and c) 920 
number of stochastic maps per iteration of the likelihood search. Generally, variable alpha 921 
models had the highest biases with alpha being consistently underestimated. As the number of 922 
taxa increased, estimation of CD model parameters was estimated with less error. The number of 923 
maps per iteration had the greatest effect on character independent models with rate 924 
heterogeneity.  925 
 926 



 927 
Figure S3. AIC weights summarizing the average support for particular model classes and model 928 
type when they are the generating model. Headings indicate the generating model type and 929 
model class. Data was generated with 𝑞!$ = 0.1, 𝛼- = 3, 𝛼" = 1.5, 𝜎-" = 0.35, 𝜎"" = 1, 𝜃- =930 
2, and	𝜃" = 0.75 for phylogenies with 25, 100, and 250 taxa and model fits using either 25, 100, 931 
or 250 stochastic maps per likelihood iteration. When the generating model class is character 932 
dependent (CD) or character independent (CID+) we expect that the AICwt will be highest for 933 
that model when fit.  934 
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