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Executive summary 1 

 2 

As the most threatened vertebrate class on earth, amphibians are at the forefront of the 3 

biodiversity crisis, with the start of global amphibian declines and extinctions dating back 4 

several decades now. The Amphibian Conservation Action Plan (ACAP), the first taxonomic 5 

class-level plan of its kind, was first published in 2007 and then updated as a digital resource 6 

in 2015, with the goal of acting as a unified global strategy to save amphibians. However, 7 

although there have been resources allocated to amphibian conservation since the first ACAP, 8 

these have not been of the order of magnitude needed to adequately address the global 9 

amphibian crisis. 10 

 11 

In an effort to help improve this situation the current ACAP is adopting a different strategy: 12 

the development of two complementary documents that work to 1) synthesise developments 13 

in major themes of amphibian conservation over the last 15 years (an academic status review 14 

– this document), and 2) summarise the key take-home messages and recommendations to a 15 

broader audience in a user-friendly way (a practitioner document that will follow the status 16 

review). The purpose is thus to provide the most up-to-date evidence on threats and 17 

approaches to amphibian conservation, and from there identify gaps and priorities that can 18 

then be disseminated and adopted by stakeholders across the globe. 19 

 20 

Each chapter of this status review was developed by the matching Amphibian Specialist 21 

Group’s (ASG) thematic working groups. Led by 1-3 working group chairs and supported by 22 

working group members, chapters have also had the input of professionals outside of ASG 23 

with expertise in given themes.  24 

 25 
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This document consists of two introductory chapters and twelve thematic chapters divided 26 

into three sections:  27 

• Threats - Chapters 3-7 on climate change; ecotoxicology; habitat loss; infectious 28 

diseases; and trade and sustainable use 29 

• Informing decision-making - Chapters 8-10 on communications and education; 30 

conservation planning; and surveys and monitoring 31 

• Species management - Chapters 11-14 on conservation breeding; assisted 32 

reproductive technologies and biobanking; genomics; and translocations 33 

 34 

In broad terms, each chapter covers the most important knowledge, technological and 35 

conceptual developments in a particular theme over the last decade and a half, highlighting 36 

knowledge gaps, challenges, needs and opportunities for future conservation action. 37 

 38 

Key messages 39 

1. As a whole there is an enormous deficit in information for most amphibian species, 40 

which hampers decision-making and evidence-based, conservation action. Increased 41 

collaborations both within and outside the amphibian conservation community are 42 

urgently needed to begin to bridge some of these information gaps. Integrating 43 

different approaches can help augment information and leverage additional support to 44 

amphibian conservation. 45 

2. While this document is global in scope it is informed by local and regional realities. 46 

Not everything that is in this document will be transferable to every region. However, 47 

those aspects that are relevant to a region can be addressed accordingly, and these 48 

results can then feedback again into a global strategy, and be readapted in other 49 

regions to benefit from the shared experience. Translation from local to global and 50 
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back to local is crucial to ensure that regional experiences feed into a global 51 

framework and that this framework accurately reflects shared patterns and realities so 52 

that it can inform international conventions and organisations, especially in view of 53 

global environmental change. 54 

3. Relative to the scope of amphibian declines and extinctions, adequate financial and 55 

human resources and necessary policy measures have largely lagged behind this 56 

decades-long crisis. Should this pattern persist, we can expect to continue losing 57 

amphibian populations and species in increasingly large numbers. It is therefore 58 

critical that amphibian conservation becomes both an integral and a conspicuous part 59 

of the biodiversity conservation agenda of international and national conservation 60 

organisations of all sizes, of national and subnational levels of government, of the 61 

various institutions that focus on biodiversity education and research, of funding 62 

entities, and of organised communities and media. 63 

  64 



 

8 

 

Resumen ejecutivo 65 

 66 

Comprendiendo la clase de vertebrados más amenazada del mundo, los anfibios están en la 67 

primera línea de la crisis de biodiversidad, con el inicio de las declinaciones y extinciones de 68 

los anfibios remontándose ya varias décadas. El Plan de Acción de Conservación de los 69 

Anfibios (ACAP por sus siglas en inglés), el primer plan a nivel de clase taxonómica, fue 70 

publicado inicialmente en el 2007 y luego actualizado como un recurso digital en el 2015, 71 

con la meta de actuar como una estrategia global unificada para salvar a los anfibios. Sin 72 

embargo, aunque ha habido recursos dirigidos a la conservación de anfibios desde el primer 73 

plan, estos no han sido de la magnitud requerida para abordar la crisis global de los anfibios 74 

de forma adecuada. 75 

 76 

En un esfuerzo por mejorar esta situación, este ACAP está adoptando una estrategia 77 

diferente: el desarrollo de dos documentos complementarios que de manera conjunta 1) 78 

sintetizan los acontecimientos y progreso en temas importantes para la conservación de los 79 

anfibios en los últimos 15 años (una revisión del estado académico – este documento), y 2) 80 

resumen los principales mensajes y recomendaciones dirigidos a una audiencia amplia de una 81 

manera accesible (un documento para implementadores que seguirá la revisión de estado). El 82 

propósito es, por ende, ofrecer la evidencia más actualizada acerca de las amenazas y 83 

abordajes en lo que refiere a la conservación de los anfibios, y a partir de ello identificar 84 

vacíos y prioridades que pueden luego ser diseminadas y adoptadas por actores relevantes a 85 

lo largo del planeta. 86 

 87 

Cada capítulo de este documento fue desarrollado por el respectivo grupo temático del Grupo 88 

de Especialistas de Anfibios (ASG por sus siglas en inglés). Liderados por 1-3 presidentes de 89 
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grupos temáticos y apoyados por miembros de los grupos de trabajo, los capítulos también 90 

han recibido el aporte de profesionales fuera del ASG con experiencia en determinados 91 

temas.  92 

 93 

Este documento comprende dos capítulos introductorios y doce capítulos temáticos divididos 94 

en tres secciones: 95 

 96 

• Amenazas - Capítulos 3-7 sobre cambio climático; ecotoxicología; pérdida de hábitat; 97 

enfermedades infecciosas; y comercio y uso sostenible 98 

• Informando la toma de decisiones - Capítulos 8-10 sobre comunicaciones y 99 

educación; planificación de conservación; y muestreos y monitoreo 100 

• Manejo de especies - Capítulos 11-14 sobre reproducción de conservación; 101 

tecnologías de reproducción asistida y biobancos; genómica; y translocaciones 102 

 103 

En términos generales cada capítulo cubre el conocimiento y desarrollo tecnológico y 104 

conceptual más importantes de la última década y media, resaltando los vacíos de 105 

conocimiento, retos, necesidades y oportunidades para futuras acciones de conservación. 106 

 107 

Mensajes principales 108 

1. En su conjunto existe un enorme déficit de información para la mayoría de especies 109 

de anfibios, lo que dificulta el proceso de toma de decisiones y acciones de 110 

conservación basadas en evidencia. Es necesario incrementar las colaboraciones tanto 111 

dentro como fuera de la comunidad de conservación de anfibios, para así comenzar a 112 

zanjar algunos de los vacíos de información. La integración de abordajes distintos 113 
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puede ayudar a aumentar la información y catalizar apoyo adicional hacia la 114 

conservación de anfibios. 115 

2. Aunque este documento es de alcance global está informado por realidades locales y 116 

regionales. No todo lo que está en él será transferible a cada región. No obstante, esos 117 

aspectos que sí son relevantes a cada región pueden ser abordados como corresponde, 118 

y esos resultados pueden luego retroalimentar una estrategia global y ser readaptados 119 

en otras regiones para lograr un beneficio a partir de la experiencia compartida. La 120 

traducción de lo local a lo global y vice-versa es crucial para asegurar que las 121 

experiencias regionales puedan alimentar un marco global y que este marco refleje los 122 

patrones y realidades compartidos, de manera que pueda informar convenciones y 123 

organizaciones internacionales, especialmente dado el cambio ambiental global. 124 

3. En relación a la magnitud de las declinaciones y extinciones de anfibios, los recursos 125 

financieros y humanos y las medidas políticas necesarias vienen muy rezagados ante 126 

esta crisis de décadas de duración. Si este patrón persiste, podemos esperar la 127 

continua pérdida de poblaciones de anfibios y especies en números cada vez mayores. 128 

Es por ende crítico que la conservación de anfibios se vuelva un componente tanto 129 

integral como conspicuo de la agenda de las organizaciones de conservación 130 

internacionales y nacionales de todos los tamaños, de los distintos niveles de 131 

gobierno, de las varias instituciones que se enfocan en la investigación y educación de 132 

la biodiversidad, de entidades financieras, de comunidades organizadas, y de los 133 

medios de comunicación. 134 

 135 

  136 
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Résumé analytique 137 

 138 

Etant la classe de vertébrés la plus menacée au monde, les amphibiens sont au premier plan 139 

de la crise de la biodiversité. Le début de leur déclin et de l'extinction de certaines espèces à 140 

l'échelle mondiale a commencé il y a plusieurs dizaines d’années. Le Plan d'Action pour la 141 

Conservation des Amphibiens (ACAP en Anglais) est le premier plan d’action pour la 142 

conservation des espèces au niveau du rang taxonomique des classes. Il a été publié pour la 143 

première fois en 2007, puis mis à jour en tant que ressource numérique en 2015 avec 144 

l’objectif de servir à la création d’une stratégie mondiale unifiée pour sauver les amphibiens. 145 

Cependant, bien que des ressources aient été allouées à la conservation des amphibiens 146 

depuis le premier ACAP, elles n'ont pas été de l'ordre de grandeur nécessaire pour faire face 147 

de manière adéquate à la crise mondiale de la disparition des amphibiens. 148 

 149 

Pour aider à l’amélioration de cette situation, la version actuelle de l'ACAP adopte une 150 

stratégie différente: la préparation de deux documents complémentaires qui cherchent à 1) 151 

synthétiser les développements dans les principaux thèmes de la conservation des amphibiens 152 

au cours des 15 dernières années (une synthèse des développements académiques - ce 153 

document) , et 2) résumer les principaux messages et les recommandations pour le grand 154 

public d'une manière accessible (un document de mise en œuvre qui suivra la synthèse des 155 

développements). L'objectif est donc de fournir les preuves les plus récentes des menaces et 156 

les approches de la conservation des amphibiens, et à partir de là, d'identifier les lacunes et 157 

les priorités qui peuvent ensuite être diffusées et adoptées par les acteurs de la conservation à 158 

travers le monde. 159 

 160 
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Chaque chapitre de cette synthèse des développements en conservation a été élaboré par le 161 

groupe de travail thématiques travaillant sur le sujet et faisant partie du Groupe des 162 

Spécialistes des Amphibiens (ASG en Anglais). Chaque chapitre a été dirigé par 1 à 3 chefs 163 

de groupes de travail, en concert avec les membres du groupe. Les chapitres ont également 164 

bénéficié de la contribution de professionnels extérieurs à l'ASG et ayant une expertise 165 

correspondante.  166 

 167 

Ce document se compose de deux chapitres introductifs et de douze chapitres thématiques 168 

divisés en trois sections : 169 

• Menaces - Chapitres 3 à 7 sur le changement climatique ; l’écotoxicologie ; la 170 

destruction de l'habitat ; les maladies infectieuses ; le commerce et l’utilisation 171 

durable 172 

• Prise de décisions informées - Chapitres 8 à 10 sur les communications et l'éducation ; 173 

la planification de la conservation ; les enquêtes et le suivi 174 

• Gestion des espèces - Chapitres 11 à 14 sur l’élevage en captivité ; les technologies de 175 

procréation assistée et biobanques ; la génomique ; les translocations 176 

 177 

En termes généraux, chaque chapitre couvre les connaissances et les développements 178 

technologiques et conceptuels les plus importants pour chaque thème développé au cours des 179 

quinze dernières années, en mettant en évidence les lacunes, les défis, les besoins et les 180 

opportunités pour les futures actions de conservation. 181 

 182 

Messages principaux 183 

1. Dans l'ensemble, il y a un extraordinaire manque d'informations pour la plupart des 184 

espèces d'amphibiens, ce qui entrave la prise de décisions et les actions de 185 
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conservation basées sur des faits scientifiques.. De nouvelles collaborations au sein de 186 

la communauté de conservation des amphibiens, mais aussi avec des personnes 187 

externes, sont nécessaires de toute urgence pour commencer à combler ces lacunes en 188 

matière d'information. L'intégration de différentes approches peut permettre 189 

d’acquérir les informations nécessaires et de tirer parti d'un soutien supplémentaire 190 

pour la conservation des amphibiens. 191 

 192 

2. Bien que ce document ait une portée mondiale, il est dirigé par les réalités locales et 193 

régionales. Tous les points exposés dans ce document ne seront pas nécessairement 194 

transférables à toutes les régions. Cependant, les aspects qui sont pertinents pour une 195 

région peuvent être traités en conséquence, et ces résultats peuvent ensuite être 196 

réintégrés à la stratégie mondiale, et ensuite être réadaptés dans d'autres régions qui 197 

pourront bénéficier de ces expériences. La transformation du point de vue local au 198 

point de vue mondial et le retour au point de vue local, est cruciale pour garantir que 199 

les expériences régionales alimentent un cadre mondial et que ce cadre reflète 200 

correctement les modèles et réalités locales afin d’informer les conventions et 201 

organisations internationales, spécialement compte tenu des changements 202 

environnementaux mondiaux. 203 

 204 

3. En comparaison avec l'ampleur du déclin et l'extinction des amphibiens, les 205 

ressources financières et humaines et les mesures politiques nécessaires sont en retard 206 

par rapport à cette crise qui dure depuis des douzaines d’années. Si ce schéma 207 

persiste, nous pouvons nous attendre à continuer de perdre de plus en plus de 208 

populations et d’espèces d'amphibiens. Il est donc essentiel que la conservation des 209 

amphibiens devienne à la fois une partie intégrante et visible du programme de 210 
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conservation de la biodiversité des organisations de conservation internationales et 211 

nationales de toutes tailles, mais aussi au niveau des gouvernements nationaux et 212 

régionaux, des institutions diverses qui se concentrent sur l'éducation et la recherche 213 

sur la biodiversité, des organismes de financement, des associations et des médias. 214 

  215 
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Abstract 20 

Amphibians are extraordinary and diverse creatures that have roamed the earth for millions of 21 

years; yet, they are currently the most threatened vertebrate class on earth, with over 40% of 22 

species at risk of extinction. Herein we offer a brief overview of the amphibians, covering 23 

aspects such as broad taxonomic classification, their geographic distribution, natural history 24 

and ecology, their importance and evolutionary uniqueness, as well as their conservation 25 
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status and the global response to conserve them. We also discuss the background that 26 

informed this version of the Amphibian Conservation Action Plan and what is contemplated 27 

in it, as well as our aspirations for its adoption and implementation. 28 

 29 

Introduction 30 

Few creatures embody transformation and renewal in the human imagination collective like 31 

amphibians. They have had an important presence across cultures and time, and even in the 32 

present day, many of us have fond memories of watching tadpoles in ponds and listening to 33 

frogs and toads calling into the night. Of course, well above their significance to our species, 34 

amphibians are pillars of the food web, keeping the cycles of life going. Yet, they are at the 35 

bleeding edge of the modern biodiversity crisis, having experienced the worst population 36 

declines and highest risk of extinction at the vertebrate class level, and two global amphibian-37 

specific pandemics in recent times (prompted by the batrachochytrid fungi Batrachochytrium 38 

dendrobatidis and Batrachochytrium salamandrivorans). Resilient as they have been over 39 

geological time (early amphibians emerged in the Late Devonian, around 350-360 million 40 

years ago; Alford, Richards & McDonald, 2013; Hime et al., 2021), The IUCN Red List of 41 

Threatened Species™ (IUCN Red List) has found that over 40% of amphibians are at risk of 42 

extinction (IUCN, 2022). Amphibians are in serious trouble, in no small measure because of 43 

humans, and we are in peril of losing some of the most emblematic and magnificent creatures 44 

to have roamed this earth. 45 

 46 

So, who are the amphibians? What makes amphibians the incredible, awe-inspiring and 47 

extraordinary creatures that we know and love? In the sections and chapters that follow our 48 

community provides a synthesis of the status of amphibians, their importance, the challenges 49 

faced and the responses.  50 
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Classification 51 

There are currently 8,455 recognised extant amphibian species (Frost, 2021, see also Figure 52 

1.1); however, this number continues to grow at a rate of roughly one new species described 53 

every other day (AmphibiaWeb, 2021). Since the creation of the first comprehensive 54 

catalogue of amphibian species richness (Frost, 1985) the number of known amphibian 55 

species has more than doubled. This is an extraordinary rate of species discovery compared to 56 

that of other vertebrates (Vences & Köhler, 2007). 57 

 58 

Amphibians occur in all sizes, shapes and colours, but are contained within three taxonomic 59 

orders: Anura (frogs and toads), Caudata (salamanders and newts) and Gymnophiona 60 

(caecilians). Anurans are the most ubiquitous and most species-rich of these orders both in 61 

terms of families and species, with 58 families and 7,471 species (Frost, 2021). They are 62 

followed by Caudata, with 9 families and 771 species, and Gymnophiona (10 families and 63 

214 species; Frost, 2021). 64 

 65 

Distribution 66 

Anurans are the most widespread amphibians, occurring on all continents but Antarctica. The 67 

highest species richness is in tropical ecosystems, but they inhabit virtually all environments 68 

on the globe except the most extreme dry or cold (Figure 1.1). The salamanders and newts are 69 

less species-rich and have a markedly different distribution. They are largely restricted to the 70 

Northern Hemisphere (Duellman, 1999) with highest species richness in the temperate zone, 71 

in particular in the northeastern USA. Only a single but highly species-rich family 72 

(Plethodontidae, with 491 spp.) has radiated into Central and South America, occurring also 73 

in southern Europe and Korea (Frost, 2021). Fewer species live on the Eurasian continent and 74 

the order is completely absent in sub-Saharan Africa, Madagascar, the Arabian Peninsula, 75 
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insular Southeast Asia and Oceania. Caecilians are by far the least species-rich order, and 76 

have a pantropical distribution (Duellman, 1999), known from the tropics of the Americas, 77 

Africa, Asia, Southeast Asia and the Seychelles (Stuart et al., 2008). 78 

 79 

 80 

Figure 1.1: Map of global amphibian distribution, by Order. Warmer colours indicate higher 81 

species richness. (A) Anura, (B) Caudata, (C) Gymnophiona. Figure drawn by Vishal Prasad 82 

Kumar. Source: Amphibian distribution data downloaded from IUCN Red List website 83 

(https://www.iucnredlist.org/). 84 
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 85 

As with much of terrestrial biodiversity, amphibian species richness drastically increases 86 

towards the Equator (see e.g. Stuart et al., 2008). The Neotropics is by far the most species-87 

rich zoogeographical zone, with Brazil having the highest number of species (1152), followed 88 

by Colombia (820 species), Ecuador (670 species) and Peru (662; AmphibiaWeb, 2022). 89 

Amazingly, some species occur far from the Equator, showing remarkable adaptations to cold 90 

environments. For example, the North American wood frog (Lithobates sylvaticus) tolerates 91 

complete freezing during hibernation (Sinclair et al., 2013), and the Siberian salamander 92 

(Salamandrella keyserlingii) tolerates even more extreme temperatures that can reach as low 93 

as -35 °C (Berman, Leirikh & Meshcheryakova, 2010). Others live with extreme weather 94 

patterns at high altitude. The record holders are the frog Pleurodema marmoratum, breeding 95 

at 5,348 m asl in Peru (Seimon et al., 2007) and the salamander Pseudoeurycea gadovii 96 

recorded up to 4,250 m asl in Mexico (Solano-Zavaleta, García-Vázquez & Mendoza-97 

Hernández, 2009). 98 

 99 

At the other end of the spectrum, several genera of anurans and salamanders have adapted to 100 

arid areas by burrowing into the ground and forming a protective cocoon around their body in 101 

order to aestivate (Secor & Lignot, 2010). In some cases, aestivation can last up to ten 102 

months, with one extreme case of five consecutive years suggested for the Australian water-103 

holding frog Ranoidea platycephala (Secor & Lignot, 2010). 104 

 105 

Natural history and ecology 106 

It is difficult to capture the sheer array of amphibian natural history and ecology in just a few 107 

words. The impressive diversity in morphology, distribution, habitat use, physiology, 108 

mimicry, reproduction, behaviours, life stages, ecological attributes, and life histories easily 109 
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merit several dedicated volumes and indeed a few brave souls have attempted this task. By 110 

necessity, we are obliged to select a handful of notable examples, but with the understanding 111 

that they are just the tip of the proverbial iceberg. 112 

 113 

Amphibians occupy a diverse variety of terrestrial and freshwater environments. All three 114 

orders have species that live underground, that are fully aquatic, fully terrestrial and more or 115 

less everything in between. On the vertical axis they occur several metres underground 116 

(fossorial), up to the tallest tree canopies (arboreal). On the horizontal axis they are land or 117 

water dwellers (or alternate between both); in water, they occupy lentic and lotic habitats 118 

ranging from the world’s largest lakes and rivers to the water captured in the leaf axils of 119 

plants, and even brackish waters of estuaries. 120 

 121 

While the amphibian life cycle is most often pictured with eggs laid in water, which develop 122 

into tadpoles that metamorphose to land-living adults, the actual diversity of amphibian life 123 

histories is manifold and spectacular. Although most amphibians do have free-living aquatic 124 

larvae (i.e. tadpoles), an estimated 29% reproduce through direct development, which means 125 

their eggs hatch into miniature adults. At least 68 amphibian species evolved away from egg 126 

laying completely, giving birth to fully developed young (Sodhi et al., 2008). This 127 

reproductive diversity is also reflected in the vastly different fecundity and population 128 

dynamics among amphibians, requiring a variety of conservation strategies. For instance, a 129 

single Great Plains toad (Anaxyrus cognatus) has been documented as laying 45,000 eggs in 130 

one breeding season (Thibaudeau & Altig, 1999), while the Alpine salamander (Salamandra 131 

atra) gives live birth to only 1-2 young after 3 years of gestation (Häfeli, 1971). These two 132 

extremes capture but a few aspects of the 74 different reproductive modes that have been 133 

described by scientists to date (Nunes-de-Almeida, Haddad & Toledo, 2021). There are over 134 
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30 forms of parental care observed in amphibian species, ranging from basic egg guarding to 135 

very advanced behaviours (Schulte et al., 2020). Some species raise their young on their 136 

body, like the aquatic frogs Pipa spp. that hatch either tadpoles or fully developed young 137 

through the skin on their back (Rabb & Rabb, 1960). Others are marsupial, carrying their 138 

young until fully developed in a skin pouch on their backs, e.g. members of the treefrog 139 

genus Gastrotheca (Elinson et al., 1990). Perhaps even more mystifying are those cases 140 

where the eggs are incubated inside the body cavity and are orally “expectorated” as fully 141 

developed froglets, e.g. the vocal sac in Darwin’s frogs (Rhinoderma darwinii) and the 142 

stomach in the now extinct gastric brooding frogs Rheobatrachus (McDiarmid, 1978). There 143 

is also a species, Oophaga pumilio, where females carry their tadpoles long distances on their 144 

backs to deposit them in the water of leaf axils of epiphytic plants and raise them exclusively 145 

on unfertilised eggs (Summers, McKeon & Heying, 2006). Still other amphibians make 146 

subterranean chambers, securing moisture for their eggs in desert sand dunes, e.g. Breviceps 147 

macrops (Minter, 2004). One final, fascinating example is the Taita caecilian (Boulengerula 148 

taitana), which nests underground and feeds its young the outermost layer of its own skin 149 

(Kupfer et al., 2006). 150 

 151 

Amphibians are also diverse where body size is concerned. Measuring only 7.7 mm, the 152 

smallest recorded vertebrate is the frog Paedophryne amauensis from Papua New Guinea 153 

(Rittmeyer et al., 2012), whereas – at 32 cm – the largest anuran on record is the Goliath frog, 154 

Conraua goliath (Sabater-Pi, 1985). The smallest known salamander is Thorius arboreus 155 

from Mexico, with the largest known adult of this species measuring 20.0 mm snout-vent 156 

length (Hanken & Wake, 1994). The Chinese salamander Andrias davidanus, on the other 157 

hand, is the largest amphibian reaching up to 180 cm (AmphibiaWeb, 2022). Amongst the 158 
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caecilians, growing to 151.5 cm is Caecilia thompsoni; whereas the smallest adult caecilian is 159 

Idiocranium russeli at 0.90 cm (AmphibiaWeb, 2022). 160 

 161 

Our knowledge of amphibian longevity is spotty at best, but it appears that caudates are 162 

generally more long lived than anurans (Smirina, 1994). While many species are presumed to 163 

be relatively short-lived, with a lifespan of only a few years in the case of anurans and 164 

tropical species, there are some exceptions. Notably, the olm (Proteus anguinus), a small 165 

cave salamander, has a predicted maximum lifespan of over 100 years and an adult average 166 

lifespan of 68.5 years (Voituron et al., 2011). 167 

 168 

Evolutionary uniqueness 169 

Amphibians emerged around 350-360 million years ago (Alford, Richards & McDonald, 170 

2013; Hime et al., 2021). While the early amphibian faunas differed dramatically from their 171 

modern counterparts, representatives of many of the currently recognised amphibian families 172 

were most likely already present when dinosaurs roamed our planet (Roelants et al., 2007). 173 

Some extant species are particularly isolated across deep evolutionary time, and 23 families 174 

have fewer than 10 species (Frost, 2021). 175 

 176 

The Zoological Society of London (ZSL) Evolutionarily Distinct and Globally Endangered 177 

(EDGE) programme identifies these special species. Using a combined score of evolutionary 178 

distinctiveness (ED) and extinction risk (taken from the IUCN Red List), species are ranked 179 

based on their evolutionary history and how threatened they are (Safi et al., 2013). As of 180 

2020, 863 amphibians from all three amphibian orders were listed as EDGE species. The top-181 

ranked anuran, salamander and caecilian are Archey’s frog (Leiopelma archeyi), the Chinese 182 
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giant salamander (A. davidianus) and the Mount Oku caecilian (Crotaphatrema lamottei), 183 

respectively (ZSL, 2020). 184 

 185 

Conservation status 186 

Reports of amphibian declines began to emerge in the 1950s (see Bishop et al., 2012), but for 187 

a long time only as infrequent publications in the peer-reviewed literature. It was not until at 188 

the First World Congress of Herpetology, held in the United Kingdom in 1989, that the 189 

disparate observations of herpetologists from all over the world were shared, raising concerns 190 

that the scope and severity of these declines were beyond what anyone had previously 191 

thought (Bishop et al., 2012; Stuart, 2012). Alarmingly, catastrophic declines were 192 

documented even in pristine environments. For example, the two Australian gastric-brooding 193 

frogs (Rheobatrachus spp.) disappeared in less than a year, one in the late 1970s, the other in 194 

the mid-1980s, and the Costa Rican golden toad (Incilius periglenes) disappeared within two 195 

years and has not been seen since 1989 (Stuart, 2012). All three species are now considered 196 

Extinct and there are many others that have suffered a similar fate. An even larger number are 197 

considered Possibly Extinct because there are no known surviving subpopulations, but 198 

exhaustive surveys have yet to confirm their extinction. 199 

 200 

In response to the widespread concerns, a global push began to better understand their causes 201 

and to determine the conservation actions that might halt the decline of amphibian 202 

populations (see Global response section in this chapter for details). In 2001, IUCN, 203 

Conservation International, and NatureServe began the Global Amphibian Assessment 204 

(GAA), the first-ever comprehensive extinction risk evaluation of all 5,743 species described 205 

amphibians at the time. The assessment results published in 2004 were devastating: 206 

amphibians were the most threatened vertebrate group, with 32.5% of species categorised as 207 
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threatened on the 2004 IUCN Red List (Stuart et al., 2004). Furthermore, 22.5% of the 208 

species were classified as Data Deficient (DD), having too little or too uncertain data to make 209 

a reliable assessment. Employing the IUCN Red List best estimate approach, the same 210 

proportion of DD species was assumed to be threatened as the data sufficient species, which 211 

provided a total estimate of 40% of all amphibians threatened with extinction. 212 

 213 

In addition to providing a snapshot of the current conservation status of amphibians, 214 

undertaking regular comprehensive updates of all species also provides an opportunity to 215 

monitor conservation status over time. The Red List Index (RLI) is an indicator developed by 216 

IUCN to illustrate the changing conservation status of a group of species based on genuine 217 

improvements or deteriorations in Red List category. This biodiversity indicator has become 218 

widely used to compare the status of various taxonomic groups, as well as, for example, a 219 

measure of progress towards the UN Convention on Biological Diversity targets (Butchart et 220 

al., 2004; Secretariat of the Convention on Biological Diversity, 2020). The first GAA also 221 

estimated what the Red List category would have been in 1980 based on current knowledge. 222 

Using these data, the RLI was calculated for 1980 and 2004. It showed a significant 223 

downward trend, equivalent to an increase of 30% of species listed in a higher threat category 224 

in 2004 compared to 1980 (Butchart et al., 2005). This highlighted amphibians as one of the 225 

most rapidly declining taxonomic groups (Secretariat of the Convention on Biological 226 

Diversity, 2020). An analysis using the RLI to assess the impact of conservation on 227 

amphibians, birds and mammals found that while conservation efforts were having an 228 

appreciable effect on the trend in conservation status for birds and mammals, this was not 229 

seen for amphibians (Hoffmann et al., 2010). 230 

 231 
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A Red List assessment for a species is considered to be current for 10 years from the date of 232 

the assessment, and is considered the minimum standard for providing the most up-to-date 233 

information to conservation efforts and tracking trends through the RLI at regular intervals. 234 

The ASG launched the second Global Amphibian Assessment (GAA2) in 2015, which is on 235 

track for completion in 2022, and now includes more than 8,000 species (see Chapter 2 for 236 

this and other related challenges). The GAA2 results available to date confirm that 237 

amphibians are still the most threatened vertebrate group, with 41% of species currently 238 

within threatened categories (Figure 1.2; IUCN, 2021). When complete, the GAA2 will also 239 

provide a third data point in time for the RLI, which will give an indication of the 240 

conservation status of amphibians as a group, whether they are improving or deteriorating, 241 

and if the latter is true, whether the rate of deterioration has slowed. 242 

 243 

 244 

Figure 1.2. Proportion of species in each Red List category by vertebrate group. Red line 245 

indicates the estimated proportion of species classified as threatened if Data Deficient species 246 
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are threatened in the same proportion as data sufficient species. The category Extinct in the 247 

Wild was not included because numbers are very small and would not be visible on the chart. 248 

A further ~3,000 amphibian assessments will be added to the Red List in 2022, once the 249 

GAA2 is completed. Analysis of the GAA2 data is expected to show that some regions and 250 

taxa are disproportionately threatened, as was the case in the first GAA – an important 251 

consideration when planning where to focus conservation efforts. * An asterisk denotes 252 

groups where not all species have been assessed. Data Source: IUCN Red List version 2021-253 

2. 254 

 255 

There has been a huge amount of research on amphibians since the first GAA, some of which 256 

was no doubt spurred by the response of the herpetological community to the plight of 257 

amphibians highlighted on the IUCN Red List. This new research has provided sufficient 258 

information for many species to be comprehensively assessed and hence removed from their 259 

previous Data Deficient category. 260 

 261 

However, it should be noted that some species will always be difficult to remove from the 262 

Data Deficient category. For example, species known only from the type specimen, the 263 

provenance of which is unknown, or where there is considerable taxonomic uncertainty, to 264 

the point that a species may not be valid. 265 

 266 

As well as Data Deficient species, almost all amphibians would benefit from more 267 

information on their distribution, population, ecology, and threats. Thus, the 268 

recommendations of this publication will not only serve to direct the focus of conservation 269 

actions on the ground, but will also inform and improve conservation assessments. Each 270 

chapter specifies the research needed to inform these actions and inform future Global 271 
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Amphibian Assessments, completing the Assess-Plan-Act conservation cycle of the Species 272 

Survival Commission. 273 

 274 

Vulnerability to threats 275 

Amphibians can be particularly vulnerable to threats; they are often adapted to spend 276 

different parts of their life cycle in specific habitats, terrestrial and aquatic, and as a result 277 

they are vulnerable to changes in both environments. Many species, particularly those in 278 

tropical regions, have very small distributions, and large proportions of a population can be 279 

affected by changes to a relatively small area. The habitat-specific life stages also means that 280 

amphibians often consume different types of food as larvae and adults, increasing their 281 

potential for ingesting toxins and their exposure to parasites. In addition, amphibians are 282 

ectotherms, and are therefore sensitive to temperature changes, while their moist permeable 283 

skin leaves them exposed to desiccation and to pollutants in the water and air. Many species 284 

have low vagility and are unable to move to effectively escape environmental threats. As well 285 

as these threats, there are also indirect factors, including that they are not considered to be 286 

charismatic relative to mammals and birds, leading to amphibians receiving overall less 287 

attention from researchers, conservation practitioners, and conservation funding than these 288 

other taxa (see Chapter 2). 289 

 290 

It is important to note that the diverse and ubiquitous threats that affect species currently 291 

assessed as threatened also affect non-threatened and Data Deficient species. More details on 292 

most of the threats and how they impact amphibians can be found in the relevant chapters 293 

throughout this document. 294 

 295 
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Importance of amphibians 296 

The value of a species is often translated into the benefits it provides to humanity and 297 

interpreted in monetary or utilisation value. It is, however, important to look at the value of a 298 

species from a different point of view: the intrinsic value of a species. Here, we look at how 299 

human societies have relied on amphibians for their development and how we still rely on 300 

them, rather than how human societies can benefit from exploiting amphibians (Doak et al., 301 

2013). This is one example of the viewpoints available, and even within the field of 302 

conservation alternatives can be found. For instance, some may focus on the evolutionary 303 

value of a given species, and others may focus on its representation and connectedness within 304 

the environment. 305 

 306 

The history of humans and amphibians is more tightly linked than it is generally expressed or 307 

understood, in terms of culture, medical development, disease and pest control, and much 308 

more – acknowledging a cultural bias. Early human populations were attracted to wetlands 309 

and other fertile ecosystems due to their richness in primary producers, a preference generally 310 

matching with that of all vertebrates (Small & Cohen, 2004; Pérez, Schuster & Jofré, 2018), 311 

resulting in the establishment of human settlements in habitats also favoured by amphibians. 312 

Human societies have relied and continue to rely on amphibians as a food source (Mbaiwa, 313 

2011), in hunting practices (Myers, Daly & Malkin, 1978), fishing or controlling water 314 

quality. For example, a Chilean giant frog (Calyptocephalella gayi) was placed inside water 315 

wells as a bioindicator of water quality in central Chile (personal communication A. V. 316 

Sánchez), and Ranidae and Bufonidae are used for a similar purpose in Indonesia 317 

(Mardiastuti et al., 2020). 318 

 319 
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A notable benefit derived from amphibians is their use in traditional and modern human 320 

healthcare (Clarke, 1997). These include, for instance, the crucifix frog Notaden bennettii 321 

from Australia, whose secretions are used for biological glues in human medicine (Zhu, 322 

Chuah & Wang, 2018). Another example is that of antibiotics developed from amphibian 323 

antimicrobial polypeptides, and the amphibian skin polypeptide Gaegurin 4 is effective 324 

against both gram-positive and gram-negative bacteria (Won, Kang & Lee, 2009). 325 

 326 

Amphibians have also contributed to the foundations of some technologies. For instance, this 327 

file is available through the Internet, which most people access through a Wi-Fi connection. 328 

The algorithms used in Wi-Fi networks were developed with the help of the call properties of 329 

Dryophytes japonicus, a northeast Asian treefrog (Hernández & Blum, 2012). This species 330 

has also benefited human culture through technological advancements such as the distributed 331 

graph colouring theory (Hernández Pibernat, 2012) and medical analgesic developments (Zhu 332 

et al., 2014), and it may provide other benefits to human medicine as it is able to survive 333 

temperatures as low as -35°C (Berman, Meshcheryakova & Bulakhova, 2016) and its 334 

physiological adaptations have been studied in space (Yamashita et al., 1997). These 335 

examples based on a single species are a very short list of how humans need amphibians in 336 

their everyday lives. 337 

 338 

Most of the planet’s ecosystems are dependent on amphibians for the multiple ecological 339 

roles they provide (reviewed by Valencia-Aguilar, Cortés-Gómez & Ruiz-Agudelo, 2013). Of 340 

course, humans benefit directly from intact ecosystems in which amphibian populations are 341 

healthy and functional. Termed ‘ecosystem services’, direct benefits are generally divided 342 

into provisioning, regulating, cultural and supporting services (Millennium Ecosystem 343 

Assessment, 2005). Indirect benefits include regulating ecosystem services, such as 344 
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pollination, seed dispersal, climate regulation, carbon sequestration, and the control of pests 345 

and diseases. Finally, their position at the base of the food chain means that their global 346 

population declines have significantly impacted the survival of their predators (Zipkin et al., 347 

2020), and all subsequent levels of the food chain. 348 

 349 

The important place of amphibians in human culture, both positive and negative, is explored 350 

in depth in Chapter 8 on Communication and Education. Some of the oldest examples include 351 

early Egyptian and Greek fertility symbols represented by frogs (Cooper, 1992). Another is 352 

“Jin Chan”, or the money toad, which is considered to bring prosperity and good fortune in 353 

some East Asian cultures. By contrast, treefrogs in Korea are linked to carelessness. Popular 354 

Korean tales tell the story of a young treefrog burying his dead mother by a riverside. Her 355 

actual wish was to be buried elsewhere. However, she was attempting to outsmart her son 356 

after a lifetime of his ignoring her advice. The plot twist is that this was the first time he ever 357 

listened to her, which resulted in her still getting the opposite of her wishes, even after her 358 

death. Divine power is also revealed through amphibians, such as the devastating plague of 359 

frogs in the Old Testament of the Bible.  360 

 361 

Many contemporary human populations are less exposed to disease and pests thanks to 362 

chemical and medical advancements, but this was not the case a few centuries ago when 363 

natural control vectors against pest and disease were the only means of regulation and 364 

treatment (e.g. Mohneke, 2011). Amphibian predation on both adults and larvae mosquitoes 365 

and flies has been a form of vector control that decreases pathogen transmission to humans, 366 

including deadly diseases such as malaria and dengue (DuRant & Hopkins, 2008). An 367 

increase in the incidence of malaria was recently shown to have been associated with the 368 

collapse of amphibian communities in Central America - an unexpected occurrence in a 369 
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century that has been characterised by widespread chemical control measures of arthropod 370 

vectors and successful disease eradication through vaccinations (Springborn et al., 2020). 371 

Amphibians also act as pest control in agricultural habitats as they are generalist feeders and 372 

ingest all types of invertebrates, including pests such as locusts (Attademo, Peltzer & 373 

Lajmanovich, 2005), thus naturally improving crop yields, especially rice (Teng et al., 2016) 374 

and soybean (Attademo, Peltzer & Lajmanovich, 2005). 375 

 376 

Finally, the charisma of amphibians is of great value to conservation efforts. For instance, the 377 

Chile Darwin's frog is used as an emblem on local beer, clothing, toys, and a restaurant 378 

(personal communication A. V. Sánchez). In South Africa, amphibians are of interest to 379 

tourists and the revenue derived from ecotourism provides wages to guides and inspiration 380 

for locally sold handcraft (Loubser, Mouton & Nel, 2001).  381 

 382 

The diversity of life modes, ecology and behaviours of amphibians makes them important 383 

nodes in food webs, both as prey and predators. The transition from primary to secondary 384 

consumers when metamorphosing also results in an energy flow in ecosystems (Davic & 385 

Welsh Jr, 2004). This is especially important for nutrients present in higher concentration in 386 

the aquatic habitat compared to the terrestrial one, e.g. nitrogen, but also in the other 387 

direction, when amphibians bring nutrient to water bodies when spawning (Earl et al., 2011; 388 

Semlitsch, O’Donnell & Thompson, 2014). In addition, due to their ectotherm physiology, 389 

amphibians use comparatively less energy than homeotherms, and thus convert more of their 390 

diet into organic biomass (Pough, 1980; Pough, 1983). The fact that amphibians make up the 391 

largest proportion of biomass in many temperate and tropical ecosystems, e.g. salamanders in 392 

North American forests (Burton & Likens, 1975) also means that all mechanisms of energy 393 

transfer related to amphibians are proportionately more important than that of other 394 
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organisms. In addition, besides the flow of nutrients, amphibians also affect the composition 395 

of ecosystems by enhancing soil aeration and consequently soil productivity (Seale, 1980). 396 

As a result, they also benefit soil and water quality, an especially important factor in view of 397 

the need for water security. Finally, it is important to understand that the roles and functions 398 

of amphibians in the ecosystem are still not fully understood, and the roles that each species 399 

might play needs to be fulfilled as a small missing link could result in greater ecological 400 

deficits, threatening the ecosystems on which all species on Earth depend. 401 

 402 

Global response 403 

The universal importance of amphibians compels us to act to rectify their human-caused 404 

declines. Some actions can be targeted to specific local conditions and needs, and as such 405 

implemented at a local scale. Whereas a global response is required for others because the 406 

threats affecting amphibians are global in scope and nature – climate change, disease, trade, 407 

and invasive species all span across borders. Moreover, species ranges do not respect political 408 

boundaries and their survival is dependent on a coordinated collaborative international 409 

response. 410 

 411 

The first Amphibian Conservation Action Plan (ACAP) was the output of the Amphibian 412 

Conservation Summit held in 2005. It was the amphibian conservation community’s response 413 

to global amphibian declines, highlighted by the GAA, “because it is morally irresponsible to 414 

document amphibian declines and extinctions without also designing and promoting a 415 

response to this global crisis” (Gascon et al., 2007).  416 

 417 

It is difficult to assess the impact of the first ACAP, since it was developed among a suite of 418 

actions, all parts of a global push to increase awareness of amphibian declines and to include 419 
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amphibians in conservation priorities. The Summit prompted some major organisational 420 

changes. Firstly, the IUCN SSC Amphibian Specialist group was constituted, bringing 421 

together the existing IUCN Groups: the Declining Amphibian Population Task Force, the 422 

Global Amphibian Assessment team, and the Global Amphibian Specialist Group (Bishop et 423 

al., 2012). Subsequently, the Amphibian Ark (AArk) was formed in 2007 with the aim of 424 

supporting implementation of the ex situ goals in the ACAP (Amphibian Ark, 2012). Finally, 425 

the Amphibian Survival Alliance (ASA) was set up following the IUCN SSC’s Amphibian 426 

Mini-Summit in 2009, with the aim of coordinating organisations working on amphibian 427 

conservation (Bishop et al., 2012).  428 

 429 

These three organisations – ASG, AArk and ASA – work together on the global response 430 

under the shared Vision “Amphibian thriving in nature” (Figure 1.3). Meanwhile, the ACAP 431 

has certainly been widely cited to support amphibian conservation action, but the impact 432 

remains insufficient, as amphibians are still the most threatened vertebrate taxon (IUCN, 433 

2021).  434 

 435 

A second version of the ACAP was developed in 2015, moving to an online ‘living 436 

document’ format, with the aim of updating it in real time. However, after completion it 437 

became clear that this format was not as impactful as the ASG had envisioned; users found it 438 

difficult to navigate and it was particularly hard for those with unreliable internet 439 

connections. As such, when we set out to work on this third iteration of the ACAP, our desire 440 

was to be more strategic. A survey was conducted from mid-August to mid-September 2019 441 

to understand how the amphibian conservation community used the existing versions of the 442 

ACAP, and how it might be improved to better inform conservation action. In terms of 443 

document format, the survey results clearly indicated a strong preference for a PDF, rather 444 
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than the living document, as well as the need for an Executive Summary. In terms of content, 445 

respondents recommended more clearly linking evidence on the effectiveness of interventions 446 

to ACAP recommendations, and a clearer expression of how global priorities can be 447 

implemented as manageable projects. We have strived to answer these needs when working 448 

on this update.  449 

 450 

 451 

Figure 1.3. ASG, AArk and ASA work together on the global response to amphibian 452 

declines, under the shared Vision “Amphibian thriving in nature”. 453 

 454 

Through the process of re-imagining what the ACAP could be, with the survey feedback in 455 

mind, we concluded that it was not possible for one document to answer all the needs of the 456 
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amphibian community. Rather, it would be useful for ACAP to become two partner 457 

documents. The first being this document, which gathers the most up to date evidence on 458 

subjects related to amphibian conservation, providing a solid, citable, academic basis for 459 

action. The second is The Bishop Guide to Amphibian Conservation, an action-driven, more 460 

user-friendly source of practical solutions to be published after this document. Together, 461 

these documents form the third ACAP, covering the period of 2022-2032.  462 

 463 

Our aim is for the two documents to guide and support amphibian conservation activities 464 

worldwide, being used as a framework for research and conservation, driving action and 465 

providing evidence-based advice to all involved in this sphere of work – conservation 466 

organisations, governments, funders and the general public– on how to address threats to 467 

amphibians and meet global conservation targets. While the scope of ACAP is global, many 468 

actions will need to be targeted at a local scale, and we have provided case studies throughout 469 

with examples of how global goals can be applied to a variety of contexts.  470 

 471 

We were mindful that this version of the ACAP should be a product of the broader amphibian 472 

conservation community. Thus, we endeavoured to be as inclusive as possible in the status 473 

review. As such, individual chapters were drafted collaboratively by ASG’s Thematic 474 

Working Groups, with introductory material drafted by members of the ASG Secretariat. This 475 

draft document is now available for open consultation with a request for feedback from the 476 

whole amphibian conservation community. Finally, it will be independently peer reviewed 477 

before publication. As such, we have aimed to develop a scientifically robust text, which 478 

resulted from a collaborative effort from the amphibian conservation community, and we are 479 

grateful to everyone who has and is supporting the process throughout. 480 

 481 
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This document consists of two introductory chapters and twelve thematic chapters divided 482 

into three sections:  483 

1. Threats - Chapters 3-7 on climate change; ecotoxicology; habitat loss; infectious 484 

diseases; and trade and sustainable use 485 

2. Informing decision-making - Chapters 8-10 on communications and education; 486 

conservation planning; and surveys and monitoring 487 

3. Species management - Chapters 11-14 on conservation breeding; assisted 488 

reproductive technologies and biobanking; genomics; and translocations. 489 

 490 

Amphibian conservation is a multi-faceted field and collaboration is critical to our success. In 491 

addition, overlap exists between these chapters as indeed many of them are interdisciplinary. 492 

Because of this, the chapters could be arranged in several different ways. Likewise, we 493 

appreciate the scope for additional subjects to be included within this document. For 494 

example, we have discussed creating new ASG thematic working groups to address invasive 495 

species and habitat restoration. However, during the timeframe of drafting this document 496 

expert groups were not yet available to cover these subjects. We look forward to their 497 

inclusion in future versions. 498 

 499 

This document covers the ten-year period, 2022-2032. This timeframe was chosen based on 500 

the global scope of the ACAP, the time required to make progress on broad issues, and the 501 

resources required to update this document, balanced with likely advances in knowledge that 502 

will need to be incorporated into conservation decision-making. 503 

 504 

As we have seen, evaluating the impact of previous ACAP versions is difficult. While still 505 

challenging to achieve with a document such as this, we aim to improve on measuring and 506 
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communicating impact and use of this version. Academically, we can track citations in 507 

journals. The use of a digital object identifier (DOI) for this version will permit us to track 508 

online mentions of ACAP more widely, including in policy documents, news, blogs and 509 

social media. Recording mentions will allow us to measure how effectively we have 510 

communicated the existence of an updated ACAP document, and its academic use. However, 511 

while awareness of the updated ACAP is important, it is also necessary to assess the extent 512 

and type of use on the ground. The real challenge will be whether we can determine if the 513 

existence and use of ACAP results in positive outcomes and, ultimately, impacts the 514 

conservation status of individual species.  515 

 516 

As a first step, assessing ACAP use by the conservation community will be achieved by 517 

obtaining feedback from the global community. Regional Groups are ideally positioned to 518 

report on local/regional advances, in a format which measures ASG’s own adoption and on 519 

the ground implementation of ACAP recommendations. Similarly, a process to track 520 

implementation by our partner organisations – ASA and AArk – will be put in place. This can 521 

then be extended to the partners of these three organisations. As a final ambition, together we 522 

will also seek ways to understand whether the uptake and promotion of ACAP drives new 523 

resources to conservation initiatives (e.g. influences the priorities of funding mechanisms) 524 

and research.  525 

 526 

The ultimate aim is to improve the conservation status of amphibian species, with fewer 527 

species classified as threatened. To track this, regular reassessments will be needed to 528 

identify and capture genuine improvements in the IUCN Red List. Eventually, this should 529 

result in an improving or stabilised Red List Index (Butchart et al., 2005). Changes such as 530 

this are unlikely to occur within the ten-year timeframe of this ACAP, due to the time 531 
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necessary to improve species status and see this reflected on the Red List, but we believe this 532 

to be a worthy long-term vision for the conservation community and humankind as a whole. 533 

Our aim is that through implementation of this document, and future versions of ACAP, 534 

amphibians will no longer be the most threatened vertebrate taxon as threats will have 535 

decreased for all taxa, and we will see all amphibian species thriving in nature. 536 

 537 
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 21 

Abstract 22 

In this chapter we provide a brief overview of the importance of taxonomy, extinction risk 23 

assessments and evidence-based decision-making for conservation work, highlighting key 24 

developments in each of these subjects, and suggested approaches to help address some of the 25 
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current challenges. It is important to bear in mind that, while working on specific amphibian 26 

conservation problems, we as a community also strive to make advances in these common 27 

themes, which are necessary for effective action worldwide. 28 

 29 

Introduction 30 

Taxonomy, extinction risk assessments, and evidence-based decision-making are key to 31 

informing virtually every aspect of conservation work. In previous versions of ACAP there 32 

were stand-alone chapters for Red List assessments (i.e. extinction risk; Chapter 9, Gascon et 33 

al., 2007) and taxonomy and systematics (Chapter 10, Gascon et al., 2007). However, since 34 

these subjects underpin all conservation actions, instead of having dedicated chapters in this 35 

document we briefly present them in this introductory chapter.  36 

 37 

In terms of challenges, much of what is in this chapter was inspired by responses to a 38 

question asked to all IUCN SSC Amphibian Specialist Group (ASG) members when signing 39 

up to join the ASG in 2013-2016 and 2017-2020: “Other than funding, what is the single 40 

largest factor limiting effective conservation strategies for amphibians at global and regional 41 

levels?” (Note that we have included a section on “resourcing amphibian conservation” later 42 

in this chapter). These expert perceptions highlighted a number of obstacles which are almost 43 

ubiquitous to those working in amphibian conservation, including lack of coordination and 44 

collaboration, lack of government support, amphibians not being prioritised, and a lack of 45 

knowledge of species biology/ecology. 46 

 47 

Taxonomy 48 

The capacity to effect changes through conservation action is underpinned by accurately 49 

identified and delineated species (Angulo & Icochea, 2010). The discipline of taxonomy thus 50 
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plays a fundamental role in species conservation (Mace, 2004 and references therein), and 51 

has a bearing on everything from surveys and monitoring, extinction risk assessments, 52 

prioritisation approaches (e.g. Evolutionarily Distinct and Globally Endangered (EDGE) 53 

rankings, Alliance for Zero Extinction (AZE) and Key Biodiversity Areas (KBA) sites), 54 

funding acquisition, and species conservation planning and implementation. 55 

 56 

Taxonomy, however, is not static, and it undergoes change as a result of name changes and 57 

new species descriptions. Generally speaking, taxonomic change does not appear to have a 58 

consistent effect on conservation, although splitting taxa could lead to increased protection 59 

(Morrison III et al., 2009). Amphibian taxonomy has seen significant changes over the last 60 

two decades, both in terms of efforts to align higher-level taxonomic hierarchy with 61 

phylogenetic hypotheses (e.g. Frost et al., 2006; Pyron & Wiens, 2011), and in terms of new 62 

species descriptions, which have been occurring at a rate of about 100-150 species/year 63 

(Tapley et al., 2018; Streicher, Sadler & Loader, 2020; AmphibiaWeb, 2021). Amphibians as 64 

a clade still have many undescribed species and, while it is unclear exactly how many, 65 

conservative estimates by Giam et al. (2012) placed the number at over 3000 undescribed 66 

species when the study was published. This suggests there are approximately 900 additional 67 

species still left to be described at this time, and up to half of them could be threatened (Liu et 68 

al., 2022). 69 

 70 

A limitation for conservation is that species are the basis for conservation assessments and 71 

species management (Mace, 2004), and if a species is not described it cannot be assessed for 72 

extinction risk. Or, if it is described but includes cryptic taxa, the assessment will not reflect 73 

the species’ real extinction risk (see e.g. Angulo & Icochea, 2010). Furthermore, taxonomic 74 

splits are likely to result in range reduction, which are more likely to result in species being 75 
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listed as threatened. Species are described primarily by taxonomists, and where there are few 76 

taxonomists and few resources to undertake taxonomic studies, species descriptions will 77 

likely lag behind, having a direct impact on our ability to identify threatened species in a 78 

timely manner. The term “taxonomic impediment” has come to be associated with this 79 

phenomenon (Raposo et al., 2021), with a suite of multi-faceted reasons accounting for this 80 

situation (see Engel et al., 2021). 81 

 82 

Taxonomic uncertainty, or the uncertainty surrounding the delineation of a biological entity, 83 

is another challenge. Extinction risk assessments and conservation action recommendations 84 

are based on specific biological entities, but when our understanding of these entities is 85 

unclear or changes, then these assessments have to be modified accordingly (see examples in 86 

Angulo & Icochea, 2010). Furthermore, species whose taxonomic validity is in question (due 87 

to e.g. unknown provenance, lost type specimens, etc.) are typically assessed as Data 88 

Deficient. 89 

 90 

Some suggestions that could be implemented to help advance both amphibian taxonomy and 91 

conservation include: 92 

1. Taxonomic clarity list(s): there are many cases of species where taxonomy is a major 93 

issue to an adequate extinction risk assessment and subsequent decision-making. It 94 

would thus be helpful to identify, contribute to and maintain a list of those instances 95 

where taxonomic clarity is specifically needed for conservation decision-making, in 96 

particular, instances of species listed as Data Deficient due to taxonomic uncertainty 97 

(currently 414 of 7,296 species based on the IUCN Red List; ~5%). This is something 98 

that could be led from the taxonomic community. 99 
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2. Awareness-raising: obtaining funding for taxonomic work is extremely difficult, in 100 

certain instances perhaps even more so than obtaining funding for conservation. It is 101 

therefore important to raise awareness about the importance of taxonomy for 102 

conservation among funding entities, conservation organisations and the general 103 

public, and where possible and relevant include both aspects in fundraising efforts. 104 

Both taxonomists and conservationists could join forces in this endeavour. 105 

3. Increase collaborations: certain parts of the world have a dearth of taxonomists and 106 

resources relative to their respective species richness. Creating a network to 107 

strengthen international collaborations may help advance taxonomic studies in these 108 

regions. This could be led from the amphibian taxonomic community, with support 109 

from the conservation community (e.g. establishing such a network within the ASG). 110 

 111 

Updating the IUCN Red List assessments 112 

The process and task of assessing the conservation status of amphibians for the IUCN Red 113 

List has evolved over time. The first Global Amphibian Assessment (GAA) completed the 114 

extinction risk assessment of the then-known 5,743 species between 2001-2004 (Stuart et al., 115 

2004). Each species was evaluated against the IUCN Red List Categories and Criteria (IUCN, 116 

2012) through a series of regional workshops to assess their global conservation status. 117 

Before it was dissolved, the GAA team made updates to the IUCN Red List in 2006 and 118 

2008, adding new species and some re-assessments. Overall, the key challenges of the GAA 119 

included convening the global herpetological community to undertake a comprehensive 120 

assessment for the first time, and maintaining consistency in the application of the categories 121 

and criteria across all regions. More information on the GAA process is available on the ASG 122 

website (www.iucn-amphibians.org/wp-content/uploads/2019/03/Amphibians-Initiative-123 

2008-webcontent-Downloaded-27Nov2018-1.pdf). 124 
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The ASG’s Amphibian Red List Authority (ARLA) was established in 2009 to continue the 125 

work of adding newly described species to the IUCN Red List each year and to update GAA 126 

assessments as needed. By that time, more than 6,000 species had been described. The 127 

appointment of Regional ARLA Coordinators began in 2010 to support and guide this work, 128 

which was undertaken by short-term volunteers. After six years of continuous effort, the 129 

ARLA found that a large backlog of new species and out-of-date GAA assessments had 130 

accumulated. The strategy for maintaining the amphibian data on the Red List was reviewed 131 

at that time and identified several persistent challenges, including the increasing rate of 132 

taxonomic changes highlighted earlier in this chapter; the emergence and evolution of threats 133 

faced by amphibians; and the ARLA’s reliance on volunteers. The amphibian assessments on 134 

the Red List were becoming outdated faster than the ARLA could update them. 135 

 136 

In response to these challenges, the ARLA launched the second Global Amphibian 137 

Assessment (GAA2) in 2015. Replicating the approach of the first GAA, funding was 138 

gradually raised to employ a core global ARLA team to coordinate assessment projects for 139 

each ASG region in collaboration with Regional ARLA Coordinators, ASG Regional Chairs, 140 

and key experts in amphibian conservation and research. Due for completion in 2022, the 141 

GAA2 synthesises 18 years' worth of data, and has assessed the global conservation status of 142 

more than 8,000 species (~ 95% of currently known species) through a combination of in-143 

person and virtual workshops of different sizes, internships and consultant contracts, and 144 

collaborations with national red list processes. In addition to the challenges mentioned above, 145 

the GAA2 built the case for a second assessment process to donors and partners; tackled the 146 

increasing data requirements for red listing; incorporated successive versions of the IUCN 147 

Red List Guidelines which required changes to methods such as the calculation of extent of 148 
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occurrence (EOO); and shifted to an entirely virtual assessment process in 2020 due to the 149 

emergence of the COVID-19 pandemic. 150 

 151 

The forthcoming third Global Amphibian Assessment (GAA3) will aim to update all 2009-152 

2022 assessments and evaluate the global extinction risk of all newly described species by 153 

2030, as per the IUCN Red List Strategic Plan 2021-2030. By that time, the number of valid 154 

amphibian species is expected to approach 10,000. Building on the GAA and GAA2 models 155 

and lessons learned during those initiatives, several technological and methodological 156 

innovations are being developed to improve the quality of assessment data and decrease the 157 

number of years required to undertake a global amphibian assessment. 158 

 159 

The ARLA invites interested parties to provide information to the GAA3, collaborating on 160 

the following priorities: 161 

● Publishing data relevant to Red List assessments in species descriptions and survey 162 

and expedition reports, where possible. Of particular interest is information regarding 163 

ecological traits that increase a species’ vulnerability to specific threats; past and 164 

present habitat quality; current population status, and past/present/future threatening 165 

processes.  166 

● Contacting the ARLA when a species urgently requires assessment or reassessment in 167 

light of significant emerging threats, and where new adequate information is available 168 

for the assessment of newly described Not Evaluated (NE) and Data Deficient (DD) 169 

species. In such instances the ARLA will endeavour to prioritise their extinction risk 170 

assessment in a timely manner. 171 

● Improving the quality of distribution maps, including historical ranges. 172 
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● Increasing the consistency and accuracy with which certain threats are evaluated, 173 

including emerging diseases, trade, over-harvesting, and climate change. 174 

● Undertaking Green Status of Species assessments alongside Red List assessments. 175 

● Broadening participation in the assessment process to include the knowledge and 176 

experience of indigenous peoples, citizen science initiatives, managers of 177 

conservation projects, zoo and aquarium staff, members of governmental agencies, 178 

donors, etc. 179 

● Strengthening linkages with national red list processes. 180 

● Encouraging the use of Red List data – both the category and supporting information 181 

– in conservation planning, collaboration, and action at global and national levels. 182 

 183 

Limited understanding of species ecology and biology 184 

In an ideal scenario we would be able to gather and access the basic data that are needed to 185 

understand the conservation status and needs of all species. As this is not the case, we need to 186 

make conservation decisions based on existing information, which is often imperfect and 187 

incomplete. Following a precautionary approach, the IUCN Red List Categories and Criteria 188 

(IUCN, 2012) allows the use of a variety of types of data quality, including observed, 189 

estimated, projected, inferred, and suspected. In addition, the IUCN Red List differentiates 190 

between required and recommended data, so as to facilitate assessments in data-poor 191 

situations. These approaches enable the assessment of the extinction risk of species that have 192 

different types and amounts of data and different levels of uncertainty associated with the 193 

data. While IUCN Red List assessments are robust to missing data (Maes et al., 2015), the 194 

data needed to accurately assess all species against all the IUCN Red List criteria are 195 

currently crucially missing or too uncertain for 16% of amphibians listed as DD, which is 196 

higher than the 14% DD mammals and the 0.4% DD birds (IUCN, 2022). This is especially 197 
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relevant as half of amphibian species listed as DD are estimated to be threatened (González-198 

del-Pliego et al., 2019). 199 

 200 

The data that are typically used to inform extinction risk assessments include geographic 201 

range, population status, population trend, habitat and ecology, threats, and conservation 202 

actions in place. These are covered in the IUCN Red List website (IUCN, 2022, see 203 

https://www.iucnredlist.org/assessment/supporting-information#Population). The Amphibian 204 

Ark Conservation Needs Assessment (CNA) compiles additional and complementary 205 

information derived from 26 questions, seeking to determine the conservation needs of any 206 

species (https://www.conservationneeds.org/Help/EN/QuestionsAnswers.htm). Together, 207 

both these resources list data that, if all available, would allow a comprehensive picture of the 208 

conservation status and needs of an amphibian species. However, not all types of data are 209 

equally available, and some are more resource-intensive and thus not as easy to obtain. 210 

Where extinction risk is concerned, the most commonly missing information is that relating 211 

to population status, trends, species-specific life history (much information is inferred from 212 

known congeners and used as a proxy for the lesser known species), certain types of threats, 213 

their synergies, and their relative contributions to any observed declines. 214 

 215 

Only a fraction of these types of data become available for even the most studied species 216 

(Nori, Villalobos & Loyola, 2018). Furthermore, once a species is assessed, additional 217 

knowledge is required to plan appropriate conservation interventions, and understand and 218 

remedy the original causes of decline. This not only encompasses the target species, but also 219 

the habitats in which it thrives, the behaviours that need to be expressed and the ecological 220 

requirements to ensure that the environment provided is adequate for the conservation of the 221 

species (Conde et al., 2019). 222 
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 223 

The reasons behind the lack and paucity of data can be as varied as they are subtle. Based on 224 

the ASG’s membership data, the most frequently mentioned challenge in amphibian 225 

conservation is lack of resources and investment, which can be extended to research on the 226 

subject matter. However, as can be seen in the “Resourcing amphibian conservation” section, 227 

while this is reflected in the figures that we have collated, there are also other important 228 

reasons to consider. There are not very many papers that cover this subject, so we offer some 229 

reflections based on our own collective experiences, some of the references that we could 230 

find, as well as some recommendations: 231 

1. Geographic and thematic realities and biases: the highest amphibian species richness 232 

can be found in tropical regions, where there is still an undetermined number of 233 

undescribed species (Moura & Jetz, 2021). Taxonomy is thus a priority for many 234 

tropical herpetologists, who tend to develop their skills in this field. The distribution 235 

of threatened species also coincides with many amphibian species richness hotspots, 236 

so in a way threatened species compete for attention with the undescribed species. In 237 

addition, there are geographic and cultural aspects that may play a role, such as the 238 

availability of professional opportunities and the support, or lack thereof, to publish 239 

scientific papers (Young et al., 2001; Urbina-Cardona, 2008). Understanding what 240 

these realities are within an amphibian biologist’s own region and community, as well 241 

as increasing international collaborations to advance amphibian taxonomy in regions 242 

with few taxonomists and resources to undertake taxonomic studies (see Taxonomy 243 

section), may help to take further steps to change the status quo. 244 

2. Data ownership and data sharing: use of unpublished data can be a sensitive issue, 245 

especially among certain disciplines, career stages, cultural perspectives and 246 

stakeholders (e.g. consulting firms involved in environmental impact assessments; 247 
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von May et al., 2008). On the opposite end of the spectrum, some types of 248 

information that don't pertain to the immediate field of interest may not be prioritised 249 

for use (e.g. information on threats in a taxonomically-focused programme). 250 

Consideration of data sharing among the multiple stakeholders would be a valuable 251 

development for increased access to data and knowledge, as would developing and 252 

improving policies on how data would be used and contributors acknowledged 253 

(Tapley et al., 2018). 254 

3. Data quality: where data are available there are sometimes questions regarding how 255 

they are collected. This is especially the case when the data are not published in peer-256 

reviewed journals (see e.g. von May et al., 2008). In some instances and under certain 257 

conditions, it may be safer to use some types of data (e.g. occurrence data with 258 

specialist identification) over others (e.g. survey data that require standardised 259 

methodologies). Citizen science projects, such as the Amphibian BioBlitz run by the 260 

iNaturalist.org platform (https://www.inaturalist.org/projects/global-amphibian-261 

bioblitz) or FrogID in Australia (https://www.frogid.net.au), have the potential to 262 

provide important occurrence data and in this way help bridge some knowledge gaps 263 

in light of the number of participants and data (more than 220,000 participants 264 

contributing data for more than 4,900 species in the iNaturalist Amphibian BioBlitz). 265 

4. Capacity to fundraise: the ability to bring in financial resources for project work can 266 

be limited by the lack of familiarity with the process of writing and applying for 267 

grants, which may preclude amphibian biologists from applying or from presenting 268 

competitive proposals. Furthermore, limited fluency in English may be another 269 

constraint in countries that speak languages other than English, as most calls for 270 

proposals are in English. More training opportunities in fundraising would help build 271 

capacity in this regard, while multicultural collaborations could help with proposal 272 
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development in the English language (see the section on "Resourcing amphibian 273 

conservation" for more information). In addition, grant providers could also help 274 

overcome this issue by accepting applications in languages other than English. 275 

5. Synthesis: new studies are constantly being published; however, the scientific 276 

literature tends to be dispersed across many journals, making it difficult to get an 277 

overview of the “big picture”. Thus, there is a need for studies that bring together the 278 

various sources of information into a cohesive body of work that may allow for a 279 

quicker identification of knowledge and gaps, which can in turn help inform what 280 

kind of data are still needed. Research communities would be well positioned to lead 281 

these sorts of studies. 282 

6. Coordination: individual amphibian biologists are often comfortable working within 283 

their established sites and their networks, but in order to address knowledge gaps 284 

more effectively at a country or regional level, higher-level coordination is needed. 285 

Coordination requires dedicated effort and time, and unfortunately it is rarely 286 

contemplated outside of a specific project or organisation; yet, it is absolutely 287 

essential to increasing efficiencies and filling knowledge gaps. Because of this, 288 

higher-level coordination efforts would be best led by institutions such as government 289 

agencies, museums, NGOs and herpetological societies, and/or (depending on the 290 

scope) the ASG, Amphibian Survival Alliance (ASA) or the Atelopus Survival 291 

Initiative (ASI) when appropriately resourced. 292 

 293 

Evidenced-based conservation action 294 

Over the past two decades there has been a growing push for evidence-based conservation 295 

action, based on the example of evidence-based reforms in medicine and public health (Pullin 296 

& Knight, 2001). The aim of such initiatives is to close the gap between scientific knowledge 297 
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and conservation action (Sutherland et al., 2004), avoid repetition of unsuccessful 298 

interventions, and more effectively use the limited funding that is available to achieve the 299 

biggest conservation impact. 300 

 301 

However, making conservation decisions based on evidence relies on the relevant evidence 302 

being available to those making the decisions. Specifically, it requires monitoring and 303 

evaluation of conservation actions (Pullin & Knight, 2001) and reporting of what is found 304 

(both successes and failures) in a format that is freely available to others involved in 305 

conservation decision-making. This requires that the information be available in a language 306 

that can be understood by the decision-makers (Amano et al., 2021), and that there is not a 307 

significant delay in publishing relevant evidence, which needs to be available in a timely 308 

manner to have maximum impact on conservation action (Christie et al., 2021). Furthermore, 309 

some evidence will clearly help in making better decisions, particularly where the benefits of 310 

a specific approach have been well assessed, e.g. the removal of an invasive fish which preys 311 

on a threatened amphibian species (Sutherland et al., 2021). However, it may be more 312 

complex to apply evidence-based thinking to multi-dimensional issues, operating in context-313 

specific situations, where directly relevant evidence is unavailable (Adams & Sandbrook, 314 

2013). 315 

 316 

While there has been an increase in effort to make results more freely available, for example 317 

the establishment and growth of the Conservation Evidence information resource 318 

(www.conservationevidence.com ) and the open access journal Conservation Evidence 319 

(Sutherland et al., 2004; Sutherland et al., 2019), there are still significant biases in reported 320 

results. For instance, Christie et al. (2020), found that approximately 90% of the published 321 

evidence on amphibian conservation interventions in the Conservation Evidence journal is 322 
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based on studies from North America, Western Europe and Australia. Furthermore, 323 

taxonomic bias was also clear, with only a single study on Gymnophiona. As such, 324 

extrapolating results to different taxa in tropical climates and habitats may not be appropriate. 325 

In addition, negative results are often underreported for a variety of reasons, such as difficulty 326 

to publish such results in peer-reviewed journals, and potential stigma when applying for 327 

future funding. 328 

 329 

In order to increase the use of available evidence in amphibian conservation, with the wider 330 

aim of improving conservation outcomes, we encourage researchers and implementers to: 331 

1. Review existing evidence-based resources: when planning conservation interventions, 332 

consult the available evidence-based literature and broader resources to inform your 333 

decision-making process. Some important resources include the Conservation 334 

Evidence website (www.conservationevidence.com), which currently gathers ca. 130 335 

actions for amphibians, and the publications “Amphibian Conservation: Evidence for 336 

the effects of interventions” 337 

(https://www.conservationevidence.com/synopsis/download/7) and What Works in 338 

Conservation (https://www.openbookpublishers.com/product/1490). 339 

2. Plan up front to report results: methodically record results of interventions that you 340 

are undertaking, so that you can report on results whether or not the action was 341 

successful. 342 

3. Report your findings: communicate your results in a timely manner, and preferably in 343 

a format that will be freely available to others. This may be in an Open Access 344 

journal, or could be within a newsletter, bulletin, or magazine, such as the amphibian 345 

conservation community’s publication, FrogLog. Also consider if it may be more 346 

useful to report your findings in a specific language, or multiple languages. 347 
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4. Strategically fill gaps in the current evidence-base: aim to specifically report on 348 

effectiveness of conservation actions outside Western Europe and North America, and 349 

with better representation of all taxa. This may be via publication of information 350 

already gathered, or strategically aiming to fill known gaps. 351 

 352 

Resourcing amphibian conservation 353 

Amphibians are the most threatened vertebrate class on earth (IUCN, 2022), yet, the level of 354 

global investment in amphibian conservation has not been commensurate with the amphibian 355 

extinction crisis, which has been known and publicised for several decades. Even within the 356 

often financially constrained world of conservation, chronic and severe underfunding has 357 

been a persistent issue (Bishop et al., 2012). Armed with the results of the first GAA, a group 358 

of amphibian experts were convened to the 2005 Amphibian Conservation Summit in 359 

Washington, USA to develop the first ACAP. It was estimated that implementing ACAP 360 

would cost over US$ 400 million over a period of five years (2006-2010; Gascon et al., 361 

2007). As global fundraising for amphibians was not tracked it is unclear how much of these 362 

funds were raised; however, we know that it was nowhere near that target. There aren’t many 363 

studies that examine amphibian conservation spending, but we know for example that in the 364 

United States amphibians receive just one-quarter of the Endangered Species Act (ESA) 365 

funding that other vertebrate classes do (Gratwicke, Lovejoy & Wildt, 2012). There are also 366 

documented instances of lost support. For example, the United States Fish and Wildlife 367 

Service (USFWS) managed the Amphibians in Decline Fund, which supported conservation 368 

efforts in 25 countries from 2010-2016. Unfortunately, the programme ended once funding 369 

dried up (Scott, 2021). The collective experience of amphibian-focused groups and 370 

organisations, including ASG, are very much in line with this finding. 371 

 372 
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This scenario, and the continuing difficulties in supporting amphibian conservation at a 373 

global scale, begs a couple of questions: 1) why is it so difficult to fundraise for amphibian 374 

conservation, and 2) when fundraising is successful, how much has been raised? 375 

 376 

The first question is more complex as there are likely many aspects at play. To begin with, 377 

amphibians are not part of the charismatic megafauna that often get the most attention. It has 378 

been shown that factors such as charisma are often more important than ecological 379 

information or conservation status in driving individuals’ willingness to pay for biodiversity 380 

conservation efforts, and that individuals often have preferences for species more similar to 381 

humans (Colléony et al., 2017; Martín-López, Montes & Benayas, 2007). The second 382 

question, however, is something that we can investigate more easily, especially when 383 

referring to project funding. In order to better understand the international financial support 384 

received by amphibian projects we wrote to established non-taxonomically focused 385 

biodiversity conservation funds, supporting organisations and donors. We approached twenty 386 

organisations that regularly provide grants, awards and materials for projects that support 387 

general biodiversity conservation and asked them about patterns of applications and funding 388 

for different taxa as well as perspectives on what changes may be needed. 389 

 390 

Of the twenty organisations contacted, twelve replied positively. However, because of the 391 

focus of some of these organisations or how they organised their project support (for 392 

example, not explicitly by taxonomic group, or with different groupings), not all of the 393 

responses could be used in the same way. A summary for those organisations that did record 394 

the number of grants awarded by taxonomic group is provided in Figure 2.1. It is important to 395 

note that the data provided covered different timeframes or specific programmes, so we used 396 

proportions of what was reported to account for these differences. Several organisations 397 
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funded multi-taxa projects or projects without a taxonomic focus (e.g. habitat-based), which 398 

may have been beneficial to amphibians. Most of the organisations surveyed have been 399 

providing grants for amphibian conservation for a decade or more. 400 

 401 

 402 

 403 

Figure 2.1: A sample of funding for amphibian conservation compared with other taxa, for 404 

which data were available; a) Focal taxa by proportion of funded projects (n = 9 funders), and 405 

b) Focal taxa by proportion of total dollar investment (n = 8 funders). Note: The ‘other’ 406 

category encompasses projects for plants, fungi and invertebrates, and those which are not 407 

taxon-specific. Source: A. Angulo & S. Wren, unpublished data.  408 

 409 

One organisation had a grant programme specifically for amphibians, so over 60% of projects 410 

funded had amphibians as the focal taxon (seen as an outlier in Figure 2.1a). For the 411 

remainder of respondents, the proportion of funded proposals and proportion of dollar 412 

spending that focus on amphibian projects were relatively small, particularly when compared 413 

with those for birds and mammals. Mean dollar investment in amphibians was lower than that 414 

for all other vertebrate taxa. 415 

 416 
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Of those organisations that did keep track of accepted and submitted proposals, the 417 

proportions of amphibian applications that were funded were comparable to or higher than 418 

other taxonomic groups in their respective grant periods (14.3% - 29%). Most organisations 419 

did not have a policy for funding a specific number, proportion, or dollar amount for any 420 

given taxa; however, several responded that they do take into account, for example, the high 421 

proportion of threatened amphibian species, when reviewing applications. 422 

 423 

While it is true that, of the data assessed, amphibian proposals receive less funding relative to 424 

their vertebrate counterparts, there are a few new pieces of information that can help us 425 

understand the funding shortfall in a different light and adjust our collective fundraising 426 

approach accordingly. To begin with, based on our limited survey figures and some of the 427 

feedback received, amphibian proposals seem to be submitted less frequently than those of 428 

other vertebrate groups, so it stands to reason that allocated funding would reflect this. 429 

Potential causes could be simply because the pool of prospective applicants is smaller relative 430 

to other taxonomic groups due to amphibians’ perceived lack of charisma, or the lack of 431 

prestige in working on this taxon (Urbina-Cardona, 2008), or because of limited language or 432 

technical capacities, all of which result in a broad lack of capacity in amphibian conservation. 433 

This indicates that increased applications for amphibian-focused projects could result in 434 

increased funding being allocated to amphibian conservation. However, several organisations 435 

would like to see proposals that have a high degree of collaboration (for example, some 436 

organisations receive projects that are similar to each other and that would benefit from 437 

working together), that focus more on specific approaches (e.g. threat mitigation, instead of 438 

mostly collecting baseline data) or coming from locally-based parties in particular regions 439 

(e.g. Africa and Asia), so it is important that as a community we understand what are the 440 

priorities of funding organisations and that we address them accordingly. 441 
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 442 

Given our improved understanding of the nuances involved in resourcing amphibian 443 

conservation through projects, we suggest the following: 444 

1. Increasing capacity for grant-writing and fundraising: there is a need for more high-445 

quality amphibian proposals to be considered in the various granting mechanisms that 446 

are available to biodiversity conservation. Investing in developing this capacity 447 

should result in a higher number of quality applications and therefore in more 448 

amphibian conservation projects getting funded. The ASG has its Grant Writing 449 

Mentorship Programme, which pairs an experienced reviewer with an up-and-coming 450 

amphibian conservationist so that a proposal can be assessed prior to being submitted. 451 

Scaling up the programme, in addition to putting together resources that can 452 

complement it, should help increase grant-writing capacity. 453 

2. Expanding approaches: obviously baseline data are essential to inform conservation 454 

action but these data alone may not be sufficient to qualify for a conservation grant. 455 

Most amphibian conservationists are formally trained researchers but are not 456 

necessarily trained in implementing conservation action, so a reassessment of scope 457 

would be advisable for applicants. Projects implementing actions aimed at mitigating 458 

a specific threat might have a higher chance of securing a grant. 459 

3. Increasing collaborations and coordination: to reduce duplicity and internal 460 

competition within the amphibian conservation community it is important that 461 

researchers and conservationists who work on similar systems within the same 462 

geographic and thematic areas collaborate. In order to achieve this regional or 463 

national-level coordination is necessary. With appropriate resources, ASG would be 464 

well positioned to support this coordination via its regional groups, as would ASA and 465 

ASI via their respective partners. 466 
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 467 

Collaborations 468 

Collaboration is key to conservation. When asked "Other than funding, what is the single 469 

largest factor limiting effective conservation strategies for amphibians at global and regional 470 

levels?", lack of coordination and collaboration within the amphibian conservation 471 

community was the third most common response among ASG members in both the 2013-472 

2016 and 2017-2020 IUCN quadrennia. There are many forms of collaboration, and multiple 473 

forms are often needed to maximise conservation success. 474 

 475 

In amphibian conservation, perhaps the first and most obvious form of collaboration is that 476 

between the persons implementing conservation projects and those conducting research. 477 

Interdisciplinary collaboration is vital to conservation success, as there is a vast diversity in 478 

competencies required for modern conservation, as is described in the chapters of this ACAP. 479 

In practical application, no one action described in the following chapters can be isolated 480 

from the others in terms of achieving successful conservation of amphibians. This explains 481 

the deliberate overlap of ACAP’s chapters and why ASG highly recommends that 482 

collaborations be applied to conservation action. While collaboration may seem intuitive, 483 

interdisciplinary collaboration can be a challenge to execute, with challenges in 484 

communication and increases in complexity and length of projects (Lanterman & Blithe, 485 

2019; Pannell et al., 2019). Many modern universities are promoting interdisciplinary training 486 

in the new generation of conservation implementers, but often their administrations have not 487 

yet determined how to effectively overcome the separation of disciplines and do not fully 488 

appreciate that this can take more time and effort to execute than single-discipline research 489 

(Andrade et al., 2014; Lanterman & Blithe, 2019; Pannell et al., 2019). The benefits of 490 

interdisciplinary action outweigh the challenges, and can be overcome by remaining open-491 
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minded, using frequent communication among all stakeholders, and promoting collaborations 492 

as outputs to funding sources and administrators (Andrade et al., 2014; Lanterman & Blithe, 493 

2019; Pannell et al., 2019). In addition to collaborations across conservation disciplines, 494 

partnering with others of the same discipline is encouraged for increased efficiency. Often 495 

several researchers in separate institutions will work in tandem on the same conservation goal 496 

and find themselves competing for funding and resources. 497 

 498 

A second form of collaboration to emphasise is interdisciplinary collaboration with 499 

individuals who have skillsets outside of the conservation sciences (Aziz et al., 2013). 500 

Conservation is too often placed exclusively in the hands of scientists, and while science and 501 

research are paramount to understanding conservation needs and actions, participation from 502 

disciplines outside of conservation sciences is crucial to implement conservation. In the face 503 

of the extinction crisis and climate change, the urgent need for novel solutions and radical 504 

changes to how we live requires the engagement of all sectors in the conservation of nature. 505 

This means all skillsets are needed in the field of conservation. While this demand for 506 

collaborators with varied skill sets is recognised by many conservation scientists, it is still an 507 

area of great need. 508 

 509 

The third form of collaboration, and most important for true conservation success, requires 510 

the collaboration of the community, may it be through non-governmental or governmental 511 

organisations. A community can be as small as a neighbourhood, or can be as large as a 512 

global community. While this is the most important form of collaboration, it can also be the 513 

most challenging to achieve and measure. Collaboration with local communities can lead to 514 

impacts such as habitat protection (Roach, Urbina-Cardona & Lacher Jr, 2020; O'Brien et al., 515 

2021) and increase in positive behaviours toward species (Perry-Hill et al., 2014). Examples 516 
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of collaboration in global amphibian conservation include not only the work of the ASG but 517 

also that of AArk and the ASA, which catalyse action by linking up partners with common or 518 

complementary interests and skills, respectively. Likewise, the ASI does this at a regional 519 

level for the genus Atelopus, seeking to nurture coordinated collaborative efforts. 520 

 521 

Improving governance 522 

There are multiple international conventions relevant to amphibian conservation - the 523 

Convention on Biological Diversity (CBD), Convention on International Trade in 524 

Endangered Species of Wild Fauna and Flora (CITES), Ramsar Convention on Wetlands of 525 

International Importance Especially as Waterfowl Habitat, Convention concerning the 526 

Protection of the World's Cultural and Natural Heritage, and the United Nations Framework 527 

Convention on Climate Change (UNFCCC), to mention a few. However, inadequate 528 

governance – encompassing lack of legal support, lack of political will, and lack of 529 

enforcement of existing laws – is one of the obstacles to implementing amphibian 530 

conservation most frequently cited by ASG members (mentioned by 23% of respondents in 531 

2013 and 34% of respondents in 2019, for the 2017-2020 quadrennium). 532 

 533 

Even where obligations for implementation of such conventions are relatively clear, we have 534 

failed to meet the targets (Butchart et al., 2010; Butchart et al., 2015; Harrop & Pritchard, 535 

2011). While there has been criticism that targets were unachievable given the timeframe 536 

(Collen et al., 2013), and could be framed better to support necessary actions (Butchart, Di 537 

Marco & Watson, 2016; Green et al., 2019), there seems to be a disconnect between 538 

governments’ commitments to biodiversity conservation on the global stage, and 539 

implementation of the practical local-scale action through national regulatory frameworks 540 

required to achieve those goals (Atisa, 2020; Collen et al., 2013). It is clear that 541 
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transformative change is required if we are to reverse the current trajectory of declines (Díaz 542 

et al., 2019; Leclère et al., 2020; Mace et al., 2018; Tickner et al., 2020). 543 

 544 

Lack of government support, specifically for amphibian conservation actions, may also be 545 

linked to the reasons amphibians are often not prioritised compared with other taxa (see 546 

above). Nevertheless, most countries are parties to numerous international conventions and 547 

therefore have an obligation to act to reverse biodiversity declines, so how can we better 548 

increase governmental support - at a national and local level - for amphibian conservation 549 

action? 550 

 551 

Rogalla von Bieberstein et al. (2019) suggest the following actions that can be taken to 552 

engage governments and contribute to improving implementation of policy: 553 

1. Establish a science-policy platform to promote and facilitate the generation and use of 554 

best available knowledge. 555 

2. Improve data gathering, reporting and monitoring, including building more effective 556 

mechanisms for managing, sharing and using data. 557 

3. Develop indicators that adequately support implementation of national plans and 558 

strategies that can be used across all the biodiversity-related conventions. 559 

4. Provide recommendations based on results accompanied with evidence for successful 560 

approaches and making biodiversity data more accessible for policy makers. 561 

 562 

Changes to conservation in the face of COVID-19 563 

Since the beginning of 2020 the global COVID-19 pandemic has had enormous consequences 564 

on just about every facet of human activity, including biodiversity conservation. In the early 565 

days of the initial mass lockdowns, there were many questions and few answers on the 566 
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impacts of COVID. Shortly after the onset of these lockdowns we started seeing images of an 567 

assorted variety of wildlife in decidedly urban settings throughout the world, and there was a 568 

sense that the compulsory collective pause of much of human activity had been good news 569 

for nature. We began to see blogs, editorials and letters that wondered about conservation in 570 

the face of COVID (e.g. Evans et al., 2020; Pearson et al., 2020), and while there appeared to 571 

be some good news for the short term (e.g. reduction in noise, pollution and greenhouse 572 

gases, Corlett et al., 2020), there were also enormous and immediate negative impacts 573 

(reduced funding, cancellation of physical meetings and field work and classes, increase in 574 

waste and illegal harvesting, slowing the deployment of renewable energy, massive losses in 575 

ecotourism revenue critical to conservation, to mention a few). Years have now passed since 576 

those first lockdowns, and while we now have a better understanding of some of their most 577 

immediate impacts, it will take us some more time (and perhaps in some cases, we may 578 

never) to get a better sense of their reach. Furthermore, some human activities continue to be 579 

heavily impacted while others have resumed to some extent and/or been adapted; and 580 

modified lockdowns continue to take place as a result of subsequent COVID waves, so the 581 

pandemic is still affecting the world and will continue to do so in the foreseeable future. 582 

 583 

The number of papers and editorials documenting the impact of this global pandemic on 584 

conservation is increasing at a steady pace, so this writing is by necessity a snapshot in time.  585 

Perhaps the most obvious impacts are: 586 

1. On-the-ground conservation: with mobility restrictions and shrinking budgets, the 587 

protection of priority conservation areas or endemic and threatened species has been 588 

greatly affected by COVID. The hiatus in activities such as patrolling, enforcement, 589 

containment, treatment, and eradication of invasive species has led to an increase in 590 

deforestation, logging, poaching, mining and diseases (Bang & Khadakkar, 2020), 591 
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with further encroachment into natural habitats also increasing the risk for new human 592 

diseases (Morris et al., 2016; Di Marco et al., 2020). Indigenous communities that are 593 

conservation stewards are themselves highly vulnerable to both illicit activities and 594 

COVID, being constantly threatened on both fronts. 595 

2. Education: the first and subsequent lockdown mobility restrictions disrupted routine 596 

academic and research activities such as classes, labs and exams. Professors and 597 

students had to quickly adapt to an online format for teaching and learning, without 598 

much prior experience with this format (Corlett et al., 2020). It was a bumpy start for 599 

most, and while the format may lend itself to some subjects it is challenging to 600 

implement for disciplines that have practical components, such as conservation 601 

(Corlett et al., 2020), where labs and field courses have been postponed or cancelled 602 

altogether. This also affects timelines for graduation and for young conservation 603 

professionals entering the workforce. The impacts of COVID on education may be 604 

even stronger in areas where internet access is not reliable or fully available. 605 

3. Research: the pandemic has also impacted transportation, travel and entry into 606 

political jurisdictions at all scales, and while there has been some relaxation of travel 607 

restrictions at the local level and to some degree at the international level, the airline 608 

industry is still one of the hardest hit by COVID and travel remains reduced relative 609 

to its pre-pandemic levels. This has affected not only the ability to visit field study 610 

sites, but also loan of specimens, exchange of samples, and for those labs that depend 611 

on equipment and materials that need to be transported from somewhere else, putting 612 

lab work and experiments on hold or ending them abruptly. As travel and exchange 613 

restrictions loosen, highly targeted and serious consideration may need to be given to 614 

further enhancing capacity building in-country when the opportunity arises. 615 
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4. Networking and decision-making: physical meetings of all sizes have been either 616 

postponed or cancelled due to the pandemic. Beyond the obvious ability to meet and 617 

connect with prospective collaborators, employers or academic advisors, this is of 618 

immense consequence to large, international meetings where intergovernmental 619 

policies and international agreements are discussed and agreed upon, such as the 620 

Convention on Biological Diversity (CBD), the UN Climate Change Conference 621 

(Corlett et al. 2020), and the IUCN World Conservation Congress. Online meetings 622 

have allowed for smaller virtual gatherings, which work for more modestly-sized 623 

conferences although not for policy decision-makers. 624 

5. Wildlife trade: the pandemic originated at the interface between wildlife, domestic 625 

animals and humans, and there was a rapid agreement at the international level that 626 

wildlife trade is among the vectors that enabled the pandemic. Some countries took 627 

rapid action to restrict or even ban the wildlife trade of some specific species, most 628 

notably mammals (Borzée et al., 2020). However, no such change was brought to the 629 

amphibian trade, despite the panzootics already impacting amphibians, and where the 630 

importance of human activities in its spread is not debated. Amphibian populations 631 

harvested for the trade, and especially those exported towards western countries or 632 

dedicated to high-end consumption would benefit from an update of amphibian trade 633 

regulation, and the COVID pandemic could be such trigger (Borzée et al., 2021). 634 

6. Funding: resources for both operational costs and project work have been severely 635 

impacted by the pandemic. Non-profit organisations, inclusive of NGOs, zoos, 636 

aquaria and museums have all been significantly hurt by COVID, having had to cut 637 

hours, furlough, or let staff go altogether. Some government entities have also 638 

experienced cuts due to shifting priorities, and initiatives whose business models 639 

relied on ecotourism saw their primary source of income dry up overnight. Some 640 
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donor organisations have allowed for proposals to cover operational costs, which is 641 

helpful, but the need is still enormous, especially because other funding agencies have 642 

temporarily paused their funding programmes. 643 

7. Professional opportunities: a combination of the issues outlined above means that the 644 

jobs available in conservation, an already scarcely resourced and highly competitive 645 

field, are even harder to come by, especially for non-charismatic biodiversity. What 646 

are the consequences to biodiversity when there are limited spaces for those who 647 

speak for biodiversity? 648 

 649 

It is important to note that while some COVID-driven changes may appear to have had a 650 

positive impact on conservation, the overall impact is likely to be highly detrimental to 651 

conservation as a whole (see e.g. Lindsey et al., 2020). Given the points highlighted above, it 652 

is clear that there are major structural cracks that need to be addressed to help conservation 653 

through the pandemic crisis, but also with a view to longer-term changes leading to some 654 

sustainability. A concerted collective effort by the conservation community is needed to re-655 

think how conservation is done and funded, to engage other sectors where environmental 656 

stewardship is a priority, and to be flexible but also plan strategically. The time to do so is 657 

now. 658 
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 31 

Abstract 32 

Amphibian ecology and distribution are strongly correlated with climate. Regional patterns of 33 

amphibian biodiversity are intimately linked to temperature, evapotranspiration rate, and 34 

clines in humidity. While amphibians are and will continue to be adversely affected by recent 35 

and projected changes in climate, research suggests that adaptation may happen more slowly 36 

than the expected rate of environmental shifts. Here, we review conservation-relevant aspects 37 

of both realised and potential impacts of climate change, and make recommendations for 38 

amphibian conservation planning and management, focusing on research, action, outreach, 39 

and policy. Recent advances in our understanding of climate change impacts on amphibians 40 

have primarily stemmed from ecological modelling and direct assessment of climatic 41 

tolerances and dispersal capacities through physiological assays, landscape genetics, and 42 

dispersal tracking. Anthropogenic climate change has already altered amphibian assemblages 43 

and their impacts on ecosystem functioning and services.  Because of known and 44 

hypothesised ecological tolerances, many amphibians might have reached or exceeded most 45 

limits in their ability to adapt to or tolerate further climate change, however the uncertainties 46 

are substantial. Conservation planning and action should be implemented to forestall severe 47 

impacts of environmental shifts. Scientific research and science-based decision-making and 48 

policy development have already lagged; conservation planning and action are happening too 49 
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slowly for effective identification of threats and mitigation. If we are to avert further loss of 50 

amphibian biodiversity and decay of ecosystem services, we must quickly change our 51 

response rate. The lack of basic field research in natural habitats continues to be an 52 

underlying challenge. We suggest priority areas of research to include the development of 53 

biologically realistic predictive models of amphibian response to climate change, field 54 

verification of model estimates and key parameters, population monitoring across multiple 55 

sites and taxa, and a combination of efforts within and across ecosystems to understand how 56 

impacts of climate change can be better mitigated. 57 

 58 

Introduction 59 

Anthropogenic climate change is affecting biodiversity, globally (Parmesan & Yohe, 2003; 60 

Rosenzweig et al., 2008; Scheffers et al., 2016; Walther et al., 2002) - with a particularly 61 

strong impact on amphibians (IPCC, 2014; Li, Cohen, & Rohr, 2013; also see Figure 3.1). 62 

Although these animals have adapted to and survived past changes to the Earth’s climate (Fey 63 

et al., 2015), the contemporary rate of climate change is worrisome by being higher than 64 

those previously witnessed over evolutionary scales, with most amphibians in the “slow” 65 

ecological response rate category (Williams, Ordonez, & Svenning, 2021). All aspects of 66 

climate change - air and sea surface temperatures, solar radiation, UV, humidity, cloud cover, 67 

precipitation, extreme weather event frequency, and sea level rise- can affect amphibian 68 

biodiversity (see Figure 3.2). Making matters worse, many amphibian populations are under 69 

additional stress due to other drivers, such as disease and habitat loss, which amplify when 70 

acting in synergy (Alton & Franklin, 2017; Cordier, Lescano, Rios, Leynaud, & Nori, 2020; 71 

Velasco et al., 2021). Here, we identify key impacts of climate change on amphibians, 72 

possible biological response-to-climate-change scenarios, research gaps, and management 73 

strategies and policies best suited for real world conservation actions. We offer this review in 74 
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the context of the larger ACAP 2022, offering a pluralistic overview of extinction drivers and 75 

real-world solutions. 76 

    77 

 78 

Figure 3.1. Trends in a) atmospheric carbon dioxide and b) global temperature. For centuries, 79 

atmospheric carbon dioxide had never been above the blue dottend line (a), and global 80 

temperatures have increased by over 1.2 ̊C (b). 81 
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 82 

Figure 3.2 Theoretical framework of direct and indirect drivers of extinction threat and 83 

decline risk to amphibians posed by climate change. 84 

 85 

Status update  86 

Observed impacts of climate change on amphibians 87 

Observed population declines and changes in distribution 88 

Despite very limited long-term data and ongoing surveys on amphibian populations, we have 89 

documented declines and potential increasing synergies of extinction drivers. Cahill et al. 90 
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(2013) evaluated local population extirpations with climate change or weather variation and 91 

found just two studies on amphibians. Since then, however, numerous studies have 92 

demonstrated similar population extirpations and range losses due to climate change. For 93 

example, in Lithobates yavapaiensis severe drought drove high mortality and population 94 

extirpation (Zylstra, Swann, Hossack, Muths, & Steidl, 2019), Pseudophryne pengilleyi lost 95 

42% of its breeding sites following drought (Scheele, Driscoll, Fischer, & Hunter, 2012), and 96 

Ambystoma talpoideum populations were extirpated following drought and flooding (Walls, 97 

Barichivich, & Brown, 2013). Species Red List assessments which specifically reference 98 

climate change include 107 CR (Critically Endangered), 105 EN (Endangered), 35 VU 99 

(Vulnerable), and 19 NT (Near Threatened) assessed species, with drought, habitat shifts and 100 

alteration, storms, and flooding as the top three specific climate change threats (IUCN, 2020). 101 

 102 

Observed extinctions 103 

Of the 37 amphibian species classified by The IUCN Red List of Threatened Species (IUCN 104 

Red List) as Extinct or Extinct in the Wild, six implicate climate change as a causal threat, 105 

often through synergies with disease and habitat loss, but also more directly as a result of 106 

extreme weather, such as flooding and drought (IUCN, 2020). This allows us to contextualise 107 

contemporary amphibian extinctions due to climate change relative to the group’s 108 

background extinction rate. Although efforts to quantify extinction rates among amphibians 109 

are complicated by the limited fossil record (particularly in the tropics), imprecise knowledge 110 

of the species richness, unknown life history traits of some clades, and imperfect detection, 111 

data from a single amphibian fossil assemblage suggested a background extinction rate of 112 

5.2% per million years (Alroy, 2015). Estimates of contemporary extinction also vary: 113 

although IUCN reports 37 species as Extinct (EX) or Extinct in the Wild (EW) (IUCN, 114 

2020), other estimates suggest at least 200 species of frogs alone have gone extinct in recent 115 
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decades (Alroy, 2015), and contemporary extinction rates that are 211 times greater than 116 

background extinction rates (McCallum, 2007; Millennium Ecosystem Assessment, 2005). 117 

 118 

Updating estimates from Barnosky et al. (2011) to reflect current IUCN Red List assessments 119 

of recognised extinctions and current species richness (AmphibiaWeb, 2020), we estimate an 120 

amphibian extinction rate of 9 extinctions per 1000 species per 1000 years (or million 121 

species-years) over the past 500 years. Estimating extinction at the same time scale, but 122 

limiting it to those species for which climate change has been implicated as a threat (currently 123 

6 species categorised as Extinct or Extinct in the Wild), results in 1.5 extinctions per million 124 

species-years. This estimate jumps to 80 extinctions per million species-years due to climate 125 

change-related threats if we assume an extinction debt, that without human intervention, 126 

assumes species currently categorised as Vulnerable or Endangered will ultimately become 127 

Extinct. 128 

 129 

Observed changes in phenotype and phenology 130 

As ectotherms, amphibians are among the few taxa likely to respond strongly to changing 131 

climate (Buckley, Hurlbert, & Jetz, 2012). Determining the ability and extent that a species 132 

can undergo phenotypic adaptations or respond to phenological shifts because of climate 133 

change are among the key ongoing research questions (Radchuk et al., 2019). The recent 134 

focus on amphibian phenotypic responses provides nascent insights into expected trends with 135 

a warming climate, although more studies are needed to support or refute these hypotheses. 136 

One prediction is that amphibians will respond to warming climate by reducing body size 137 

(Sheridan & Bickford, 2011). Reductions in body size may affect reproductive output and 138 

demography (Hernández-Pacheco, Plard, Grayson, & Steiner, 2021). Studies have detected 139 

signatures in support of this prediction in several species of amphibians such as the Plethodon 140 
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salamanders (Caruso, Sears, Adams, & Lips, 2014); worsening body condition in the 141 

California newt Taricha torosa (Bucciarelli et al., 2020), and the common toad Bufo bufo 142 

along with a confounding decrease in reproductive output (Reading, 2007). However, the 143 

predicted phenotypic response has not been recovered in all species analysed, such as North 144 

American wood frogs (Lithobates sylvaticus) and a mole salamander (Ambystoma 145 

maculatum) (Kirk, Galatowitsch, & Wissinger, 2019; Sheridan, Caruso, Apodaca, & Rissler, 146 

2018). In contrast, the reverse trend has been observed in some species with body size 147 

increase in response to climate change, as observed over four decades in Hynobius tokyoensis 148 

(Okamiya, Hayase, & Kusano, 2021). A second prediction is that within colour polymorphic 149 

species, some morphs may have advantageous functional associations related to climatic 150 

conditions, although there is debate about the directionality of change (lighter or darker; 151 

Delhey, Dale, Valcu, & Kempenaers, 2020; Tian & Benton, 2020). This has been extensively 152 

studied in the eastern red-backed salamander (Plethodon cinereus), with studies of both the 153 

spatial and temporal distribution of morph frequencies (Evans, Forester, Jockusch, & Urban, 154 

2018; Gibbs & Karraker, 2006); the effects of temperature on morph frequencies (Evans, 155 

Urban, & Jockusch, 2020); and the physiological differences between morphs (Moreno, 156 

1989). Although the idea that morph frequencies can be used as bioindicators of climate 157 

change has come under scrutiny (Evans et al., 2018; Moore & Ouellet, 2015).   158 

 159 

One of the most widely documented trends among amphibians is a pronounced shift to early 160 

breeding. On average, amphibian breeding phenology is advancing by 6.09 ± 1.65 d per 161 

decade with a range between 17.5 d delay to 41.9 d advance (Ge, Wang, Rutishauser, & Dai, 162 

2015; Ovaskainen et al., 2013; Prodon et al., 2017; While & Uller, 2014). Many traits, both 163 

species-specific (e.g., reliance on temperature cues for timing of breeding, ability to track 164 

resources to be exploited) and more generalised characteristics relating to life history (e.g., 165 
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body size, clutch size, number of clutches, early vs. late and/or explosive breeding, life span, 166 

etc.) influence phenological responses (While & Uller, 2014). In correspondence, frog 167 

species are also calling earlier in the year (Walpole, Bowman, Tozer, & Badzinski, 2012). 168 

Moreover, vocalisation which is a critical signal for mate choice, is impacted by climate 169 

change. For example, adult males of Eleutherodactylus coqui, have responded to increasing 170 

temperatures over a 23 year period by vocalising at higher frequencies and for shorter 171 

durations across an elevation gradient (Narins & Meenderink, 2014). 172 

  173 

The ability of amphibians to compensate for phenological alterations varies and is species-174 

specific. For example, development is disrupted in tadpoles of Rana arvalis when present in 175 

colder temperatures with scarce food resources (Burraco, Laurila, & Orizaola, 2021). 176 

Warming temperatures can also alter predator-prey dynamics, as observed when larger 177 

predatory Ambystoma macrodactylum larvae (benefiting from an earlier hatching and longer 178 

period of development) can significantly reduce survival rates of their smaller prey 179 

Pseudacris regilla if they do not undergo a similar phenological shift (Jara, Thurman, 180 

Montiglio, Sih, & Garcia, 2019). It remains to be seen if both predator and prey can develop 181 

behavioural responses to the changing climatic conditions. Overall, our understanding of the 182 

phenological responses to climate change among amphibians is increasing and points to shifts 183 

in most species studied. However, existing studies are strikingly skewed toward the northern 184 

hemisphere (Cohen, Lajeunesse, & Rohr, 2018). 185 

 186 

Movement ecology and migration of amphibians 187 

Movement is a fundamental yet poorly understood component of amphibian biology. The 188 

extent and ability of an organism to move within and across habitats affect gene flow, 189 

metapopulation dynamics, population viability, and species distributions, all of which also 190 
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affect vulnerability to changing climate (Pittman, Osbourn, & Semlitsch, 2014). Amphibians 191 

move based on interactions between individuals or species, resource availability such as 192 

breeding ponds, and as a response to changes in the physical environment (Joly, 2019). 193 

Although there are numerous studies predicting the response of amphibian populations to 194 

changing climate, they are not yet validated because we know very little about dispersal 195 

abilities of amphibians and our insights into the fine-scale movement mechanisms are limited 196 

(Pittman et al., 2014). 197 

 198 

Dispersal estimates that do exist for amphibians generally come from individual mark-199 

recapture studies, telemetry studies or genetic estimates, and recent work shows that dispersal 200 

estimates from mark-recapture and genetic analyses are remarkably congruent (Wang & 201 

Shaffer, 2017). Telemetry studies, in particular, may be able to shed light on environmental 202 

cues that lead amphibians to disperse. For example, Henrique & Grant (2019) found that 203 

movement among Leptodactylus latrans was positively correlated with darker phases of the 204 

moon, higher temperatures, and increased precipitation, suggesting that there are both 205 

behavioural and environmental cues at work. Earlier studies using genetic data have shown a 206 

positive association of both dispersal distance and vagility with body size in several species 207 

of anurans and salamanders (Hillman, Drewes, Hedrick, & Hancock, 2014). In recent years, 208 

there has been an increasing emphasis on understanding movement behaviour and there has 209 

been much progress since a unifying framework for studying movement was proposed (Joly, 210 

2019; Nathan et al., 2008). Models that include dispersal have been widely used in other 211 

organisms, but are only recently being applied to amphibians (e.g. Penner & Rödel, 2019). 212 

 213 

Movement ecology research of amphibians allows potential to infer patterns and understand 214 

underlying processes of population dynamics and gene flow. It also provides insights into the 215 
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adaptive significance of behaviours, and identifies physiological constraints of an organism in 216 

relation to fine-scale environmental variation. Future climate change research will benefit 217 

from technological advancements such as the miniaturization of GPS tags (Cagnacci, Boitani, 218 

Powell, & Boyce, 2010), harmonic direction finding (Pašukonis, Warrington, Ringler, & 219 

Hödl, 2014), passive infrared transponders (Cucherousset, Marty, Pelozuelo, & Roussel, 220 

2008), and increasing accessibility of genome-wide sequencing techniques (McCartney-221 

Melstad, Gidiş, & Shaffer, 2018). However, it may be impossible to use most of the tools 222 

except genomic techniques for studying the movement ecology of fossorial amphibians such 223 

as caecilians. 224 

 225 

Amphibian responses to climate change – evidence of climate-tracking 226 

Many of the studies of amphibian movement in regard to climate change have focused on 227 

mechanisms that enable tracking both in situ (through adaptation) and across space (through 228 

dispersal). Empirical research has characterised the thermal traits of many species, including 229 

tolerance to heat and cold, thermal breadth, and safety thermal margin (Brattstrom, 1968; 230 

Catenazzi, Lehr, & Vredenburg, 2014; Christian, Nunez, Clos, & Diaz, 1988; Mokhatla, 231 

Measey, & Smit, 2019; Navas, 1997; 2003; Nowakowski et al., 2018; von May et al., 2017). 232 

Niche divergence in physiological traits is both common and evolutionary labile 233 

(Nowakowski et al., 2018; von May et al., 2017), while thermal traits vary across sympatric 234 

species (von May et al., 2019), across parts of a species’ range (Mittan & Zamudio, 2019), 235 

and even over an individual’s lifetime, as plasticity and both short- and long-term acclimation 236 

are common (Gunderson & Stillman, 2015; Riddell, Odom, Damm, & Sears, 2018; Tejedo et 237 

al., 2010; Urban, Zarnetske, & Skelly, 2013; Valladares et al., 2014). However, acclimation 238 

to warm temperatures in one life stage (e.g., larvae) does not imply that other life stages 239 

(metamorphic, juvenile, adults) will retain increased tolerance to higher temperatures 240 
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(Enriquez-Urzelai et al., 2019). Other relevant physiological information available for 241 

amphibians include water loss, water uptake, ability to find water, type of development, and 242 

larval habitat (Cruz-Piedrahita, Navas, & Crawford, 2018; Madelaire et al., 2020; 243 

Nowakowski et al., 2018; Riddell & Sears, 2015; Scheffers et al., 2013; Sunday et al., 2014). 244 

Although less studied, it has been proposed that water balance may be a more critical process 245 

determining local adaptation and persistence relative to thermal tolerance (Cruz-Piedrahita et 246 

al., 2018). 247 

 248 

Amphibian species can also track climate change by shifting along elevational and altitudinal 249 

climate gradients to remain within a suitable microhabitat. The degree that a species needs to 250 

disperse to remain in the same climatic niche depends on the velocity of climate change, 251 

reflecting the spatial gradient in climate (steep clines up mountains, shallow clines along 252 

latitude), and speed of local climate change (Loarie et al., 2009). Efficient climate tracking is 253 

expected for species that can disperse well, not only across natural landscapes but also in 254 

patchy and disturbed landscapes (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011). For 255 

amphibians, dispersal varies by orders of magnitude with some species moving only metres 256 

and others moving kilometres (Semlitsch, 2008; Sinsch, 2014). Synergies with other 257 

processes known to impact survival - e.g. biotic interactions, disease dynamics 258 

(chytridiomycosis), and land use change (fire regimes) - are also known to interact with 259 

tracking (Moskwik, 2014; Seimon et al., 2017). 260 

 261 

Local-scale inventories, resurveys, and monitoring, tied to measurements of environmental 262 

change on the ground, provide the best evidence of spatial climate tracking in amphibians. 263 

Resurveys in the Tsaratanana Massif, in Africa, detected significant changes in the altitudinal 264 

range of seven out of 19 species within a period of 10 years of documented warming 265 
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(Raxworthy et al., 2008). In North America, increasing air temperatures have been 266 

statistically correlated with upslope movement of a hybrid zone in Plethodon salamanders 267 

(Walls, 2009). 268 

 269 

Insights from modelling 270 

There is a tremendous need for developing effective conservation strategies as more species 271 

become more vulnerable to extinction and population declines from climate change (Foden et 272 

al., 2019). Understanding the range of impacts and mechanisms that amphibians face both 273 

physiologically and ecologically (see species interactions below), is a critical step to 274 

preventing extinctions, although there is increasing urgency to mitigate loss since the effects 275 

of climate change are already impacting amphibian species at a global scale. Our 276 

understanding of future changes to amphibian distributions and extinction risk has been 277 

informed by a variety of different types of models.  These include vulnerability assessments 278 

that incorporate correlative, specific trait-based, mechanistic, and combined models.  These 279 

models can be used both to predict future responses to climate change scenarios as well as to 280 

develop mitigation strategies to prevent losses. 281 

 282 

Modelling: Vulnerability assessments 283 

It is important to select appropriate climate change vulnerability assessment (CCVA) 284 

approaches for quantifying vulnerability and there have been four basic ways to do it to date: 285 

trait-based, correlative, mechanistic, and combined approaches. One considerable caveat in 286 

these endeavours is that we lack species-specific data for most taxa, and the best available 287 

data are often inadequate to do a comprehensive assessment (Urban et al., 2016). Unreliable 288 

or even misleading results can make conservation situations worse (e.g. Kroll, Runge, & 289 

MacCracken, 2009). Since the best available data are usually insufficient, Williams et al. 290 
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(2008) suggest relying on closely related species’ relevant traits. For amphibians, there are a 291 

few important traits regarding species’ vulnerability to climate change: mountaintop 292 

distribution, direct development (Nowakowski et al., 2018; Scheffers et al., 2013; von May et 293 

al., 2019), and lowland or coastal distribution are traits that seem to incur extreme 294 

vulnerability to amphibians but there is high variability across amphibian species’ 295 

vulnerability. Since amphibians have physiological responses that are relatively easy to 296 

identify (e.g., to hydroperiod, available moisture and relative humidity, seasonality, etc.), 297 

many have small geographic ranges, and many populations are declining, there are important 298 

considerations for CCVAs that are unique to each species and/or geographic assemblage. For 299 

example, species-level estimates of tolerances to heat and cold are essential for inferring 300 

species’ vulnerability to climate change (Nowakowski et al., 2018; Sunday et al., 2014), as 301 

are obtaining accurate measures or estimates of physiological traits and microclimates 302 

(Storlie et al., 2014). 303 

 304 

Models of species’ ranges under future climatic conditions are powerful tools to predict 305 

where the impact of climate change on amphibians may be greatest. Current models are 306 

supported by a large number of global climate, microhabitat, and species occurrence data 307 

(Table 3.1). Two primary approaches, correlative and mechanistic, have been used to forecast 308 

geographic ranges under future climates. Correlative models of species distributions infer 309 

species-specific environmental suitability based on climatic descriptions of known occupancy 310 

(with voucher specimens and/or observations) (Nix, 1986; Phillips, Anderson, & Schapire, 311 

2006; Venables & Dichmont, 2004) and often forecast pervasive distribution shifts in 312 

response to anthropogenic climate change (Milanovich, Peterman, Nibbelink, & Maerz, 2010; 313 

Urban et al., 2016). Correlative models are relatively simple to fit with presence-only data, 314 

applicable across spatial scales, and perform well across a relatively short time window (e.g., 315 
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< 20 breeding seasons). They also provide useful insights and testable hypotheses about 316 

demographic, range size, and species richness trends, especially for data-limited species, as is 317 

the case for most species, and especially those in hyper-diverse regions like the tropics (see 318 

Box 3.2). Moreover, correlative models that have been projected into the past, particularly 319 

back to the Pleistocene and Holocene, have been successfully validated with genetic data 320 

describing past amphibian population trends (Amaro, Rodrigues, Yonenaga-Yassuda, & 321 

Carnaval, 2012; Carnaval, Hickerson, Haddad, Rodrigues, & Moritz, 2009), as well as 322 

patterns of endemism (Carnaval et al., 2014). 323 

 324 
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Table 3.1: Abundant datasets enable scientists to monitor and model the potential impacts of 325 

climate change on amphibian distribution. 326 

Example Description Source 

Environmental data 

WorldClim 2 High resolution interpolated monthly 

temperature and precipitation 

(Fick & Hijmans, 2017) 

Climatologies at High 

Resolution for the 

Earth’s Land Surface 

Areas (CHELSA) 

High resolution interpolated monthly 

temperature and precipitation 

(Karger et al., 2017) 

Global surface water High resolution data on water bodies (Pekel, Cottam, Gorelick, 

& Belward, 2016) 

Gridden temperature 

and precipitation 

climate extremes 

indices (GHCNDEX) 

Gridded data on climate extremes 

(e.g. temperature and precipitation) 

(Donat et al., 2013) 

Microclimate data 

NicheMapR R package; integrates terrain and 

atmospheric forcing data; generates 

hourly time-series of microclimatic 

conditions, above and below ground 

(Kearney, Gillingham, 

Bramer, Duffy, & 

Maclean, 2020) 
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MICROCLIMA R package; estimates microclimatic 

details from global data with high 

accuracy 

(Maclean, 2020) 

Species distribution data 

Global Biodiversity 

Information Facility 

(GBIF) 

International network and data 

infrastructure; open access to 

occurrence data of all types of life on 

Earth 

www.gbif.net 

 

FrogID National citizen science project; aids 

amphibian monitoring in Australia 

https://www.frogid.net.au 

iNaturalist Citizen science-led database of 

species identity and locality records 

https://www.inaturalist.org 

 327 
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However, correlative models are neither completely nor perfectly explanatory. Since they are 328 

based on environmental suitability inferred from species occurrence and usually neglect other 329 

mechanisms, such as species interactions, correlative models may fail to describe species’ 330 

fundamental niches (Godsoe & Harmon, 2012; Higgins, Larcombe, Beeton, Conradi, & 331 

Nottebrock, 2020). Additionally, correlative models of species distributions projected onto 332 

future climates depend on the degree to which dispersal is parameterised. Since many 333 

amphibians are poor dispersers, limiting the future range of a species to a subset of the 334 

regions that it currently occupies may be biologically realistic. Studies that assume no 335 

dispersal typically predict larger range contractions than those in which dispersal is explicitly 336 

included (Lawler, Shafer, Bancroft, & Blaustein, 2010; Zellmer, Slezak, & Katz, 2020). The 337 

lack of estimates of direct dispersal capacity for most amphibian species limits application of 338 

correlative modelling results. 339 

 340 

Mechanistic models include key biological processes that enhance predictive accuracy for 341 

climate change responses (Gilman, Urban, Tewksbury, Gilchrist, & Holt, 2010; Hoffmann & 342 

Sgró, 2011; Urban et al., 2016)—namely physiology, demography, dispersal, species 343 

interactions, evolution, and other responses to environmental variation (Urban et al., 2016). 344 

Despite requiring significantly more data, they likely approximate the fundamental niche of a 345 

species more closely than correlative models and may be more informative about causal 346 

factors affecting geographic range changes. The most commonly used mechanistic models for 347 

amphibians, biophysical models, predict areas where species can maintain a positive energy 348 

balance and incorporate physiological parameters (such as metabolic rate, thermal maxima, 349 

and behavioural limitations to foraging time) with environmental data (e.g., relative humidity, 350 

soil moisture, and ground-level temperature) to predict the timing and efficiency of foraging, 351 

and energy assimilation and expenditure (Kearney & Porter, 2004; Peterman & Gade, 2017; 352 
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Riddell et al., 2018). Mechanistic models also allow both behavioural and physiological 353 

plasticity, such as avoidance of extreme temperatures and metabolic rate acclimation to 354 

increasing temperatures, which can have dramatic effects on prediction of future ranges for 355 

amphibians relative to correlative models (Lyons & Kozak, 2020; Riddell et al., 2018). 356 

Despite these advantages, mechanistic models remain underutilised, often because of a dearth 357 

of necessary data, even for the best-studied species (see Urban et al., 2016). Furthermore, 358 

while some parameter values may need to be estimated from incomplete data, small changes 359 

in parameter values can have major effects on model results (Peterman & Gade, 2017). 360 

 361 

Modelling amphibian extinction risk from climate change 362 

Amphibians are sensitive to climate change owing to their physiological vulnerability to 363 

temperature, humidity, and precipitation, high sensitivity to desiccation due to their highly 364 

vascularised skin (see vulnerabilities section), low dispersal (see movement ecology section), 365 

susceptibility to climate mediated factors such as disease outbreaks, and potential interactions 366 

with existing threats from habitat degradation, invasive species, and high levels of endemicity 367 

(Alford, Bradfield, & Richards, 2007; Blaustein et al., 2001; Corn, 2005; Gibbons et al., 368 

2000; Gunderson & Stillman, 2015; McMenamin, Hadly, & Wright, 2008; Pounds et al., 369 

2006; Reading, 2007; Wake, 2007). Although high relative vulnerability claims are 370 

frequently made, our ability to generalise is limited and uncertainty of how these trends are 371 

geographically and taxonomically distributed still remains high in the absence of validated 372 

model predictions. 373 

 374 

Predicted risks 375 

We aggregated data for amphibians and calculated the predicted relationship between warmer 376 

global temperatures and amphibian declines (Fig. 3.3). Based on multi-species models, 377 
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amphibian extinction risk is expected to increase rapidly with temperature (slope = 0.69, N = 378 

42, 95% Cis: 0.58, 0.73), and this rate is higher (~50% risk) than predictions for other 379 

taxonomic groups. Other syntheses based on expert opinion (Foden et al., 2013) and species-380 

area approaches (Thomas et al., 2004) predict that climate change threatens 12–60% of 381 

amphibians with extinction.  382 

 383 

 384 

 385 

Fig. 3.3. Predicted global amphibian extinction risk based on pre-industrial temperature rise 386 

from 42 multi-species predictions of amphibian extinction risk from climate change. 387 

Estimated relationship transformed from logit and plotted with 95% confidence intervals 388 

(grey ribbon). Details of analysis in Urban (2015). Extinction risks are for four climate 389 

scenarios: current post-industrial temperature rise of 0.8 C, the policy target of 2 C, and 390 

Representative Concentration Pathways (RCPs) 6.0 and 8.5. 391 
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 392 

Genetic adaptation of amphibians to climate change 393 

Although not unique to amphibians, we still know little about how amphibians might respond 394 

to climate change through genetic adaptation (Merilä & Hendry, 2014; Urban et al., 2016; 395 

Urban, Richardson, & Freidenfelds, 2014). Few predictions account for potential resilience 396 

through adaptation, with only 1 of 131 studies addressing potential adaptive change (Urban et 397 

al., 2016). Genetic variation can allow populations to adapt to climate change and thereby 398 

persist despite a changing climate (Carroll, Fredrickson, & Lacy, 2014; Hoffmann & Sgró, 399 

2011). Local adaptation is especially important for poor dispersers, like most amphibians that 400 

cannot track shifting climates (Urban, De Meester, Vellend, Stoks, & Vanoverbeke, 2012). 401 

 402 

It is also important to note that many species are comprised of hundreds or thousands of 403 

semi-independent populations (González-Suárez & Revilla, 2013; Hughes, Daily, & Ehrlich, 404 

1997; Jetz, Ashton, & La Sorte, 2009), each potentially adapted to local conditions including 405 

climate (Rehfeldt et al., 2002). These divergent populations might respond differently to 406 

climate change in distinct ways depending on the match between their traits and changing 407 

local conditions (Pelini, Keppel, Kelley, & Hellmann, 2010). For poor dispersers, adaptive 408 

population differentiation can slow or preclude range shifts because all populations are 409 

perturbed from local optima (Pelini et al., 2010). For good dispersers, locally adapted 410 

populations can track changing climates across space through genotypic sorting (Urban et al., 411 

2012) as opposed to evolution based on in situ standing genetic variation. 412 

 413 

A review of genetic responses to climate variation uncovered 11 amphibian studies (Urban et 414 

al., 2014). Ten of the 11 studies documented genetic variation for at least one of the traits 415 

related to climate variation. Sixty-five percent of traits demonstrated significant genetic 416 
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variation and 48% of the traits demonstrated significant genotype-by-environment 417 

interactions (Urban et al., 2014). For instance, frogs adapted to different thermal regimes in 418 

space (Freidenburg & Skelly, 2004; Orizaola, Quintela, & Laurila, 2010; Skelly & 419 

Freidenburg, 2000), and salamanders adapted different colour morphs over time (Gibbs & 420 

Karraker, 2006). Most studies focused on phenological changes in breeding and life history 421 

traits such as growth, development, and survival rates. However, most evidence comes from 422 

space-for-time substitutions, suggesting that genetic variation exists across heterogeneous 423 

landscapes that could contribute to climate resilience. However, we know much less about 424 

local genetic variation that allows responses in situ. Moreover, most studies are from North 425 

America and Europe so we know even less about the potential for adaptation in the tropics, 426 

where the greatest amphibians biodiversity occurs. 427 

 428 

Genomics & evolvability 429 

The large genomes of amphibians and limitations in funding have hindered efforts to generate 430 

genome assemblies for all but a handful of species. Advances in sequencing technologies 431 

have already started to remove this barrier, with completion of the first chromosome-level 432 

assemblies for salamanders (Ambystoma mexicanum, Nowoshilow et al., 2018) and caecilians 433 

(Rhinatrema bivittatum, Rhie et al., 2020). In addition to the early genomes for Xenopus 434 

tropicalis (Hellsten et al., 2010) and X. laevis (Session et al., 2016), chromosomal-level 435 

assemblies now also exist for several non-model frog species that encompass greater 436 

taxonomic and geographic variation (see Chapter 13). These genomic resources will be 437 

essential to identify genes that underlie critical climate-related traits. To date, few studies 438 

have pinpointed genes involved in amphibian climate change tolerance. As a rare example, 439 

Saito et al. (2019) demonstrated that neuronal heat sensor genes in Xenopus from warmer 440 

climates diverged from those species inhabiting cooler climates. A second example comes 441 
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from a transcriptomics study of the montane salamander Plethodon metcalfi to identify genes 442 

involved in desiccation (Riddell, Roback, Wells, Zamudio, & Sears, 2019). A third study 443 

used time-series from a broadly distributed species to hone in on a set of candidate loci 444 

involved in thermal adaptation (Cayuela et al., 2021). Identification of a full suite of these 445 

genes would allow assessment of genetic variation within populations and across species 446 

ranges and could serve as a potential baseline estimate of adaptive capacity. Furthermore, 447 

transcriptomics (e.g. Riddell et al., 2019; Yang, Qi, & Fu, 2016) and epigenetics (Wogan, 448 

Yuan, Mahler, & Wang, 2020) may provide new insights into plasticity that could also be 449 

quantified within populations and across species’ ranges in conjunction with adaptive 450 

capacity. 451 

 452 

Landscape genetics 453 

As a discipline, landscape genetics emerged quite recently, but there has been a proliferation 454 

of studies focused on amphibians due to their overall low vagility and their 455 

thermophysiological requirements that link them to the environments where they exist. With 456 

respect to climate change, these studies suggest environmental conditions that facilitate or 457 

impede dispersal (e.g. environmental resistance; Wang, Savage, & Shaffer, 2009), quantify 458 

fine-grained spatial genetic variation (Savage, Fremier, & Shaffer, 2010), and gene flow 459 

(Homola, Loftin, & Kinnison, 2019; Sánchez-Montes, Wang, Ariño, & Martínez-Solano, 460 

2018). Furthermore, these same approaches could specifically be used to evaluate climate 461 

corridors by highlighting least-cost dispersal pathways (Epps, Wehausen, Bleich, Torres, & 462 

Brashares, 2007). Taken a step further, landscape genomics can be used to identify genotype-463 

environmental associations and make predictions about the spatial distribution of adaptive 464 

alleles (Manel et al., 2018). There have recently been several amphibian landscape genomics 465 

studies that evaluate various genotype-environment associations, for example, local 466 
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adaptation across a drying landscape in the Australian frog Pseudophryne guentheri 467 

(Cummins, Kennington, Rudin-Bitterli, & Mitchell, 2019), and lowland-highland adaptation 468 

across elevational transects in the Andes (Boana platanura, Medina et al., 2021), highland 469 

adaptation of genes coding for metabolism in the Tibetan plateau (Bufo gargarizans, Yang et 470 

al., 2016), as well as adaptations along latitudinal gradients (Rana arvalis; Rödin-Mörch et 471 

al., 2019). 472 

 473 

Ecological interactions - species interactions 474 

In addition to direct physiological effects, interspecific interactions frequently determine 475 

climate responses (e.g. Davis, Jenkinson, Lawton, Shorrocks, & Wood, 1998; Park, 1954). In 476 

cases where mechanisms of climate-induced declines and extinctions are understood, most 477 

involve indirect impacts via species interactions rather than direct physiological impacts 478 

(Cahill et al., 2013). Climate change can modulate the strength or even alter the direction of 479 

species interactions (Van Der Putten, Macel, & Visser, 2010; Visser, Van Noordwijk, 480 

Tinbergen, & Lessells, 1998), including elevational range expansions and contractions 481 

(Raxworthy et al., 2008). Divergent abilities to track climate changes through range 482 

expansion can create no-analogue communities composed of species with no history of co-483 

occurrence or coevolution (Urban et al., 2012). Interactive effects often stem from stronger 484 

negative species interactions (e.g., novel or stronger predation risk or disease), fewer 485 

resources, interspecific competition, or loss of mutualists (Gilman et al., 2010). 486 

 487 

For amphibians, climate change has likely contributed to declines by exacerbating disease, 488 

suggested by the case of the golden toad (Incilius periglenes). The golden toad declined in 489 

concert with climate-mediated changes to dry-season mist frequency and increased exposure 490 

to pathogens (Pounds et al., 2006; Pounds, Fogden, & Campbell, 1999; Pounds & Crump, 491 
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1994). Variation in breeding phenology (Beebee, 1995; Gibbs & Breisch, 2001) could also 492 

lead to changes in interaction strength, as responses can differ relative to photo- and hydro-493 

period and weather cues. For instance, if Hyla cinerea tadpoles arrive late, they suffer greater 494 

predation from growing dragonfly nymphs (Rasmussen & Rudolf, 2016). In some cases, 495 

overwintering amphibians are expected to gain an advantage as winters become milder, 496 

supporting top amphibian predators (Herstoff & Urban, 2014). On the other hand, climate-497 

mediated desiccation also increased behaviours that boost predation risk in red spotted newts 498 

(Rohr & Madison, 2003). 499 

 500 

Differential changes in phenology can also alter competition among species, for example, by 501 

synchronising otherwise asynchronous competitors or causing one species to breed earlier 502 

and become a superior competitor. Interactions with other stressors -e.g., invasives and 503 

climate change - increased drying limits in Rana sierrae recruitment in small ponds while 504 

fish introductions limit their recruitment in larger lakes (Lacan, Matthews, & Feldman, 2008; 505 

M. Urban pers. comm.). Additionally, warming can cause outbreaks of pathogens and 506 

parasites such as outbreaks of parasitic copepods on Rana boylii and trematodes that cause 507 

malformations in developing frogs (Kupferberg, Catenazzi, Lunde, Lind, & Palen, 2009). 508 

 509 

Evidence of management 510 

Evidence of positive results for amphibian conservation with climate change 511 

Conservation actions for climate change focus on habitat management and rescue measures 512 

for at-risk populations. Provision of breeding, foraging, or dispersal habitat conditions can be 513 

an effective adaptive management approach for climate change (Sutton et al., 2015). As 514 

mitigations are costly, Mims, Olson, Pilliod, & Dunham (2018) offered an approach for 515 

regional species prioritisation that merged species rarity with climate sensitivity. 516 
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 517 

At local scales, Shoo, Olson, & Hero (2011) provided examples of installation of 518 

microclimate and microhabitat refuges for amphibians, addressing: 1) riparian zones 519 

including their microclimate regimes (Olson, Anderson, Frissell, Welsh Jr., & Bradford, 520 

2007; Olson, Coble, & Homyack, 2020; Olson, Leirness, Cunningham, & Steel, 2014; Olson 521 

& Burton, 2014); 2) microclimate refugia including downed wood (e.g. Kluber, Olson, & 522 

Puettmann, 2008, 2009; Rittenhouse, Harper, Rehard, & Semlitsch, 2008), leaf litter, and 523 

bromeliads (Donnelly, 1989; see also Stynoski, 2009); and 3) artificial wetting of terrestrial 524 

habitat by irrigation sprayers (Australia: Mitchell, 2001), an approach with additional 525 

applications (Central America: Pounds et al., 1999; Papua New Guinea: Bickford, 2005; 526 

Tanzania: Krajick, 2006). Smith, Meredith, & Sutherland (2018) reported 28 studies that 527 

created ponds and found that relative to amphibian use they were 80% effective (with 80% 528 

certainty) and 0% harm. Pond creation may be especially applicable to threatened species 529 

(Cushman & Pearl, 2007; Kupferberg, 1996; Shoo et al., 2011). Mathwin, Wassens, Young, 530 

Ye, & Bradshaw (2020) reviewed efficacy of manipulating water for amphibian conservation 531 

and found 17 examples of successful applications, with extension of hydroperiods to match 532 

larval requirements and off-season drying to control predators showing encouraging results. 533 

Biebighauser (2015) provided procedures for wetland creation and restoration (~6,000 534 

designs created) that have been implemented across North America (~2,500 wetland projects 535 

supervised), with applications in urban and agricultural landscapes including schools (~250 536 

wetlands), mined lands (~400 wetlands), and forests, including measures to forestall invasive 537 

predators (Biebighauser, 2007; Gamble & Mitsch, 2009; Hartel et al., 2007; Korfel, Mitsch, 538 

Hetherington, & Mack, 2010; Maret, Snyder, & Collins, 2006). Similarly, Petranka, Harp, 539 

Holbrook, & Hamel (2007) reported advantages of creating wetlands along a hydrologic 540 
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continuum to reduce mortality from several risk factors including drought, pathogens, and 541 

predators on early life stages. 542 

 543 

At landscape scales, the creation and retention of pond networks can address broader species 544 

sustainability functions by providing breeding, foraging, and dispersal habitats among 545 

populations (Fog, 1997; Piha, Luoto, Piha, & Merilä, 2007). For example, in managed 546 

forests, retention of tree islands and downed wood near riparian reserves may provide 547 

stepping-stone function that enhances habitat connectivity (Olson & Burnett, 2013; Olson & 548 

Kluber, 2014). Likewise, landscape genetic work supports frog dispersal along trajectories 549 

with downed wood and retained understory (Spear, Crisafulli, & Storfer, 2012). Furthermore, 550 

forest cover is a predictor of connectivity for headwater salamanders (Emel, Olson, Knowles, 551 

& Storfer, 2019). However, despite limited evidence for amphibian corridors retaining 552 

connectivity (Smith & Sutherland, 2014), one study found that corridors retained 8 of 13 553 

frogs for as long as 20 years (Becker, Fonseca, Haddad, Batista, & Prado, 2007). At more 554 

regional to continental scales, creating corridors that align with the direction of climate 555 

changes might allow species to more easily track their climate niche. 556 

 557 

Other approaches for species facing extinction from climate change include relocation, 558 

reintroduction, translocation, headstarting, captive rescue colonies, and bio-banking (Partners 559 

in Amphibian and Reptile Conservation (PARC), 2011; chapters in Walls & O’Donnell, 560 

2021). Headstarting and relocations might be both easier and more cost-effective (Griffiths & 561 

Pavajeau, 2008). Three reviews found most (65%) amphibian translocations resulted in 562 

established breeding populations (Smith & Sutherland, 2014). Germano and Bishop (2009) 563 

identified guidelines to reduce failures. 564 

 565 
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Red List categories & climate change 566 

An important research finding has been that areas with many species of high sensitivity and 567 

low adaptive capacity differ from areas where species are actually exposed to the brunt of 568 

climate change (Foden et al., 2013). Indeed, where exposure-based assessments of 569 

vulnerability to climate change are done exclusively, we can obtain misleading results that 570 

hamper conservation efforts. Some amphibian species (11-15%) are already threatened with 571 

extinction (on the IUCN Red List) and highly vulnerable to climate change. These species are 572 

a priority for conservation actions (Foden et al., 2013), no matter their climate change 573 

sensitivity. In other words, conservation efforts should not be competing unnecessarily, and 574 

when amphibians are already at high risk of extinction, those species deserve prioritised 575 

action, despite many uncertainties of their exposure to climate change. 576 

 577 

Gaps: Research & knowledge 578 

1. Baseline data: We have incomplete knowledge of the diversity and distribution of 579 

amphibians. As of May 27, 2021, there are 8,340 species of described amphibians, and in 580 

the past 10 years between 100-200 new species have been described each year 581 

(AmphibiaWeb, 2020). The ranges of many species are poorly known or known only 582 

from type localities and population trends and threats are unknown for 1,184 Data 583 

Deficient species out of 7,212 assessed species (IUCN Red List, see Howard & Bickford, 584 

2014), which means over a quarter of amphibian species (2,312 species) are not assessed 585 

or lack sufficient basic data for assessment. 586 

2. Natural history: Basic life history data are still lacking for many amphibian species. 587 

Efforts to compile life history traits for species into an accessible database for the 588 

scientific community is essential for addressing climate change vulnerabilities. Databases 589 

that address some of these aspects [AmphibiaWeb (amphibiaweb.org), ASW 590 
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(amphibiansoftheworld.amnh.org)] primarily address geography and taxonomy, but 591 

compiled species-specific trait databases are largely lacking, although the AmphiBIO 592 

database has started to fill this void (Oliveira, São-Pedro, Santos-Barrera, Penone, & 593 

Costa, 2017). We cannot stress enough the importance of renewed priority towards 594 

compiling these data. Fundamental research and its funding remain one of the most 595 

important, direct, and measurable ways to improve most things, including amphibians’ 596 

conservation action plans. 597 

3. Amphibian physiology: Although amphibian thermophysiology has been reasonably 598 

well-described, the group lags significantly behind other ectotherms, particularly lizards 599 

(Sinervo et al., 2010), in terms of large-scale applications of mechanistic modelling. 600 

Basic information on physiological responses to humidity shifts, demography, dispersal, 601 

and microhabitat use are lacking for most species, preventing more comprehensive 602 

mechanistic models from being built (Urban et al., 2016). How to reconcile the time and 603 

resources required for mechanistic models and parameter collection remains a challenge, 604 

especially if the scientific community aims to generate accurate global-level assessments 605 

of potential changes in species distribution. Given that mechanistic models are data-606 

hungry, and that correlative models may lack biological realism or process-based 607 

insights, investments in hybrid or mechanistically-informed correlative species 608 

distribution models may be worth pursuing. Monitoring networks are needed to validate 609 

models and facilitate resurveys, and may be linked to Earth Observation efforts (GEO 610 

BON, 2015; Pereira et al., 2013). 611 

4. Models - scenario development: As most species distribution forecasts developed 612 

nowadays focus on the impact of climate alone, the need exists for the inclusion of other 613 

change scenarios. The addition of land-use models, expected biological invasions, and 614 

synergies that may arise from future climate shifts may be particularly insightful. It 615 
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would also be extremely helpful to do some ground-truthing and validation of models 616 

generated from the early 2000s forecast to 2020 (e.g. Milanovich et al., 2010) to 617 

understand how well the predictions and real situations match, and to quantify error and 618 

bias. 619 

5. Phenotypic responses: Phenotypic responses to climate change among amphibians 620 

are understudied, and additional studies measuring this are needed across taxonomic 621 

groups encompassing a wider range of geographic regions. This work either requires a 622 

space for time substitution (Wogan & Wang, 2018), or a time series from long term field 623 

sites and monitoring, or from dedicated resampling projects aligned with historical 624 

museum samples (Holmes et al., 2016; C. Moritz et al., 2008). 625 

6. Phenology: Under climate change, shifting phenologies may alter interactions among 626 

species, for example Rollins & Benard (2020) demonstrated that different experimental 627 

combinations measuring body size and phenological shift in metamorphosis between two 628 

larval frogs led to divergent body mass outcomes at their terrestrial phase. There are, 629 

however, few empirical studies that have documented how shifting phenologies and 630 

novel interactions will affect individual species and restructure amphibian communities 631 

in the face of climate change. 632 

7. Dispersal: We know little about amphibian dispersal. Dispersal syndromes and 633 

distances are known for only a handful of amphibians, yet these data are critical for 634 

understanding how well species will be able to track climate. We need these data from a 635 

wide taxonomic range of species encompassing lowlands, mountains, tropics, and 636 

temperate regions. 637 

8. Species interactions: We still know little about how amphibians fit into local food 638 

webs and the strength of their interactions with other species. We often do not know 639 

what species they eat or a full list of their predators. Knowledge gaps also exist for 640 
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parasites and pathogens, which often interact with climate change in their impacts. 641 

Because many climate-induced declines in amphibians occur not through direct 642 

physiological impacts (Cahill et al., 2013), but rather indirectly through changes in 643 

species interactions, understanding biotic relationships could be important for accurately 644 

predicting climate change responses (Gilman et al., 2010). 645 

9. Adaptation: Perhaps the largest gap is how much amphibian populations facing a 646 

new or even novel climates might be able to adapt and persist in place. To understand 647 

adaptability will require an understanding of what specific traits will be under selection 648 

in future climates (not just directly from climate, but indirect traits like dispersal or biotic 649 

interactions) and measuring genetic variation using experiments or tracking relatives. 650 

Ultimately, understanding the genes underlying these responses using genomic 651 

approaches could provide direct insights into the possibility and rate of adaptation. 652 

 653 

Gaps: Conservation & management 654 

1. There is a need for a proactive management framework to reduce risk of future 655 

catastrophic storm impacts on vulnerable populations of amphibians in hurricane-prone 656 

regions (Sterrett et al., 2019; Walls et al., 2019). Proactive (as opposed to reactive) 657 

conservation, in general, is geographically biased and needs to be strengthened in many 658 

parts of the world (Ryan, Palen, Adams, & Rochefort, 2014; Walls, 2018). 659 

2. Strengthen and diversify stakeholder involvement in both conservation planning and 660 

action (Bickford, Posa, Qie, Campos-Arceiz, & Kudavidanage, 2012; Hartel, Scheele, 661 

Rozylowicz, Horcea-Milcu, & Cogălniceanu, 2020; Walls, 2018). 662 

3. Encourage development and use of conservation tools (e.g. non-invasive stress 663 

hormone assays, genomic assessments) that may help natural resource managers and 664 
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conservation biologists identify at-risk populations relatively quickly, especially when 665 

potential threats are not readily apparent (Rollins-Smith, 2017; Walls, 2018). 666 

4. Develop better models of species’ reactions to climate change with defined and 667 

measurable biological mechanisms. Predictions from climate models, for example, need 668 

empirical tests to provide conservation managers with workable approaches to multiple 669 

impacts from climate change (Enriquez-Urzelai et al., 2019; Walls & Gabor, 2019). 670 

5. Use more studies of behaviour, physiology, genetics and perhaps other disciplines that 671 

can have broad utility for understanding amphibian responses to climate change to inform 672 

strategies for amphibian conservation and management (Walls & Gabor, 2019). 673 

6. Initiate and support long-term monitoring studies to understand how climate change-674 

driven stress ultimately affects individual fitness, population resilience, relative 675 

abundances, and range shifts. Additionally, multiple measures of physiological health are 676 

needed to provide a more holistic assessment of how climate change-related factors 677 

impact individuals (Walls & Gabor, 2019; Winter et al., 2016). 678 

7. Prioritise all amphibian species. Like species of conservation concern, non-threatened 679 

species, and especially those with data deficiency, also undergo localised population 680 

declines and losses due to climate change. Yet, common or obscure species typically are 681 

not the beneficiaries of conservation interventions. Proactively implementing 682 

conservation of common species could lead to early detection of climate change-driven 683 

issues before endangerment occurs (Walls & Gabor, 2019). 684 

8.  Develop and promote catastrophe response, rescue, and re-introduction work.  In the 685 

face of increasingly extreme weather events predicted as a result of climate change, 686 

rescuing amphibians from the wild may be a necessary conservation management action 687 

for some species. These rescues may be short-term—holding individuals for weeks to 688 

months until the threat to the species or population in the wild is reduced—or may 689 
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involve the establishment of ex situ populations and reintroductions over longer time 690 

frames. Perhaps the first such instance of amphibian rescue in response to an extreme 691 

weather event related to climate change occurred in early 2020, when extreme drought 692 

conditions initiated the rescue of Booroolong Frogs (Litoria booroolongensis) from a 693 

population in northern New South Wales, Australia (NSW Department of Planning 694 

Industry and Environment, 2020).  695 

9.  Focus work on assisted migrations and managed relocation for the most vulnerable 696 

species and geographic areas. Most amphibians are dispersal-limited, making them one 697 

of the most climate change vulnerable groups of organisms (Foden et al., 2013). One 698 

management practice that has been suggested for dispersal-limited taxa is managed 699 

relocations, whereby populations, species, or genotypes are established in climatically 700 

suitable regions that exist outside of the natural/historical range of the species for the 701 

purpose of maintaining biological diversity or ecosystem functions (Hoegh-Guldberg et 702 

al., 2008; Richardson et al., 2009). Many ethical, legal, and ecological dilemmas arise 703 

from this practice (Schwartz et al., 2012), among them is the potential for unintended and 704 

unpredictable consequences (Ricciardi & Simberloff, 2009). Despite these caveats, there 705 

have been efforts to more generally establish frameworks for assessing which species 706 

possess traits that might make them candidates for managed relocation, and which 707 

ecosystems and communities might benefit most from managed relocations (Gallagher, 708 

Makinson, Hogbin, & Hancock, 2015). Sax, Early, & Bellemare (2013) further suggest 709 

approaches for estimating tolerance niches as a means to identify climatically suitable 710 

potential sites for the establishment of new populations, and for assessing which species 711 

require different management interventions (in situ conservation versus managed 712 

relocations versus ex situ rescue). With regard to amphibians, managed relocation has 713 

mostly been viewed as a potential management response to disease mitigation, which 714 
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advocates translocating populations to climate refugia that are unfavourable for disease, 715 

preferably within or near their natural ranges (Scheele et al., 2014). To our knowledge, 716 

there are no instances where managed relocations have been implemented for amphibians 717 

to ameliorate the impacts of climate change, and large-scale implementation of 718 

assessment frameworks to identify which amphibian species, ecosystems, and 719 

communities might benefit from this intervention is lacking. Early and Sax (2011) 720 

estimated climate paths for 15 species of amphibians in the Western United States and 721 

found that a combination of dispersal and population persistence during short periods of 722 

unfavourable climate were needed for amphibians to successfully shift ranges in response 723 

to climate change; for those species for which climate paths could not be successfully 724 

identified, managed relocations were suggested as a possible intervention. 725 

 726 

Discussion 727 

Progress has been made on many aspects of how climate change is already changing and will 728 

continue to affect amphibian biodiversity. However, we still have a tremendous amount of 729 

work to better plan for and take actions against the negative effects of climate change.  730 

Advances in modelling and data mining, in particular, have enabled a new wave of research 731 

on theoretical trajectories and specification of taxa that are expected to be impacted 732 

negatively by changes in climate. Further work on gaps in mitigation and restoration 733 

research, response to extreme events (e.g., fires), and protected area design and management 734 

should also be prioritised. In addition, we clarify that conservation actions rely on thoughtful 735 

planning and, most critically, data from active and long-term fieldwork. 736 

 737 
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Challenges and prospects; we need more field data 738 

Abundant metadata analyses and modelling studies are devoted to the topic of climate 739 

tracking, yet the number of carefully collected empirical datasets available for 740 

parameterisation is still small and not representative of sites where amphibian species 741 

richness or abundance is highest. This reflects a systemic undervaluation of boots-on-the-742 

ground life history data and lengthy experimental assays by the scientific community (as 743 

reflected in estimates of scientific impact), and the science funding community. Moreover, 744 

while resurveys may be able to report changes in the altitudinal range of amphibians across 745 

multiple regions of the world (e.g. Bickford, Howard, Ng, & Sheridan, 2010; Bustamante, 746 

Ron, & Coloma, 2005), the lack of information on corresponding environmental shifts on the 747 

ground precludes statistical tests of associations. An increase in the number and quality of in 748 

situ observations can revolutionise our understanding of climate tracking in amphibians, and 749 

considerably change predictions in the face of future global change. However, there are 750 

several impediments to this, especially in countries that do not prioritise climate change and 751 

biodiversity conservation. This is often compounded by lack of training or infrastructure to 752 

conduct climate change research. Finally, in several countries, existing legal frameworks 753 

make field research increasingly difficult (e.g., India, Indonesia, Brazil) and newer 754 

legislations have unintentionally stifled international collaborations by making the collection 755 

and sharing of genetic material difficult (Prathapan et al., 2018; Rochmyaningsih, 2019). A 756 

long-term solution to these challenges lies in making policy changes that separate non-757 

commercial and commercial research; having clear guidelines that enable research on 758 

amphibians and nurture international collaborations and skill transfer. The challenges could 759 

also be overcome especially in regions outside protected areas by engaging citizens via 760 

citizen science programmes and setting up long term monitoring databases (e.g. FrogID, 761 

available from https://www.frogid.net.au; iNaturalist, available from 762 
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https://www.inaturalist.org; Frog watch India, available from https://indiabiodiversity.org; 763 

Herpmapper, available from https://www.herpmapper.org/), allowing comparative studies 764 

across time and space, and a rapid understanding of biodiversity across large scales after 765 

catastrophic events such as fire (e.g. Rowley, Callaghan, & Cornwell, 2020).  766 
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Box 3.1: Sea level rise and salinity 767 

Freshwater systems are vital for amphibians with biphasic life cycles (i.e. those that occupy 768 

both aquatic and terrestrial habitats at different stages of their life cycle) and permanently 769 

aquatic species. Numerous species of amphibians may be found in coastal freshwater 770 

wetlands, which are becoming increasingly vulnerable to tropical cyclonic storms 771 

(hurricanes) and associated storm surge and coastal flooding (Walls et al., 2019). Globally, 772 

coastal wetlands are expected to be among the most severely impacted by climate change 773 

because of increased flooding and secondary salinisation from sea level rise along with 774 

increased frequency and intensity of coastal storms (Albecker & McCoy, 2017). Both the 775 

frequency and intensity of the strongest North Atlantic tropical cyclones have increased since 776 

the 1970s (Bhatia et al., 2019; Hartmann et al., 2013). Moreover, using the IPCC RCP8.5 777 

baseline scenario of greenhouse gas emissions, Kirezci et al. (2020) projected that, by 2100, 778 

an increase of 48% (compared to present day) of global land area will be vulnerable to 779 

episodic coastal flooding from a 1 in 100-year return period event. Thus, any climate change-780 

driven alterations to the frequency and intensity of storm events could amplify future coastal 781 

flooding due to sea level rise, posing an unprecedented challenge for conservation and 782 

management of amphibians in coastal ecosystems (Kirezci et al., 2020; Walls et al., 2019).  783 
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Box 3.2: Gaps in our knowledge on effects of climate-change on amphibians 784 

In this box, we use data from a recent systematic review (literature from 2005-2015: Winter 785 

et al., 2016) on climate change in amphibians (and reptiles) to illustrate trends for the global, 786 

taxonomic, and distribution of research on climate change. 787 

 788 

In this global dataset, there was a clear bias towards North American and European 789 

amphibians, a trend seen in amphibian studies more generally (da Silva et al., 2020), with a 790 

positive bias on studies on salamanders (Box Figure 3.1a). Studies are of only a single 791 

species or no studies at all came from Africa, Asia, and Australia despite their high 792 

amphibian biodiversity (Zellmer et al., 2020). South America was relatively well covered 793 

with studies covering many taxa in Argentina, Brazil, and Colombia (Box Figure 3.2). Efforts 794 

to model amphibian range shifts under future climates are geographically heterogeneous, with 795 

most studies in the United States, South America (primarily Brazil), and Europe. The taxa 796 

studied are indicative of regions where research was conducted. 797 

 798 

Most studies reviewed by Winter et al (2016) use both temperature and precipitation (Box 799 

Figure 3.3.a), variables known to correlate with species richness in amphibians (Pyron & 800 

Wiens, 2013), and expected to alter under most climate change scenarios (Sodhi et al., 2008). 801 

However, studies that include extreme events such as storms, droughts and fires (see Box 3.3) 802 

are largely absent, despite the fact that these effects may be major drivers of extinction 803 

(Foden et al., 2019). Very few studies examine key environmental variables such as habitat 804 

requirements for amphibians, prey items, and soil and leaf litter characteristics (Box Figure 805 

3.3b), and only a small subset examine human impact variables such as habitat fragmentation 806 

or presence of invasive species (Box Figure 3.3c). Taken together, this suggests that future 807 

studies of climate change and amphibians will need to rely on newer methods, more data, and 808 
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better-quality datasets that include microhabitat data in order to be useful for providing 809 

needed insights for conserving amphibian biodiversity. 810 

 811 

Why do we need data on tropical species? 812 

The tropics hold the vast majority of extant amphibian species richness, yet data from these 813 

areas are most scant (Box Figure 3.2). It has been argued that these species are most 814 

vulnerable to the proximate effects of climate change (Foden et al., 2019). Tropical species 815 

often live close to their upper thermal tolerance limit and show narrow thermal performance 816 

breadths (Navas, Gomes, & Carvalho, 2008), which makes them particularly vulnerable to 817 

climate change. Underlying physiological mechanisms allowing some amphibians to cope 818 

with variation in temperature remain unclear, yet genetic studies suggest many mechanisms 819 

may be involved (Yang et al., 2016). To understand how animals cope with variation in 820 

temperature and hydric stress, we need a combination of physiological studies with those that 821 

investigate underlying genetic mechanisms. 822 

 823 

However, to predict future impacts of global change we also need species distribution models 824 

that use the biology of these understudied animals (Foden et al., 2019). Future models will 825 

require the use of physiological data to build mechanistic species distribution models, and 826 

transcriptomic data to provide a powerful tool to predict future impacts of climate change on 827 

all amphibians. This in turn relies on scientific capacity growing and being supported by 828 

these countries in order to facilitate data collection. 829 
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 830 

Box Figure 3.1. The taxonomic bias in data on amphibian climate change studies reflects the 831 

geographic distribution of species investigated. In this figure the taxonomic groups are placed 832 

with reference to their size (number of species on a log scale x-axis) and the proportion in the 833 

review (% in climate change review - y-axis). The brown and green lines represent parity and 834 

95% confidence intervals, respectively, and are jagged due to the log scale of the x-axis. (a) 835 

Only two studies included caecilians (below the green line of parity but not outside the lower 836 

95% confidence interval, brown line). Studies on salamanders were significantly 837 

overrepresented (above the brown 95% confidence line interval), while those on anurans 838 

were underrepresented (below the brown 95% confidence interval) in the dataset. 839 

Salamanders are particularly well represented in the dataset including ambystomatids, 840 
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salamandrids, and plethodontids. (b) Of the frogs studied, boreal families such as ranids, 841 

bufonids, pelobatids and alytids were all overrepresented, while the more tropical mantellids 842 

and microhylids were underrepresented. 843 

 844 

 845 

 846 

 847 

Box Figure 3.2. Data from Winter et al. (2016) on 193 species from 24 families of 848 

amphibians representing all three orders of amphibians that demonstrate a distinct geographic 849 

bias in the literature on amphibians and climate change. Darker colour indicates a greater 850 

number of studies. Note that the criteria for including literature in this review were relatively 851 

stringent (see Winter et al., 2016), and there may be more studies from other areas of the 852 

globe that were excluded or have been published since 2016.  853 
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 854 

Box Figure 3.3. a) Climatic, b) Environmental, and c) Anthropogenic variables used in 855 

studies reviewed by Winter et al (2016). Presence of the term was used to calculate 856 

percentage from 325 entries.    857 
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Box 3.3: Amphibians and fire 858 

In many ways fire has set the most dramatic direct challenges to society that hinge on climate 859 

change and society’s ability to become a part of natural systems and not apart from them.  860 

The size, frequency, and severity of fires are anticipated to increase under climate change 861 

(Dale et al., 2001). In particular, extreme fire-weather conditions including drought and hot-862 

dry-windy air conditions coupled with human factors such as fire suppression activities of 863 

past decades (e.g. McDonald, Srock, & Charney, 2018; Moritz et al., 2014; Srock, Charney, 864 

Potter, & Goodrick, 2018; Turner & Romme, 1994) and increasing human-mediated fire 865 

starts are triggering widespread fires—a worldwide signature is evident (Box Figure 3.4). 866 

However, there is an overall lack of knowledge of the response of amphibians to fire 867 

(Driscoll et al., 2010), hindering our ability to assess fire risk and make informed 868 

management decisions. There is an urgent need to understand the impact of fires on 869 

amphibians, particularly in areas such as Australia, North America, and the Amazon basin, 870 

given the more frequent and more severe fires predicted as a consequence of global climate 871 

change (Moritz et al., 2012; Williams et al., 2008). 872 

 873 

In North and South America, amphibian response to fire and fire effects to broader 874 

ecosystems are emerging. Pilliod, Bury, Hyde, Pearl, & Corn (2003) reviewed data from 15 875 

studies of prescribed and wildfires in North America, finding: 1) spatial and temporal 876 

variability of fire effects on amphibians reflecting their life history, habitat associations, 877 

species range extent, and time-since-burning; 2) direct mortality effects as well as indirect 878 

effects on microclimate, aquatic habitat sedimentation and altered hydroperiod, nutrient 879 

pulses, and microhabitat changes to duff, litter, and down wood; and 3) a need for long-term 880 

data. Hossack & Pilliod (2011) reviewed seven studies with pre- and post-fire data and seven 881 

retrospective studies. They found that studies of plethodontid salamanders and southwestern-882 
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USA stream-breeding amphibian species reported negative fire effects on populations, 883 

individuals, or critical habitat attributes. Cousins, Leppin, Neill, Radin, & Olson (2019) 884 

reported high amphibian productivity in high-elevation pond-meadow complexes within 885 

areas with past wildfires in Oregon, supporting the apparent resilience of these amphibians to 886 

fire disturbance that may help bolster broader ecosystem recovery through food web 887 

interactions. 888 

 889 

Although monitoring efforts in tropical regions of the Americas also give the impression that 890 

fires may be reasonably well tolerated by local amphibian communities (Drummond, Moura, 891 

& Pires, 2018; Warren-Thomas et al., 2013), this likely reflects the composition of the 892 

communities sampled to date, and the environmental filters that they have encountered. For 893 

instance, inventories in bamboo and terra firme forests in the Peruvian Amazon (Madre de 894 

Dios) detected generally lower (but not statistically significant changes in) amphibian 895 

diversity and abundance following anthropogenic fires associated with a severe drought in 896 

2005 (Warren-Thomas et al., 2013). However, all species then recorded were known to be 897 

resistant to habitat alterations, and the inventory included no primary forest specialist species; 898 

as such, the sampling area may have been located in a transition zone already occupied by 899 

fire-resistant species. Similarly, in South American rupestrian grasslands known to be 900 

regularly subjected to wildfires, Drummond et al. (2018) found no statistically supported 901 

reduction in amphibian diversity following burning. The authors largely attributed these 902 

results to the timing of the fire (the dry season, when most riparian amphibians are hidden in 903 

rock outcrops, burrows or termite mounds), but noted that the single species known to be a 904 

direct developer and to utilise grasses as shelter was that with lower observation records and 905 

decreased abundance following burning. With increased attention recently turning to the 906 

burning of large tracks of rainforests in the Amazon region (Bullock, Woodcock, Souza, & 907 
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Olofsson, 2020), it remains to be seen whether more significant changes will be detected in 908 

the composition and abundance of the many direct developers and wet forest-dependent 909 

species known to occupy this domain. 910 

 911 

Australia. Australia’s 2019/2020 fire season brought the interaction of climate change and 912 

fires to the forefront in the country, with more than 17 million hectares of forest burnt in 913 

Australia (Boer, de Dios, & Bradstock, 2020; Noble, 2020). While a natural part of many 914 

ecosystems in Australia, fires of this extent are not typical (Boer et al., 2020), and a large 915 

proportion of wetter habitats, which historically burn infrequently, also burnt. The handful of 916 

studies on the impact of fire on Australian frogs have indicated overall resilience to fires 917 

(Bamford, 1992; Driscoll & Roberts, 1997; Lowe, Castley, & Hero, 2013; Potvin et al., 2017; 918 

Westgate, Driscoll, & Lindenmayer, 2012; Westgate, MacGregor, Scheele, Driscoll, & 919 

Lindenmayer, 2018), and short-term postfire persistence of many frog species across the fire 920 

was revealed via citizen science (Rowley et al., 2020), but the long-term impact of the 921 

summer 2019/2020 fires on Australian frogs remains unknown. Particular concern is held for 922 

species with small geographic ranges, especially rainforest-dependent species. 923 

 924 

Mitigations to reduce fire effects. In the USA Southwest, society should reduce effects of 925 

human-mediated disturbances in fire-prone areas that could affect amphibian habitat 926 

conditions by: 1) reducing livestock grazing on native plants and near aquatic ecosystems that 927 

may result in altered fire-related processes and functions; 2) preventing human-transmission 928 

of invasive species, especially non-native plants that alter fire regimes; and 3) actively 929 

reducing fuel loads in areas subject to wildfire (Jones, Halama, & Lovich, 2016). These are 930 

all interacting factors as dry conditions and lightning strikes are predicted to increase with 931 

climate change in many areas. In the Northwest USA, management recommendations to 932 
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address fuel treatments in forests to safeguard against wildfire risk were developed for known 933 

sites of the Siskiyou Mountains salamander, a species of concern (Clayton, Olson, Nauman, 934 

& Reilly, 2009). Due to elevated concerns for human communities-at-risk of wildfire within 935 

the salamander’s range, alternative measures were developed to address salamander 936 

persistence to better inform management decisions when trade-offs between people and biota 937 

are used to inform decisions. In many ways, these actions mean a cultural reset of societal 938 

norms to integrate people into natural systems designed for mutual coexistence. Although a 939 

suite of approaches can be derived for multiple threats, a downscaled species-specific, 940 

geography-specific, and threat-combination specific approach is likely most effective to 941 

address the contexts of known local-to-regional issues, while simultaneously addressing 942 

human socioeconomics of the system.   943 
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 944 

Box Figure 3.4. Average global burned area (from dataset MCD64A1: (Giglio, Boschetti, 945 

Roy, Humber, & Justice, 2018), ignition density and fire size over a 14-year study period, 946 

2003-2016, representing 13,250 fires averaging 4.4 km2 in average size. For any given 947 

location, burned area in panel (a) can be represented as the product of ignitions per year 948 

shown in (b) and fire size shown in (c). From Andela et al., (2019); globalfiredata.org, 949 

accessed 8 July 2021. 950 

  951 



 

135 
 

Box 3.4: Synergies: disease ecology 952 

Synergies between climate change and infectious diseases have received a great deal of 953 

attention in recent years. In particular, several hypotheses have been proposed relating the 954 

emergence of the amphibian disease chytridiomycosis caused by fungi of the genus 955 

Batrachochytrium (primarily B. dendrobatidis, Bd), to climate change. Pounds et al. (2006) 956 

proposed the chytrid thermal optimum hypothesis, which posits that increased cloud cover 957 

led to a convergence between daytime and night-time temperatures leading to increased 958 

growth of Bd and amphibian declines in Monteverde, Costa Rica. They also proposed that 959 

climate change was increasing the number of dry days and decreasing mist frequency with 960 

detrimental consequences to amphibians. Subsequent analyses found no statistical support for 961 

the chytrid thermal optimum hypothesis (Rohr & Raffel, 2010; Rohr, Raffel, Romansic, 962 

McCallum, & Hudson, 2008). An isotopic tree ring study showed no long-term drying trend 963 

at Monteverde but did reveal that major declines in the 1980s corresponded to a particularly 964 

dry interval caused by a strong El Niño event. Analyses of temporally detrended data to 965 

account for epidemic Bd spread also support a role for extreme climatic conditions and 966 

increased climate variability caused by El Niño in amphibian declines in Latin America 967 

(Rohr & Raffel, 2010). Because climate change is predicted to increase climate variability 968 

Thornton et al. 2014 as well as the strength and frequency of extreme El Niño events (Wang 969 

et al., 2019), these results suggest the impact of chytridiomycosis outbreaks on amphibian 970 

populations could increase because of climate change (see Box Figure 3.5). 971 

 972 

Climate change could increase the impact of Bd on amphibian populations through milder 973 

winter conditions in temperate montane regions. Decreased snowpack in Wyoming (Muths, 974 

Hossack, Grant, Pilliod, & Mosher, 2020) and earlier thaw date in the Pyrenees (Clare et al., 975 

2016) have been associated with decreased survival with Bd and increased prevalence of Bd, 976 



 

136 
 

respectively, and chytridiomycosis outbreaks in central Spain have been linked to milder 977 

winter conditions that allow for increased growth of Bd (Bosch, Carrascal, Durán, Walker, & 978 

Fisher, 2007). Beyond favouring conditions for growth of Bd, climate change may affect the 979 

interaction between host and parasites or pathogens. The thermal mismatch hypothesis 980 

(Cohen et al., 2018, 2017) proposes that while both parasites and hosts should have a 981 

performance optimum that matches local conditions, parasites typically have broader thermal 982 

tolerances than hosts and that cool-adapted hosts typically have a right-skewed performance 983 

curve while warm-adapted hosts typically have a left-skewed curve. Climate change could 984 

shift local conditions away from the host performance optimum and, because parasites have a 985 

broader performance curve, increase the performance advantage of parasite over host. 986 

Climate warming could thus promote increased Bd growth and outbreaks in cool-adapted 987 

species, a result that has been supported by both lab experiments and a meta-analysis of Bd 988 

outbreaks (Cohen et al., 2017). These results suggest that the effect of climate warming on Bd 989 

outbreaks may depend on host physiology, allowing predictions of which species may be 990 

most impacted by future outbreaks of Bd or other amphibian diseases. 991 
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 992 

Box Figure 3.5: Predicted change in the global occurrence probability of the amphibian 993 

chytrid fungus Batrachochytrium dendrobatidis (Bd), a skin pathogen which can cause the 994 

disease chytridiomycosis, with three climate change scenarios for the year 2100. These 995 

projections were derived from region-specific models, likely providing a more accurate 996 

perspective of the increasing occurrences of Bd in north-temperate zones and higher 997 

elevations. From (Xie, Olson, & Blaustein (2016).  998 
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Box 3.5: Synergies: habitat alteration/degradation 999 

Because amphibians are dependent on water or soil moisture, drought can have major 1000 

negative effects on amphibian survival and reproduction (reviewed in Walls et al., 2013). 1001 

Examples of drought effects on amphibians include extirpation of terrestrial species (e.g., 1002 

from decreased soil moisture for lungless salamanders; Jaeger, 1980; reduction in number 1003 

and water level of breeding pools for Australian frogs; Scheele et al., 2012), and changes in 1004 

regional hydrology resulting in pond desiccation and population declines (e.g., frogs and 1005 

salamanders in Yellowstone National Park; McMenamin et al., 2008). Increased 1006 

evapotranspiration from wetlands and decreased hydrological input as a result of changes in 1007 

precipitation could cause desiccation of amphibian breeding sites, causing reproductive 1008 

failure of the species that use them. 1009 

 1010 

Urbanisation, agricultural development, and intensive use of rangelands for livestock grazing 1011 

are main drivers of habitat loss and degradation (Cameron, Marty, & Holland, 2014). The 1012 

impact of habitat degradation on aquatic breeding amphibians can be exacerbated by climate 1013 

change. The increase in frequency of droughts in some regions (e.g., California) has been 1014 

linked to anthropogenic warming (Diffenbaugh, Swain, & Touma, 2015) and threatens 1015 

species that rely on seasonal wetlands. For example, wetland habitat could be converted to 1016 

grassland as a result of decreased hydroperiod resulting from climate change, eliminating 1017 

both habitat and breeding sites for amphibians (Blaustein et al., 2010). Yet, the effects of 1018 

wetland warming and drying on amphibians may be difficult to predict and not necessarily 1019 

synergistic or even additive, in part because amphibians may be able to compensate by 1020 

decreasing metamorphosis time or increasing growth rate in response to higher resource 1021 

availability (O’Regan, Palen, & Anderson, 2014). Although with limited effectiveness, 1022 

modified and created ponds have been shown to mitigate the impact of extreme drought and 1023 
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habitat loss on pond-breeding amphibians (Baumberger, Backlin, Gallegos, Hitchcock, & 1024 

Fisher, 2020; Pechmann, Estes, Scott, & Gibbons, 2001).   1025 
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Abstract 16 

Amphibian populations are routinely exposed to chemical contaminants in their habitat 17 

because contamination is pervasive in industrial, residential, and agricultural areas; 18 

contamination moves to remoter regions through aerial drift, runoff, food webs via 19 

bioaccumulation and biomagnification, and the water cycle, resulting in contaminant 20 

exposure in all natural systems. Exposure to upwind agriculture has been one of the few 21 

causal factors linked to amphibian population declines across a large geographic area, yet 22 

expected environmental exposures are often below lethal thresholds, suggesting that 23 

interactions with other natural and anthropogenic factors may be the key avenue through 24 

which contaminants elicit impacts on individuals and populations. Recent data reveal that 25 
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direct exposure to contaminants can alter physiology or gene expression, causing long-lasting 26 

effects that go beyond the exposure period, in some cases even extending across generations. 27 

In their natural habitats, amphibians must cope with several biotic (competitors, predators, 28 

and pathogens) and abiotic stressors (temperature, precipitation and other environmental 29 

conditions). Anthropogenic stressors, such as habitat alteration/degradation, pollution and 30 

climate change, provide an additional challenge to these species. Evidence suggests that the 31 

presence of multiple stressors increases the likelihood that contaminants will cause effects on 32 

amphibians and their populations, potentially increasing their extinction risk. While some 33 

contamination is perhaps unavoidable in a human-dominated globe, there are ways to reduce 34 

amphibians’ exposure to contaminants, such as managing their release and use, creating 35 

biological buffers from areas of exposure, and implementing better policies that protect 36 

natural systems. Managing the risk of contaminants to amphibians will require a concerted 37 

effort among scientists, policymakers, local communities, landowners, and other stakeholders 38 

around the world, to protect amphibians and the natural systems of which they are part. 39 

 40 

Introduction 41 

On a planet where over 6 billion pounds of active ingredient pesticides are sold each year 42 

(Atwood & Paisley-Jones, 2017) and where an estimated 90-100,000 chemicals are released 43 

into the environment from agricultural and industrial activities (Holt, 2000), chemical 44 

contaminants are widespread and found in every environment examined. Contamination from 45 

pesticide pollution alone is widespread with 64% of agricultural lands at risk to exposure to 46 

more than one contaminant (Tang, Lenzen, McBratney, & Maggi, 2021). Further, there is a 47 

high overlap between areas prone to pesticide exposure and high-biodiversity regions, 48 

particularly in South Africa, China, India, Australia, and Argentina, although the risk is 49 

global (Tang et al., 2021). These contaminants can be detected above and below ground, 50 
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posing a threat to living organisms through direct exposure and indirect routes via water 51 

systems and food webs. Early reports of amphibian population declines (Wake, 1991) posited 52 

that contaminants could play an important role in declines and approximately 30% of 53 

globally threatened amphibians are affected by pollution (Baillie, Hilton-Taylor, & Stuart, 54 

2004). 55 

  56 

A recent assessment on our progress elucidating the causes of amphibian declines (Green, 57 

Lannoo, Lesbarrères, & Muths, 2020), however, did not explicitly include contaminants. Yet, 58 

of the many attempts to look for causal factors, contaminants have been one of the few 59 

statistically linked to declines: Upwind pesticide use has been associated with amphibian 60 

population declines in California, USA across numerous studies (Davidson, 2004; Davidson 61 

& Knapp, 2007; Davidson, Shaffer, & Jennings, 2001, 2002). Further, California is one of the 62 

places with the best records for pesticide use and application rates, making it one of the areas 63 

more likely to find associations if they existed. Yet, directly linking contaminants to declines 64 

is difficult (Bradford et al., 2011; Campbell Grant, Miller, & Muths, 2020; Campbell Grant et 65 

al., 2016; Davidson, Stanley, & Simonich, 2012) given that environmental concentrations are 66 

often below known effect thresholds, contaminant effects can appear years after exposure, the 67 

types of contaminants used change over time, testing often occurs long after a contaminant is 68 

used, peak concentrations that cause effects may occur well before testing, break-down 69 

products may have different toxicity, and demographic data on amphibians is scarce (Conde 70 

et al., 2019). Additionally, the sheer number of contaminants found in environments 71 

(Smalling, Orlando, Calhoun, Battaglin, & Kuivila, 2012) and the temporal and spatial 72 

variation in application make pinpointing contaminants as a driver of amphibian declines 73 

problematic. Indeed, despite chemical innovation that has led to a diversity of novel products 74 

(e.g., PFAS [perfluoroalkyl and polyfluoroalkyl substances], antimicrobials, microplastics; 75 
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Kumar, Borah, & Devi, 2020), our current understanding of the role of contaminants on 76 

amphibian declines stems from work on selected pollutants (Egea-Serrano, Relyea, Tejedo, & 77 

Torralva, 2012). However, population viability analysis by Willson et al. (2012) 78 

demonstrated how contaminants that impact larval and juvenile survival can increase the risk 79 

of local extirpation, suggesting that understanding the effects on key life stages can be 80 

important for predicting population consequences. For all of these reasons, determining 81 

cause-effect linkages is challenging even if contaminants were a central causative factor in 82 

declines. 83 

 84 

Despite the risk of chemical contaminants to amphibians, the initial concern that amphibians 85 

may be more sensitive to contaminants than other vertebrates because of their permeable 86 

eggs, skin, and gills (Bishop & Pettit, 1992), has not been found to be the case (Bridges, 87 

Dwyer, Hardesty, & Whites, 2002; Kerby, Richards-Hrdlicka, Storfer, & Skelly, 2010). 88 

Larval amphibian susceptibility to contaminants is roughly similar to that of fish (Glaberman, 89 

Kiwiet, & Aubee, 2019; Ortiz-Santaliestra, Maia, Egea-Serrano, & Lopes, 2018), although 90 

variation exists within and between species and taxonomic groups (Bridges & Semlitsch, 91 

2000), which can change with repeated exposure (Hua, Jones, & Relyea, 2014; Hua, 92 

Morehouse, & Relyea, 2013). Assessment of contaminant risks could also vary across 93 

biogeographical regions, but most research has focused on species in the northern 94 

hemisphere, which biases research toward certain types of contaminants, species with 95 

complex life cycles, and a narrow set of life history traits (Schiesari, Grillitsch, & Grillitsch, 96 

2007). Nevertheless, amphibians are susceptible to environmental contaminants (Baker, 97 

Bancroft, & Garcia, 2013), and contaminants could pose an important threat to amphibian 98 

populations in the wild (Willson et al., 2012). 99 

  100 
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Collectively, while substantial progress has been made in past decades, the major goals of 101 

this chapter are to highlight research gaps, suggest key research directions towards the goal of 102 

continuing to understand amphibian vulnerability to chemical contamination, and identify 103 

actions to mitigate and reduce the effects of contamination on amphibian communities. In 104 

2007, contaminant risks were assessed and reviewed by the IUCN working group (Boone, 105 

Semlitsch, Little, & Doyle, 2007; Gascon et al., 2007) and recommendations were updated in 106 

2015 (Wren et al., 2015), which noted the potential for contaminant exposure risks to 107 

amphibians in ways that may be more obvious (mortality) to more subtle (endocrine 108 

disruption, impacts on fertility, reduced overwinter survival). These assessments and others 109 

have noted that the most serious threat to amphibians from contaminants is their potential to 110 

interact with other factors like habitat loss and degradation, novel diseases, climatic changes, 111 

exotic invasive species, and natural factors like predators/parasites and competitors 112 

(Campbell Grant et al., 2016; Carey et al., 2001; Hayes et al., 2006). The data have come to 113 

support this supposition in the last decade (e.g. Davis, Ferguson, Schwarz, & Kerby, 2020; 114 

Rohr et al., 2008; Rumschlag & Rohr, 2018). Contaminants can change community 115 

composition, which can alter critical life history traits and alter susceptibility to abiotic and 116 

biotic factors, and serve as a physiological stressor, which can influence the susceptibility to 117 

other environmental stressors and the likelihood for interactive effects. 118 

 119 

Because current research suggests the important role of contaminants as both an additive (i.e., 120 

combined effects equal the sum of the effects of each factor alone) and interactive factor in 121 

natural systems, the potential for interactions between expected and observed environmental 122 

concentrations of contaminants and other factors is the focus of our review here. The 123 

objectives of this chapter are to (1) review key ecotoxicological research not addressed in 124 

previous IUCN assessments, (2) identify gaps in amphibian ecotoxicology knowledge, (3) 125 
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evaluate the priorities for future amphibian ecotoxicology research, and (4) provide effective 126 

and strategic conservation recommendations to mitigate contaminant risks to amphibians.  127 

 128 

Status update 129 

Contaminant risks 130 

Types of chemical risks to amphibians 131 

Amphibians are vulnerable to toxicants and pollutants from several sources (Figure 132 

4.1) and very different chemical natures, which have been reviewed extensively elsewhere 133 

(e.g. Sparling, Linder, Bishop, & Krest, 2010; Thambirajah, Koide, Imbery, & Helbing, 134 

2019) and which are summarised here briefly. Industrial and agricultural chemicals likely 135 

constitute the most pervasive type of chemicals to which amphibians are exposed, as they 136 

contaminate soils and the water bodies that amphibians use as primary breeding habitats. 137 

These substances cause direct damage to larval and adult amphibians through poisoning, 138 

endocrine disruption, or other means of physiological impairment. Some of these substances 139 

are highly persistent in the natural environment and amenable to bioaccumulation, 140 

consequently remaining a grave concern even long after their use is stopped or legally 141 

banned. Insecticides (e.g., DDT, carbaryl, deltamethrin, parathion, rotenone, esfenvalerate, 3-142 

trifluoromethyl-4-nitrophenol, endosulfan, endrin, toxaphene) and herbicides (glyphosate, 143 

atrazine, acetochlor, triclopyr, paraquat) pose a major threat to amphibians, given the frequent 144 

and extensive use of them worldwide. Phosphorus and nitrogenous compounds widely used 145 

as fertilisers in agricultural fields (e.g., nitrates, nitrites, ammonia, humic acid) often spill 146 

over to aquatic habitats, also decreasing survival and otherwise affecting larval development 147 

of amphibians. Similarly, secondary salinization of freshwater systems, which has increased 148 

over the past several decades due to human activities such as agricultural irrigation, coastal 149 

flooding, and the application of road salts (Cañedo-Argüelles et al., 2016; Saumure et al., 150 
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2021) can result in direct mortality of freshwater species leading to deleterious outcomes for 151 

wildlife populations (Hintz & Relyea, 2019). Other contaminants derived from industrial 152 

activity are also a common concern for the well-being of amphibians, from flame retardants 153 

to chemicals used in the manufacture of plastics and resins. These include substances such as 154 

polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), bisphenol A 155 

(BPA), tetrabromobisphenol A (TBBPA), dioxins, genistein, furans, perfluorooctanesulfonate 156 

(PFOS), perchlorates or phthalates. Another group of toxicants derived from industrial and 157 

mining activities are metals, metalloids, and nanoparticles, including arsenic, boron, 158 

cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, or zinc. Petroleum oil 159 

products can be often spilled to water bodies, and both their polycyclic aromatic 160 

hydrocarbons and the naphthenic acid represent direct threats to amphibians.  Pharmaceutical 161 

and personal care products are additional sources of chemical pollution that raise concern, 162 

particularly considering that methimazole, ibuprofen, estrogen, propylthiouracil, 163 

ethylenethiourea, triclosan, and triclocarban, all can interfere with amphibians’ endocrine 164 

pathways. In the end, chemical contaminants of diverse sources and types move through 165 

water in natural and human-made systems, making amphibians vulnerable to exposure to 166 

pollution during their life cycles. 167 
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 168 

Figure 4.1. Human population size and consumption drives the industrial, residential, and 169 

agricultural footprints on the landscape that can contribute to chemical contamination of 170 

aquatic and terrestrial ecosystems. 171 

 172 

Generalizable toxicity across classes, types, and modes of action of active ingredients 173 

Predicting the effects of the thousands of environmental contaminants is enormously 174 

challenging because of the diverse array of contaminants to which ecosystems are exposed. 175 

Although basic toxicological data are available for a few model organisms, the ecological 176 

ramifications of exposure for most contaminants are not clear. Predicting responses in natural 177 
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systems, however, is critical so that effects of exposure can be reasonably estimated for 178 

regulatory purposes—and such predictions are possible. An important means to anticipating 179 

community- and ecosystem-level effects can be coarsely achieved by using an active 180 

ingredient’s chemical class, mode of action, and/or type (e.g., herbicide, insecticide, metal) to 181 

make predictions concerning the potential influence on natural systems. 182 

 183 

By considering a contaminant through a categorical lens, some general principles can be 184 

reached. For example, Boone (2008) evaluated if combinations of insecticides with a 185 

different or the same mode of action were more or less likely to have additive or nonadditive 186 

effects on metamorphosis; in this study, aquatic environments containing two insecticides 187 

that were acetylcholinesterase inhibitors were more likely to have nonadditive effects than if 188 

the two insecticides had a different mode of action. Such approaches can improve our ability 189 

to anticipate effects of chemical mixtures, which are common in environments. Further, for 190 

contaminants that are well studied like the insecticide carbaryl (e.g. Boone, Semlitsch, 191 

Fairchild, & Rothermel, 2004; Boone et al., 2007; Zippel & Mendelson III, 2008), the 192 

herbicides atrazine (Rohr & McCoy, 2010) and glyphosate (e.g. Relyea, 2005), and the metal 193 

mercury (e.g. Bergeron, Hopkins, Todd, Hepner, & Unrine, 2011), the effects found in an 194 

array of studies from lab to field for these contaminants can offer insight for the ecological 195 

effects of contaminants with a similar mode of action or of a similar type/characteristic if we 196 

know that contaminants from similar classes and types have similar effects. 197 

 198 

Data are beginning to suggest that chemical types and classes do have generalizable 199 

consequences. To evaluate chemical classes, Shuman-Goodier & Propper (2016) found effect 200 

sizes for swim speed and activity in fish and amphibians were similar for contaminants within 201 

the same chemical class. Using a meta-analysis, Egea-Serrano et al. (2012) determined that 202 
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types of contaminants had different effect sizes across amphibian responses, suggesting that 203 

some contaminant types were more likely to have negative effects. Kerby et al. (2010) 204 

compared the sensitivity of amphibians via LC50s (lethal concentration of 50% of the 205 

population) with other taxonomic groups to contaminants based on chemical class and found 206 

amphibians had moderate to low sensitivity to pyrethroid, carbamate, organophosphate, and 207 

organochlorine pesticides; heavy metals; and inorganics relative to other groups; however, 208 

amphibians appeared to have higher sensitivity to phenols than other taxa. Evaluating 209 

sensitivity by chemical class or type is a useful way to infer contaminant categories that may 210 

be of more concern than others. Rumschlag et al. (2019) found that pesticides with the same 211 

chemical class or type (e.g., insecticide or herbicide) had similar impacts on amphibian host-212 

trematode parasite communities, and Rumschlag et al. (2020) demonstrated that community 213 

structure and ecosystem function were impacted similarly based on a pesticide’s effect 214 

through direct and indirect pathways. These studies suggest that based on class or type, we 215 

can expect some generality to contaminant effects, and we should be able to predict more 216 

complex ecological outcomes in systems based on direct effects at different trophic levels. 217 

These approaches offer a means of understanding contaminant impacts in natural systems so 218 

that we can minimise contaminant effects that can directly and indirectly impact species of 219 

concern, like amphibians, even without exhaustive studies for each particular contaminant. 220 

 221 

Direct effects 222 

Physiological 223 

Extensive research has found that contaminant exposure at ecologically relevant 224 

concentrations can impact amphibian physiology in a myriad of important ways, from non-225 

monotonic (a dose-response relationship characterised by a U-shaped or inverted U-shaped 226 

curve across increasing doses; Lagarde et al., 2015) modulation of stress hormones like 227 
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corticosterone (Larson, McDonald, Fivizzani, Newton, & Hamilton, 1998; McMahon et al., 228 

2011), to altered cardiac function (Jones-Costa et al., 2018; Palenske, Nallani, & Dzialowski, 229 

2010), to the disruption of endocrine axes (including the feedback loops between 230 

hypothalamic-pituitary-adrenal axis or hypothalamic-pituitary-thyroid components of the 231 

endocrine system; Thambirajah et al., 2019; Trudeau et al., 2020), to immunomodulation 232 

(e.g. Forson & Storfer, 2006; McMahon et al., 2011), to impaired neuronal function (Sparling 233 

et al., 2010) or altered metabolism (Burraco & Gomez-Mestre, 2016). Moreover, 234 

contaminants have also been shown to be genotoxic (Maselli et al., 2010; Patar et al., 2016), 235 

and the damage caused to the DNA may potentially affect gene expression and lead to 236 

mutation-based diseases. One of the most commonly used pesticides in North America, the 237 

herbicide atrazine, has been shown to reduce size at metamorphosis, diminish immune 238 

function, and modulate gonadal morphology, impacting spermatogenesis and sex hormone 239 

production (Hayes et al., 2002; Rohr & McCoy, 2010; Vandenberg et al., 2012). Indeed, 240 

atrazine exposure can cause feminization in genetic male frogs (Hayes et al., 2002; Hayes, 241 

Khoury, et al., 2010; Rohr & McCoy, 2010), altering their overall fitness. Chlorothalonil, one 242 

of the most commonly used synthetic fungicides in North America, impacts immune response 243 

and degrades tadpole liver tissue in a non-monotonic fashion (McMahon et al., 2011). The 244 

severity of impact of contamination on amphibian physiology is also altered by timing of 245 

exposure (e.g. Rohr et al., 2013). Early life exposure is often, but not always, more 246 

detrimental than late life exposure. Additionally, there is evidence that the impact of 247 

contaminant exposure on physiology impacts the successive generations, as well. For 248 

example, male Xenopus tropicalis exposed to pesticides had reduced fertility due to 249 

endocrine disruption, were smaller in size, and their offspring had decreased plasma glucose 250 

levels (Karlsson et al., 2021). Many studies with amphibians do not examine physiological 251 

responses, but for those that do, effects appear to be commonplace (Thambirajah et al., 2019), 252 
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suggesting biochemical changes that can have long-term effects are an important avenue for 253 

future research. 254 

  255 

Carryover effects 256 

Exposure to a contaminant has the potential to result in acute effects; understanding those 257 

effects and their ramifications can help managers minimise or mitigate the consequences. Yet 258 

even more pernicious are the effects that have consequences well after exposure, making 259 

short-term toxicity studies less useful in predicting effects in natural systems; further, effects 260 

that occur well after exposure make establishing cause-effect linkages challenging. Long-261 

term effects stemming from conditions earlier in life are carryover effects. Carryover effects 262 

can occur when a contaminant has an obvious short-term effect with the consequences 263 

persisting or when a contaminant has no observed effect at exposure with impacts appearing 264 

later in life after exposure has ended (O’Connor, Norris, Crossin, & Cooke, 2014). 265 

 266 

For instance, if contaminant exposure results in smaller size at metamorphosis in amphibians, 267 

then future fecundity, time to reproduction, and survival in the terrestrial environment (i.e., 268 

fitness) can be impacted (e.g. Altwegg & Reyer, 2003; Chelgren, Rosenberg, Heppell, & 269 

Gitelman, 2006; Earl & Whiteman, 2015; Scott, Casey, Donovan, & Lynch, 2007) even 270 

though contaminant effects may have been acute. Many contaminants affect endpoints 271 

correlated with fitness, through either direct chemical effects or indirect effects through 272 

changes in the food web (e.g. Relyea & Diecks, 2008). It follows that any contaminant that 273 

alters these critical endpoints have a higher probability of impacting future responses via 274 

carryover in ways that affect populations. Currently, studies that have followed amphibians 275 

after contaminant exposure early in development have found that carryover effects from acute 276 

exposures can have lasting effects on terrestrial growth and overwintering for some species 277 
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and not for others (Boone, 2005; Distel & Boone, 2010). 278 

 279 

Carryover effects from contaminant exposure in early life can also appear later in life despite 280 

no apparent effects immediately after exposure via altered physiology, behaviour, or gene 281 

expression (O’Connor et al., 2014). For instance, while negative chemical effects were not 282 

apparent in anurans reared in wastewater treatments relative to controls, terrestrial growth 283 

was reduced for those from wastewater, suggesting a metabolic cost of exposure was not 284 

apparent until later in development (Zeitler, Cecala, & McGrath, 2021). Similarly, Rohr & 285 

Palmer (2005) found that the herbicide atrazine unexpectedly increased terrestrial desiccation 286 

risk in salamanders through altered activity months after larval exposure. Delayed effects, 287 

like acute ones, are important because they can reduce survival, fertility, and growth; 288 

therefore, delayed carryover effects are critical to understand. Endocrine disruption caused by 289 

pesticide exposure may even affect subsequent unexposed generations, for at least two 290 

generations (Karlsson et al., 2021). 291 

 292 

Contaminants that result in biochemical changes, such as changes in hormones (e.g., thyroid 293 

hormones, (Thambirajah et al., 2019); stress hormones, (Bókony et al., 2021; Davis et al., 294 

2020); sex hormones, (Hayes, Khoury, et al., 2010)) or gene expression (e.g. Hinther, 295 

Bromba, Wulff, & Helbing, 2011; Zhang et al., 2019) may be more likely to have carryover 296 

effects. They appear to be a common, understudied consequence of contaminant exposure 297 

(Bergman et al., 2013; Edwards & Myers, 2007). Surprisingly, some carryover effects are 298 

positive: prior exposure to a contaminant can lead to greater tolerance to other stressors later 299 

in life, potentially through induction of a generalised stress response (Billet & Hoverman, 300 

2020; Hua, Morehouse, & Relyea, 2013). However, general patterns have not yet been 301 

identified. 302 



 

193 

 

 303 

Carryover effects can also include those that cross generational boundaries--an area of 304 

research that offers many opportunities for discovery, given that the currently available data 305 

are quite limited. In particular, endocrine-disrupting chemicals (including phthalates, 306 

bisphenol A, microplastics pharmaceutical and personal care products, and persistent 307 

environmental contaminants like PCBs) are likely to have transgenerational impacts (Brehm 308 

& Flaws, 2019; Schwindt, 2015; Zhou et al., 2020). For instance, Karlsson et al. (2021) 309 

demonstrated that exposure of males to an anti-androgenic pesticide (linuron) resulted in 310 

effects across two generations in anurans. Additionally, maternal mercury exposure in 311 

anurans had negative effects on growth and survival in the next generation of tadpoles 312 

through maternal transfer of mercury (Bergeron et al., 2011), suggesting that contaminants 313 

that bioaccumulate in breeding females may have the potential to cross generational 314 

boundaries. Similarly, breeding pairs from agricultural and urban ponds with high 315 

concentrations of endocrine-disrupting pesticides (Bókony et al., 2018) produced tadpoles 316 

and juveniles with lower growth rates and development.  Although there are few studies 317 

examining transgenerational impacts, current knowledge suggests that such effects may be 318 

common. 319 

 320 

Carryover effects are understudied in amphibian ecotoxicology (as well as more broadly), 321 

and they have the potential to impact population health and persistence through time 322 

(O’Connor & Cooke, 2015). While we have a good understanding of the consequences that 323 

follow for some responses (e.g., effects on time and size at metamorphosis; early life stress 324 

hormones), species variation may still undermine broad generalisations, which could become 325 

predictable with more study (Earl & Whiteman, 2015). Making cause-effect linkages remains 326 

a major challenge for contaminants that have carryover effects and calls for studies across the 327 



 

194 

 

life cycle and through multiple generations. 328 

 329 

Indirect effects 330 

Given that freshwater systems are among the most biodiverse in the world (Dudgeon et al., 331 

2006), predicting the cumulative effects of contaminants on amphibians is hampered by the 332 

myriad possible indirect effects, mediated through and compounded by species interactions 333 

and food web structures. Despite the magnitude of the threat that contaminants impose on 334 

amphibians and freshwater systems (Bernhardt, Rosi, & Gessner, 2017; Burton, Di Giulio, 335 

Costello, & Rohr, 2017), indirect effects of contaminants are often overlooked by research 336 

communities and funding agencies. Classic toxicological lab-based experiments have 337 

documented scores of contaminants that can cause acute toxicity to organisms (Sparling et 338 

al., 2010), but they fail to predict complex suites of effects that can occur when contaminants 339 

enter freshwater systems (Bernhardt et al., 2017; Gessner & Tlili, 2016; Rohr, Salice, & 340 

Nisbet, 2016). Contaminant-induced changes in behaviour, competition, and 341 

predation/grazing rates can lead to changes in abundance, richness, and/or composition of 342 

community members (Fleeger, Carman, & Nisbet, 2003; Hillebrand & Matthiessen, 2009), 343 

which can impact amphibians via bottom-up and top-down trophic cascades (Fleeger et al., 344 

2003; Hillebrand & Matthiessen, 2009). Advancements in replicated, field-based in situ, and 345 

mesocosm studies have offered a way to incorporate the complexity of multitrophic 346 

communities, so that the cumulative effects of contaminants on amphibians can be better 347 

evaluated. 348 

 349 

Bottom-up indirect effects of contaminants alter food resources of amphibians. In the larval 350 

environment, alterations to algae can influence the survival and development of tadpoles. For 351 

instance, contaminants, including coal ash, fungicides, and herbicides, can decrease the 352 
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abundance or alter the composition of phytoplankton and periphyton (Brock, Lahr, & Van 353 

den Brink, 2000; McMahon et al., 2012; Rowe, Hopkins, & Coffman, 2001; Rumschlag et 354 

al., 2020). Top-down effects of contaminants alter the community of amphibian predators. 355 

Insecticides can reduce survival of predators (Schäfer et al., 2011), which can benefit 356 

amphibian larval survival and growth through a predator release (Rumschlag et al., 2020). 357 

Amphibian behaviour can also be directly impacted by contaminants, which can indirectly 358 

lead to altered predator-prey interactions. Sublethal concentrations of contaminants, including 359 

copper and insecticides, can reduce tadpole activity, increase rates of abnormal swimming, 360 

reduce escape responses, or inhibit detection of predator cues by tadpoles, leading to 361 

increased predation risk (Hayden et al., 2015; Polo-Cavia, Burraco, & Gomez-Mestre, 2016; 362 

Sievers et al., 2019). 363 

 364 

Contaminant-driven bottom-up and top-down effects can also alter transmission of parasites 365 

in amphibian populations by altering parasite exposure risk. For instance, in amphibian-366 

trematode systems, triazine herbicides, organophosphate insecticides, and nutrients are linked 367 

with increases in snail abundance (first intermediate host) and thus trematode exposure, 368 

through increases in snail resources (periphytic algae, bottom-up effect) and changes to 369 

predator dynamics (top-down effect) (Johnson & Chase, 2004; Rumschlag et al., 2019). In an 370 

amphibian-chytrid system, effects of contaminants on parasite exposure and load can be non-371 

monotonic (McMahon, Romansic, & Rohr, 2013), demonstrating complexity in predicting 372 

effects of contaminants on parasite transmission. 373 

 374 

Indirect effects of contaminants on amphibians and other community members have even 375 

been linked to ecosystem-level consequences (Halstead et al., 2014). For instance, diverse 376 

arrays of insecticides can all lead to increases in primary productivity (through 377 
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predation/grazing release) and ecosystem respiration through negative effects on larval 378 

salamanders and other zooplankton predators, which change zooplankton abundance and 379 

composition (Rumschlag et al., 2020). 380 

 381 

The findings documenting the indirect effects on contaminants on amphibians highlight the 382 

need for a large-scale perspective in terms of ecology, community composition, and time. 383 

Amphibians do not experience chemical exposure in isolation, and therefore holistic research 384 

on the indirect effects of exposure is needed to understand the net ecological impact. 385 

 386 

Evolutionary effects of contaminants 387 

The call to incorporate evolutionary perspectives in our understanding of amphibian 388 

conservation and mitigation of amphibian declines was clearly articulated more than a decade 389 

ago (Blaustein & Bancroft, 2007). Indeed, since then, we have amassed ample evidence 390 

suggesting that amphibians can adapt in response to novel environmental conditions 391 

generated by pollutants (Brady, 2012; Cothran, Brown, & Relyea, 2013; Homola et al., 2019; 392 

Hua et al., 2015), although the ability to adapt depends upon the presence of resistant 393 

genotypes in the population.  394 

 395 

Additionally, in the last 15 years, our understanding of the various adaptive mechanisms 396 

driving responses to pollutants has markedly improved. For example, endocrine flexibility is 397 

a crucial coping mechanism in response to anthropogenic environmental change. Generally, 398 

corticosterone, the main amphibian glucocorticoid associated with the hypothalamic-399 

pituitary-interrenal axis (HPI axis), is predicted to be elevated with exposure to pollutants and 400 

other environmental stressors (Bókony et al., 2021; Forsburg, Guzman, & Gabor, 2021; 401 

Gabor, Davis, Kim, Zabierek, & Bendik, 2018; Gabor, Knutie, Roznik, & Rohr, 2018; Goff, 402 
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Walls, Rodriguez, & Gabor, 2020; Hopkins, Mendonça, & Congdon, 1997; Tennessen et al., 403 

2018). Yet not all populations (mostly endotherms) show elevated glucocorticoids in 404 

urbanised populations (Injaian et al., 2020; Murray et al., 2019). Further, Bókony et al. 405 

(2021) found that tadpoles of Bufo from anthropogenic and natural habitats that were reared 406 

in common garden experiments had higher baseline corticosterone-release rates in urban 407 

ponds; however, tadpoles from urban and agricultural ponds showed an adaptive response by 408 

responding to stressors with a greater stress-induced change than tadpoles from natural 409 

habitats, indicating that tadpoles from anthropogenic sites had a more efficient negative 410 

feedback (return to baseline). Collectively, these findings indicate the complexity of 411 

mitigating amphibian declines and suggest that more mechanistic studies may aid in exposing 412 

alternative methods for minimising the amphibian response to contaminants by decreasing 413 

application rate, changing the timing, or using different contaminants, even when the 414 

contaminants cannot be removed.  415 

 416 

While the adaptive response to pollutants provides an optimistic perspective to amphibian 417 

populations facing contaminant exposure, recognition that these adaptations can lead to costs 418 

is growing (a reduction of fitness (Brady, 2012; Brady et al., 2019; Hua et al., 2015; 419 

Semlitsch, Bridges, & Welch, 2000); absence of protective co-tolerance effects to pollutants 420 

or natural stressors like predators and pathogens ( Hua, Buss, Kim, Orlofske, & Hoverman, 421 

2016; Hua, Cothran, Stoler, & Relyea, 2013; Hua, Morehouse, et al., 2013; Jones et al., 2021; 422 

Rumschlag et al., 2020). A number of advances in techniques to assess the evolutionary 423 

effects of contaminants on amphibians have been made, including traditional toxicity assays 424 

(e.g., time to death assays [TTD], LC50s) to compare functional traits like tolerance across 425 

groups, physiological coping capacity assays that measure stress physiology and capacity to 426 

cope with pollutants and environmental change (reviewed by Narayan, Forsburg, Davis, & 427 
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Gabor, 2019), and community metabarcoding to study diversity of amphibian microbiomes, 428 

which has applications in disease mitigation and captive breeding for reintroduction purposes 429 

(Ficetola, Manenti, & Taberlet, 2019). 430 

 431 

Despite the growth in our understanding of evolutionary effects of contaminants on 432 

amphibians, few studies have directly implemented evolutionary principles and evaluated 433 

these efforts to inform and facilitate amphibian conservation. Future work should consider 434 

designing and testing conservation strategies based on our understanding of evolutionary 435 

effects of pollutants on amphibians. These may include selective breeding, introduction of 436 

adaptive variants through translocations, ecosystem interventions aimed at decreasing 437 

phenotype–environment mismatch, or genetic engineering (Pabijan et al., 2020). Some 438 

challenges to consider include: In captive breeding, should we expose amphibians to stressors 439 

that can help habituate the HPI axis and/or promote coping with unpredictable environments 440 

that they will experience if they are reintroduced to the wild? Similarly, can we engineer 441 

husbandry conditions that are similar to those in the wild (i.e., bioaugmentation techniques to 442 

initiate the establishment of healthy skin microbiotas in captive hellbenders prior to release; 443 

Kenison, Hernández-Gómez, & Williams, 2020). 444 

 445 

While evolutionary responses may protect some amphibian populations from the effects of 446 

pollutants, other populations may not respond rapidly enough to cope with the pace of 447 

pollutant contamination even if genetic variation in resistance/tolerance exists in the 448 

population (Pabijan et al., 2020). Therefore, looking ahead, integrating evolutionary findings 449 

from the past 15 years to develop and directly test evidence-based evolutionary principles to 450 

protect the most vulnerable amphibian populations will be imperative to our amphibian 451 

conservation efforts. 452 
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 453 

Interactions of contaminants with other environmental factors 454 

While contaminants alone and in mixtures have been put forward as a potential cause for 455 

amphibian population declines and while contaminants can theoretically cause local 456 

extinction (Willson et al., 2012) or serve as habitat sinks (e.g., coal ash, Rowe et al., 2001), 457 

the interactive effects of contaminants with other natural and anthropogenic factors has long-458 

been anticipated to result in deleterious effects (Blaustein et al., 2011; Carey & Bryant, 1995; 459 

Hayes, Falso, Gallipeau, & Stice, 2010). 460 

  461 

With habitat degradation and alteration 462 

Land-use/Land-cover increases the risks of contamination: 463 

Conversion of habitats to agriculture, residential, developed, and sub/urban lands can lead to 464 

increased contaminant exposures in the aquatic and terrestrial habitats used by amphibians 465 

(Sievers, Hale, Parris, & Swearer, 2018), which can directly affect amphibians and which can 466 

alter and degrade the quality of the habitat in ways that create the potential for multiple 467 

stressors. While contaminant exposure in the environment is pervasive in protected areas with 468 

low human impact to areas of agricultural and industrial activity (Battaglin et al., 2016; 469 

Bókony et al., 2018; Hageman, 2006; van Dijk & Guicherit, 1999), the likelihood of exposure 470 

is greater in some areas. Contaminants accumulate in water bodies, making these areas an 471 

important exposure pathway for amphibians with complex life cycles or living in areas near 472 

streams and wetlands (Battaglin et al., 2016; Bókony et al., 2018). Further, greater likelihood 473 

of contaminant exposure exists in aquatic habitats with concentration increasing dramatically 474 

for single contaminants and chemical mixtures (Anderson et al., 2013; Battaglin et al., 2016; 475 

Hayes et al., 2006) in both agricultural and protected areas (Sparling et al., 2015; Trudeau et 476 

al., 2020). Additionally, some types of agricultural techniques such as surface drainage 477 
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ditches and subsurface tile drains contribute to habitat loss and transport pesticides, nutrients, 478 

and other contaminants into wetland habitats (Blann, Anderson, Sands, & Vondracek, 2009). 479 

Chemical mixtures increase the likelihood of effects (Hayes et al., 2006), which can 480 

ultimately reduce offspring fitness in amphibians (Bishop, Ashpole, Edwards, Van Aggelen, 481 

& Elliott, 2010; Bókony et al., 2018; Semlitsch et al., 2000), but which can also lead to 482 

pesticide tolerance or resistance (e.g. Cothran et al., 2013; Hua et al., 2015) in ways that alter 483 

populations. 484 

 485 

Contaminants as habitat degradation: 486 

Ponds are natural features on the landscape and are often added by people for recreational or 487 

aesthetic reasons, or for their ability to remove sediments moving across the landscape or 488 

water across impervious surfaces (Davis et al., 2021; Gallagher et al., 2011; Monaghan et al., 489 

2016; Renwick, Smith, Bartley, & Buddemeier, 2005); both natural and human-made ponds 490 

are readily used by amphibians. Yet, environmental contaminants in these water bodies 491 

represent a form of habitat degradation. Ponds on human-dominated landscapes like golf 492 

courses, agricultural areas, parks, or multi-residential properties are more likely to be 493 

chemically managed to control algal or plant overgrowth, which can increase exposure risks 494 

to amphibians and influence population persistence (Sievers et al., 2018). For instance, golf 495 

courses manage water features for aesthetics impacted by fertiliser and pesticide runoff, 496 

occasionally applying chemicals like copper sulphate directly to ponds to reduce algal and 497 

plant growth, which can also be toxic to amphibians (Puglis & Boone, 2012). Use of pond 498 

dyes has become more common in residential and urban ponds as a means of reducing algal 499 

growth; effects have not been found to have direct impacts on amphibian metamorphosis, but 500 

such management practices change the food web, reducing algal and zooplankton food 501 

resources for amphibians (Bartson, Ogilvie, Petroff, Smith, & Rettig, 2018; Suski, Swan, 502 
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Salice, & Wahl, 2018). Chemical exposure that reduces emergent vegetation can also impact 503 

the quality of a site for breeding and larval development via reduced cover and increased 504 

vulnerability to predators (Shulse, Semlitsch, Trauth, & Williams, 2010), although the direct 505 

and indirect consequences can make predicting outcomes difficult (Edge et al., 2020). The 506 

changes contaminants make to habitats can alter the quality of habitat, which can have 507 

population- and community-level repercussions, and which may not be obvious from 508 

traditional toxicological studies (e.g., LC50s in single species tests). Physiological and 509 

behavioural studies provide mechanisms for documenting systems in decline, especially in 510 

habitats that are experiencing conversion, before environmental stressors can be mitigated 511 

(Walls & Gabor, 2019). 512 

 513 

While terrestrial buffers are mandated, for instance, in some areas near streams to reduce 514 

habitat degradation from nutrient runoff and soil erosion in waterways, they are generally not 515 

required around small temporary or permanent ponds often used by amphibians for breeding 516 

and larval development. Terrestrial buffers can promote contaminant and nutrient filtering 517 

from ponds (Cole, Stockan, & Helliwell, 2020; Mayer, Reynolds, Canfield, & McCutchen, 518 

2005; Muscutt, Harris, Bailey, & Davies, 1993; Skagen, Melcher, & Haukos, 2008) and also 519 

serve as key upland habitats for terrestrial species or life stages (Semlitsch & Bodie, 2003). 520 

Physical habitat structure may also intercept aerial deposition of contaminants that may 521 

physically/directly impact amphibians in terrestrial habitats and can offer a solution to 522 

minimise contaminant impacts on water quality and on the species that live there. 523 

 524 

Land-use/Land-cover influences environmental conditions and can interact with contaminant 525 

exposure 526 

Land-use/land-cover changes alone have dramatic impacts on populations and communities, 527 
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and amphibians can be affected by the interaction of habitat characteristics and contaminant 528 

exposure in ways that lead to the co-occurrence of environmental characteristics (e.g. 529 

Faulkner, 2004; Renick, Anderson, Morgan, & Cherr, 2015). For instance, loss of 530 

surrounding forest habitat can reduce leaf litter inputs and, thus, dissolved organic carbon that 531 

attenuates UV radiation; because some contaminants are more toxic in the presence of UV, 532 

changes in UV penetration can influence how toxic the same environmental concentration of 533 

a contaminant is and directly impact amphibian growth and survival (Puglis & Boone, 2011; 534 

Roberts, Alloy, & Oris, 2017).  535 

 536 

Conversion of forest to rangeland can have impacts at a larger landscape scale and can 537 

interact with the resulting consequences, which may include reduction in emergent vegetation 538 

in ponds used for egg laying and predator protection of larvae, diminished quality of the 539 

terrestrial habitat for juvenile and adult growth and survival, changes in the hydroperiod of 540 

the wetland (which may be lengthened for cattle watering or shortened for planting), altered 541 

aquatic food webs resulting in changes in food availability and predators abundance, and 542 

reduced water quality (Moges et al., 2017) (Tilman, 1999). The addition of a contaminant that 543 

lengthens larval period in a habitat that has a shortened hydroperiod because of agricultural 544 

tiling or draining, for instance, can reduce recruitment of juveniles into the adult population, 545 

as Relyea & Diecks (2008) found for anurans reared in drying experimental ponds exposed to 546 

the insecticide malathion. Additionally, land use changes that impact water quality may result 547 

in algal blooms and higher water temperatures that spur management by land managers or 548 

residents. For instance, Goff et al. (2020) found that water quality and land cover type 549 

affected the physiological and bacterial diversity of ornate chorus frogs (Pseudacris ornata), 550 

thus affecting their overall population health. In this way, land-use and land-cover changes 551 

can alter a number of abiotic and biotic factors and interact with contaminant exposure to 552 
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impact development and physiology of individuals, which can have acute and long-term 553 

consequences. 554 

 555 

The potential for interactive effects of contaminants is illustrated in two field studies. The 556 

threatened Jollyville Plateau Salamander (Eurycea tonkawae) is a fully neotenic stream 557 

dwelling species found in central Austin, Texas, USA. This species is on the United States 558 

Endangered Species List because of threats from urbanization; indeed, counts of this species 559 

declined more in areas with the largest residential development than less developed areas 560 

throughout the species range (Bendik et al., 2014). In a follow-up study exploring the 561 

mechanisms associated with declines, Gabor et al. (2018) found that in two out of three years, 562 

salamanders from streams in more developed watersheds released higher corticosterone (an 563 

endocrine hormone associated with the stress axis) than salamanders from populations in 564 

preserves. Corticosterone levels were also higher in urban streams than in rural ones. Positive 565 

feedback between stream background corticosterone and baseline corticosterone may account 566 

for the higher corticosterone release rates found for E. tonkawae in urban streams, because 567 

amphibians can uptake exogenous corticosterone through their skin (Glennemeier & Denver, 568 

2002). Because urban catchments are associated with septic systems and sewer lines, 569 

exogenous corticosterone from these systems plus runoff will continue to plague amphibians 570 

within these catchments. Further, Davis et al. (2020) found that salamanders located in 571 

agricultural wetlands compared to reference wetlands had higher ranavirus infection loads 572 

and higher corticosterone release rates. At the same time, corticosterone release rates were 573 

higher in ranavirus infected salamanders. Together, these results indicate that amphibians are 574 

being hit by multiple stressors, which likely increase the rates of amphibian declines. These 575 

studies show the usefulness of using water-borne corticosterone as one mechanism by which 576 

habitat impacts on amphibian population health can be measured in the field. 577 
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 578 

With disease 579 

Given the important role disease has played in amphibian population declines (Scheele et al., 580 

2019) — particularly ranaviruses and the amphibian chytrid fungi (Batrachochytrium 581 

dendrobatidis [Bd] and B. salamandrivorans)— and given that disease pathogens and 582 

contaminants are distributed across space while disease outbreaks appear more localised, the 583 

potential for disease by contaminant interactions is of critical importance (Blaustein et al., 584 

2018). Because contaminants have a wide range of modes of actions, they have the potential 585 

to affect pathogens, hosts, or their interaction, which can alter disease dynamics and could 586 

explain the range of observed effects in experiments and natural systems (Blaustein et al., 587 

2018). In experimental studies, the presence of contaminants may not alter the susceptibility 588 

of amphibians to a pathogen (as some studies have found, e.g., Buck et al., 2015; Gaietto, 589 

Rumschlag, & Boone, 2014; Kleinhenz, Boone, & Fellers, 2012) or it can increase 590 

susceptibility (e.g. Cusaac et al., 2021; Rohr et al., 2013; Wise, Rumschlag, & Boone, 2014), 591 

and these differences may be attributed to life stage exposure and species/population 592 

susceptibility. Field studies find associations between host-pathogen relationships and 593 

environmental contamination, although the type of contamination or effect may vary among 594 

study systems. For instance, King et al. (2010) found parasite infection risk was greater for 595 

anurans in polluted habitats, but risk varied with land cover in the landscape. Battaglin et al. 596 

(2016) found that frogs at field sites across the USA were more likely to be positive for Bd at 597 

sites with higher fungicide concentrations in water and sediments, and with more dissolved 598 

organic carbon, total nitrogen, and phosphorus in the water. Reeves et al. (2017) found Bd 599 

zoospore abundance was negatively associated with neonicotinoid concentration in wetlands 600 

in Iowa, USA. Rumschlag & Rohr (2018) found herbicide use was associated with low Bd 601 

infection prevalence in larval aquatic habitats and high infection prevalence in post-602 
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metamorphic terrestrial habitats. Further, populations exposed to salt runoff had slightly more 603 

frequent ranavirus-related mass mortality events, more lethal infections, and 117-times 604 

greater pathogen environmental-DNA (Hall, Brunner, Hutzenbiler, & Crespi, 2020). 605 

Generally, the presence of contamination in environments is associated with increased 606 

likelihood of pathogen/parasite infections in some systems in ways that are not currently 607 

predictable. 608 

 609 

Anticipating how contaminants will impact pathogen-amphibian dynamics is difficult 610 

because underlying mechanisms determining these interactions are not well understood, 611 

because non-monotonic responses result with exposure to some contaminants (e.g., endocrine 612 

disruptors), and because amphibian populations/species (e.g. Hoskins & Boone, 2017; 613 

McMahon et al., 2011, 2013; Rohr & McCoy, 2010) and pathogens (e.g. Bd; McMahon et al., 614 

2011) vary in response to contaminants. Yet, a promising research avenue for predicting 615 

pathogen-contaminant interactions is the examination of contaminant effects on 616 

immunomodulation (Hayes et al., 2006; McMahon et al., 2011) and on antimicrobial skin 617 

peptides or other defences that can prevent infections (McCoy & Peralta, 2018; Rollins-Smith 618 

et al., 2002). For instance, Davidson et al. (2007) found that an insecticide impacted the 619 

ability of anuran skin peptides to reduce Bd growth in vitro. Because pollution and other 620 

environmental conditions can influence the skin and gut microbiomes that can compromise 621 

an amphibian’s ability to fight disease pathogens, contaminant effects on the amphibian host 622 

microbiome are likely an important mechanism influencing disease dynamics (McCoy & 623 

Peralta, 2018). 624 

 625 

Contaminants can also alter the environment in ways that increase susceptibility to pathogens 626 

even if the contaminants themselves do not directly impact amphibians. For instance, Johnson 627 
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et al. (2007) found that trematode infections were increased in amphibians through 628 

eutrophication of systems via nutrient runoff; in this way, contaminants can change the 629 

system to favour pathogens and increase infection rates. There are many ways that 630 

contaminants can alter the environment through changes in abiotic conditions or physical 631 

structure, or in the biotic community that could alter host-pathogen systems. For example, if 632 

contaminants can alter the abundance of microscopic aquatic predators that feed on infective 633 

stages of trematode parasites or Bd zoospores, they could influence infection prevalence and 634 

disease dynamics (Schmeller et al., 2014). Additionally, indirect effects of contaminant 635 

exposure can increase disease risk by increasing the abundances of intermediate hosts of 636 

pathogens in the environment or through slowing host development in stages especially 637 

vulnerable to infection (Halstead et al., 2014; Rumschlag et al., 2019). These interactions can 638 

be complex with outcomes mediated by host species, host and pathogen quality, and 639 

environmental properties. 640 

 641 

Given that disease-causing parasites and pathogens are on the rise (Scheele et al., 2019), 642 

determining which factors can increase the likelihood of disease outbreaks is critical; current 643 

data suggest contaminants may be an important cofactor, yet there are thousands of chemicals 644 

that occur at different concentrations and that have divergent properties, creating a Russian 645 

roulette scenario in natural systems. Rumschlag et al. (2019) found that pesticide class 646 

predicted effects on trematode parasites and their hosts in aquatic communities, which 647 

offered some general conclusions that could be applicable to other areas. Such studies offer a 648 

powerful approach that provides predictive power to better shape both management and 649 

policy in ways that reduce the likelihood that contaminant exposure will lead to catastrophic 650 

disease outbreaks that negatively impact amphibian populations and species. 651 

 652 
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With climate change 653 

The IPCC (2013) predicts changes in temperature and precipitation patterns across the globe, 654 

including shifts in average temperatures and increases in extreme climatic events 655 

(Diffenbaugh & Ashfaq, 2010; Schär et al., 2004). Understanding how contaminants will 656 

impact amphibians in a climate change scenario is a major challenge for amphibian 657 

conservation. Temperature can alter amphibian susceptibility to contaminants, but its effects 658 

are chemical dependent. Some studies find that higher temperatures can decrease sensitivity 659 

to pollutants (i.e., copper sulphate (Chiari, Glaberman, Serén, Carretero, & Capellini, 2015); 660 

atrazine (Rohr, Sesterhenn, & Stieha, 2011). In contrast, other studies report that increasing 661 

temperature results in greater toxicity (i.e., endosulphan, carbaryl, methomyl and pyrethroid 662 

insecticides (Boone & Bridges, 1999; Broomhall, 2002; Lau, Karraker, & Leung, 2015; 663 

Materna, Rabeni, & Lapoint, 1995)). It is clear that interactive effects between contaminants 664 

and temperature exist and understanding the mechanisms by which pollutants and 665 

temperature interact is important (similar to Burraco & Gomez-Mestre, 2016) to develop 666 

effective conservation strategies. 667 

 668 

Further, climatic instability/unpredictability may also prompt amphibians to experience lower 669 

temperatures if reproduction events are prematurely cued (i.e., a false spring, Parmesan, 670 

2007). Exposure to cold temperatures during embryonic stages can negatively affect 671 

amphibians by increasing tadpole susceptibility to pollutants (Wersebe et al., 2019). 672 

Similarly, phenological shifts that expose breeding amphibians to freezing conditions can 673 

have cascading consequences on offspring ability to tolerate pollutants (Buss, Swierk, & Hua, 674 

2021). 675 

 676 
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Contaminants could also alter adaptive traits (morphological, physiological and behavioural) 677 

that are crucial for species to cope with climate change. In the past 15 years, our knowledge 678 

on amphibian thermal physiology traits has grown significantly (Duarte et al., 2012; 679 

Gutiérrez-Pesquera et al., 2016; Katzenberger, Duarte, Relyea, Beltrán, & Tejedo, 2021; 680 

Sunday et al., 2014). Contaminant effects on traits related to thermal physiology appear to be 681 

species- and chemical-dependent. Katzenberger et al. (2014), for instance, found that the 682 

herbicide Roundup® did not affect the critical thermal maximum (CTmax), but it changed 683 

the shape of the thermal performance curve; in contrast, Quiroga, Sanabria, Fornés, Bustos, & 684 

Tejedo (2019) found that tadpoles exposed to the insecticide chlorpyrifos showed a 685 

significant decline in CTmax but not in CTmin. 686 

 687 

Currently, we have insight on how a few chemicals impact amphibians, but the vast majority 688 

remains untested and generalizations are difficult. An important and straightforward step 689 

would be to determine how toxicity of common contaminants changes with temperature for 690 

critical components of the food web (i.e., from reports like Aronson, Printup, Shuler, & 691 

Howard, 1998), which would improve our ability to mitigate deleterious effects in ecological 692 

systems. 693 

 694 

Priorities in research 695 

Amphibian ecotoxicological research has exploded in recent decades (Sparling et al., 2010) 696 

—assessing across scales from basic individual toxicity in the lab to ecologically relevant 697 

community-level questions in outdoor mesocosms and field enclosures, to landscape-level 698 

system questions. While research originally focused on mortality, it has now expanded to 699 

include responses across life stages (metamorphosis through to adult life stages), 700 

physiological responses such as endocrine and reproductive system modulation, and changes 701 
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in behaviour, physiology, and genomic expression. Because amphibians are experimentally 702 

tractable across life stages they can serve as models for understanding the effects of 703 

contaminants in natural environments. The two key research areas for amphibian 704 

conservation related to pollution should focus on issues that will, first, protect populations in 705 

the wild that are impacted by contaminants and that will, second, improve regulatory data 706 

collection to better protect natural systems. 707 

 708 

Population declines and amphibian conservation 709 

We know amphibian populations are experiencing worldwide declines with no clear global 710 

explanation (Campbell Grant et al., 2020, 2016) and that contaminants are pervasive (e.g. 711 

Battaglin et al., 2016; Gibbs, MacKey, & Currie, 2009). To understand the role contaminants 712 

play in declines and in systems not experiencing declines, we need to focus on the ecological 713 

ramifications of contaminant exposure. We achieve this focus by identifying the important 714 

factors that interact with contaminant exposure to impact traits associated with amphibian 715 

fitness; these factors likely include habitat change, disease, and climate change, factors which 716 

are additional stressors in communities already experiencing naturally occurring competition, 717 

predation, and physiological stressors. We need to conduct experiments that examine 718 

exposure at multiple time points and that span life stages of diverse amphibian species 719 

because of the wide variety of life history strategies utilised by Amphibia. Biases in 720 

geography, ecosystems, life stages, and species of study creates a risk that we reach general 721 

conclusions that will not be reality-based, particularly given that some species and areas 722 

experiencing population declines are not those that have been the most extensively studied 723 

(Leaning, 2000; Trimble & van Aarde, 2012). Schiesari et al., (2007) found that while the 724 

majority of amphibian declines have taken place in the tropics, most studies were conducted 725 

on temperate systems using a small number of mainly temperate species.  Hence, 726 
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biogeographical and taxonomic biases can and should be addressed, at least partially, by 727 

including amphibians in routine federal toxicity testing, using native species from around the 728 

world. 729 

 730 

Ecotoxicological studies for amphibian conservation 731 

Traditional toxicological studies for regulatory purposes do not explicitly include 732 

amphibians, which is problematic given the role contaminants likely play in the amphibian 733 

biodiversity crisis, as outlined in this chapter. Yet, traditional toxicological approaches (e.g., 734 

LC50s) may not provide us with the information we need to protect this taxonomic group. 735 

Short-term studies often do not link exposure effects to critical traits correlated with fitness or 736 

to population dynamics, yet they are a good place to begin particularly in systems where there 737 

are little baseline data (e.g., many tropical systems). To determine long-term consequences of 738 

contaminant exposure, we need studies that examine consequences of exposure across life 739 

stages (i.e., carryover effects) and we need to use empirical data to parameterise population 740 

models to examine population viability in light of contaminant effects in complex 741 

communities (Willson et al., 2012). Linking responses that may happen with exposure (e.g., 742 

biomarkers like corticosterone; Gabor, Knutie, et al., 2018) to consequences later in life, 743 

offers promise to predict future consequences. Further, natural systems are more complicated 744 

and include contaminant mixtures and multiple potential stressors, so studies are needed that 745 

incorporate chemical as well as the natural complexity of ecological communities and can be 746 

powerful when paired with natural field studies (e.g. Hayes et al., 2003; Rohr, Raffel, 747 

Sessions, & Hudson, 2008; Rohr, Schotthoefer, et al., 2008). Such experiments can be 748 

logistically complicated, yet they are essential to establish cause-effect relationships and to 749 

evaluate the likelihood of additive or nonadditive effects. Many regulatory agencies in the US 750 

or Europe do not go beyond laboratory studies, but laboratories do not typically mimic 751 
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systems--mesocosm or field studies are needed to do this (e.g. Halstead et al., 2014), and 752 

when experimental field conditions match natural systems, their results yield predictive 753 

power (e.g. Boone et al., 2004; Kidd et al., 2007). Complex ecotoxicology studies will be 754 

more easily achieved if chemical classes and types allow predictability, as the data currently 755 

suggest (Rumschlag et al., 2019, 2020); for then, a representative chemical can be used to 756 

explore interactions with other factors, across life stages, and general conclusions can be 757 

made for a suite of contaminants, which will help address the regulatory challenges 758 

associated with contaminant testing and regulatory delay. 759 

 760 

Solutions for mitigating contaminant effects: Activities and opportunities 761 

Considering that contaminant effects can be well-documented, are associated with amphibian 762 

population declines (Davidson et al., 2002), are predicted to interact with other stressors 763 

(above) and are predicted to cause declines when they affect survival (e.g. Willson et al., 764 

2012), there are many reasons to reduce contaminant exposure in natural systems.  Hence, 765 

stronger federal policies, improved and implemented conservation strategies, and individual 766 

actions can contribute to reducing the risk of amphibians being exposed to contaminants. 767 

 768 

Policy 769 

Environmental contaminants are pervasive largely because environmental policies (or lack 770 

thereof) support this outcome. As such, effective policies are the most important way through 771 

which exposure can be reduced. Given that contaminants move through food webs, 772 

atmospheric drift, and the water cycle, one or a few countries with poor policies can lead to 773 

global distribution of contaminants. However, contaminant release may at times be necessary 774 

for society or inevitable to meet national or global needs. The question of policy relates to 775 

societal decisions of assessing when benefits justify the environmental and health costs, 776 
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which can be difficult to answer without adequate scientific evidence and transparent public 777 

discussions that are not obfuscated by misleading information from industry (e.g. Oreskes & 778 

Conway, 2010). 779 

 780 

For instance, the herbicide atrazine increases crop yields by <6% at best and many reviews 781 

suggest average yields improve 1-3% (Ackerman, 2007). Atrazine is known to alter food 782 

webs by impacting the lowest trophic levels and, perhaps even more significantly, results in 783 

endocrine disruption across taxa (Hayes et al., 2011), although atrazine’s manufacturer works 784 

to muddle these results from influencing public policy and regulation in the USA (Boone et 785 

al., 2014; Hayes, 2004; Rohr, 2021) by attacking scientists (e.g. Aviv, 2014) and 786 

funding/influencing research that disproportionately produces studies showing no effects of 787 

atrazine (Hanson, Solomon, Van Der Kraak, & Brian, 2019; Hayes, 2004). Is this an example 788 

of good policy where benefits disproportionately outweigh the costs or an example of the 789 

disproportionate influence of industry slowing regulatory processes (sensu Oreskes & 790 

Conway, 2010)? For amphibians, the weight of evidence suggests that there are significant 791 

costs to this policy that leads to widespread atrazine contamination of aquatic habitats (e.g. 792 

Rohr & McCoy, 2010), and the example of the regulatory process of atrazine is exceptional 793 

only in that the role of industry to slow the regulatory process has been well documented and 794 

publicised. Better policy that limits the role of industry in the experiments used to inform 795 

regulatory decisions could lead to better policy in the USA and other nations (Boone et al., 796 

2014). 797 

 798 

A policy of precaution, which is more pervasive in Europe, would also decrease the exposure 799 

risks to single chemicals and chemical mixtures, both of which increase the probability of 800 

biological effects and the interactive effects that result from interactions with other 801 
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contaminants and environmental factors. However, for precaution to be an option, accurate 802 

predictions about how diverse contaminants will affect species and food webs are necessary. 803 

Towards this goal, while a wealth of data exist for amphibians and other taxa for a few 804 

contaminants, there are thousands of other regulated contaminants for which relatively little 805 

data exist. Looking ahead, expanding our understanding to include more contaminants and 806 

their potential interactions based on more general chemical properties or classes is an area of 807 

research that needs to be greatly expanded to allow informed decision-making or to 808 

adequately apply precaution. With more rigorous policy devoid of industrial influences, 809 

society and natural systems would reap more benefits from the trade-off than they currently 810 

do. 811 

 812 

Conservation strategies 813 

Even in the absence of policies that reduce contaminant release, strategies exist that can 814 

diminish the likelihood of exposure or the concentration to which systems are exposed (e.g. 815 

Smith & Sutherland, 2014) which influences the direct and indirect consequences 816 

experienced by organisms. Terrestrial buffers around aquatic habitats absorb nutrient and 817 

chemical contamination in runoff, and slow the rate of movement, which can reduce exposure 818 

risk (above). Policy that requires adequate habitat to surround aquatic environments could 819 

have a number of benefits including improved water quality and (potentially) flood control, 820 

which would benefit amphibians and a host of other taxa (including humans); however, 821 

buffer characteristics will vary across systems and are difficult to standardise (Kuglerová, 822 

Ågren, Jansson, & Laudon, 2014; Luke et al., 2019) with more known about riparian buffers 823 

than pond buffers. Terrestrial amphibians and terrestrial life stages are also vulnerable to 824 

contaminants (Brühl, Pieper, & Weber, 2011; Brühl, Schmidt, Pieper, & Alscher, 2013; 825 



 

214 

 

James & Semlitsch, 2011), and could benefit from terrestrial buffers around terrestrial 826 

habitats. 827 

 828 

Societal calls for minimising environmental exposures to contaminants would benefit a host 829 

of species, including amphibians and humans. Reducing contaminant use by, for instance, 830 

accepting some agricultural losses to pests while using practices that benefit natural pest-831 

predators provides effective and environmentally friendly approaches to achieve pest 832 

reduction without chemical pollution. In fact, some research suggests that organic techniques 833 

produce yields similar to conventional agriculture without the chemical footprint (Ponisio et 834 

al., 2015) and that enhancing the diversity of agricultural systems offers ecosystem services 835 

without a loss in yield (Tamburini et al., 2020). Further, reducing the use of contaminants to 836 

maintain public gardens and lawns in residential areas could also reduce contaminant inputs 837 

into natural systems given that homeowners use 10X more pesticides per acre than farmers 838 

(Meftaul, Venkateswarlu, Dharmarajan, Annamalai, & Megharaj, 2020). When the use of 839 

chemicals is unavoidable, such as when controlling the vectors of a zoonosis (e.g., Aedes 840 

aegypti, the mosquito responsible for spreading yellow fever, dengue fever, chikungunya, 841 

Zika fever, among others), their application should be accompanied by non-chemical actions 842 

(including population education) that add to the desired effect and help reduce the required 843 

number/dosage of applications. Prevention of pollution in the first place, particularly given 844 

that only a small amount of pesticides even reach pests (Pimentel & Burgess, 2012), is less 845 

economically and biologically costly than pollution clean-up. 846 

 847 

Ultimately, cutbacks in consumption (as well as reduced human population size) would 848 

reduce pollution associated with industry and development and are steps that individuals can 849 

take to reduce their pollution footprint. If all stakeholders in industry, agriculture, 850 
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government, and society members worked together to reduce the amount of pollution 851 

entering natural systems, amphibians and other species, including humans, are less likely to 852 

experience negative consequences of exposure--consequences that often do not reveal 853 

themselves for years. 854 

 855 

Conclusions 856 

In the last three decades, we have made substantial progress towards understanding how 857 

contaminants influence amphibians and the critical questions we need to address. Notably, we 858 

have addressed many priority points highlighted in the 2007 ACAP (Table 4.1). While we 859 

have made headway, there remain several research gaps. Of note, continued research is 860 

needed to understand the dynamics of how contaminants interact with other important 861 

stressors (i.e., habitat degradation, disease, climate change) to influence amphibians in 862 

potentially antagonistic, additive, or synergistic ways. Given the sheer number of different 863 

contaminants and the potential for diverse contaminant mixtures, an important need remains 864 

for predictive models that accurately assess the effects of individual and contaminant 865 

mixtures across ecological scales and organisations from molecular and physiological levels 866 

to systemic population and community levels. Importantly, this effort will require continued 867 

integration of multiple techniques (lab to field), as well as scientists with diverse expertise 868 

across biology (molecular to landscape levels). Researchers continue to study and understand 869 

the contribution of long-term and multi-generational effects of contaminants on amphibians. 870 

Lastly, a concerted effort should be made to address the geographical, ecosystem, and life 871 

stage biases that currently favour larval stages in temperate habitats. Addressing research 872 

priorities outlined here will allow us to better understand how contaminants influence 873 

amphibian declines. Current data indicate that amphibians are exposed to concentrations that 874 

elicit several effects (many of which are negative), that these effects are often (at a minimum) 875 
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additive with other environmental stressors, and that they pose a threat to population viability 876 

worldwide. Collaborative work with scientists, policymakers, local human populations, 877 

landowners, and other stakeholders could lead to implementation of the best strategies to 878 

minimise the impacts on amphibians and the ecosystems at large.  879 

 880 

Table 4.1: A summary of the research gaps highlighted in the 2007 ACAP update and current 881 

state of research on each of these gaps. The cool to warm colour scheme represents research 882 

gaps that have received relatively more attention to less attention in the past 30 years. In the 883 

last decades, we have made substantial progress on addressing the research gaps highlighted 884 

in the 2007 ACAP. For each of the gaps highlighted in the 2007 ACAP, we highlight areas in 885 

need of further investigation (in bold). 886 

Research gaps from ACAP 2007 Current status 

Research is needed that goes beyond 

traditional toxicity testing by understanding 

complex chemical mixtures in complicated 

natural environments. 

In the last 30 years, by integrating multiple 

toxicological techniques (lab to mesocosm to 

field), we have made substantial progress on 

understanding the complex direct and indirect 

effects of contaminants on amphibians. 

Studies have also worked to understand the 

interactive effects of complex contaminant 

mixtures. However, given the multitude of 

possible contaminant mixtures, we are still 

missing critical information that will allow us 

to make predictions about complex chemical 

mixtures in natural environments. Towards 
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this goal, future efforts that integrate 

experimental and predictive modelling 

efforts remain an important priority. 

Few studies have addressed physiological or 

genetic adaptation to chemical exposure, or 

how these adaptations to a chemical stressor 

may influence population persistence or make 

individuals vulnerable to other factors 

In the last 30 years, research has worked to 

address our understanding of the 

physiological and evolutionary effects of 

contaminants as well as costs of responding to 

contaminants (See Physiological effects and 

Evolutionary effects). However, we are still 

missing critical information to allow us to 

assess how these adaptations may influence 

population persistence or their relative 

contribution of mitigating contaminant-

induced declines. 

We do not understand how contaminants may 

influence populations through time at multi-

generational scales. 

In the last 30 years, some efforts have been 

made to address multi-generational effects of 

contaminants though this remains a research 

gap and this update includes two sections 

that address this point (See Carryover 

effects and Evolutionary effects). 

Examining the interactive effects of 

contaminants, disease, pathogens, global 

change, and habitat alteration will be 

In the last 30 years, addressing interactive 

effects of contaminants appears to have been a 

research priority, but this remains a central 
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instrumental to planning mitigation measures 

to thwart declines. 

gap and major focus of this update (see 

Interactive effects section). 

Although much has been learned in recent 

years about the effects of a few contaminants 

(e.g., pesticides, coal combustion wastes), 

little is known about the effects of most other 

common pollutants on amphibians. 

While we have made progress in expanding 

our understanding to more emerging 

contaminants (e.g., road salts, PFAS, 

microplastics, light pollution etc.), there are 

many other contaminants that are not well 

studied. Understanding the impacts of 

chemical classes is a way to predict the 

effects of new chemicals that enter the 

market and is important baseline 

information that is needed. There is a need 

to consider not only the direct effects of 

these various contaminants but also their 

indirect effects. 

Experimental contaminant research has 

focused almost solely on the aquatic life stage 

for amphibians 

This remains a significant weakness in our 

understanding of how contaminants influence 

amphibians. While aquatic exposure remains 

the most likely site of exposure for 

amphibians with complex life cycles, there are 

exposure risks to terrestrial life stages and 

species. Research not only remains focused 

on aquatic life stages but there is 
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geographic bias that should be addressed in 

future efforts. 
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Abstract 23 

The protection and management of habitat are the most critical conservation actions needed 24 

for at least 60% of amphibians, with habitat loss accounting for population declines and 25 

extinctions at local and regional levels. Habitat loss is directly related to pollution, but it also 26 

exacerbates other major threats to amphibians, such as disease, illegal trade, and invasive 27 

species. Habitat loss also reduces the ability of amphibian species to disperse and alter their 28 

distribution within their ecophysiological tolerance ranges in order to adapt to climate 29 

change. Currently, less than 30% of amphibian species are represented in the global 30 

protected-area system. The restricted geographic distribution, high habitat-specificity, and 31 

dependence on narrow climatic envelopes of many amphibian species mean that amphibians 32 

are particularly prone to local extinctions. Of the 37 amphibian species reported as extinct, 33 

48.6% were distributed in South and Southeast Asia, and 21% in Mesoamerica. These species 34 

mainly inhabited inland wetlands and forests around the world. Considerable research into 35 

understanding the effects of habitat loss on amphibians has been undertaken over the past 15 36 

years, including a review on the effectiveness of amphibian-targeted conservation 37 

interventions. 38 

 39 

Habitat protection and management priorities must include the urgent preservation of 40 

remnant native forest habitats, given that over 85% of amphibian species occur in these 41 

systems. Conservation actions must also include the protection and rehabilitation of other 42 

aquatic and terrestrial breeding habitats critical for supporting viable amphibian populations. 43 

The creation of new habitats, including in urban and agricultural landscapes, must not be 44 

excluded from the toolkit of key interventions needed to avoid declines of more generalist 45 

species. Beyond implementing direct habitat protection mechanisms, it is essential to ensure 46 

targeted management of newly created protected areas and improve that of existing protected 47 
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areas, inclusive of amphibians. For these actions to be sustainable, it is critical to facilitate the 48 

participation, communication, and involvement of a broad range of stakeholders, including 49 

government entities, productive-extractive sectors, NGOs, academia, local communities, and 50 

civil society.  51 

 52 

Introduction 53 

Through their 350-million-year presence on Earth amphibians have come to inhabit all 54 

continents, and have adapted to thrive in a vast array of habitats. From montane grasslands to 55 

coastal wetlands, tropical forests, and savannahs, amphibians make up a large proportion of 56 

the biomass in most temperate and tropical ecosystems (Burton & Likens, 1975; Duellman, 57 

1999, see also Chapter 1) and provide important ecosystem services (Hocking, Babbitt, & 58 

Hocking, 2014; Valencia-Aguilar, Cortés-Gómez, & Ruiz-Agudelo, 2013). Only 5% of the 59 

earth’s surface remains unmodified by anthropogenic transformations (Kennedy, Oakleaf, 60 

Theobald, Baruch-Mordo, & Kiesecker, 2019); with natural ecosystems currently under 61 

severe pressure from human presence and activity, amphibians are the animal Class most 62 

negatively impacted by the current extinction crisis (Catenazzi, 2015; Houlahan, Findlay, 63 

Schmidt, Meyer, & Kuzmin, 2000; IUCN, 2021; Kiesecker, Blaustein, & Belden, 2001), 64 

experiencing extinction rates as much as 200 times that of the background rate (Roelants et 65 

al., 2007). Habitat loss is the primary driver of amphibian declines (Green, Lannoo, 66 

Lesbarrères, & Muths, 2020; Nori et al., 2015; Stuart et al., 2004). Loss, transformation, 67 

modification and degradation of habitat affect the highest proportion of assessed amphibians, 68 

followed by the threat of invasive species and disease (IUCN, 2021; see also Chapters 1 and 69 

4). The world’s forests harbour 85% of amphibian diversity (IUCN, 2021); yet half of these 70 

habitats have been lost (Crowther et al., 2015). At an even larger scale, half of the world’s 71 

habitable land has been converted for agricultural use (Ritchie & Roser, 2019) and freshwater 72 



 

255 

 

systems are particularly impacted (WWF, 2020). Only a third of the world’s longest rivers 73 

remain free-flowing (Grill et al., 2019), with those that are dammed flooding important 74 

amphibian habitat (Dare, Murray, Courcelles, Malt, & Palen, 2020; Dayrell, Magnusson, 75 

Bobrowiec, & Lima, 2021; Jenkins, Van Houtan, Pimm, & Sexton, 2015). Alarmingly, 87% 76 

of all wetlands have been lost globally since 1700 (Ramsar Convention on Wetlands, 2018), 77 

with the rate of wetland destruction is three times faster than that of rainforests (Pearce & 78 

Madgwick, 2020). In addition to habitat destruction, degradation of remaining wetlands 79 

involves stressors such as pollution, loss of connectivity, biological invasions and emerging 80 

diseases (Buck, Scheessele, Relyea, & Blaustein, 2012; Lehtinen, Galatowitsch, & Tester, 81 

1999). 82 

 83 

Underpinning this loss of habitat is unsustainable human population growth, resource use, 84 

and consumption (Foley et al., 2005). To address this, conservation efforts must include 85 

addressing societal needs across local, regional, national and global scales. Conserving 86 

habitats critical to amphibians must bridge the spheres of policy, human wellbeing, 87 

governance, and education (Tarrant, Kruger, & du Preez, 2016; Vergara-Ríos et al., 2021). 88 

Perhaps more than ever, there is a growing awareness of environmental issues and 89 

willingness by the public to demand governments and corporations to drive necessary 90 

changes (Li, Hou, Cao, Ding, & Yuan, 2022; Pawaskar, Raut, & Gardas, 2018; Varumo et al., 91 

2020). Without fundamental changes, further biodiversity loss will be inevitable and 92 

environmental sustainability undermined (Mace et al., 2018). The amphibian conservation 93 

community must play an active role in driving behaviour change at all levels to reduce, halt 94 

and ultimately reverse amphibian species loss. 95 

 96 
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The ASG Habitat Protection & Management Working Group was established to consolidate 97 

the habitat-related themes covered in the 2007 ACAP, namely the ‘Key Biodiversity Areas’ 98 

and ‘Freshwater Resources and Terrestrial Landscapes’ chapters. In this iteration of the 99 

ACAP, we provide a synopsis of knowledge, achievements, and challenges to addressing the 100 

threat of habitat loss over the last 15 years and identify a clear set of priority targets and 101 

actions towards realising these targets in the next ten years. 102 

 103 

Status update 104 

Drivers of land-use change: Habitat loss and fragmentation 105 

The growth of the human population in the past two hundred years has led to an 106 

unprecedented increase in the demand for natural resources (Ellis, 2015). To meet the food, 107 

fibre, water, energy, and shelter needs of almost 8 billion people - as of 2020 (Kaneda, 108 

Greenbaum, & Kline, 2020) - natural ecosystems have been transformed into farmlands, 109 

pastures, plantations, urban areas, and infrastructure networks (Foley et al., 2005; Sutherland 110 

et al., 2021) (Figure 5.1). Habitat conversion for food production is a major driver of 111 

biodiversity loss (Newbold et al., 2016; Tscharntke, Klein, Kruess, Steffan-Dewenter, & 112 

Thies, 2005) and climate change (Godfray et al., 2018; Poore & Nemecek, 2018), reducing 113 

species richness in amphibian communities (Dudley & Alexander, 2017; Gardner, Barlow, & 114 

Peres, 2007) and decreasing the spatial and temporal distribution of species (Collins & 115 

Fahrig, 2017; Oliveira, Silva, Bastos, & Morais, 2015). On the other hand, urbanization 116 

reduces the number of amphibian species that can survive and disperse in urban and suburban 117 

landscapes due to the alteration of key processes related to habitat availability and quality 118 

(Hamer & McDonnell, 2008). While multiple drivers modify natural systems including 119 

urbanisation, energy production, and mining, we focus here on food production as the 120 

primary driver. Specifically, livestock production is the largest anthropogenic land-use type, 121 
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accounting for 75% of agricultural land (Machovina, Feeley, & Ripple, 2015; Steinfeld et al., 122 

2006). Meat production is directly responsible for 89% of rainforest conversion in South 123 

America (De Sy et al., 2015) and impacts freshwater availability and quality (Albert et al., 124 

2020; Aritola, Walworth, Musil, & Crimmins, 2019). By 2050, agriculture is estimated to 125 

occupy one billion hectares of land (roughly the size of China), and will be coupled with 126 

increased use of fertilisers and pesticides (Tilman et al., 2001). The agricultural expansion 127 

will continue to transform biodiverse ecosystems in South America and sub-Saharan Africa, 128 

where large tracts of land still have unexploited agricultural potential (Laurance, Sayer, & 129 

Cassman, 2014). Although some agricultural practices such as rice paddies generate 130 

wetlands, they do not provide high quality habitat for all amphibians in the region (Borzée, 131 

Heo, & Jang, 2018; Fujioka & Lane, 1997; Holzer, Bayers, Nguyen, & Lawler, 2017; Naito, 132 

Sakai, Natuhara, Morimoto, & Shibata, 2013). Additionally, climate change may affect 133 

regional seasonality and increase extreme weather events (Cochrane & Barber, 2009), which 134 

in turn could affect land occupation, use, and intensity patterns (Laurance et al., 2014) 135 

(Figure 5.1, also see Chapter 3). 136 
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 137 

Figure 5.1. Causes and consequences of the anthropogenic transformation of the landscape. 138 

The causes are shown in blue; the main drivers of change are shown in orange; the 139 

consequences at landscape scale are shown in yellow; the ecological consequences for 140 

biodiversity are shown in pink. 141 

 142 

A collateral driver of landscape transformation is the associated expansion of linear 143 

infrastructure, including road networks into previously inaccessible areas (Gallice, Larrea-144 

Gallegos, & Vázquez-Rowe, 2019). Globally, the road network is expected to continue to 145 

expand, especially in megadiverse countries in Latin America and Africa (van der Ree, 146 

Jaeger, van der Grift, & Clevenger, 2011). Roads often decrease landscape connectivity 147 

(D’Amico, Périquet, Román, & Revilla, 2016) and increase animal-vehicle collisions with 148 

severe ecological, social, and economic consequences (Oddone Aquino & Nkomo, 2021). 149 
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Road infrastructure has both a direct impact on amphibians, and indirect impacts on 150 

biological processes (Andrews, Gibbons, Jochimsen, & Mitchell, 2008). Examples include 151 

habitat loss and increase in habitat damage and fragmentation, increase in edge effects, 152 

limited circulation of individuals, increasing genetic isolation of populations residing on each 153 

side of the road, higher mortality rate and consequent numerical impoverishment of the 154 

populations living on the side of the road, and increased human access to natural habitats (see 155 

Schmidt & Zumbach, 2008). Many amphibian species rely on different habitats for foraging, 156 

refuge, and reproduction, making landscape connectivity critical to the processes of dispersal 157 

and migration that maintain genetic and species diversity (Gilbert-Norton, Wilson, Stevens, 158 

& Beard, 2010; Resasco, 2019). 159 

 160 

Another insidious form of habitat degradation that is often exacerbated by transportation 161 

networks is the introduction, intentional or accidental, of invasive alien species (Bucciarelli, 162 

Blaustein, Garcia, & Kats, 2014; Kats & Ferrer, 2003; Nunes et al., 2019). Introduction of 163 

invasive alien species to a habitat can threaten native amphibians through direct effects such 164 

as predation (Bosch, Rincón, Boyero, & Martínez-Solano, 2006; Ficetola et al., 2011; Maerz, 165 

Blossey, & Nuzzo, 2005; Martín-Torrijos et al., 2016; Vannini et al., 2018) and indirect 166 

effects such as altered water quality (Cotten, Kwiatkowski, Saenz, & Collyer, 2012; Maerz, 167 

Brown, Chapin, & Blossey, 2005; Pinero-Rodríguez, Fernández-Zamudio, Arribas, Gomez-168 

Mestre, & Díaz-Paniagua, 2021), water availability (Cordero-Rivera, Velo-Antón, & Galán, 169 

2007), and fire dynamics (Measey, 2011; van Wilgen, 2009). Likewise, some invasive and 170 

highly traded species such as the bullfrog Lithobates catesbeianus are vectors of emerging 171 

diseases such as ranavirus and chytrid fungus (Schloegel et al., 2009). Managing habitats and 172 

the invasion pathways that lead to them helps control existing invasions and minimise the risk 173 

of new invasions, and are thus essential for safeguarding amphibian populations (Falaschi, 174 
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Melotto, Manenti, & Ficetola, 2020). Furthermore, it is critical to maintain continuity of 175 

invasive alien species control operations, particularly steady and reliable funding, to achieve 176 

success (Davies et al., 2020). 177 

 178 

Effects of landscape transformation on amphibians 179 

Landscape transformation resulting from habitat loss and fragmentation has led, directly and 180 

indirectly, to the decline of amphibian populations globally (Cushman, 2006; Gardner, 181 

Ribeiro-Júnior, et al., 2007; Hamer & McDonnell, 2008; Sutherland et al., 2021;Urbina-182 

Cardona, 2008). The loss of natural areas limits habitat for species not able to adapt to 183 

anthropogenic landscapes (Ribeiro, Colli, & Soares, 2019) and leads to the homogenisation 184 

of biotic communities (Echeverría-Londoño et al., 2016; Ernst, Linsenmair, & Rödel, 2006). 185 

Generalist species can inhabit modified environments, depending on their habitat 186 

requirements, movement capacity, and reproductive mode (Crump, 2015; Dale, Pearson, 187 

Offerman, & O’Neill, 1994; Dixo & Metzger, 2010) (Figure 5.2). However, for many 188 

species, high habitat specificity and endemicity preclude them from surviving in altered 189 

habitats (Roach, Urbina-Cardona, & Lacher, 2020; Santos-Barrera & Urbina-Cardona, 2011). 190 

Most amphibian species occupy forest habitats (~85%), followed by wetlands (~ 66%), 191 

artificial terrestrial environments (~26%), grasslands (~17%), and to a lesser extent other 192 

habitat types (IUCN, 2021; numbers do not add up to 100% because a species may occupy 193 

more than one habitat) (Figure 5.3). 194 
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 195 

Figure 5.2. Effects of habitat transformation on amphibian species. Changes at the landscape 196 

level are shown in orange; aspects intrinsic to species are shown in green, and specific 197 

functional traits of amphibians are shown in red. 198 
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 199 

Figure 5.3. The top six habitat types for amphibians as reported on The IUCN Red List of 200 

Threatened Species (IUCN, 2021). The habitats are arranged according to the number of 201 

amphibian species occupying the habitat. The “Other” category in this figure includes marine 202 

intertidal, coastal, neritic, and supratidal, as well as introduced vegetation, savanna, desert, 203 

rocky areas, caves, and subterranean habitats. The percentage of threatened species that 204 

occupies each habitat is reported at the front of the bar; it should be noted that the total 205 

percentage does not correspond to 100% as a species may occupy more than one habitat. 206 

 207 

Generalist species tend to have a wide geographic distribution in which they occur in a wide 208 

diversity of habitats with high abundance (Rabinowitz, Cairns, & Dillon, 1986). Many 209 

generalist species can adapt to modified habitats, so habitat management actions must address 210 

the creation and enhancement of such environments. Such actions can also encourage public 211 

involvement, for example, the creation of ponds, ditches, and rice fields (Hartel, Scheele, 212 

Rozylowicz, Horcea-Milcu, & Cogălniceanu, 2020; Magnus & Rannap, 2019; Mendenhall et 213 

al., 2014). This has the added advantage of giving people access to nature, instilling empathy 214 

and an appreciation of conservation efforts that can be leveraged to promote more effective 215 

policy (Balázsi, Riechers, Hartel, Leventon, & Fischer, 2019; Oscarson & Calhoun, 2007). In 216 
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contrast, rare amphibian species tend to present a higher degree of threat given their high 217 

level of habitat specificity (Toledo, Becker, Haddad, & Zamudio, 2014). Creation and 218 

rehabilitation of habitats for specialist or threatened species is also being increasingly 219 

explored and being found to be effective (Fog, 1997; Ruhí et al., 2012; Valdez et al., 2019). 220 

 221 

Forests contain diverse microhabitats that are used for shelter, foraging, and reproduction 222 

(Bowen, McAlpine, House, & Smith, 2007; Rios-López & Aide, 2007; Wells, 2007), making 223 

them home to more species of amphibians than any other habitat. Most rare species are 224 

particularly abundant in forest interiors (Schneider-Maunoury et al., 2016), where 225 

heterogeneous environments have greater stability in temperature and relative humidity 226 

(Brüning et al., 2018; Soto-Sandoval, Suazo-Ortuño, Urbina-Cardona, Marroquín-Páramo, & 227 

Alvarado-Díaz, 2017). Management and protection of primary forest cores are thus a priority 228 

for amphibian conservation (Pfeifer et al., 2017). Environmental changes affect the 229 

physiological and biological processes of amphibians, so their occurrence depends on factors 230 

such as temperature and humidity (McDiarmid & Altig, 1999). Life-history traits and habitat 231 

preferences can predict a species’ ability to tolerate environmental change (Álvarez-232 

Grzybowska, Urbina-Cardona, Córdova-Tapia, & García, 2020; Cortés-Gómez, Ramirez, & 233 

Urbina-Cardona, 2015) (Figure 5.2). For example, small-bodied species often avoid forest 234 

edges and the anthropogenic matrix where increased wind, light, heat (Pfeifer et al., 2017; 235 

Watling & Braga, 2015), and reduced canopy cover, leaf-litter and refugia (Demaynadier & 236 

Hunter, 1998) cause individuals to rapidly dehydrate (Figure 5.2). In contrast, large-bodied 237 

species with high dispersal capacity and aquatic larvae tend to inhabit pastures and food 238 

production systems (de Melo, Gonçalves-Souza, Garey, & de Cerqueira, 2017; Haddad et al., 239 

2015; Mendenhall et al., 2014; Pineda, Moreno, Escobar, & Halffter, 2005; Queiroz, da Silva, 240 

& Rossa-Feres, 2015; Trimble & van Aarde, 2014; Vasconcelos, Santos, Rossa-Feres, & 241 
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Haddad, 2009). However, temporary water bodies created in pastures by anthropogenic 242 

activities (e.g. cattle or tractor tracks) harbour less than 15% of larval anuran species than 243 

natural temporary ponds (Camacho-Rozo & Urbina-Cardona, 2021). 244 

 245 

Edge effects and habitat degradation 246 

The effects of habitat loss and fragmentation often worsen due to edge effects (Fahrig et al., 247 

2019; Fletcher et al., 2018). The edge effect is defined as the interaction that occurs between 248 

adjacent natural and anthropogenic vegetation covers creating an ecotone (Murcia, 1995). 249 

Globally, 70% of forest is less than 1km from an edge, so understanding edge effects is 250 

crucial for assessing the impact on biotic communities after deforestation (Alignier & 251 

Deconchat, 2011; Broadbent et al., 2008; Haddad et al., 2015). The diversity and structure of 252 

amphibian assemblages inhabiting forest fragments may be influenced by distance to 253 

disturbed areas (Pearman, 1997; Suazo-Ortuño, Alvarado-Díaz, & Martínez-Ramos, 2008). In 254 

the Neotropics, most amphibian species are sensitive to edge effects, even at distances of 255 

400m, due to their responses to microclimatic changes in temperature, wind, and relative 256 

humidity (Schneider-Maunoury et al., 2016). Species most vulnerable to habitat loss and 257 

fragmentation are those inhabiting forest cores since they depend on high-quality habitat, and 258 

mostly avoid edges and the anthropogenic matrix (Lehtinen, Ramanamanjato, & 259 

Raveloarison, 2003; Urbina-Cardona, Olivares-Pérez, & Reynoso, 2006). Consequently, 260 

species adapted to mature forest interiors may disappear from small and irregularly shaped 261 

remaining patches in the absence of suitable breeding sites (Cabrera-Guzmán & Reynoso, 262 

2012; Riemann, Ndriantsoa, Raminosoa, Rödel, & Glos, 2015; Tocher, Gascon, & 263 

Zimmerman, 1997) or structural connectivity (Gillespie et al., 2015). In West Africa, 264 

degradation on vegetation structure had a stronger deleterious effect on forest amphibian 265 

species richness than habitat fragmentation (Hillers, Veith, & Rödel, 2008). Likewise, it is 266 
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important to consider that in highly fragmented landscapes, each forest patch may have a 267 

unique biotic community, so the loss of a single small fragment could lead to a regional loss 268 

of species (Fahrig, 2017; Fletcher et al., 2018). Linear remnants of native vegetation also 269 

constitute dispersal corridors for some amphibian species (De Lima & Gascon, 1999; Hansen, 270 

Scheele, Driscoll, & Lindenmayer, 2019). 271 

 272 

Matrix effects and substitutable resources at a landscape level 273 

In transformed landscapes, the dynamics between natural patches and other landscape 274 

elements are highly influenced by the anthropogenic matrix (Dixo & Metzger, 2010; Ferrante 275 

et al., 2017; Van Buskirk, 2012; Watling, Nowakowski, Donnelly, & Orrock, 2011). Matrix 276 

effects on population abundance and survival are associated with resource availability, the 277 

abiotic environment and the dispersal capacity of the study species (Driscoll, Banks, Barton, 278 

Lindenmayer, & Smith, 2013). In areas with intense agricultural practices (monocultures, 279 

burning, slashing, and logging, low temporal rotation, high use of pesticides-herbicides and 280 

soil mismanagement; Ellis, 2015; Kremen, Williams, & Thorp, 2002), amphibian 281 

assemblages show low species richness and high abundance of generalist species (Cáceres-282 

Andrade & Urbina-Cardona, 2009; Gascon et al., 1999; Vasconcelos et al., 2009). In contrast, 283 

small-scale rural and family agricultural practices, with agro-ecological, multifunctional, or 284 

sustainable approaches, promote greater permeability of the matrix (Brüning et al., 2018). 285 

Permeable landscapes reduce the negative consequences of fragmentation (Foley et al., 2005; 286 

Oteros-Rozas, Ruiz-Almeida, Aguado, González, & Rivera-Ferre, 2019; Perfecto & 287 

Vandermeer, 2010) and facilitate the dispersal of amphibian species (Kehoe et al., 2015; 288 

Perfecto & Vandermeer, 2008, 2010), although this depends on the landscape elements that 289 

are used by species (Tarrant & Armstrong, 2013; Van Buskirk, 2012). Likewise, land cover 290 

type, structural complexity and the size of the matrix surrounding remaining natural patches 291 
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play an important role in retaining connectivity and species richness (Cline & Hunter, 2016; 292 

Phillips, Halley, Urbina-Cardona, & Purvis, 2018; Watling et al., 2011). 293 

 294 

In some tropical ecosystems, matrix effects may impact amphibians more than edge effects 295 

(De Lima & Gascon, 1999; Isaacs Cubides & Urbina Cardona, 2011; Mendenhall et al., 296 

2014). For example, an intensively managed matrix with sparse, homogeneous vegetation 297 

such as a cornfield may increase edge effects on amphibian populations up to 150m into the 298 

forest (Santos-Barrera & Urbina-Cardona, 2011). In contrast, crops with a complex structure 299 

that maintain elements of the original native vegetation (e.g., shaded coffee or cocoa 300 

plantations) can buffer edge effects in native habitat by increasing amphibian species richness 301 

in the ecotone (Mendenhall et al., 2014; Rice & Greenberg, 2000; Roach et al., 2020; Santos-302 

Barrera & Urbina-Cardona, 2011). These kinds of agroforestry systems could harbour an 303 

important percentage of amphibian species in montane cloud forests and tropical rainforests 304 

(Murrieta-Galindo, González-Romero, López-Barrera, & Parra-Olea, 2013; Murrieta-305 

Galindo, López-Barrera, González-Romero, & Parra-Olea, 2013; Pineda & Halffter, 2004). 306 

Due to its use for biofuel, oil palm monocultures (of exotic invasive species Elaeis 307 

guineensis) have increased globally (Danielsen et al., 2009), reducing the richness of 308 

amphibian assemblages when compared to surrounding native forests (Faruk, Belabut, 309 

Ahmad, Knell, & Garner, 2013; Gallmetzer & Schulze, 2015; Gilroy et al., 2015; Konopik, 310 

Steffan-Dewenter, & Grafe, 2015; Scriven, Gillespie, Laimun, & Goossens, 2018). We 311 

recommend that the effects of forest edges and anthropogenic matrices be incorporated into 312 

systematic conservation planning protocols to identify corridors that may allow animal 313 

movement in response to global change (Baldwin, Calhoun, & deMaynadier, 2006; Muths et 314 

al., 2017; Nori et al., 2015; Pence, 2017). 315 

 316 
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In the larval or juvenile stage, amphibians are more vulnerable to dehydration, predation, and 317 

the effect of contaminants (Crump, 2015; also see Chapter 4). Anthropogenic systems thus 318 

affect the quality and quantity of habitat found at the edges of remaining fragments (Didham, 319 

Kapos, & Ewers, 2012; Harper et al., 2005; Murcia, 1995; Saunders, Hobbs, & Margules, 320 

1991). It is important to consider that species use different habitats that allow them to 321 

maintain populations over time, and habitats within the matrix could be relevant to different 322 

life stages and activities of species (Pope, Fahrig, & Merriam, 2000; Van Buskirk, 2012). For 323 

example, some native forest-dwelling amphibian species may pass through anthropogenic 324 

matrices or use them for reproduction (Gascon et al., 1999). Neckel-Oliveira & Gascon 325 

(2006) found that the Tarsier tree frog (Phyllomedusa tarsius) was more abundant in the 326 

anthropogenic matrix due to the presence of large and permanent ponds, but also reported 327 

low reproductive success and survival of eggs and embryos due to predation and desiccation. 328 

In contrast, Van Dyke et al. (2017) found that amphibian species richness was positively 329 

linked to clustered pools in forests compared to isolated ones. Thorough knowledge of the 330 

life history, behaviour, and dispersal of target amphibian species is key to ecological 331 

restoration and species reintroductions (Tarrant & Armstrong, 2013; also see Chapter 14). 332 

 333 

Heterogeneity in vegetation structure has a strong impact on amphibian assemblages (Cortés-334 

Gómez, Castro-Herrera, & Urbina-Cardona, 2013; Gardner, Ribeiro-Júnior, et al., 2007) 335 

across spatial scales from microhabitats to landscape level (Duarte-Ballesteros, Urbina-336 

Cardona, & Saboyá-Acosta, 2021). For instance, matrices with high structural complexity can 337 

reduce temperature extremes (Scheffers, Edwards, Diesmos, Williams, & Evans, 2014) and 338 

buffer edge effects on forest fragments (e.g., coffee plantations; Santos-Barrera & Urbina-339 

Cardona, 2011). In heterogeneous agricultural landscapes, vegetation buffers environmental 340 

extremes by reducing exposure of amphibians to unfavourable conditions such as dehydration 341 
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and elevated temperatures (Farallo & Miles, 2016; Watling & Braga, 2015; Whitfield & 342 

Pierce, 2005). The rate of temperature increase may be 60% lower in microhabitats located in 343 

forested areas compared to more exposed microhabitats (Scheffers et al., 2013, 2014). It is 344 

therefore important to maintain heterogeneity in vegetation cover and aquatic resources 345 

within the matrix, and to promote environmentally friendly management practices (e.g., low 346 

use of agrochemicals, fire management, maintenance of hedgerows and native vegetation, 347 

control of invasive species, and maintenance of leaf litter on the ground) (Arroyo-Rodríguez 348 

et al., 2020; Melo, Arroyo-Rodríguez, Fahrig, Martínez-Ramos, & Tabarelli, 2013; Urbina-349 

Cardona, Bernal, Giraldo-Echeverry, & Echeverry-Alcendra, 2015; Zabala-Forero & Urbina-350 

Cardona, 2021). 351 

 352 

Colonisation and persistence of amphibian diversity in secondary forest 353 

Secondary forests are forests regenerating largely through natural processes after significant 354 

human and/or natural disturbance of the original forest vegetation (floristic composition and 355 

structure have been modified) at a single point in time or over an extended period (Brown & 356 

Lugo, 1990; Chokkalingam & De Jong, 2001). Anthropic secondary forests can be classified 357 

based on the original type of disturbance: i) abandoned open areas with intense agricultural 358 

practices (monocultures); ii) burned forests; iii) abandoned selective logging sites; and iv) 359 

agroforestry. Those forests have become a frequent or even dominant vegetation type in 360 

human-modified landscapes (Arroyo-Rodríguez et al., 2017) and there is a continuous 361 

increase in this type of forest, mainly in tropical regions (Hansen et al., 2019). Despite 362 

increasing agricultural intensification globally, about 1.47 million km2 of agricultural systems 363 

have been abandoned due to loss of soil productivity or socioeconomic and political factors 364 

(Bowen et al., 2007; Guariguata & Ostertag, 2001). Secondary forests are important 365 

biodiversity repositories and may provide complementary and supplementary resources to 366 
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fauna (Arroyo-Rodríguez et al. 2017), and the abandonment and recovery through time of 367 

biodiversity can allow other species to colonise these forests (Laurance et al., 2011). 368 

 369 

Secondary succession pathways depend on multiple factors and processes at different scales, 370 

driving direct or indirect changes at different levels: 371 

● On previous land use and landscape composition (e.g., type, duration, 372 

intensity, and frequency of disturbance regime; Chazdon, 2003; Thompson & 373 

Donnelly, 2018; Walker, Wardle, Bardgett, & Clarkson, 2010). 374 

● Landscape configuration (e.g., proximity to remaining forest patches 375 

and anthropogenic matrix structure; Brüning et al., 2018; Laurance et al., 376 

2002; Tscharntke et al., 2012) and composition (Tscharntke et al., 2012). 377 

● Patch characteristics (e.g. soil properties, size, shape, isolation, and 378 

microclimate; Chazdon, 2003; Guariguata & Ostertag, 2001). 379 

 380 

With increasing time since agricultural abandonment and structural complexity of vegetation, 381 

some amphibian assemblages can increase their richness and number of individuals 382 

(Acevedo-Charry & Aide, 2019; Thompson & Donnelly, 2018). There is mainly an increase 383 

in the abundance of generalist forest species, given the colonisation of species from the 384 

matrix (Bowen et al., 2007). However, changes in the structure and composition of 385 

assemblages in secondary forests are dynamic given the increase in abundance of generalist 386 

forest species, colonisation of species from the matrix, and the possible arrival of specialists 387 

from the mature forest (Acevedo-Charry & Aide, 2019; Bowen et al., 2007). Vegetation 388 

succession interacts with species traits (e.g., tolerance to extremes in temperature and relative 389 

humidity, diet specialisation, preference for oviposition sites and breeding seasons; 390 

Gottsberger & Gruber, 2004; Suazo-Ortuño et al., 2018; Thompson & Donnelly, 2018) and 391 
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natural disturbance regimes (e.g., hurricanes: Marroquín-Páramo, Suazo-Ortuño, Urbina-392 

Cardona, & Benítez-Malvido, 2021; fires: Dunn, 2004; Mora et al., 2015), making the 393 

recovery process complex at the landscape, community, and population levels (Russildi, 394 

Arroyo-Rodríguez, Hernández-Ordóñez, Pineda, & Reynoso, 2016; Walker et al., 2010). For 395 

example, a study found that the increase in frequency and intensity of hurricanes created a 396 

homogenisation of amphibian assemblages inhabiting tropical dry mature forests, but 397 

amphibian assemblages inhabiting pastures were highly resilient to change (Marroquín-398 

Páramo et al., 2021). 399 

 400 

There is a trend towards increasing functional diversity (Ernst et al., 2006; Hernández-401 

Ordóñez et al., 2019) and amphibian species richness in mature forests (Basham et al., 2016; 402 

Pawar, Rawat, & Choudhury, 2004) in late-successional stages (Herrera-Montes & Brokaw, 403 

2010; Hilje & Aide, 2012) and in the interior of native forest fragments (Zabala-Forero & 404 

Urbina-Cardona, 2021). This is because small changes in plant structure, the number of 405 

available microhabitats, and the presence of water bodies generate drastic changes in species 406 

composition in forests with different successional stages (Cortés-Gómez et al., 2013; 407 

Hernández-Ordóñez, Urbina-Cardona, & Martínez-Ramos, 2015; Magnus & Rannap, 2019; 408 

Urbina-Cardona & Londoño-M, 2003). Once food-production systems were abandoned and 409 

rainforest regeneration began, amphibian species richness was the first parameter to recover 410 

(after 23 years), followed by species density (28 years for amphibians; Hernández-Ordóñez et 411 

al., 2015). In contrast, other parameters such as species composition are estimated to take 412 

between 80 and 150 years to recover (Bowen et al., 2007; Thompson & Donnelly, 2018). 413 

Management of secondary forests is thus crucial for biodiversity conservation because of 414 

their role in maintaining connectivity between older forest patches, facilitating dispersal of 415 

species with low matrix tolerance, as well as the mitigation of edge effects in remaining 416 
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forest fragments (Goldspiel, Cohen, McGee, & Gibbs, 2019; Suazo-Ortuño et al., 2015; 417 

Thompson & Donnelly, 2018). 418 

 419 

Amphibian representation in the protected area system 420 

The IUCN defines protected areas (PAs) as “a clearly defined geographical space, 421 

recognised, dedicated and managed, through legal or other effective means, to achieve the 422 

long-term conservation of nature with associated ecosystem services and cultural values”. 423 

PAs are a fundamental cornerstone in the conservation of biodiversity, including amphibians 424 

(Le Saout et al., 2013; Venter et al., 2014). The Convention on Biological Diversity (CBD) 425 

Strategic Plan for Biodiversity 2011-2020 included the Aichi Biodiversity Targets and set 426 

five strategic goals and 20 targets to be achieved by 2020. As of October 2020, however, 427 

many of these had not been met (Convention on Biological Diversity, 2020). Strategic Goal C 428 

focused on improving the status of biodiversity by safeguarding ecosystems, species, and 429 

genetic diversity under Target 11, which sought to protect at least 17% of terrestrial and 430 

freshwater, and 10% of marine environments by 2020. Maintaining and improving habitats 431 

for amphibians and broader biodiversity addresses Goal 15 (Life on Land) of the United 432 

Nations Sustainable Development Goals (SDGs). By 2015, it was clear that while existing 433 

terrestrial PA proportions were relatively close to the proposed targets (14.6% of terrestrial 434 

and 2.8% of marine environments), >59% of ecoregions, >77% of important sites for 435 

biodiversity, and 57% of 25,380 species were not well represented in the PA network 436 

(Butchart et al., 2015). Within the existing PA system, 137 sites represent high 437 

irreplaceability for the conservation of amphibians, birds, and mammals, with the potential to 438 

conserve 385 amphibian species of which 179 species are threatened (Le Saout et al., 2013). 439 

Recently, Button and Borzée (2021) identified the geographic priorities for amphibian habitat 440 

protection globally. 441 
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 442 

The global PA network is fragile because many PAs do not guarantee the persistence of 443 

representative species and ecosystem processes (Kukkala & Moilanen, 2013; Margules & 444 

Sarkar, 2007). Globally, 25% of amphibian species have distributions totally outside PAs, 445 

and 18% have less than 5% of their distribution represented in Pas (Butchart et al., 2015; Nori 446 

et al., 2015). Regionally, for example, only 32% of the range of South Africa’s threatened 447 

amphibians occurs within PAs (Skowno et al., 2019). We need to ensure that priority 448 

amphibian habitats are included within formally declared PAs as well as other types of 449 

conservation areas, and that management of these is improved with amphibians and their 450 

habitats as conservation targets (Nori et al., 2015). Historically, amphibians have often not 451 

been prioritised in conservation planning, both in establishing PAs and in the development of 452 

management plans (Rodrigues, Akçakaya, et al., 2004; Rodrigues, Andelman, et al., 2004; 453 

Urbina-Cardona & Loyola, 2008; Venter et al., 2014). For amphibians with restricted 454 

geographic distribution, it is necessary to protect all remaining habitats, as these are often 455 

irreplaceable (sensu Ochoa-Ochoa, Bezaury-Creel, Vázquez, & Flores-Villela, 2011; Ochoa-456 

Ochoa, Urbina-Cardona & Flores-Villela, 2011). For example, South Asia is rich in 457 

amphibian species richness and endemism, representing four amphibian hotspots - Eastern 458 

Himalayas, Indo-Burma, Western Ghats, and Sri Lanka - that are underrepresented in Pas 459 

(Pratihar et al., 2014). Asia and Latin America are the regions that harbour the greatest 460 

number of species worldwide without any representation in the PA system (115 gap species; 461 

Nori et al., 2015). Yet, the declaration and establishment of Important Amphibian Areas 462 

(IAAs) and related regulations are lagging (Rowley et al., 2010). 463 

 464 

However, amphibians are increasingly being recognised in PA planning (Ford et al., 2020). 465 

For example, the WWF Oasis network of Italy was specifically assessed for contributions to 466 
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amphibian conservation (Bombi et al., 2012). Various NGOs have been actively working to 467 

facilitate the creation of PAs specifically to protect amphibians (Moore, 2011; Smith, 468 

Meredith, & Sutherland, 2019; see also Table 5.1). Although private and community-469 

managed PAs are usually small in area, they play an important role in amphibian 470 

conservation. For example, in Mexico, 73% of endemic species are represented in private 471 

reserves (Ochoa-Ochoa, Urbina-Cardona, Vázquez, Flores-Villela, & Bezaury-Creel, 2009). 472 

However, achieving representation of amphibian species in a single PA is insufficient, 473 

because it can lead to small, isolated subpopulations. Rather, it is critical to ensure that 474 

species’ core distributions are within PAs (Urbina-Cardona & Loyola, 2008). Some of the 475 

regions with the greatest amphibian species richness, including the tropical Andes in Peru, 476 

Ecuador and Colombia, southern Mexico, eastern Brazil, Papua New Guinea, and Indonesia, 477 

parts of Madagascar, Cameroon, and southwest India, are also areas with the highest rates of 478 

deforestation and least representation within the PA system (Nori et al., 2015); this 479 

underscores their great importance as priority areas for conservation (Button & Borzée, 480 

2021). Thus, it is crucial to have clear spatial priorities that enable coordinated local planning 481 

of conservation area networks involving both government PAs and private initiatives (Ochoa-482 

Ochoa et al., 2009). 483 
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Table 5.1. Examples of different types of protected areas established to protect amphibian species. 484 

Site name 

Date 

established 

Target amphibian 

species 

Site size 

(ha) Country Significance Type of protection 

Jorepokhri 

Wildlife 

Sancturary 

1985 Tylototriton 

himalayanus 

4 India It has a small breeding population 

of the Himalayan newt. It is in 

danger because of the 

constructions made in the 

sanctuary. 

Strict Protection, 

West Bengal State 

Forest Department 

Natural Reserve 

“Monticchie” 

1985 Rana latastei 230 Italy One of the remaining large 

populations of this Italian 

endemic Ranidae 

Special Area of 

Conservation – 

Europe Natura2000 

site code 

IT2090001 

“Paludi di 

Arsago” Area of 

Herpetological 

1995 Pelobates fuscus 

insubricus 

543 Italy Last remaining large population 

of this very rare Italian 

Pelobatidae 

Special Area of 

Conservation – 

Europe Natura2000 
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National 

Relevance 

site code 

IT2010011 

Guayacán 

Rainforest 

Reserve 

2003 Agalychnis lemur 49 Costa Rica Reserve is home to one of two 

known metapolulations of A. 

lemur, and has more species of 

amphibians (70+) than any other 

site in Costa Rica 

(https://cramphibian.com/guayaca

n-rainforest-reserve/) 

Private Reserve 

Ranita Dorada 

Reserve 

2008 11 species 120 Colombia Formerly an AZE site, trigger 

species Andinobates 

dorisswansonae and A. tolimensis 

now improved in status causing 

the site to be de-listed 

Private Reserve 
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Ranita Terribilis 

Reserve 

2012 Phyllobates 

terribilis 

66.4 Colombia KBA site. In 2020 the Eperãra 

Siaapidarã people incorporated 

their K´õk´õi Eujã Natural 

Reserve into the National 

Protected Area System, expanding 

the species' protection to 11,641 

ha 

Private Reserve 

Sierra Caral 

Reserve 

2012 10 threatened 

species; 7 endemic 

species 

1901 Guatemala The new reserve stimulated the 

declaration of the Sierra Caral 

National Protected Area in 2014 

Private Reserve 

followed by 

National Protected 

Area 

Yal Unin Yul 

Witz Reserve 

2015 11 species 845 Guatemala Within the larger Cuchumatanes 

KBA/AZE 

Private Reserve 

Elandsberg 

Nature Reserve 

In progress Vandjikophrynus 

amatolicus 

4783 South Africa First PA for this Critically 

Endangered species 

Biodiversity 

Stewardship site 
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(landowner 

agreements) 

Sobonakhona 

Protected 

Environment 

Reserve 

In progress Hyperolius 

pickersgilli 

Natalobatrachus 

bonebergi 

535 South Africa First PA within a Traditional 

Authority area to be declared in 

the country with an amphibian as 

a target species 

Biodiversity 

Stewardship site 

(landowner 

agreement) 

Mount David 

Nature Reserve 

In progress Capensibufo 

selenophos 

821 South Africa Also the only remaining 

population of Erica jasminiflora 

occurs on the property 

Biodiversity 

Stewardship site 

(landowner 

agreement) 

Gingingdlovu 

Protected 

Environment 

Reserve 

In progress Hyperolius 

pickersgilli 

125 South Africa Linking coastal wetland across 

three private properties 

Biodiversity 

Stewardship site 

(landowner 

agreement) 

Hampton Nature 

Reserve 

1998 Triturus cristatus 145.8 United 

Kingdom 

Largest population of Great 

Crested Newt in Europe 

Special Area of 

Conservation - 
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Europe Natura 2000 

UK0030053; Site of 

Special Scientific 

Interest (UK); 

owned by private 

company managed 

by conservation 

NGO (Froglife). 

Hyla Park Nature 

Preserve 

1995 Hyla versicolor 8 Canada Protecting most northeasterly 

population of Hyla versicolor 

Public land leased 

by conservation 

organisation 

 485 
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Site prioritisation and management effectiveness 486 

The creation and designation of PAs does not, by itself, ensure adequate species protection. 487 

Disturbance, hunting, and forest-product exploitation threaten the integrity of reserves 488 

worldwide (Laurance et al., 2012; Pouzols et al., 2014). The effectiveness of PAs to resist 489 

anthropogenic pressures is influenced by multiple factors including a country’s socio-490 

economic and governance conditions (Barnes et al., 2016; Schleicher, Peres, Amano, 491 

Llactayo, & Leader-Williams, 2017). PAs are not just under the management jurisdiction of 492 

governments, but also local communities, private enterprises, and NGOs, as well as co-493 

management between partners (Dudley, 2008; Roach et al., 2020). Examples of differing 494 

management structures include state protection, landowner agreements that provide formal 495 

protection of important biodiverse areas in the long term (Barendse, Roux, Currie, Wilson, & 496 

Fabricius, 2016), conservation agreements with local community zoning for land and 497 

resource use (e.g., areas for timber extraction), and indigenous conservation areas (Aguilar-498 

López et al., 2020; Berkes, 2009; Ochoa-Ochoa et al., 2009). It is essential to align the 499 

objectives and goals of the PAs with the visions of the people living around them to ensure 500 

that human pressure is not increased due to cropland conversion and instead allows for 501 

increases in human development indices (Geldmann, Manica, Burgess, Coad, & Balmford, 502 

2019; Laurance et al., 2012). Community-based conservation initiatives (Meine, Soulé, & 503 

Noss, 2006) allow for the integrated management of transformed landscapes that support 504 

biodiversity conservation (Arroyo-Rodríguez et al., 2020; Garibaldi et al., 2021; Melo et al., 505 

2013; Palomo et al., 2014). Megadiverse countries often have a low socioeconomic status 506 

(i.e. those with the highest amphibian species richness are highly impacted by human 507 

activities; Nori et al., 2015). Effective habitat protection in these developing nations must 508 

therefore be supported by adequate management actions (Smith & Sutherland, 2014) and 509 

integrated with development activities that improves the socio-economic well-being of the 510 
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local communities’, who are often directly dependent on nature for their resources, in order to 511 

increase their resilience to future challenges and reduce negative environmental impacts 512 

(Adger, 2000; Bennett, Radford, & Haslem, 2006; Perfecto & Vandermeer, 2008, 2010). 513 

 514 

An understanding of critical sites for the survival of amphibian species is essential, but the 515 

functional traits and degree of endemism of species should also be considered in PA 516 

designation (Cortés-Gomez, Ruiz-Agudelo, Valencia-Aguilar, & Ladle, 2015; Loyola et al., 517 

2008; Menéndez-Guerrero, Davies, & Green, 2020; Tsianou & Kallimanis, 2016). It is 518 

essential to understand the distribution of amphibian species within each PA to inform 519 

management plans (Nori et al., 2015) and monitor not only their presence, but other aspects 520 

such as biomass, body condition, demography, trophic structure, and functional diversity 521 

(Álvarez-Grzybowska et al., 2020; Riemann, Ndriantsoa, Rödel, & Glos, 2017; Trimble & 522 

van Aarde, 2014; Urbina-Cardona et al., 2015). To fulfil these tasks, PA management 523 

requires strengthening through improving facilities, ranger training, reinforcing compliance, 524 

and supporting research. For PAs associated with low socio-economic communities, 525 

improving general land-use practices as well as including development activities to reduce 526 

the negative environmental impacts of nature-dependent local communities is critical. 527 

 528 

Given their often-limited distributions and habitat specificity, amphibian protection needs to 529 

be more species-focused and allow for the creation of smaller PAs that might otherwise be 530 

lost. Several approaches allow for this: Key Biodiversity Areas (KBAs) are sites that 531 

contribute significantly to the global persistence of biodiversity and provide a standardised 532 

approach to identifying sites of particular importance for biodiversity under Aichi Target 11 533 

and its successor(s) in the post-2020 global biodiversity framework (Smith, Bennun, et al., 534 

2019). Sites qualify as global KBAs if they meet one or more of 11 criteria in “A Global 535 
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Standard for the Identification of Key Biodiversity Areas” (IUCN, 2016), which harmonises 536 

existing approaches to the identification of important sites for biodiversity and has received 537 

considerable support from the conservation community. The Key Biodiversity Area 538 

Partnership—a coalition of 13 international conservation organisations—was formed to 539 

address the rapid loss of biodiversity by supporting the identification, monitoring, and 540 

safeguard of sites that are critical for the survival of species and ecosystems. 541 

 542 

Alliance for Zero Extinction (AZE) sites comprise the most irreplaceable subset of KBAs, 543 

holding Critically Endangered or Endangered species restricted to a single site globally. 544 

Unless AZEs are properly conserved, they are sites where species extinctions are imminent 545 

(Ricketts et al., 2005). Nearly 40% of current AZEs are triggered by amphibians (334 out of 546 

865 sites), the largest of any taxonomic group; yet, fewer than half are currently protected. By 547 

identifying and mapping AZE sites and other KBAs, information about the global importance 548 

of these areas for the survival of range-restricted amphibians can be provided to key 549 

stakeholders to make the best decisions about how to manage that land (or water), where to 550 

avoid development, and how to best protect the biodiversity for which the sites are so 551 

important. Given limited resources for conservation, this information is vital for conservation 552 

efforts centred on habitat protection to prioritise sites of global significance for threatened 553 

amphibians. 554 

 555 

If amphibian species are not considered within systematic conservation planning, the 556 

resulting network of conservation areas may not be congruent with the geographic 557 

distribution of this taxonomic group, even where "umbrella" species of groups such as 558 

mammals have been used (as demonstrated by Urbina-Cardona & Flores-Villela, 2010). Due 559 

to the high habitat specificity of some rare amphibian species, umbrella species are not a 560 
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good tool for their conservation (Branton & Richardson, 2014; Caro, Engilis, Fitzherbert, & 561 

Gardner, 2004; Roni, 2003). Likewise, amphibians have rarely been used as umbrella, 562 

flagship or keystone species to understand the consequences of landscape change 563 

(Lindenmayer & Westgate, 2020). Additionally, these spatial priorities must be re-evaluated 564 

in the context of climate change scenarios and land use to ensure the persistence of species 565 

and assemblage populations (Agudelo-Hz, Urbina-Cardona, & Armenteras-Pascual, 2019; 566 

Grant, Miller, & Muths, 2020; Urbina-Cardona, 2008). For example, in Australia 10-15% of 567 

land cover has been determined to be the target for the national reserve system; however, the 568 

representation of amphibians is highly variable and this management approach ignores 569 

species` requirements for connectivity (Lemckert, Rosauer, & Slatyer, 2009). Protecting 570 

KBAs is critical, but so is promoting connectivity between different initiatives to ensure a 571 

network of conservation areas and not just isolated points that will not allow the dispersal of 572 

species under global change scenarios (Carvalho, Brito, Crespo, & Possingham, 2010). 573 

  574 
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Box 5.1: Situation model 575 

This figure shows the Situation Model of the key issues relevant to integrating habitat 576 

protection and management for amphibians into strategic planning. The model is a visual map 577 

of the observed and presumed causal relationships in the context of habitat protection and 578 

management and the factors influencing direct and indirect threats and those affecting 579 

conservation targets. Such planning allows for identification of key points for interventions to 580 

address threats and develop well-informed strategies. It was developed using the 581 

Conservation Standards approach to guide strategic planning to address contributing factors 582 

influencing direct and indirect threats to amphibian conservation targets. 583 

 584 

<END BOX> 585 

 586 
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Actions and opportunities for habitat protection and management 587 

Actions and opportunities 588 

Conservation actions should be informed by the best available evidence. However, evidence 589 

is often scarce and dispersed, and practitioners may not always use it to guide decisions 590 

(Fabian et al., 2019; Knight et al., 2008), instead relying on experience (Cook, Hockings, & 591 

Carter, 2010) or even anecdotes and myths (Sutherland, Pullin, Dolman, & Knight, 2004). 592 

Smith, Meredith & Sutherland (2021) compiled 129 actions for amphibian conservation 593 

based upon 430 studies worldwide (https://www.conservationevidence.com/), of which 42 594 

have proven some conservation benefit, 8 demonstrate to be ineffective or harmful, 18 show a 595 

trade-off between benefit and harms, and in 61 the effectiveness is still unknown or there is 596 

no evidence found of assessed. Fifty-four actions focused on reducing the impact of 597 

anthropogenic landscape transformation, 20 focused on species management, and 35 focused 598 

on ecosystem protection and management. Three actions focused on education and 599 

awareness, while others focused on the legal protection of species, or livelihood and 600 

economic incentives such as engaging landowners and other volunteers to manage land for 601 

amphibian protection or pay farmers to cover costs of conservation measures (Smith et al., 602 

2021). Interventions that have been reported in the literature are not always comparable for 603 

various reasons: lack of standardisation in the metrics, lack of robust experimental designs 604 

such as BACI (Before-After; Control-Impact), or a bias towards better-known biomes and 605 

regions (Christie et al., 2020). 606 

 607 

This chapter presents suggestions for habitat management and research needed to maintain 608 

and improve habitat quality for amphibians. Below we highlight these recommendations (in 609 

no particular order), which will also inform a targeted implementer document: 610 

 611 
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1. Monitoring and evaluation: to determine the benefits and limitations of conservation 612 

interventions it is key to monitor and assess their impact (Darrah et al., 2019; 613 

Schmidt, Brenneisen, & Zumbach, 2020). Habitat interventions need to consider the 614 

requirements of each species (Urbina-Cardona et al., 2015), tolerance to 615 

environmental filters (Navas & Otani, 2007; Watling & Braga, 2015), historical 616 

landscape disturbance (Betts et al., 2019; Marroquín-Páramo et al., 2021), and spatial-617 

temporal scale (Tscharntke et al., 2012). 618 

2. Connectivity: amphibians benefit from matrices with remnant corridors, water sources 619 

(natural and artificial; Mendenhall et al., 2014), and reduced use of agrochemicals. 620 

Vegetated riparian areas, as well as agricultural wetlands, are key to facilitating the 621 

dispersal of amphibian species and increasing landscape connectivity (Borzée et al., 622 

2018; Ficetola, Padoa-Schioppa, & De Bernardi, 2009; Holzer et al., 2017; Luke et 623 

al., 2019; Semlitsch & Bodie, 2003). Some countries (e.g. Colombia and Costa Rica) 624 

have considered the conservation of riparian vegetation in their public policy. 625 

Connectivity, however, is not limited to riparian corridors. There are interventions to 626 

mitigate the impact of infrastructure development on amphibians and their habitats 627 

that focus on habitat connectivity, such as the installation of wildlife underpasses and 628 

culverts (Beier, Majka, Newell, & Garding, 2008), rows of stumps or branches to 629 

reduce erosion and manage sediments (Goosem et al., 2010) and through the 630 

protection and restoration of sensitive habitats (Mitchell, Breisch, & Buhlmann, 631 

2006). 632 

3. Sustainable and regenerative agricultural practices: agroecology provides the 633 

ecological basis for biodiversity conservation from agriculture, promoting, from the 634 

self-sufficiency principle, natural resource renewal, natural biological control, 635 

provision of ecosystem services, and crop rotation (Altieri & Nicholls, 2000; Melo et 636 
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al., 2013). Embracing beneficial land-use practices, such as traditional farming, sacred 637 

forest sites, and incorporating indigenous knowledge into collaborative approaches is 638 

key to strengthening conservation effectiveness (Cocks, 2006; Oscarson & Calhoun, 639 

2007). 640 

4. Stakeholder agreements: habitat protection based on collaboration between 641 

landowners and communities, while still allowing productive land use with regular 642 

monitoring, is effective in both conserving habitat and restoring degraded ecosystems 643 

(Charles, 2021; South African National Biodiversity Institute (SANBI) and Wildlands 644 

Conservation Trust, 2015). Such approaches are cost-effective and rely on landowner 645 

engagement, often resulting in landscape-level protection and improved habitat 646 

management (South African National Biodiversity Institute (SANBI), 2015). 647 

5. Voluntary biodiversity offsets: “Biodiversity offsets are measurable conservation 648 

outcomes resulting from actions designed to compensate for significant residual 649 

adverse biodiversity impacts arising from project development and persisting after 650 

appropriate avoidance, minimisation and restoration measures have been taken” (IFC, 651 

2012). Biodiversity offsets are being adopted across international lending, corporate 652 

business, national policy, and voluntary programmes (Gelcich, Vargas, Carreras, 653 

Castilla, & Donlan, 2017). The IFC determines the need for critical habitat 654 

conservation through evaluating specific habitat attributes to conserve a prioritised 655 

restricted-range species, and then demonstrating a positive net gain from a monitoring 656 

system. Recently, offsets projects are prioritising amphibian species to assess, 657 

conserve and monitor their habitat (Sangermano et al., 2015; World Bank, 2019); so 658 

there are still no robust results on the effect of conservation actions on the populations 659 

of prioritised amphibian species. There are, however, important ethical considerations 660 

(Karlsson & Edvardsson Björnberg, 2021), risks (Carreras Gamarra, Lassoie, & 661 
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Milder, 2018), limitations, and evidence gaps (Gardner et al., 2013; zu Ermgassen et 662 

al., 2019) associated with biodiversity offsets, so thought needs to be given to these 663 

aspects in any proposed offset project. 664 

6. Higher-level interventions: certain interventions to support the protection of 665 

remaining natural habitats need to be at the policy level, although many can be 666 

integrated locally. These can include safeguarding KBAs and AZEs, ending subsidies 667 

for damaging agricultural practices, reducing monoculture  expansion (e.g. soy, rice, 668 

oil palm, etc.), allocating resources to less environmentally damaging alternative land-669 

uses, halting rainforest conversion (McAlpine, Etter, Fearnside, Seabrook, & 670 

Laurance, 2009), and demand-side mitigation measures (Bajželj et al., 2014), such as 671 

promoting dietary shifts, waste reduction (Foley et al., 2011) and ecological 672 

restoration of land illegally appropriated from fires (Driscoll et al., 2021). 673 

Reproductive health and empowering women is a cross-sectoral approach that can be 674 

both national policy-level and locally scaled, led by diverse agents, and linking 675 

reproductive health, education, sustainable development, community organisation, 676 

and habitat conservation. Although still relatively few in number, cross-sectoral 677 

initiatives are key in the context of the SDGs given their aim to improve both 678 

planetary and human well-being (Mayhew et al., 2020). A first step for the amphibian 679 

conservation community towards this could be to initiate conversations with 680 

reproductive health and sustainability organisations to explore aligned opportunities 681 

and generate funding. The Population and Sustainability Network (PSN), for example, 682 

brings together development, environment and reproductive health organisations to 683 

ensure that investment in rights-based family planning programmes are a core part of 684 

development initiatives and runs projects integrating family planning and 685 

conservation action. 686 
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7. Rehabilitation of degraded habitat and creation of artificial habitat: with over 3000 687 

species, including a significant number of threatened species, benefiting from 688 

artificial habitats (Figure 5.3), the creation of habitats, such as ponds and seasonal 689 

wetlands, is an important tool for enhancing amphibian biodiversity (Ruhí et al., 690 

2012; Scott, Metts, & Whitfield Gibbons, 2008; Simon, Snodgrass, Casey, & 691 

Sparling, 2009) as well as protecting threatened species (Beranek, Clulow, & 692 

Mahoney, 2020). Such interventions need to consider characteristics such as age, 693 

vegetation cover, water quality of the created habitats (Briggs, 2010; Stumpel & van 694 

der Voet, 1998), as well as the habitat requirements for target species, ecological 695 

connectivity and ideally be implemented at the landscape level to ensure viable 696 

populations (Petranka & Holbrook, 2006; Rannap, Lõhmus, & Briggs, 2009). 697 

  698 
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Box 5.2: Theory of Change 699 

This figure shows a Theory of Change model (results chain) to illustrate how interventions 700 

linked to habitat protection and management can lead to improved status for amphibians and 701 

their habitats. This approach supports project planning and monitoring, mapping the 702 

pathways to achieving conservation goals, identification of activities and development of 703 

indicators to measure outcomes in response to interventions. This results chain was 704 

developed using the Conservation Standards approach illustrating the theory of change for 705 

habitat protection and management as a strategy for reducing threats in response to actions 706 

for achieving biodiversity targets (in this case, improved status of amphibian populations) 707 

 708 

 709 

  710 
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Box 5.3: Case study – KBAs and local human communities 711 

Key Biodiversity Areas (KBAs) are often situated near impoverished communities that 712 

depend on the natural resources from within the site for their livelihoods. The Mount Nimba 713 

Strict Nature Reserve on the borders of Guinea, Liberia, and Côte d’Ivoire offer an important 714 

case study for conservation prioritisation. Covering 17,540 ha, the site is an AZE that 715 

contains the entire known populations of Hyperolius nimbae and Nimbaphrynoides 716 

occidentalis. In addition to a wealth of other biodiversity, the Mount Nimba range contains 717 

valuable minerals and dense forests. These resources have attracted mining and logging 718 

companies but are also vital to the livelihoods of local communities. Recognising the 719 

increased pressure on Mount Nimba from unsustainable resource extraction, the Critical 720 

Ecosystem Partnership Fund funded a project “Strengthening capacity of local communities 721 

to sustainably manage Mount Nimba’s natural resources”, which was completed in 2018. 722 

Local communities around Mount Nimba received training in improved gardening and 723 

livestock farming practices, sustainable resource use, as well as project and financial 724 

management, improving their farming yields and subsequently, their income. As a result, the 725 

local communities are less reliant on Mount Nimba’s natural resources. Through community 726 

empowerment focused on sustainable conservation, this project has improved the likelihood 727 

that these forests will persist and improve into the future and support the long-term survival 728 

of these amphibians (Birdlife International, 2018; UNESCO, 2018).  729 
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Box 5.4: Case study – conservation agreements 730 

The Wildlife Conservation Society has developed conservation agreements with private 731 

landowners and ethnic communities in areas surrounding four PAs (Farallones NP, Florencia 732 

Forest NP, Chingaza NP, and Tatama NP) with a high diversity of threatened species in 733 

Colombia. Under these conservation agreements, the owner of each property or community 734 

defines the area that will be left for preservation and implementation of management actions 735 

(exclusion of livestock or crop areas, maintenance of riparian vegetation, ecological 736 

restoration, trafficking reduction, participatory greenhouses, technical advice for the 737 

implementation of silvopastoral systems, the establishment of trails for ecotourism and 738 

eradication of illicit crops; World Conservation Society, 2020). 739 

 740 

Successful agreements have been measured in habitat recovery through freeing up areas for 741 

active restoration and reducing intervention for agricultural or livestock uses. To date, 10 742 

agreements are covering 630.96 hectares in conservation agreements in three protected areas 743 

and their surroundings: Five agreements in Farallones NP (237.26 hectares and 16 threatened 744 

species), three in Selva de Florencia NP (268, 6 hectares and 13 threatened species), and two 745 

in Chingaza NP (125.1 hectares and 4 threatened species). Conservation agreements are being 746 

developed with ethnic communities for species in a critical state of threat such as Oophaga 747 

histrionica, which is being worked with Embera chami reservation, area of influence of 748 

Tatama NP. Some of the threatened species benefiting from these agreements are Oophaga 749 

histrionica, Oophaga anchicayensis, Atelopus lozanoi, and Andinobates daleswansoni. 750 

 751 

<End Box> 752 
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Identification of knowledge gaps and research 753 

To improve habitat protection and management effectiveness for amphibians and provide 754 

cost-effective interventions in the field, we draw attention to the need to fill the following 755 

knowledge gaps (in no particular order of priority): 756 

 757 

1. Based on the systematic conservation planning protocol (Margules & Sarkar, 2007), 758 

conservation area networks should be prioritised at a global level to connect different 759 

initiatives such as PAs, KBAs, and AZE, among others. These networks should be 760 

projected into the future under different scenarios of climate change and land use/land 761 

cover (LULCC). 762 

2. To refine conservation networks at the local scale, functional connectivity models for 763 

amphibian target species should be conducted at an appropriate resolution. Target 764 

species can be habitat specialists, ensuring that essential core habitats are conserved, 765 

or threatened flagship species that act as an ‘umbrella’ for protecting multiple species 766 

and important habitats.  767 

3. For these target species, physiological experiments should be carried out to 768 

understand their dehydration rates, locomotor performance curves, and critical 769 

temperatures, along different types of vegetation cover, to make inferences about their 770 

response to climate change and LULCC scenarios. 771 

4. Where interventions are carried out (e.g. ecological restoration, implementation of 772 

agrosilvopastoral systems, planting of live fences, creation of ponds, among others), 773 

monitoring should be conducted at the demographic level for the target species and at 774 

the assemblage level for the facets (taxonomic, functional and phylogenetic) of 775 

diversity. It is crucial that the results of this monitoring are compiled in a global 776 
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database to be able to compare the effectiveness and success of interventions across 777 

regions, ecosystems and biotic groups. 778 

5. Likewise, at the level of amphibian assemblages, it is necessary to know the scale of 779 

effect at which the landscape configuration operates and what is the amount of habitat 780 

required to maintain the values of the diversity facets within the ranges of a natural 781 

reference ecosystem (Watling et al., 2020). 782 

6. Partnerships with social scientists and development agencies should be strengthened 783 

to improve the social development aspects that often underlie the success of 784 

amphibian conservation interventions and to ensure a holistic, integrated approach to 785 

achieving environmental objectives. 786 

 787 
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Abstract 21 

Emerging infectious diseases are major threats to amphibian biodiversity. Significant 22 

advances in our understanding of these diseases have been made with respect to the 23 

pathogens themselves, the amphibian hosts and how they respond to and defend against 24 

pathogens, and the environment conditions that can influence the course of disease. Here, we 25 

review recent advances in our understanding of infectious diseases of amphibian related to 26 

these three components – pathogen, host, and environment -, and identify information gaps as 27 

research priorities. In particular, we highlight current diagnostic tools, we focus on ecological 28 

dimensions with relevance to development effective management strategies as well as 29 

provide a review of current proposed intervention strategies. We also discuss human 30 

dimensions of amphibian diseases with a focus on management and policy actions that can 31 

confront these threats and potentially minimise disease-driven declines at local and global 32 

scales. 33 

 34 

Introduction 35 

Pathogens and parasites including viruses, bacteria, protozoa, fungi, helminths and arthropods 36 

infect amphibians (Densmore & Green, 2007). Our knowledge of amphibian diseases and 37 

how to diagnose and treat them has improved dramatically in recent years, in part due to 38 

efforts of pathologists and veterinarians working with captive zoo collections (Wright & 39 

Whitaker, 2001), and work of molecular biologists and ecologists (Byrne et al., 2019; 40 

Rebollar et al., 2016). Infectious diseases are a natural part of any functioning ecosystem, and 41 

may fluctuate in natural cycles, leading to constraints between transmission and virulence 42 

fuelled by natural selection (Boots & Sasaki, 2003). Pathogens do not generally make their 43 

hosts go extinct, because that would also result in extinction of the pathogen, but exceptions 44 

may occur (De Castro & Bolker, 2005). 45 
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 46 

Emerging wildlife diseases are usually caused by invasive pathogens or parasites that spread 47 

to areas inhabited by naive hosts that do not have natural defences leading to population 48 

declines (Langwig et al., 2015). Amphibian populations have disappeared worldwide, 49 

primarily in places that have no evolutionary history with the disease, although the exact 50 

number of species affected remains controversial (Lambert et al., 2020; Scheele, Pasmans, et 51 

al., 2019). Indeed, proving disease-induced declines is a challenging task and simply 52 

surveying for a pathogen or disease in a declining population is not sufficient to infer 53 

causality (Pessier, 2017). The gold standard for demonstrating disease-related declines 54 

involves collecting population data prior to emergence, estimating disease prevalence, 55 

observing disease signs and population effects or mortality, isolating the pathogen and 56 

fulfilling Koch’s postulates e.g. (Martel et al., 2013). These steps require substantial 57 

resources not normally devoted to wildlife taxa, and may partly explain why it took so long 58 

for amphibian diseases to be attributed to ‘enigmatic amphibian declines’ (Collins, Crump, & 59 

Lovejoy, 2009; Collins, 2010). 60 

 61 

Many factors influence the course of disease including the pathogen, the host and the 62 

environment (Figure 6.1). We consider recent advances in our understanding of infectious 63 

amphibian diseases related to these three components as well as human dimensions (Figure 64 

6.1). We identify information gaps as research priorities for the revised Amphibian 65 

Conservation Action Plan. 66 

 67 
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 68 

Figure 6.1: Schematic representation of specific elements of the disease triangle (A). Disease 69 

may develop where conducive factors of the environment (abiotic, biotic, human 70 

dimensions), pathogen, and host overlap (B). Inspired by Fisher & Garner (2020). 71 

 72 

Status Update 73 

Pathogen 74 

A pathogen is a microscopic infectious viral, bacterial or mycotic agent that causes disease in 75 

a host, and various macroscopic parasites such as helminths, protozoa and arthropods also 76 

cause well-known diseases and illness in amphibians (Densmore & Green, 2007). General 77 

veterinary approaches have been developed for diagnosing and treating various amphibian 78 
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diseases (Densmore & Green, 2007; Wright & Whitaker, 2001), but much attention has 79 

focused on context-dependent responses to emerging diseases (Langwig et al., 2015). 80 

 81 

Emerging amphibian diseases 82 

In the last 15 years, understanding of emerging amphibian pathogens has grown immensely 83 

(Table 6.1). Ranavirus emergence in naive amphibian populations has been associated with 84 

steep amphibian population declines of multiple species in Europe (Price et al., 2014; 85 

Teacher, Cunningham, & Garner, 2010)about:blank. Whereas ranaviruses have been 86 

documented globally, their population-level impacts in many places have not yet been 87 

adequately assessed (Brunner, Olson, Gray, Miller, & Duffus, 2021; Duffus et al., 2015). 88 

Three ranavirus species are known to affect amphibians, Ambystoma tigrinum virus (ATV), 89 

Common midwife toad virus (CMTV) and Frog virus 3 (FV3) (Chinchar et al., 2017), but 90 

FV3 and CMTV are known to recombine as chimeric ranaviruses that have increased 91 

virulence and pose a large threat to wild populations (Peace et al., 2019; Vilaça et al., 2019). 92 

Batrachochytrium dendrobatidis (Bd) was described in 1999 (Longcore, Pessier, & Nicholes, 93 

1999), but in 2013 a new Batrachochytrium species was reported, B. salamandrivorans 94 

(Bsal:(Martel et al., 2013)). Bd has a global distribution on every continent (James et al., 95 

2015; Olson et al., 2013; Olson, Ronnenberg, Glidden, Christensen, & Blaustein, 2021), and 96 

Bsal has a restricted distribution in Asia, where it originates; it is also found in Europe where 97 

it is invasive and spreading in European salamanders (particularly fire salamanders) 98 

(Beukema et al., 2018; Lötters & Vences, 2020; Spitzen-van der Sluijs et al., 2016). In the 99 

US, a pathogenic protist causes severe Perkinsea infections resulting in mortality of tadpoles, 100 

a potential third emerging infectious disease of amphibians (Isidoro-Ayza et al., 2017). 101 

Elizabethkingia miricola is an example of a recently discovered emerging bacterial disease in 102 

amphibians. This zoonotic pathogen can also affect humans, and causes meningitis-like 103 
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symptoms and mass die-offs in Chinese spiny frogs (Quasipaa spinosa) farmed for food (Hu, 104 

Dong, Kong, Mao, & Zheng, 2017; Lei et al., 2019). 105 

 106 

Table 6.1: Known emerging amphibian infectious pathogens, and their characteristics.  107 

Emerging Infectious 

Pathogens 

Type Susceptible taxa Known 

Distribution 

Ranavirus Virus Amphibians, Reptiles, Fish Global 

Batrachochytrium 

dendrobatidis 

Fungus Amphibians, susceptible 

species concentrated in the 

Americas and Oceania.   

Global 

Batrachochytrium 

salamandrivorans 

Fungus Primarily salamanders, with 

alternate amphibian hosts 

Asia (Native range) 

Europe (Invasive) 

Perkinsea Protist Amphibians, primarily tadpoles US, Europe, 

MesoAmerica 

Elizabethkingia 

miricola 

Bacteria Anurans, additional concern as 

it is a zoonotic pathogen. 

(mostly in captive and frog 

farm settings)  

China, Europe, 

Madagascar, 

possibly global.  

 108 

Diagnostics and monitoring 109 

Amphibian pathologists have established a growing body of diagnostic knowledge that has 110 

improved our ability to evaluate disease signs and attribute them to causative agents that may 111 

have historically been dismissed as “Red Leg Disease” (Forzán, Heatley, Russell, & Horney, 112 

2017; Pessier, 2017). The fact that severe Perkinsea infections were only recently discovered 113 

as a source of amphibian mortality in the US is a lesson to retain disciplined vigilance when 114 
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examining new amphibian mortality events and declines. Multiple tools are available for 115 

detecting pathogens, confirming infection and diagnosing disease. Histology and microscopy 116 

remain the primary tool of pathologists forensically examining contemporary specimens, 117 

especially when preservation techniques limit use and consistency of DNA-based diagnostic 118 

tools, but advances in isolation techniques, molecular methods and DNA sequencing have 119 

expanded our understanding of amphibian pathogens, including lineage/strain distribution, 120 

genetic variation and virulence factors (Figure 6.2). However, documenting a pathogen is not 121 

necessarily indicative that it causes disease and decline (Russell et al., 2019). To better 122 

understand if a host is susceptible, tolerant or resistant, infection must be linked to longer-123 

term clinical disease outcomes, such as death, persisting with infections, or clearing 124 

infections (Figure 6.3). 125 
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 126 
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Figure 6.2: Diagnostic tools for amphibian pathogens and disease. Diagnostic screening 127 

techniques can be applied to museum specimens, field-caught individuals as well as 128 

environmental substrates (e.g. water). Histological, isolation, molecular and antigen-based 129 

tools are available, each with their own set of advantages and disadvantages. Histological 130 

examination is still the only method capable of diagnosing clinical infection and disease, but 131 

has from low to moderate sensitivity and is costly. Isolation of pathogens can be difficult, but 132 

is essential for developing a deeper understanding of pathogens, their ecology, physiology 133 

and behaviour. Molecular tools offer non-invasive sampling methods and high sensitivity for 134 

detecting genetic material of pathogens, but quantitative PCR (qPCR) based methods don’t 135 

come without important caveats. There can be wide variation in quantification according to 136 

laboratory methods making direct comparisons across studies difficult. This variation may be 137 

attributed to using different standard cultures/strains of Bd, different qPCR cycling 138 

parameters and molecular techniques, and different DNA extraction techniques (Bletz et al., 139 

2015, Brannelly, Wetzel, West, & Richards-Zawacki, 2020). There has been an attempt to 140 

standardise across studies using Bd ITS copy number standards (Longo et al., 2013; Rebollar, 141 

Woodhams, LaBumbard, Kielgast & Harris., 2017); however, with variation in ITS within 142 

the fungal genomes the biological meaning can be skewed (e.g. 1000 ITS copies could be 143 

equivalent to 2 zoospores if copy number is 500, or 200 zoospores if the copy number is 5). It 144 

is additionally important to understand the detection limits of molecular techniques like 145 

qPCR. Low and inconsistent qPCR positives may be false positives, and mutations in the ITS 146 

region at the Taqman probe binding site in certain regions, such as Asia, can lead to false 147 

negatives (Mutnale et al., 2018). This caveat is also true for qPCR methods used to detect 148 

ranaviral DNA (Wynne, Puschendorf, Knight, & Price, 2020). Development of the lateral-149 

flow assay by Dillon et al. (2017) shows some promise; however, this assay lacks specificity 150 

(it cross-detects related fungi) and sensitivity (it fails to detect low loads).    151 
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 152 

Figure 6.3: Diagrammatic representation of outcomes for amphibian hosts when exposed to a 153 

potential pathogen. Immune refers to individuals that cannot be infected. Susceptible refers 154 

to individuals that can become infected. Resistant refers to individuals that, once infected, 155 

exhibit resistance mechanisms that lower or eliminate the infection. Tolerant represents 156 

individuals that can survive infection and build up high infection loads with little negative 157 

impact. Intolerant refers to hosts that exhibit clinical disease and can ultimately succumb to 158 

infection (i.e., experience disease-induced mortality). These host states are not necessarily 159 

static across host species, populations, or individuals, and can vary with endogenous and 160 

exogenous factors. 161 

 162 

Disease origins and virulence 163 

The genomics revolution has advanced our understanding of the origins of amphibian 164 

pathogens, the multitude of pathogen genotypes, and virulence factors that make these 165 
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pathogens deadly. Evidence suggests both Bd and Bsal originate in Asia - work that has been 166 

facilitated by improved isolation methods and genome sequencing (O’Hanlon et al., 2018). 167 

Our understanding of Bd has moved beyond seeing it as a singular pathogen to an 168 

understanding of a complex matrix of genotypes, some of which are endemic and others 169 

pandemic lineages that vary in virulence (Byrne et al., 2019; Jenkinson et al., 2016; 170 

Rosenblum et al., 2013). Bd genotypes have been cultured from hotspots, and whole genome 171 

sequences of globally distributed strains are identified: Bd GPL (Global Panzootic Lineage), 172 

Bd CAPE (Africa and Europe), Bd ASIA 1 (Asia), Bd Asia 2/ BRAZIL and Bd ASIA 173 

(O’Hanlon et al., 2018). Most cultured Bd isolates belong to Bd GPL lineage (Fisher, 174 

Hawkins, Sanglard, & Gurr, 2018), and that has led to strengthening of our knowledge about 175 

the GPL impacts on amphibians. In Bd infection ‘coldspots’ (e.g., Asia and Africa), where 176 

prevalence is low and Bd persists in amphibian populations (Mutnale et al., 2018), probability 177 

of obtaining pathogen cultures is poor, limiting our capacity to adequately understand the 178 

emergence and epidemiology of chytridiomycosis globally. Enzootic genotypes may be 179 

dominant in such regions and hybridization of enzootic hypovirulent and panzootic 180 

hypervirulent Bd strains can result in genotypes that show high virulence on native hosts 181 

(Greenspan et al., 2018). Similarly, recombination of ranaviruses can result in changes in 182 

virulence (Peace et al., 2019; Vilaça et al., 2019), while bacteria, particularly zoonotic 183 

pathogens like Elizabethkingia miricola, frequently evolve antibiotic resistance, reducing our 184 

ability to treat host infections (Lei et al., 2019). Lineage-specific diagnostics as well as 185 

genomic tools that don’t require culturing can help fill this gap (Ghosh et al., 2021). The 186 

ability to genotype Bd from swab DNA has given the field an invaluable technique to 187 

understanding global Bd lineage distribution (Byrne et al., 2019). 188 

 189 
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Cultured isolates, experimental infection trials and -omics techniques have also expanded our 190 

understanding of virulence factors and mechanisms that may induce disease. Genomic and 191 

transcriptomic comparisons of Bd/Bsal as well as endemic and pandemic Bd genotypes show 192 

us signatures of virulence including metalloproteases, serine proteases and crinkle-like 193 

proteins (Ellison, DiRenzo, McDonald, Lips, & Zamudio, 2017; Farrer et al., 2017; 194 

McDonald, Longo, Lips, & Zamudio, 2020). Further understanding about these pathogens 195 

will emerge as culturing efforts and genomic techniques for Bd and Bsal are intensified 196 

globally (Fisher, Ghosh, et al., 2018). 197 

 198 

Future steps & recommendations 199 

Significant gaps in our knowledge of these pathogens remain. Greater understanding of hot 200 

and cold spots for pathogen presence and disease can give us a lens into what environmental 201 

conditions, host properties, and interactions between these allow amphibians to survive these 202 

diseases in nature and in-turn guide management for susceptible populations. Currently, there 203 

is no rapid, field-ready test for prominent amphibian pathogens. Such diagnostic tools could 204 

rapidly improve our understanding of pathogen distributions and fill rapid-detection needs, 205 

while genomic innovations like high-throughput sequences can continue to push the bounds 206 

of pathogen discovery globally. 207 

 208 

Host  209 

Once a pathogen infects a host, the host may survive through resistance mechanisms (e.g., the 210 

pathogen induces an effective immune response that reduces pathogen burden and clears 211 

infection), or through tolerance (i.e., negative impacts are minimised while the pathogen 212 

continues replicating and spreading (Figure 6.3)). However, if pathogen burdens increase to a 213 

level resulting in clinical disease, the burden to the host is magnified and may result in death 214 
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if infection is not reduced or treated (Figure 6.3). Reviews are available for the patho-215 

physiology of Bd (Baitchman & Pessier, 2013), Bsal (Martel et al., 2013), and ranaviruses 216 

(Miller, Pessier, Hick, & Whittington, 2015). 217 

 218 

Host range & susceptibility  219 

Host range differs between Bd, Bsal, and Ranavirus. Bd can infect all three amphibian orders 220 

(Olson et al., 2021); Bsal is known to infect anurans and caudates while disease primarily 221 

occurs in salamanders (Martel et al., 2014; Stegen et al., 2017); and ranaviruses infect 222 

amphibians, reptiles and fish (Brenes, Gray, Waltzek, Wilkes, & Miller, 2014; Duffus et al., 223 

2015). Experimental infection of hosts can advance our understanding of host-pathogen-224 

environment dynamics (Blaustein et al., 2018). 225 

 226 

Host life stage also affects infection and disease progression. For Bd, larvae are typically 227 

tolerant, while recent metamorphs and juveniles experience higher mortality (Böll, Tobler, 228 

Geiger, Hansbauer, & Schmidt, 2012; Garner et al., 2009; Russell, Goldberg, Waits, & 229 

Rosenblum, 2010). Adults vary widely in susceptibility, tolerance, and resistance (Fig. 6.3). 230 

Bsal chytridiomycosis has only been documented in post-metamorphic amphibians to date. 231 

For ranavirus, larvae tend to be particularly vulnerable to disease and mortality (Duffus, 232 

Nichols, & Garner, 2014; Hoverman, Gray, Miller, & Haislip, 2012), but adults of some 233 

species show disease signs (Duffus, Nichols, & Garner, 2013). 234 

 235 

There is wide variation in disease outcomes across host populations, space, and time (Bradley 236 

et al., 2015; Briggs, Knapp, & Vredenburg, 2010; Savage, Sredl, & Zamudio, 2011; Searle et 237 

al., 2011). Host susceptibility can shift over time as with Bd in South America (Becker, 238 

Rodriguez, Lambertini, Toledo, & Haddad, 2016; Carvalho, Becker, & Toledo, 2017; von 239 
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May, Catenazzi, Santa-Cruz, Kosch, & Vredenburg, 2020) and Panama (Voyles et al., 2018). 240 

Although Bd has been implicated in a number of species extinctions, several populations that 241 

were formerly believed extirpated have been “rediscovered” by scientists (Abarca, Chaves, 242 

Garcia-Roodriguez, & Vargas, 2010; Chaves et al., 2014; García‐Rodríguez, Chaves, 243 

Benavides‐Varela, & Puschendorf, 2012; González-Maya et al., 2013; Newell, Goldingay, & 244 

Brooks, 2013; Puschendorf, Hodgson, Alford, Skerratt, & VanDerWal, 2013; Rodríguez-245 

Contreras, Señaris, Lampo, & Rivero, 2008; Whitfield et al., 2017). These cases present 246 

opportunities to understand what contributes to population recovery and mobilise this 247 

knowledge for conservation. 248 

 249 

Differential disease outcomes over space and time may be related to host and ecological 250 

factors that mediate host susceptibility to infection and disease. Individual host factors 251 

include host defence mechanisms, e.g. innate and acquired immunity, and defence resulting 252 

from host-associated microbiomes. Ecological factors include biotic factors (e.g., dilution 253 

effects, reservoir species, super-shedders), and abiotic conditions that impact host ecology 254 

and physiology. Understanding how these factors mediate host susceptibility is important for 255 

disease management and conservation. 256 

 257 

Host defence mechanisms 258 

Innate and acquired immunity play a role in amphibian pathogen infections, varying across 259 

host species and environments. Innate immune mechanisms comprise the first line of defence 260 

against infections and show general efficacy for a variety of pathogens (Conlon, 2011; 261 

Rollins-Smith, 2009; Smith et al., 2018). Acquired or adaptive immune mechanisms, such as 262 

the major histocompatibility complex pathway and T and B cells, provide a more specific 263 

pathogen response and are linked to both host genotype and exposure history. However, Bd 264 
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can sometimes inhibit immune responses, limiting amphibians’ ability to mount a robust 265 

adaptive response to Bd (Fites et al., 2014). MHC Class I molecules are hypothesised to 266 

mainly be associated with immune responses to ranaviruses (Teacher, Garner, & Nichols, 267 

2009; Wang et al., 2017). MHC II immuno-genotype has been associated with susceptibility 268 

to Bd (Bataille et al., 2015; Kosch et al., 2016; Savage & Zamudio, 2011), ranavirus (Savage, 269 

Muletz-Wolz, Campbell Grant, Fleischer, & Mulder, 2019), and other potentially pathogenic 270 

microbes (Belasen, Bletz, Leite, Toledo, & James, 2019)about:blank. While immunity in 271 

amphibian larvae is less well-studied, tadpoles are known to have less functionally developed 272 

immune systems accompanied by immunosuppression through metamorphosis, while MHC 273 

expression expands greatly post-metamorphosis (Grogan et al., 2018). 274 

 275 

Advances in molecular technologies, including high-throughput sequencing and 276 

transcriptomics, have deepened our understanding of cellular defence mechanisms and 277 

immune variation within and among host species (Zamudio, McDonald, & Belasen, 2020). 278 

Common Bd response mechanisms include skin repair (Ellison et al., 2014; Eskew et al., 279 

2018; Poorten & Rosenblum, 2016) and innate and acquired immune activation (Ellison et 280 

al., 2017, 2014; McDonald et al., 2020). Recent studies have found that animals that down-281 

regulated immune genes tolerated Bd infections better and highly susceptible species 282 

significantly upregulate immune responses (Savage, Gratwicke, Hope, Bronikowski, & 283 

Fleischer, 2020). These results suggest that immunopathology is a component of Bd 284 

susceptibility. Amphibian immune response reviews are available (chytridiomycosis: 285 

(Grogan et al., 2020; Grogan et al., 2018); ranavirus: (Grayfer, Edholm, De Jesús Andino, 286 

Chinchar, & Robert, 2015). 287 

 288 
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Improvements in our understanding of amphibian immunity have applications for disease 289 

management and mitigation, for example, selective breeding for genetically resistant or 290 

tolerant individuals, or development of vaccines that prime immune responses (Table 6.2). 291 

Vaccines against Bd have shown mixed success (e.g., (Stice & Briggs, 2010), perhaps 292 

because Bd-produced toxins inhibit amphibian adaptive immune response (Fites et al., 2013). 293 

Ranavirus vaccine trials, however, have shown promising results (Chen, Li, Gao, Wang, & 294 

Zhang, 2018; Zhou, Zhang, Han, Jia, & Gao, 2017). 295 

 296 
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Table 6.2 Overview of amphibian disease mitigation interventions targeting amphibian hosts. 297 

Intervention Evidence In situ examples 

Treatment of the host 

directly with antifungals, 

antibiotics, deworming 

agents. 

Treating hosts directly for the pathogen are widely used 

in veterinary medicine (Baitchman & Pessier, 2013; 

Wright & Whitaker, 2001), but they are mostly 

applicable in controlled settings and do not prevent 

reinfection. 

Cascades frogs treated with itraconazole and released 

back into natural ponds showed reduced Bd pathogen 

burden and increased over-winter survival (Hardy, Pope, 

Piovia-Scott, RN, & Foley, 2015). Treatment of 

mountain chickens for Bd using itraconazole without 

environmental pathogen reduction had only short-term 

benefits (Hudson et al., 2016). 

Treatment of host and 

translocation to disease-

free refuge or disinfection 

of environment prior to 

reintroduction. 

Disinfectants can be applied directly to the environment 

with varying environmental impacts (Lammens, Martel, 

& Pasmans, 2021; Rütte, Peyer, Schmidt, Keller, & 

Geiser, 2009). 

Successful at controlling Bd on the island of Mallorca, 

with limited Mallorcan midwife toads and limited 

habitat (Garner et al., 2016). An attempt to create a Bd-

free population of Archey’s frogs through translocation 

in New Zealand was unsuccessful (Linhoff et al., 2021). 
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Translocation of 

individuals with resistant 

genotypes. 

Recovering amphibian populations that have evolved 

resistance or tolerance to disease could serve as 

founders for low-cost reintroductions to historical sites 

(Mendelson, Whitfield, & Sredl, 2019). Genetic 

markers may be difficult to identify as resistance traits 

may be associated with reduced gene expression 

(Savage et al., 2020). 

  

Not attempted yet, likely due to lack of knowledge of 

genotypes and/or concerns about negatively impacting 

recovering populations of threatened species. 

Selective breeding for 

resilience traits. 

The effectiveness of skin mucus secretions of frogs that 

survived a Bd epizootic became more inhibitory, 

providing evidence of natural selection that has the 

potential to be applied to captive populations (Scheele 

et al., 2014; Voyles et al., 2018).   

Not attempted yet, due to high technical requirements, 

multigenerational timelines, and a need to better 

understand resistance mechanisms or genetic markers. 

Once clear resistance-associated genes are identified, 

genetic engineering for resistance may be a further 

possibility as has been used in American chestnuts 

(Newhouse et al., 2014). 
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Density reduction of hosts 

to reduce disease 

transmission. 

Contact rates were reduced in low density groups of 

newts, suggesting reduced density may reduce Bsal 

transmission and spread (Malagon et al., 2020). 

However, a field experiment found that Bd was 

effectively transmitted between tadpoles regardless of 

density (Rachowicz & Briggs, 2007). 

Translocation of limited numbers of mountain yellow-

legged frog tadpoles to create new low-density 

populations were unsuccessful at preventing outbreaks 

(Woodhams et al., 2011). It seems unlikely that 

deliberately reducing healthy threatened amphibian 

populations to reduce disease risk would be justified by 

experimental evidence. 

  

Increase population 

buffering capacity through 

head starting, captive-

releases. 

Demographically, increasing recruitment rates 

compensates for disease-related mortality (Lampo et 

al., 2017; Muths et al., 2011; Scheele et al., 2014)  

Populations of wild Corroboree frogs declining due to 

Bd have been supplemented from captive populations 

and raised in predator-free enclosures to help sustain 

wild populations (Campbell, Australia, Environment 

Australia, Biodiversity Group, & Natural Heritage Trust 

(Australia), 1999; Linhoff et al., 2021). Head starting 

has helped to avoid extinctions and grow populations of 

Agile frogs in the UK and Northern Leopard Frogs in 
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Canada (Linhoff et al., 2021), but has been unsuccessful 

at re-establishing breeding populations of Wyoming 

toads (Polasik, Murphy, Abbott, & Vincent, 2016). It is 

likely that success or failure of these efforts will be 

highly context-specific, and more studies are needed.  

Augmenting protective 

skin microbes using 

probiotics. 

Probiotics aim to boost host immunity in the mucosal 

environment through the addition of locally occurring, 

Bd-protective skin microbes to amphibians (Bletz et al., 

2013). Experimental trials have given mixed results, 

some have been successful or partly successful (Bletz et 

al., 2018; Harris et al., 2009; Kueneman, Woodhams, 

Harris, et al., 2016; Muletz, Myers, Domangue, 

Herrick, & Harris, 2012), and others have been 

ineffective (Becker et al., 2011, 2015; Woodhams et al., 

One in situ field trial that augmented mountain yellow-

legged frogs with Janthinobacterium lividum was 

associated with reduced Bd pathogen loads and 

improved survival after one season, but the population 

did not persist in the long term (Vredenburg, Briggs, & 

Harris, 2011). Our understanding of the role of skin 

microbiomes and immune function is not yet developed 

enough to reliably manipulate microbiomes to impart a 

desired function, and further research is needed to 
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2012), and one study that genetically modified a core 

skin microbe to produce antifungal metabolites did not 

confer disease protection (Becker et al., 2021). 

understand the relationship between host, pathogen and 

microbiome.  

Vaccines Effective ranavirus vaccines have been developed and 

used in Chinese giant salamanders (Chen et al., 2018; 

Zhou et al., 2017). Vaccinations for Bd however have 

been ineffective, or only weakly improve the ability to 

combat infection (Cashins et al., 2013; McMahon et al., 

2014; Stice & Briggs, 2010), but recent attempts in 

Vegas valley leopard frogs have demonstrated 

improved effectiveness of previous exposure conferring 

improved survival (Waddle et al., 2021)  

Not attempted yet, but has high potential, especially 

with long-lived species like giant salamanders. Whether 

highly effective Bd and Bsal vaccines can be developed 

remains unknown. Detailed studies of amphibian 

immune functional responses due to vaccination would 

be useful to improve Bd vaccine types, and delivery 

mechanisms, effectiveness and range of applicability.  

 298 
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Host-associated microbiomes 299 

Host defences also include resident symbiotic bacteria, fungi and other micro-eukaryotes 300 

living on/in hosts, collectively called the host-associated microbiome. Mounting evidence 301 

suggests these communities play a role in disease dynamics (Jiménez & Sommer, 2016). 302 

High-throughput sequencing has enabled characterisations of microbiome communities of 303 

diverse amphibians, enhancing our ability to understand the protective role these 304 

communities play (Kueneman et al., 2019). Thousands of bacteria have been cultured from 305 

amphibian skin and tested for inhibition against Batrachochytrium pathogens (Bletz et al., 306 

2017; Woodhams et al., 2015). Bd and Bsal may induce shifts in the microbiome (Bletz et al., 307 

2018; Jani & Briggs, 2014), and microbiome composition may predict disease susceptibility 308 

(Becker et al., 2015). Populations with higher proportions of frogs with Bd-inhibiting skin 309 

bacteria may persist through Bd emergence (Lam, Walke, Vredenburg, & Harris, 2010; 310 

Woodhams et al., 2007), and cultured skin bacteria can inhibit Bd and Bsal in vitro (Bletz et 311 

al., 2017; Woodhams et al., 2015). Recent studies have explored the “mycobiome” (Kearns et 312 

al., 2017) as well as the full microeukaryotic community (Kueneman, Woodhams, Van 313 

Treuren, et al., 2016), and how these communities interact with bacteria (Belasen et al., 314 

2021). Skin and gut bacterial microbiomes have also been associated with ranavirus 315 

susceptibility in laboratory and field studies (Harrison et al., 2019; Warne, Kirschman, & 316 

Zeglin, 2019). Modulating host immunity through probiotic bioaugmentation of hosts or their 317 

environments has been proposed as a disease mitigation strategy to capitalise on the role of 318 

these microbial communities (Table 6.2, reviewed in Bletz (2013) and Rebollar et al. (2016). 319 

 320 

Impacts of pathogen co-occurrence and co-infections 321 

In the wild, multi-pathogen-parasite landscapes occur, including coinfections of ranavirus, 322 

Bd, and Bsal (Lotters et al., 2018; Warne, LaBumbard, LaGrange, Vredenburg, & Catenazzi, 323 
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2016; Whitfield et al., 2013). Where pathogens co-occur they can affect different subsets of 324 

the amphibian community. For example, ranavirus may have greater impacts at lower 325 

elevations while Bd has impacts at higher elevations (Rosa et al., 2017). Mortality and 326 

sublethal effects can be exacerbated by coinfections in some cases (Longo, Fleischer, & Lips, 327 

2019; McDonald et al., 2020); however, one recent study has suggested initial infection with 328 

low virulence Bd genotypes can shift Bsal infection dynamics (Greener et al., 2020). 329 

 330 

Community-level factors 331 

The biotic community can play a major role in determining disease outcomes, with important 332 

implications for disease management. As hosts vary in their susceptibility to the same 333 

pathogens, host community composition can determine whether a disease is enzootic or 334 

epizootic. For instance, with many immune or resistant hosts, the community may experience 335 

a dilution effect, whereby disease is kept to low, enzootic levels. Alternatively, if many 336 

reservoir (or highly tolerant) hosts or super-shedders are present, higher pathogen burdens 337 

may build up, resulting in negative impacts on susceptible hosts. Introduced African clawed 338 

frogs and American bullfrogs, and US-native Pacific chorus frogs are reservoir hosts for Bd 339 

(Reeder, Pessier, & Vredenburg, 2012), whereas various anuran and urodelan hosts, such as 340 

midwife toads and alpine newts, can be reservoir hosts for Bsal (Stegen et al., 2017). Non-341 

amphibian hosts, such as crayfish or water fowl feet, have been suggested for Bd and Bsal; 342 

however, evidence remains controversial (Betancourt-Román, O’Neil, & James, 2016; 343 

McMahon et al., 2013; Van Rooij, Martel, Haesebrouck, & Pasmans, 2015). For ranavirus, 344 

non-amphibian hosts are well-documented, including fish and turtles (Duffus et al., 2015). 345 

 346 

Future steps & recommendations 347 
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Over the last 15 years of research on amphibian disease hosts, there has been an increased 348 

understanding of the need to move beyond correlating pathogen presence with decline; rather, 349 

it is necessary to associate pathogen presence with disease, and in turn disease with decline.  350 

 351 

Given high levels of intraspecific and interspecific variability in disease outcomes, broad 352 

predictive markers for susceptibility are needed. These may include genetic markers, 353 

mucosome activity against skin pathogens, proportion of the microbiome that is inhibitory 354 

against pathogens, or other measurable factors. Development of predictive assays will require 355 

additional comparative and validation studies. Further understanding of factors associated 356 

with populations experiencing recovery as well as “cold spots” for disease can advance 357 

development of targeted management methods.  358 

 359 

Further, basic biological studies are lacking to provide context to correlational and 360 

experimental patterns. Studies of cellular responses to infection would enhance understanding 361 

of immune markers or responses most relevant to surviving pathogen infection. An improved 362 

understanding of the roles of non-bacterial microbes in amphibian microbiomes may clarify 363 

impacts of microbiome variation over species, space, and time, and of employing probiotic 364 

treatments in nature. Given that co-infections can exacerbate disease outcomes, 365 

understanding interactions of the widespread, well-studied pathogens featured in this review 366 

with more poorly studied pathogens and parasites will likely be important in effectively 367 

managing amphibian health broadly. 368 

 369 
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Environment 370 

Environmental factors affect disease transmission and host-disease dynamics. Significant 371 

advances in understanding host-pathogen interactions with both abiotic and biotic 372 

environmental factors have been made in recent years.  373 

 374 

Abiotic factors 375 

Abiotic factors such as temperature, water, and altitude help explain spatiotemporal 376 

variability in amphibian pathogen occurrence (Brunner, Storfer, Gray, & Hoverman, 2015; 377 

Murray et al., 2011; Olson et al., 2013), Table 3. For example, reported localities of fatal 378 

chytridiomycosis are scarce, concentrated mainly in tropical regions of the Americas and 379 

Australia (Scheele, Pasmans, et al., 2019), and most ranaviral disease die-offs have been in 380 

temperate regions during warmer seasons (Price et al., 2019). Predicting disease impacts on 381 

amphibian populations, however, is challenging due to several interacting contexts (Blaustein 382 

et al., 2018). Furthermore, amphibian pathogens are a moving target, as amphibian trade 383 

(food, pets) spreads pathogens with panzootic potential (O’Hanlon et al., 2018) and climatic 384 

shifts may trigger new epizootic outbreaks (See Chapters 3 and 7). 385 

 386 

Temperature also can affect pathogen life history traits. Optimal in vitro temperature ranges 387 

for Bd is 17- 25oC (Piotrowski, Annis, & Longcore, 2004), Bsal is 10-15oC (Martel et al., 388 

2013), and Ranavirus is 20-28oC (Ariel et al., 2009). Experimental exposures of Bd strains to 389 

various thermal regimes in vitro showed that warmer temperatures may increase zoospore 390 

production within the host, but decrease zoospore viability in aquatic environments 391 

(Woodhams, Alford, & Briggs, 2008; Woodhams et al., 2012). Hence, Bd could have higher 392 

impact on populations under thermal conditions that are suboptimal for pathogen replication, 393 

if propagules remain viable outside their host for longer periods (Voyles et al., 2012; Voyles, 394 
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Rosenblum, & Berger, 2011). Models have shown free Bd zoospore persistence in the 395 

environment is a major determinant of the fate of host populations (Doddington et al., 2013; 396 

Louca, Lampo, & Doebeli, 2014; Mitchell, Churcher, Garner, & Fisher, 2008). For ranavirus, 397 

a greater pathogenicity at warmer temperatures appears to be related to a faster viral 398 

replication (Brand et al., 2016). 399 

Temperature effects on host immune systems are less clear. During host hibernation, the 400 

immune response involved in Bd clearance is impaired (Rollins-Smith, 2020), and hosts may 401 

be less effective at resisting disease after cold pulses (Greenspan, Bower, Webb, Berger, et 402 

al., 2017; Greenspan, Bower, Webb, Roznik, et al., 2017). Higher rates of Bd clearance in 403 

warmer environments have been attributed to increased amphibian skin sloughing, a 404 

mechanism that lowers infection burdens (Grogan et al., 2018), but repeated exposure to 405 

extreme heat also causes a corticosterone response characteristic of chronic stress that could 406 

suppress amphibian physiological endocrine sensitivity to pathogenic diseases (Narayan & 407 

Hero, 2014)about:blank. Temperature variability itself affects amphibian immune responses; 408 

further investigation is needed (Raffel, Rohr, Kiesecker, & Hudson, 2006). 409 

 410 

Chytridiomycosis tends to have greater impact and higher infection prevalence on highland 411 

populations in cooler habitats (Catenazzi, Lehr, & Vredenburg, 2014; Scheele, Pasmans, et 412 

al., 2019; Woodhams & Alford, 2005). Warmer habitats have been proposed as thermal 413 

refuges where frogs are more likely to coexist with the fungus because Bd tends to grow sub-414 

optimally (Puschendorf et al., 2009; Zumbado-Ulate, Bolaños, Gutiérrez-Espeleta, & 415 

Puschendorf, 2014)about:blank. Post-epidemic population recoveries have been more 416 

frequent in lowland than upland locations, supporting this hypothesis (Grogan et al., 2016; 417 

Lampo, Señaris, & García, 2017; Phillott et al., 2013). Hosts are not always constrained 418 

passively to ambient conditions; if hosts can raise their body temperature by spending more 419 
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time in microhabitats where temperature exceeds the pathogen’s optimum, amphibians can 420 

alter their infection risk (Richards-Zawacki, 2010; Rowley & Alford, 2013). However, 421 

recurring findings of conflicting correlations between prevalence, outbreaks, and climatic 422 

conditions (Ron, 2005) led to an examination of the effects of climatic conditions in terms of 423 

differential performance of the pathogen and its host relative to their thermal optima, an idea 424 

referred to as the thermal mismatch hypotheses (Cohen et al., 2017; Nowakowski et al., 425 

2016). Consequently, “infection risk in ectotherms may change as the difference between 426 

host and pathogen environmental tolerances (i.e., tolerance mismatch) increases”. Infection 427 

risk is expected to decrease, for example, if hosts can access thermal niche spaces suboptimal 428 

for Bd (Nowakowski et al., 2016). Conversely, infection risk could increase if available 429 

temperatures shift away from host optimums (Cohen, Civitello, Venesky, McMahon, & Rohr, 430 

2019).  431 

 432 

Humidity and water availability also play a role in amphibian disease dynamics. Bd has 433 

severely impacted populations associated with perennial waters (Scheele, Pasmans, et al., 434 

2019), but hydrological regimes also can affect other pathogen-host dynamics. 435 

Batrachochytrium fungi do not tolerate desiccation and water availability or humidity is 436 

fundamental for effective transmission, but Bd transmission can increase during driest months 437 

when adults congregate near water sources (LaBumbard, Shepack, & Catenazzi, 2020; 438 

Piovia-Scott, Pope, Lawler, Cole, & Foley, 2011; Ruggeri et al., 2015). Also, 439 

Batrachochytrium fungi persist 1-7 months in sediment or lake water (Johnson & Speare, 440 

2003; Martel et al., 2013; Stegen et al., 2017) and ranavirus can survive for >30 days in 441 

sediments (Munro, Bayley, McPherson, & Feist, 2016; Nazir, Spengler, & Marschang, 2012). 442 

Hence, pathogens can persist after their hosts have been removed from their habitats. Models 443 

suggest that one of the most important mechanisms promoting Bd establishment and driving 444 
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host populations to extinctions is its capacity to survive outside its host in water or humid 445 

substrates (Doddington et al., 2013; Louca et al., 2014; Mitchell et al., 2008). Spatial 446 

distribution and zoospore life expectancy in the environment is becoming more apparent at 447 

some US amphibian breeding sites (Chestnut et al., 2014), but dynamics in tropical stream 448 

environments and the relationship to environmental factors remains a knowledge gap. Recent 449 

development of eDNA sampling techniques will hopefully expand zoospore detectability 450 

across microhabitats (Hauck, Weitemier, Penaluna, Garcia, & Cronn, 2019; Walker et al., 451 

2007). 452 

 453 

Extreme climatic events also can impact fecundity, recruitment and survival of uninfected 454 

amphibians, undermining the ability of populations to offset disease-induced mortality and 455 

possibly tipping infection outcome from coexistence to extinction. Extended droughts can 456 

lead to breeding failure, and reduce post-metamorphic survival and adult recruitment 457 

(Cayuela et al., 2016; Richter, Young, Johnson, & Seigel, 2003). Yet, post-epidemic recovery 458 

of remnant populations from several regions where Bd is highly pathogenic has been linked 459 

to a high recruitment of healthy adults (Lampo et al., 2017; Muths, Scherer, & Pilliod, 2011; 460 

Scheele, Hunter, Skerratt, Brannelly, & Driscoll, 2015). Similarly, in amphibian populations 461 

challenged by ranavirus, recruitment success was better explained by hydroperiod length than 462 

viral presence or other contaminants (Smalling, Eagles-Smith, Katz, & Grant, 2019). This 463 

suggests that population resilience to disease-associated impact is highly dependent on 464 

climatic conditions, and climate plays an important role in the probability of post-epidemic 465 

recovery. 466 

  467 

Identifying conditions in which amphibian populations can coexist with infection opens a 468 

promising avenue for long-term conservation of wild populations threatened by 469 
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chytridiomycosis (Hettyey et al., 2019). Although several interventions are proposed that 470 

modify temperature, hydrological regimes or water quality, manipulate host microbial 471 

communities, or use predators as biocontrol agents for reducing pathogen survival (Table 472 

6.3), field tests have lagged. 473 

 474 

Biotic factors 475 

In addition to host-associated microbiome communities, complex host communities of 476 

reservoir and susceptible species, and human-mediated pathogen transmission, amphibian 477 

pathogens are part of complex aquatic communities, with natural predators and parasites. 478 

Some aquatic predators of chytrid zoospores are water fleas (Cladocera), copepods 479 

(Copepoda), and seed shrimp (Ostracoda) (Woodhams et al., 2011). Higher abundances of 480 

protozoans and microscopic metazoans reduced Bd zoospores amounts at amphibian breeding 481 

sites in the Pyrenees (Schmeller et al., 2014). Zoospore viability inversely correlated with Bd 482 

infection prevalence, suggesting that Bd predatory microfauna affected Bd-host dynamics 483 

(Schmeller et al., 2014). Mesocosm experiments using Daphnia further corroborated the idea 484 

that microfauna can reduce Bd zoospore counts in lentic habitats (Buck, Truong, & Blaustein, 485 

2011; Hamilton, Richardson, & Anholt, 2012). 486 

 487 

Ranaviruses have cross-taxonomic host boundaries (Brenes et al., 2014; Duffus, Pauli, 488 

Wozney, Brunetti, & Berrill, 2008; Schock, Bollinger, Gregory Chinchar, Jancovich, & 489 

Collins, 2008), and are further transmitted through scavenging, direct contact, and contact 490 

with contaminated water (Blaustein et al., 2018). Host predation can reduce ranavirus 491 

infection rates because predators tend to attack individuals who are weak or have altered 492 

avoidance behaviours; some pathogens including ranaviruses can alter tadpole behaviour and 493 
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result in greater predation of infected individuals, leading to ‘healthier but smaller herds’ 494 

(DeBlieux & Hoverman, 2019). 495 

 496 

Future steps & recommendations 497 

While correlations between some environmental factors and mechanisms governing the 498 

infection dynamics are now well established, predicting and mitigating the impact of 499 

infections on amphibian populations continues to be a challenge. The relative contributions of 500 

mechanisms of transmission and disease tolerance in promoting pathogen-host coexistence 501 

appear to be context-dependent and field data are often scarce. Also, the role of biotic 502 

interactions in the infection outcome remains poorly understood. Future investigation and 503 

management of amphibian diseases will need to consider the context-dependence of 504 

interactions and address the complexities arising from multispecies and multiscale 505 

interactions. Context modelling can be useful for a rapid assessment of effective strategies, 506 

given the urge of mitigating amphibian diseases. 507 

 508 

Human dimensions 509 

Human dimensions in amphibian diseases are multifaceted including knowledge discovery 510 

through research and monitoring, inadvertent pathogen transmission, and direct conservation, 511 

management and policy actions (Olson & Pilliod, 2021). 512 

 513 

Trade 514 

International and national policies focus on reducing human-mediated transmission. For 515 

example, the recently proposed Asian origin of Bd and Bsal has raised concerns for risk of 516 

international transmission within trade markets (Carvalho et al., 2017; Nguyen, Nguyen, 517 

Ziegler, Pasmans, & Martel, 2017; O’Hanlon et al., 2018). In 2008, chytridiomycosis was 518 
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added to the OIE’s list of notifiable diseases due to increasing evidence of Bd spread through 519 

live amphibian trade. Both chytrid fungi and ranavirus are now OIE listed as notifiable 520 

diseases (Schloegel et al., 2009; OIE, 2020). In 2018, a motion was passed by the Convention 521 

on Biological Diversity (CBD) for member states to adopt measures to reduce risk of invasive 522 

alien species moving unintentionally in pathways associated with trade in live organisms 523 

(CBD, 2018). 524 

 525 

Clean trade is a priority for immediate action across wildlife species due to rapidly increasing 526 

pathogen concerns for both wildlife and potential spillover to humans (Fisher, Ghosh, et al., 527 

2018; Kolby, 2020). Research advances in rapid and cost-effective pathogen detection and 528 

procedures for biosecure captive-animal handling in trade markets are increasing the 529 

feasibility of taking measures to reduce risk of spreading diseases (e.g., Brunner et al., 2019; 530 

Gray et al., 2018). However, a web of regulatory authorities with overlapping regulations 531 

makes it challenging to make progress in effecting policy changes, and is compounded by a 532 

lack of funding, capacity and regulatory backing that has slowed progress in developing 533 

clean-trade markets (see Chapter 7 for more information on policy efforts). 534 

 535 

Recognising the role of trade in spreading diseases is important but getting ahead of the 536 

problem and preventing spread is likely the most cost-effective action. Bsal is one example of 537 

a pathogen known only to occur in parts of Europe with a likely Asian origin (Martel et al., 538 

2014). Scientists called for action to prevent its spread to North America which is home to 539 

exceptional salamander species richness that are naive to this pathogen (Gray et al., 2015). In 540 

June 2015, a US Geological Survey workshop in Colorado, USA convened to form a Bsal 541 

Task Force with 8 working groups to address response and control, surveillance and 542 

monitoring, diagnostics, communication and outreach, clean trade, research and decision 543 
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science, and data management (North American Bsal Task Force, 2022). These emphasis 544 

areas each help to get ahead of disease impacts. 545 

 546 

Surveillance and monitoring 547 

In particular, pathogen surveillance in both captive and wild animals has been needed to 548 

understand geographic and taxonomic patterns of disease occurrence, the potential scope of 549 

trade effects, and the direction of biosecurity needs, however surveillance and monitoring to 550 

date has been primarily focused in North America, Europe and Australia, while many 551 

amphibian-rich regions lack capacity for widespread monitoring (although see National 552 

Monitoring Initiative in Madagascar - (Bletz et al., 2015; Weldon et al., 2013)). With severe 553 

documented Bd impacts, Australia was one of the first countries to establish survey protocols 554 

for national surveillance (Skerratt et al., 2008). Bsal detection in captive amphibians was 555 

reported in Europe (Fitzpatrick, Pasmans, Martel, & Cunningham, 2018; Sabino-Pinto, Veith, 556 

Vences, & Steinfartz, 2018), but no Bsal detections were reported in captive samples in North 557 

America (Klocke et al., 2017), which can greatly inform usefulness of biosecurity policies 558 

such as a trade moratorium. Bsal surveillance in North America and lack of detection to date 559 

(Waddle et al., 2020) further supports the role of trade restrictions. Surveillance of both Bd 560 

and ranavirus has accelerated rapidly in the last decade, supporting cross-jurisdiction 561 

concerns for amphibian disease threats. Global Bd and ranavirus community open-access 562 

databases are available with recent website updates. Worldwide, Bd has been detected in 563 

1375 of 2525 (55%) species sampled, from 93 of 134 (69%) countries (Olson et al., 564 

2021)(database: amphibiandisease.org). Metadata analyses using these data have aided 565 

understanding of disease threat and host-pathogen-environment associations. Ranavirus 566 

surveillance reports are dominated by amphibians (63 genera; vs. 27 fish and 34 reptile 567 

genera) in North America and Europe, with a history of detections related to mortality events, 568 
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some of which were in production settings (Brunner et al., 2021); database: 569 

brunnerlab.shinyapps.io/GRRS_Interactive/). 570 

 571 

Decision science & proactive planning 572 

Decision science is a developing discipline to facilitate manager and policy maker decision-573 

making processes. Importantly, decision science models can aid in predicting outcomes of 574 

alternative actions in preparing for and initiating responses to disease outbreaks (e.g. Canessa 575 

et al., 2018; DiRenzo & Campbell Grant, 2019; Hopkins, 2018). Proactive planning can be 576 

further aided by the development of Incident Command Systems (Box 6.1). An Incident 577 

Command System is a standardised approach to the command, control, and coordination of 578 

response providing a common hierarchy within which responders from all stakeholders can 579 

be effective. 580 

Hopkins (2018) showcased the importance of development of a USA incident command 581 

system through scenario planning exercises. This work highlighted differing trajectories of 582 

amphibian die-off responses due to land ownership (US National Park System lands, US 583 

Forest Service lands, and neighbouring tribal lands), and stall points in responses due to 584 

national, state, and local permissions required for actions such as implementing ground-585 

disturbing activities or chemical applications in field settings. The North American Bsal Task 586 

Force management and control working group has also outlined a Response Plan Template 587 

including an outlined of ICS (salamanderfungus.org). Importantly, these systems can and 588 

should be defined proactively at local, regional and national scales to expedite effective 589 

response and management actions. 590 
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Box 6.1. Incident Command System for rapid disease response 591 

An Incident Command System (ICS) is a disaster management system that has been applied 592 

to emergency response situations such as for human hazards including wildfire, hurricanes, 593 

earthquakes, chemical spills, and search-and-rescue operations, invasive species and disease 594 

outbreaks. Development of An Incident Command System (ICS) for amphibian disease 595 

outbreaks can facilitate an effective response to through immediate and cascading follow-up 596 

actions, including assembly of a command team, biosecurity implementation, survey and 597 

diagnostics, development of an effective response actions, and active communication with 598 

stakeholders. (Hopkins, 2018) described an Incident Command System for responses to 599 

amphibian die-off scenarios from hypothetical outbreaks of chytridiomycosis due the chytrid 600 

fungus Batrachochytrium salamandrivorans (Bsal) in the salamander biodiversity hotspot of 601 

the Appalachian Mountains in the eastern United States. 602 

 603 

END BOX604 
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Disease control strategies 605 

Biosecurity protocols outline basic steps to reduce amphibian pathogen transmission in both 606 

captive (Brunner, 2020; Gray et al., 2018; Pessier & Mendelson III, 2017) and field situations 607 

(Gray et al., 2017; Julian et al., 2020; Olson et al., 2021; Phillott et al., 2010). Biosecurity 608 

measures range from between-site hygiene measures to prevent pathogen transmission in 609 

field situations (Julian et al., 2020; More et al., 2018), to between-individual precautions 610 

(Cashins, Alford, & Skerratt, 2008; Gray et al., 2017; Greer et al., 2009), while stringent 611 

quarantine and disinfection measures can prevent disease outbreaks in both captive and field 612 

situations (Pessier & Mendelson III, 2017). Australia has developed national guidelines for 613 

intra- and inter-state implementation of hygiene protocols to prevent Bd spread 614 

(Commonwealth of Australia, 2016). 615 

 616 

Disease-control strategies beyond biosecurity protocols have developed considerably in the 617 

last two decades. (Garner et al., 2016; Thomas et al., 2019) reviewed alternative strategies in 618 

the toolbox of approaches to mitigate pathogen outbreaks, many of which are in active 619 

research-and-development at this time, including: habitat modification, chemical treatments, 620 

vaccines, probiotics (Tables 6.2 and 6.3, see also (Smith & Sutherland, 2014) for evidence of 621 

effectiveness for disease control and biosecurity practices). 622 

 623 

AmphibianArk (www.amphibianark.org) was created in 2006 to carry out ex situ components 624 

of the IUCN SSC Amphibian Specialist Group’s Amphibian Conservation Action Plan 625 

(ACAP). Its vision was to leverage existing captive husbandry resources in zoos and aquaria 626 

around the world to meaningful ex-situ conservation efforts, and it has made great strides in 627 

training staff and building capacity, conducting prioritization and providing funding to 628 

support ex-situ amphibian conservation efforts globally (Reid & Zippel, 2008). It now spans 629 
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more than 60 organisations in 28 countries working to conserve 115 anuran species 630 

(Gratwicke & Murphy, 2016; Harding, Griffiths, & Pavajeau, 2016). Whereas captive 631 

breeding efforts do not directly mitigate the threats, and have had mixed success (Harding et 632 

al., 2016), they have created numerous opportunities to conduct integrated research (Hudson 633 

et al., 2016; Lewis et al., 2019; Skerratt et al., 2016). Linhoff et al. (2021) provided 634 

guidelines for amphibian reintroductions and translocations, the final step in many ex-situ 635 

efforts (See Chapters 11 and 14 for more information on these topics). 636 

 637 
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Table 6.3: Potential disease interventions that manipulate environmental factors 638 

Intervention Evidence In situ examples 

Prune overhanging 

vegetation to increase 

terrestrial or aquatic 

temperatures 

Frogs that select habitats with higher temperatures reduce 

their Bd infections (Richards-Zawacki, 2010; Rowley & 

Alford, 2013). Canopy modification to create warmer 

microclimates is postulated as a tool to permit coexistence 

with the pathogen (Scheele, Foster, et al., 2019), Bd 

prevalence declines associated with cyclone-canopy 

disturbance in Australia supports this hypothesis (Roznik, 

Sapsford, Pike, Schwarzkopf, & Alford, 2015). 

Riparian tree canopies in Australia were trimmed to 

reduce the suitability of the habitat for Bd at spotted tree 

frog release sites (Scheele et al., 2014), but the canopy 

pruning was discontinued (B.C. Scheele, pers. comm). 

Translocations to 

environmental refugia 

Release captive-bred animals in warmer parts of their range 

that may act as environmental refugia or disease-free refuges 

(Scheele et al., 2014). Timing of releases to coincide with 

low Bd prevalence may also influence post-release success. 

A translocation of yellow-legged frogs to colder, higher 

elevations postulated to limit Bd in frogs, but did not 

work (Knapp, Briggs, Smith, & Maurer, 2011). 
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Artificial heating 

stations 

Natural thermal springs act as Bd refugia for frogs (Savage 

et al., 2011), and provision of artificial heating stations in 

situ are postulated as a mitigation tool (Hettyey et al., 2019).  

The Mountain Chicken Recovery Program is conducting 

release trials using artificially heated pools as one Bd-

mitigation strategy 

(https://www.mountainchicken.org/blog/its-getting-hot-

hot-hot-controlling-the-chytrid-fungus/).  

Add fungicides or salts 

to ponds to reduce 

pathogen loads 

Adding salt to experimental ponds reduced Bd transmission 

between infected and uninfected animals (Clulow et al., 

2018). Addition of commercially available fungicides to 

mesocosms reduced Bd prevalence and load, but also 

affected tadpole growth rates (Geiger & Schmidt, 2013; 

Hanlon, Kerby, & Parris, 2012). 

Addition of salt to ponds where captive-bred green and 

bell frog tadpoles were released improved survival and 

reduced Bd prevalence (Stockwell, Storrie, Pollard, 

Clulow, & Mahony, 2015). A multi-year study in 

Mallorca found that pond drying, environmental 

disinfection, and fungicidal treatment of resident midwife 

toads eliminated Bd for at least 2 yrs post mitigation 

efforts (Bosch et al., 2015)  
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Increase population 

buffering capacity 

through habitat 

improvements or 

predator removal.  

This strategy aims to improve habitat, or optimise 

hydroperiods to increase recruitment in order to compensate 

for disease-related losses (Scheele et al., 2014). Ideally 

habitat improvement will occur proactively while 

populations are still resilient (Sterrett et al., 2019). 

Construction of additional breeding ponds for Puerto 

Rican crested toads have been partly successful and 

increased the number of populations of this threatened 

species (Linhoff et al., 2021). Creation of habitats that 

excluded fish helped increase green and gold bell frogs 

even in the presence of Bd (Beranek, Maynard, 

McHenry, Clulow, & Mahony, 2021). 

Microbial 

bioaugmentation of 

substrate 

Experimental augmentation of soil with bacteria that 

produce antifungal metabolites prevented Bd colonization of 

amphibian skin (Muletz et al., 2012). 

Not tested yet.  

Micropredator 

 augmentation 

Zooplankton as a micro predators of Bd, and experimentally 

reduce Bd zoospores and transmission of Bd to tadpoles 

(Schmeller et al., 2014).  

Not tested yet 

639 
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Community engagement 640 

Lastly, engaging people is a necessary component of mitigating disease spread. Although this 641 

takes many forms, important factors in this sociological component include: 1) accelerated 642 

scientist networking and collaborations to increase the global pace and scope of research and 643 

surveillance; 2) mobilising funding to build capacity for an effective response; 3) developing 644 

conservation partnerships to address common disease management goals; 4) developing a 645 

communication strategy to increase targeted communication with defined audiences 646 

including the public, environmental groups, and policy makers, natural resource managers 647 

and disease specialists. The Herp-Disease-Alert-System (HDAS; 648 

herp_disease_alert@parcplace.org) implemented by PARC (Partners in Amphibians and 649 

Reptile Conservation) in North America is an example of a public-management networking 650 

system gaining success for rapid disease responses that routes information to the correct 651 

authority for follow-up action. The Human Dimension may be the greatest challenge yet to 652 

mitigate amphibian disease threats, as the feral dynamics of the Anthropocene are all-653 

encompassing, affecting multiple biodiversity threat factors (Tsing, Deger, Keleman, & 654 

Zhou, 2020). 655 
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Abstract 21 

The global trade in amphibians occurs at an extraordinary magnitude, involving the use of 22 

millions of animals locally and internationally every year. This activity is uniformly 23 

monitored and internationally regulated for less than 5% of described amphibian species, and 24 

the overall sustainability of present levels of trade are largely unknown. Amphibians are an 25 
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important source of protein in many regions of the world and are also frequently traded as 26 

pets and scientific research organisms. Thousands of amphibian species are either directly 27 

affected by this trade through their harvest or captive production, or indirectly affected by the 28 

deadly emerging infectious diseases this trade is spreading. This chapter highlights key points 29 

of concern that warrant additional investigation to ensure the long-term survival of 30 

amphibians is protected from the threat of trade, and concludes with a series of 31 

recommendations for constructive conservation actions. 32 

 33 

Introduction 34 

Millions of amphibians are traded globally every year for purposes ranging from use as a 35 

source of protein for human consumption (Warkentin et al., 2009; Gratwicke et al., 2010; 36 

Carpenter et al., 2014), to their use as exotic pets (Natusch & Lyons, 2012; Stringham & 37 

Lockwood, 2018; Altherr & Lameter, 2020), scientific research organisms, and for zoological 38 

conservation activities. Although a portion of these animals are produced in captivity, 42% 39 

are reported as wild caught (Hughes, Marshall & Strine, 2021), with 22% of the international 40 

amphibian trade comprised of species that are already threatened according to the IUCN Red 41 

List. It’s important to note that the aforementioned trade characteristics refer only to the 42 

portion of international amphibian trade recorded by individual numbers of animals, whereas 43 

millions more are traded in units of mass, particularly those used as a source of food (Kolby, 44 

2016). The impacts of these activities on global amphibian populations are largely unstudied. 45 

 46 

A major challenge preventing deeper understanding of the impact of trade on amphibians is 47 

the scarcity of species-specific population estimates together with the absence of species-48 

specific trade data recording by most countries. Currently, over 8,000 amphibian species have 49 

been scientifically described, but most readily available international trade data collected 50 
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during official government inspections (i.e. the publicly accessible CITES trade database and 51 

the USFWS LEMIS trade database available through a Freedom of Information Act Request) 52 

only include information on several hundred species. At least 17% of amphibian species are 53 

internationally traded, with the majority originating from South America, China, and Central 54 

Africa, (Hughes, Marshall & Strine, 2021). Following capture or production in captivity, 55 

individuals are either consumed locally or exported (Warkentin et al., 2009; Auliya et al., 56 

2016). Local consumption used for sustenance is more likely to demonstrate sustainable use 57 

(Kusrini, 2005) than international trade which is generally driven by market demands rather 58 

than necessity (Rowley et al., 2016; Hughes, Marshall & Strine, 2021; Morton et al., 2021). 59 

To consider whether present and future trade and use of amphibians is detrimental to the 60 

long-term survival of affected species, this chapter highlights key topics to explore, describes 61 

specific challenges in the measurement and evaluation of the impacts of trade (Box 1. Case 62 

study on amphibians in Ivory Coast), and recommends actions for the advancement of 63 

research and policy in this field of amphibian conservation science. 64 

 65 

Amphibian trade records 66 

Measurement of the trade in amphibians 67 

Millions of amphibians are traded globally every year. Amphibians are harvested locally for 68 

trade, meat, and medicine (Onadeko, Egonmwan & Saliu, 2011; Van Vliet et al., 2017; Ribas 69 

& Poonlaphdecha, 2017) and exported internationally for meat, pets, and pharmaceutical 70 

research (Warkentin et al., 2009; Nijman & Shepherd, 2010; Auliya et al., 2016; Altherr & 71 

Lameter, 2020; see Text Boxes 7.1. 7.2 and 7.3). Although limited information about the 72 

international trade in amphibians is available, most countries either do not maintain or 73 

provide public access to records describing their domestic amphibian trade. This information 74 
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gap represents a considerable hurdle preventing comprehensive assessments of the true 75 

impact of trade and consumption on amphibians globally. 76 

 77 

Box 7.1. Domestic trade/biological use - Case study from Ivory Coast 

Background 

 Vertebrate anatomy and physiology courses are the reason for a large volume of 

amphibian trade. In West and Central Africa, the species particularly affected by laboratory 

studies are the Northern Flat-backed Toad (Sclerophrys maculata), the Common Toad (S. 

regularis), the African Tiger Frog (Hoplobatrachus occipitalis), and the Grass Frogs 

(Ptychadena spp). These species have a wide distribution range and broad range of habitats 

across Africa (Kouamé et al., 2015; Channing & Rödel, 2019). Besides being collected for 

dissection, amphibians have always been used as food, medicine, or for cultural reasons by 

some particular West and Central African tribes (Gonwouo & Rödel, 2008; Mohneke & 

Rödel, 2009; Mohneke, Onadeko & Rödel, 2009; Mohneke, 2011) and a current increase in 

collection of these animals may be escalating beyond sustainability. 

Origin of the trade 

The increase in exploitation of amphibians is linked to the need for protein supplements 

due to rapid human population growth and a simultaneous decline in other protein 

resources, such as fishes. In some localities in southeastern Benin and Guinea, toads are 

used by villagers for treating diseases like Children’s cough, appendicitis or skin injuries. 

Meanwhile, larger frog species like Conraua spp., Hoplobatrachus occipitalis, Ptychadena 

spp., Pyxicephalus sp. “edulis West”, or Trichobatrachus robustus are collected for food 

from a wide range of West and Central African countries e.g. Benin, Burkina Faso, 

Cameroon, Ghana, Guinea, Ivory Coast, Nigeria, and Togo (Gonwouo & Rödel, 2008; 

Mohneke, Onadeko & Rödel, 2009; Mohneke et al., 2010; Mohneke, 2011; Kouamé et al., 
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2015). The known ethnic groups from West Africa, e.g. the Gourmanché and Mossi in 

Burkina Faso, the Hausa in Nigeria, and the Yacouba in Ivory Coast, and from Central 

Africa e.g. the Bakossi in Cameroon, traditionally use frogs as a source of protein or for 

medical and cultural reasons. On the Obudu plateau in Nigeria, tadpoles are intensively 

collected from small rivers (Mohneke, 2011). Likewise, amphibians are collected by 

university students for academic purposes. However, current rates of urbanisation and city 

development have greatly impacted local amphibian populations, which have become less 

abundant in recent years. 

Amphibian harvest 

Frog sellers generally collect the animals by hand at night using head lamps or hand 

torches around water ponds and microhabitats where the species are known to call. They 

collect any species they encounter and mostly target large adults for the ease of anatomical 

observations during practical sessions. Daily hunting rates range from about 40 to about 

100 frogs per hunter and vary from one locality to another. Collected animals are kept in 

cartons and then sold on daily bases. Frog collection for food and trade is undertaken all 

year round with peaks in the dry season when the levels of the streams and ponds are low 

and collection is easier. More organised collection techniques include night searches along 

streams for large frogs using flashlights, machetes, spears, hooks, and nets (for detailed 

techniques used in hunting for trade see Gonwouo & Rödel, 2008; Mohneke, Onadeko & 

Rödel, 2009). 

Growing harvest and trade 

Since most attempts to commercially breed frogs under artificial, farm-like conditions have 

failed, the majority of amphibians are still taken directly from the wild. This trade provides 

a valuable source of revenue to local people. This practice is generally uncontrolled and 

likely to have an important negative impact on the natural populations of particular frog 



 

423 

 

species. Similarly, every year, thousands of toads and frogs are collected in urban and 

suburban areas that host higher institutions of biological studies for use in laboratories. 

During such sessions, each student is entitled to one or two animals for practical sessions 

for anatomy and physiology studies. Each animal is sold for 200–250 FCFA (about 0.5 US 

dollars) depending on the size. As the number of students keeps on growing at universities 

there will be an equivalent increase in the demand of amphibians for practical work. 

Students enrolled in second year of biology in west and central Africa universities carry on 

three dissection sessions over the academic year. Assuming that all frogs and toads used 

during this practical work are collected from the wild, then this represents a considerable 

impact to the various populations where collection is done. Every year in higher 

institutions in Ivory Coast, for example, several hundred individuals are collected by 

students and subsequently killed and dissected in anatomy courses. Over collection seems 

to have negatively impacted local populations up to the point where the species are 

becoming rare to encounter in the city (Kouamé et al., 2015). The number is far higher if 

extrapolated across all higher institutions involved in biological studies across the 

continent. On the other hand, the trade of H. occipitalis at the different district markets of 

Daloa in Ivory Coast is still at a local scale with batches of five adult specimens sold for 

500.00 FCFA (about 1 US dollars). The demand of amphibians for dissection in biology 

together with local markets for food increases the pressure on wild populations in urban 

areas.  

Potential ecological consequences 

Some amphibians species may not presently be categorised as threatened species by the 

IUCN Red List but may become so in the near future with the escalating combined threats. 

The unsustainable harvest of frogs in West Africa could likely have consequences 

including reduced control of arthropod pest species, especially species being vectors for 
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 78 

human diseases such as Anopheles mosquitoes that transmit Plasmodium that cause malaria 

(Mohneke & Rödel, 2009). Given the targeting of large adult individuals during harvests, 

the reproduction of these animals is likely to be affected with consequences such as 

population declines (Gonwouo & Rödel, 2008; Mohneke, Onadeko & Rödel, 2009). The 

small-scale trade has just started to develop and it’s likely to continue and even increase 

given the growing populations. So far no actions have been taken to assess the rate of 

collection and its impact on wild populations. Consequently, population assessment and 

monitoring of Sclerophrys maculata, S. regularis, Hoplobatrachus occipitalis and 

Ptychadena spp. in regions where they are being collected are therefore highly 

recommended in addition to population-specific studies on recruitment and survival rates, 

to determine if populations can withstand the levels of harvest being experienced. 
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Box 7.2. Domestic trade/biological use - Case study from Nepal 

Amphibians, and especially frogs, are the only group of multipurpose vertebrates in Nepal 

that are conjectured as permissible commodities for exploitation unaffected by the law. 

Their utilities expand much broader, as species particularly found in the hills and 

mountains across the country are highly regarded for their food value, therapeutic benefit, 

cultural belief, and customary ritual embedded in various ethnic groups (Rai, 2003; Shah & 

Tiwari, 2004). Some lowland frogs also fit in this category but a larger share in this region 

is captured and sold to high schools of Nepal offering science programmes (Suwal et al., 

2011; Sah & Subba, 2012; Rai, 2014). The formalin-preserved specimens are eventually 

used in teaching concepts of vertebrates’ anatomy to students through dissection 

curriculums in biology labs. Since the demand for such utility is entirely met from wild 

populations, this unregulated harvest poses serious threats to the survival of these frogs. 

Amphibian harvest (Ethno-batrachology) 

Nepal is a melting pot of various ethnic cultures and beliefs that are often shaped by 

human-environment interactions since bygone days. The majority of the ethnic 

communities in rural areas largely depend on natural resources and have championed ways 

to live in harmony with nature through the generation and transfer of rich traditional 

knowledge. They revere, protect and utilise all forms of natural resource (as food and 

medicine), including frogs vernacularly known as ‘Paha’. It is, however an umbrella term 

that represents entire species used for subsistence living in different ecological belts of 

Nepal, particularly freshwater bodies; rivers, streams, waterfall, lake, pond, spring, 

irrigation canal, and wetland. The origin of paha terminology could be traced to the olden 

days of its use by Tamang people in Nepal to denote Liebig’s paa frog and related species 

(Dubois, 1975; Dubois, 1992). Today, the use of paha has been documented by at least 12 

ethnic groups both in the low and high land regions (Shah, 2001; Rai, 2003; Shah & 
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Tiwari, 2004; Lohani, 2010; Lohani, 2011; Lohani & Bharyang, 2011; Rai & Singh, 2015; 

Shrestha, Pandey & Gautam, 2019; Shrestha & Gurung, 2019). The harvest for sustenance, 

recreational eating, and presumed health benefits concentrates generally on fork-tongued 

frogs of the family Dicroglossidae, such as the genera Paa, Ombrana, and Hoplobatrachus 

(Shah & Tiwari, 2004; Kastle, Rai & Schleich, 2013). Among them, large-bodied species 

like Liebig’s paa frog (Paa liebigii) are pervasively popular due to their wide distribution 

in the hills and high-mountains (below snowline) throughout Nepal, whereas bullfrogs 

(Hoplobatrachus tigerinus and H. crassus) are on the radar for lowland to small-hill 

communities. Because both these species take the lion’s share in their multipurpose utility, 

they have massively been harvested across Nepal – a culture (practice) that is pervasive in 

villages. The rest of the frogs under Dicroglossidae can be quite specific to their purpose, 

for example, Sikkim Asian frog (Ombrana sikimensis) constitutes for food (Shrestha & 

Gurung, 2019). Some small-bodied species like Blanford’s paa frog (Paa blanfordii) 

Polunin’s paa frog (Paa polunini), Rostand’s paa frog (Paa rostandi), qualifies for both 

food and curative uses, only in absence of P. liebigii (Rai, 2003). Another group of frogs 

from the family Ranidae, especially cascade frogs of the genus Amolops, such as Assam 

cascade frog (Amolops formosus), Marbled cascade frog (Amolops cf. marmoratus), and 

Mountain cascade frog (Amolops monticola) is also harvested for subsistence over the hills 

of Nepal (Rai, 2003; Shah & Tiwari, 2004). Species of the genus Xenophrys (eg. 

Megophrys) are used for their therapeutic properties as well (Shah & Tiwari, 2004). 

Harvest for subsistence and collection strategy 

Those used for traditional medicines, the meat is mixed with herbs to treat several minor 

ailments and diseases like dysentery, diarrhea, cough, cold, stomach ache, headache, urine 

problems, asthma, fever, measles, pneumonia, tuberculosis, typhoid, etc. (Shah, 2001; Rai, 

2003; Shah & Tiwari, 2004; Shrestha & Gurung, 2019). Besides meat, eggs, skin secretion, 
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and excreta are also used to heal open wounds, cuts, burns, typhoid, and rheumatism. Some 

communities believe that dried paha eggs cure impotency. Meat is an excellent source of 

nutrition for malnourished kids, people recovering from illnesses, pregnant women, and 

nursing mothers. For aforementioned meat-related usages, paha are skinned, eviscerated, 

and then used either raw for meat or preserved (as smoked) for the future. Hunting paha is 

rampant in villages, especially that of hills and mountains where different age-group 

people are involved. There is no harvest limit set or monitored and one may collect almost 

everything during their search effort. The collection is also year-round employing specific 

strategies except for the winter season. Such unchecked harvest spells grave danger to the 

population of paha frogs. Based on the local practice, paha is collected basically from 

streams in different ways; at night when frogs come out of hiding, the collectors keep 

bamboo flambeau – its light blinding frog’s vision temporarily, later followed by 

handpicking. Some divert the river water into smaller channels and place bamboo traps on 

the end while some are involved in daytime hunting by flipping big rocks and handpicking. 

In recent days, paha collection is usually aimed for recreational purposes, especially 

recreational eating as their meat is relished and available free compared to poultry and 

livestock. Some forms of trade exist in villages with goods and money, somewhere in the 

range of USD 0.45-2.26 (Shrestha & Gurung, 2019). 

Mass harvest for dissection 

Four species from the Dicroglossidae family, Tiger frog (H. tigerinus), Jerdon’s bullfrog 

(H. crassus), Terai cricket frog (Minervarya teraiensis), and Skittering frog (Euphlyctis cf. 

cyanophlyctis) make up most of the animals collected for the dissection classes. There is 

fragmentary evidence of quantification regarding mass harvest all across Nepal, some data 

primarily region-specific (Suwal et al., 2011; Sah & Subba, 2012; Rai, 2014). Each student 

requires an average of 2-6 frogs for dissection so the quantities technically exceed the total 
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number of students studying biology every academic year. In 2001, around 47,000 frog 

specimens were used for dissection across educational institutes in the eastern region of 

Terai and some in Kathmandu, Nepal (Rai, 2014). For the academic year 2010/11, a range 

of 52,151 – 102,405 frogs was dissected across high schools, mostly from Kathmandu and 

lowland Terai regions (Suwal et al., 2011). Between 2010-2012, almost 14,000 bullfrogs 

(H. tigerinus) were dissected by Grade XI students across high schools in Biratnagar, 

eastern lowland Nepal (Sah & Subba, 2012). During the same period, harvesters also 

collected frogs for consumption which was estimated at a minimum of a thousand 

individuals per night. The authors posit that such haphazard collection may have pushed 

the local population on a declining trend as the capture quantities became less abundant 

within the same collection locality in just two years. It can be assumed that in absence of 

regulatory mechanisms, Nepal may face a similar fate in near future as of India and 

Bangladesh, where the population of overly harvested species saw a major decline, if the 

impact of such trade is kept overlooked. Since India banned exporting frogs to Nepal for 

dissection, all used specimens are wild-caught populations. The supply chain for dissection 

constitutes local collectors, based in Terai who supply the frogs either to biological 

enterprises (who then sell it to the colleges) or directly to high schools (colleges). An 

individual specimen may cost somewhere between NPR 20-100 (USD 0.18-0.90) based on 

the nature of the supply chain.  

Probable ecological impacts of uncontrolled harvest  

Many adult amphibians whose elevational range extends in the high-altitude region share 

several life-history traits such as body size, clutch size, and longevity (Zhang & Lu, 2012). 

Those living in high-altitude (> 2,500 m) compared to lowland relatives have a stunted 

developmental growth rate (low metabolism) throughout metamorphosis. They gain sexual 

maturity at older ages, thus have brief breeding seasons, rendering lesser spawning 
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frequency with larger eggs (Morrison & Hero, 2003). The unchecked harvest for some 

species in line with their intraspecific differences may be detrimental to the overall 

population, including for example, P. liebigii (1,500-3,360 m), P. polunini (2,600-3,400 

m), P. rostandi (2,400-3,500 m), A. formosus (1,190-2,896 m), A. cf. marmoratus (840-

2,896 m), and O. sikimensis (1,210-2,500 m; Shah & Tiwari, 2004).  

Because of the mass harvest for trade, frog populations in India collapsed for two species, 

Euphlyctis hexadactylus and H. tigerinus in 1985, compelling the authorities to list them in 

Appendix II of CITES (Altherr et al., 2011). Nepal is also a range country for H. tigerinus 

and despite the country not having international trade of frogs some forms of domestic 

trade largely exist, particularly for dissection purposes. Nepal doesn’t have frog farming 

practices, thus all the frogs captured for human use are wild-caught. This, however, by no 

means advocates for introducing the concept of frog farms in the country. It is because 

such farms are prone to failures both ecologically and economically (Kusrini, 2005; 

Gratwicke et al., 2009; Schloegel et al., 2009). 

 

Frogs are carnivorous and usually feed on insects, keeping their populations in balance. 

Some lowland frogs (genera Hoplobatrachus, Limnonectes, and Euphlyctis) have been 

found extremely helpful to the farmers by acting as pest control agents in the rice fields and 

controlling populations of harmful insects like houseflies and mosquitoes that affect human 

health (Khatiwada et al., 2016). In the hilly regions, Amolops formosus also consumes 

insects that are harmful to agriculturally important plants and human health. If frogs 

become less abundant, farmlands will see explosive growth in insect population and 

pesticides-use. Before they face rapid decline due to overharvesting, it is thus urgent to 

manage frog populations by gaining legal measures in a modality of participatory resource 

management. This may include but is not limited to banning destructive collection practice 
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that harms the species and habitat, enacting open/closed harvest seasons, introducing catch 

limits, and imposing fines. Subsistence harvest should be monitored and allowed, without 

jeopardising the ability of the local population to continue their next generation. Dissecting 

real frogs has become obsolete in many countries, Nepal should also revamp the biology 

curriculum replacing real dissection with virtual programmes such as Froguts which is 

freely available and comprehensive (https://thesciencebank.org/pages/froguts). The 

existing information of species biology, niche, population ecology, and harvest rates must 

also be enhanced to investigate the dynamics of harvest, eventually to develop guidelines 

(policy) for sustainable harvesting, if needed. 

 79 
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Box 7.3. Domestic and international trade/medicinal and tourist use - Case study from 

Bolivia 

Background 

Bolivia holds more than 270 species of amphibians and in general, with the exception of a 

couple of species (Telmatobius culeus and Rhinella spinulosa), amphibians are not used for 

any purpose and are not seen as a protein source, although there are isolated reports of food 

source use in the lowlands. One of the two species used is the Titicaca water frog 

(Telmatobius culeus), consumed as a protein source in surrounding towns of Lake Titicaca 

and some Peruvian and Bolivian cities. Domestic pet trade is not officially reported in 

Bolivia, but there are informal reports of native species such as Boana riojana, Boana 

geographica and Phyllomedusa camba, offered together with exotic species such as albino 

Clawed frogs (Xenopus spp.) and Axolotl (Ambystoma spp.), being sold in pet markets in 

two main cities (La Paz and Cochabamba). There are no official reports of Bolivian species 

in the international pet trade, but there are Bolivian species in European pet shops. Local 

markets sell mainly high Andean amphibians such as Rhinella spinulosa, Pleurodema 

cinereum and Telmatobius spp. for traditional use, where different products and animals 

(including amphibians) are offered to Pachamama or Mother Earth. Previously, it was 

common to find hundreds of dissected frogs and toads with money in their mouths as a 

symbol of prosperity in local markets. 

The Titicaca water frog and frog “juice” 

The Titicaca water frog is an iconic amphibian species. Listed as Endangered on the IUCN 

Red List (IUCN, 2020), as Critically Endangered in the Bolivian red book of vertebrates 

(Ministerio de Medio Ambiente y Agua, 2009), and listed in Appendix I of CITES, it is 

endemic to Titicaca Lake and smaller surrounding lakes of Bolivia and Peru, where it is 

offered in different markets. Previously (early 1900s), T. culeus did not appear to be used 
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for human consumption; at this time Allen (1922) reported that despite being a potential 

good source of protein, frogs were not used by local communities. Nowadays frogs are 

intensively harvested for human consumption, where in some cases between 2,000 and 

4,500 individuals are reportedly illegally traded and confiscated, especially in Peru. In the 

1970s and 1980s local communities were consuming the species, mainly in soup form. At 

the same time, they were actively harvesting large individuals to sell them as frog legs in 

local restaurants and restaurants in La Paz. In the last decade there has been an increasing 

demand for Peruvian and Bolivian markets, where the frog is used together with other 

ingredients for frog “juices”, offered as a nutritional booster and presumed to have 

medicinal properties or potions presumed to improve the energy and sexual condition of 

consumers. Thousands of frogs are actively collected every month to be sold in markets; 

they are transported to Cuzco, Lima and other main cities in Peru, and La Paz, El Alto, 

Oruro and Cochabamba in Bolivia. These juices are even offered as part of tourist 

packages. 

Other reports indicate that, in several towns on the Bolivian side of the lake, buyers come 

to buy hundreds of frogs per week from local fishermen, destined to go to Peru. Around 

15,000 individuals were confiscated in 2006, and in 2011 visitors from Asia stopped in 

several towns around the lake seeking to buy large live individuals, possibly destined for 

international trade. 

Legal instruments for the Titicaca water frog’s conservation 

There are different legal instruments in Bolivia to protect species like the Titicaca water 

frog, such as Environmental Law No. 1333, which establishes the obligation to carry out 

the sustainable use of authorised species; the General and Indefinite Ban No. 25458, that 

prohibits any use of Bolivian fauna; Resolution No. 309 of December 2006 issued by the 

National Competent Environmental Authority, which presents the technical standard with 
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Guidelines for Wildlife Management Plans; and finally resolution No. 024 of 2009 issued 

by the National Competent Environmental Authority, which regulates scientific research 

on biological diversity in Bolivia. In Peru, the Titicaca water frog is listed as Critically 

Endangered by Supreme Decree Nº 004-2014-MINAGRI, where all commercial activity is 

banned for this and other species listed in the decree. Internationally, the species has been 

added to Appendix I of CITES in 2017, which indicates that commercial international trade 

is prohibited. 

Despite these legal instruments, they have been unable to curb the illegal use or domestic 

trade of this Endangered species. Also, the international trade between Peru and Bolivia in 

violation of CITES provisions is still very active, with insufficient law enforcement. 

Regarding trade to other countries, there are a couple of confiscations of individuals of this 

species in Ecuador and up until a couple of years ago it was still possible to find websites 

listing the species for sale in Europe. Due to the unique characteristics of this frog and 

interest in this species by the pet trade, stronger global monitoring is needed to better 

protect it from illegal trade. 

 80 

Most of the publicly accessible amphibian trade data recorded within the English language 81 

originates from the United States Fish and Wildlife Service (USFWS) Law Enforcement 82 

Management Information System (LEMIS). The LEMIS data are made available through a 83 

Freedom of Information Act Request (FOIA) and represent the most comprehensive wildlife 84 

trade data for all amphibian species traded internationally by the USA. Although the USFWS 85 

LEMIS database provides detailed information about amphibians that were either imported or 86 

exported from the United States, it does not include data on domestic trade. 87 

 88 
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According to these LEMIS data, 769 individually recorded species of amphibians have been 89 

traded by the USA between 2000 and 2014, although the actual number might be lower since 90 

this includes an unknown quantity of taxonomic synonyms as well as taxonomic names that 91 

are no longer presently recognised as valid (Eskew et al., 2020). The information maintained 92 

in this database is unique compared to the trade records collected by most other countries 93 

where only the trade in CITES-listed species is uniformly maintained and all non-CITES 94 

species are excluded from recordkeeping. Therefore, patterns of international trade in 95 

hundreds of non-protected amphibian species from around the world are only available 96 

through government records of importation to the USA, maintained in the LEMIS database.  97 

It is however important to note that the inclusion of other languages results in a linear 98 

increase in cases of amphibian trade (Hughes, Marshall & Strine, 2021), and while Hughes, 99 

Marshall and Strine (2021) detected 1215 amphibian species in trade, including 575 species 100 

only found available online, additional hundreds can be found with the inclusion of two more 101 

languages in search queries: Korean and Portuguese (Koo et al., 2020; Máximo et al., 2021). 102 

 103 

The amount of domestic harvest and use of amphibians, as well as the volume of international 104 

trade in non-CITES listed species, represent significant knowledge gaps in many parts of the 105 

world. The latter especially deserves greater effort to measure and record, because the level 106 

of international exploitation is a required piece of information for inclusion in proposals to 107 

list additional species in the CITES Appendices (https://cites.org/eng/disc/species.php). If 108 

such proposals become adopted, then standardised recordkeeping and reporting becomes a 109 

required component of international trade activity. At present (September 2021), only 201 of 110 

the more than 8,000 described amphibian species are CITES-listed, with a disproportionate 111 

number of species categorised as Data Deficient by the IUCN Red List of Threatened 112 

Species. Beyond the simple lack of information, Data Deficient species are of additional 113 
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concern because they are likely to be under higher risk of extinction compared to species with 114 

sufficient information on the IUCN Red List (Howard & Bickford, 2014). The volumes of 115 

global trade in all CITES-listed amphibian species can be publicly accessed from the CITES 116 

Trade Database (https://trade.cites.org/). Unfortunately, due to the aforementioned 117 

limitations, it is presently largely unknown how many of the world’s 8,000+ amphibian 118 

species have appeared in international trade, beyond the 201 reported to the CITES 119 

Secretariat, the few hundred non-CITES listed species traded and reported by the United 120 

States (Kolby, 2016), and those informally observed and reported from domestic markets 121 

(Altherr, Freyer & Lameter, 2020). Unlike the international trade records submitted to the 122 

CITES Secretariat, no centralised database exists to capture data that might be collected by 123 

governments describing domestic trade. A considerable research effort is therefore presently 124 

needed to integrate all sources of existing data to provide a comprehensive global snapshot of 125 

the trade in both CITES and non-CITES listed amphibians. This effort should not be 126 

restricted to the scientific research community, but should be a joint effort with regional and 127 

national governments, as well as other regional, national and international legislative 128 

agencies that can provide public access to databases of trade records. 129 

 130 

Accuracy of species identification among trade records 131 

The precision and accuracy of wildlife trade records varies considerably, both within and 132 

between different sources of information. In some circumstances, this is due to established 133 

institutional procedures whereby amphibian trade data are recorded at higher levels of 134 

classification, such as by genus or class, rather than by species. For example, customs border 135 

control officers often record shipments as “amphibians” or “frog legs” without any species 136 

information attached to these data. Amphibian trade records maintained by the USFWS 137 

LEMIS database contains potentially the most species-specific records accessible in English, 138 
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and yet still includes many records described as “Non-CITES Amphibians” or with only the 139 

name of the genus. Therefore, the international trade in most amphibians that are not 140 

specifically protected or regulated is much less accurately and uniformly documented, and is 141 

consequently difficult to objectively characterise. 142 

 143 

Another caveat to the interpretation and application of wildlife trade records for conservation 144 

purposes is the variable level of scientific accuracy expressed by law enforcement officers 145 

recording these data, both with respect to taxonomical precision and visual identification. For 146 

instance, in the United States, a Declaration for Importation or Exportation of Fish or 147 

Wildlife (Form 3-177) must be presented to a USFWS Wildlife Inspector in order for the 148 

shipment to be granted clearance and allowed to enter commerce. Sometimes, these decisions 149 

are made based on document inspections without physically inspecting the animals 150 

themselves, and the actual species traded might differ from those named on the documents 151 

provided by the traders. Thus, for shipments which are not physically inspected, these 152 

misidentifications can then become the accepted records of trade. Other times, wildlife trade 153 

enforcement officers might perform physical inspections but misidentify the species present. 154 

With 8,000+ described species of amphibians, and only 201 which presently require CITES 155 

permits for legal international trade to occur, there is little global incentive to train wildlife 156 

officers to identify the thousands of amphibian species which can potentially be traded 157 

without special permits. Therefore, law enforcement officers may sometimes misidentify 158 

unprotected species because their priority is instead to ensure permits are present, when 159 

required. Additional identification and monitoring challenges arise when amphibians are 160 

traded in the form of skinless frog legs and the species traded may not be those listed on the 161 

export documents. This has been demonstrated in Indonesia where shipments of frogs legs 162 

documented to included Limnonectes macrodon, Fejervarya cancrivora, F. limnocharis, and 163 
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Lithobates catesbeiana, were genetically sampled and proved only to contain F. cancrivora 164 

(Veith et al., 2000; Kusrini, 2005). 165 

 166 

Without the ability to retrospectively spot-check the accuracy of amphibian trade records 167 

against what was physically traded, it is not currently possible to evaluate whether errors in 168 

species identification are commonplace or infrequent among these data. Irrespective of the 169 

frequency, any amount of species misidentification among official government wildlife trade 170 

records can have significant negative repercussions on the development of effective 171 

conservation policies aimed to reduce the threat of trade. For example, in 2019 a CITES 172 

listing proposal to include the genus Paramesotriton in CITES Appendix II 173 

(https://cites.org/eng/disc/species.php), stated that, “According to the LEMIS Database of the 174 

U.S. Fish & Wildlife Service, imports to the U.S.A. have involved a total of 38,273 175 

individuals of Paramesotriton spp. between 2000 and 2016…” (CITES CoP18 Prop. 40). A 176 

closer examination of a subset of these same LEMIS records (trade from 2006-2010) showed 177 

that 233,924 individuals of Paramesotriton newts had been imported to the USA in just one 178 

third of the aforementioned time span (Kolby et al., 2014). It was discovered that this 179 

discrepancy occurred in part because USFWS had recorded 216,054 animals as Triturus 180 

hongkongensis, used as an invalid synonym for Paramesotriton hongkongensis, of which 181 

only 17,870 had been accurately recorded as the latter. Additionally, two shipments which 182 

were imported in 2012 and recorded in LEMIS as Paramesotriton hongkongensis had been 183 

incorrectly identified by the importers and accepted by USFWS, and were instead newts of 184 

the genus Pachytriton (J. Kolby, pers. comm.). The two aforementioned shipments each 185 

contained 1,600 individuals, and it is unknown how many more of the thousands of animals 186 

imported into the USA as Paramesotriton hongkongensis have similarly been recorded with 187 

incorrect species identifications. Although the CoP18 CITES listing proposal for inclusion of 188 
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Paramesotriton spp. in CITES Appendix II was successfully adopted despite the erroneously 189 

low trade data estimate (https://cites.org/eng/disc/species.php), it is plausible that similar 190 

misidentifications among wildlife trade records could have negative consequences for at-risk 191 

species in need of increased protection and regulation. 192 

 193 

Amphibian trade data accessibility and biased communication of impacts 194 

In addition to legal harvest and trade, a large portion of amphibians are harvested and traded 195 

illegally, both domestically and across international borders. The illegal international trade in 196 

wildlife is often considered sensitive information by law enforcement agencies, and even for 197 

CITES-listed species, these data are infrequently openly shared. Only recently, Parties to 198 

CITES have been requested by the CITES Secretariat to begin submitting reports of illegal 199 

wildlife trade, but unlike the reports of legal trade that are made publicly available, these 200 

illegal trade reports are not. Therefore, most of the publicly available government data 201 

describing the nature of global amphibian trade are restricted to records that describe 202 

primarily legal trade in CITES-listed species. Outside of the CITES framework, amphibian 203 

trade monitoring is equally deficient and the data available from organisations such as the 204 

World Customs Organization cannot be used adequately (Chan et al., 2015). Despite requests 205 

for improvements at the IUCN’s 5th World Conservation Congress (WCC-2012-Res020) in 206 

2012, the changes are so far not implemented. 207 

 208 

As with most issues involving multiple countries and regions, identification of data collected 209 

on amphibian trade is sometimes limited by language barriers. Official documents from 210 

government and non-government agencies are recorded using the respective language of a 211 

given country. Consequently, most of the primary literature and secondary syntheses visible 212 

to the international scientific community are restricted by the data and information 213 
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researchers are able to not only access but also comprehend. As such the apparent lack of 214 

data from certain regions may instead be an artifact of the presence of language barriers. For 215 

example, Altherr, Freyer and Lameter (2020) provided a report describing surveys of reptiles 216 

and amphibians offered for sale online and at exotic pet markets in Germany, published in 217 

German, which English-based data queries would fail to locate. It is also true that some 218 

countries don’t gather this information or there is no system where all this data can be 219 

gathered. 220 

 221 

When discussing harvest and consumption, there is a history and tendency to place the 222 

emphasis, and in essence the blame, on resource management within export countries. This 223 

prevalent but problematic view ignores the socioeconomic inequalities that are at least 224 

partially responsible for driving amphibian trade and harvesting. Aside from the biases it 225 

creates in the literature, failure to address the inequalities in trades can impede efforts to 226 

prevent further exploitation of amphibians. Major frogs’ legs importing countries, for 227 

instance, are generally high-income countries, such as France, United States, Belgium, and 228 

Luxembourg (United Nations’ Commodity Trade Statistics Database, United Nations Statistic 229 

Division, 2008; Warkentin et al., 2009). However, despite being one of the leading amphibian 230 

importers, policies and regulations in the EU are often insufficient to prevent overharvesting 231 

in export countries (Auliya et al., 2016). Even within regional markets, consumerism is 232 

largely driven by higher income countries such as Singapore and Hong Kong (Kusrini & 233 

Alford, 2006). While improving local and regional policies are fundamental to regulating 234 

amphibian trade, an acknowledgement of responsibility and an investment in addressing this 235 

issue by high-income, import countries is a key step that needs to be taken. A simple parallel 236 

can be seen in the shift in public consciousness from putting the burden of addressing 237 
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deforestation on the export countries to acknowledging the role import countries play in 238 

driving the market and demand.  239 

 240 

Sustainable amphibian trade 241 

What is sustainable amphibian trade? 242 

Efforts to assess sustainability of domestic and international use and trade in amphibians 243 

should be founded upon a common understanding of the term “sustainable”, to provide 244 

objective context for its use (Table 1). According to the Convention on Biological Diversity 245 

(CBD) from 1993, "Sustainable use" means “the use of components of biological diversity in 246 

a way and at a rate that does not lead to the long-term decline of biological diversity, thereby 247 

maintaining its potential to meet the needs and aspirations of present and future generations” 248 

(https://www.cbd.int/doc/legal/cbd-en.pdf. Accessed 10 May 2021). This CBD definition is 249 

also the working definition adopted by the Parties to CITES (CITES Resolution Conf. 13.2 250 

Rev. CoP14; https://cites.org/sites/default/files/document/E-Res-13-02-R14.pdf). In this 251 

chapter, we similarly apply the term “sustainable” to describe use and trade activities that do 252 

not reduce wild populations of amphibians to levels likely to threaten their survival. 253 

Additionally, we define unsustainable amphibian trade to include any illegal trade activity, 254 

because the illegal trade in wildlife inherently undermines any nations’ rules and regulations 255 

enacted to protect affected species from overexploitation. Published examples of sustainable 256 

amphibian trade are rare (but see efforts by Kusrini (2005) to evaluate sustainability of the 257 

frog legs trade in Indonesia). Moreover, extinction risks associated with the trade of wild 258 

caught specimens is increasing (Hughes, Marshall & Strine, 2021), a trend that is likely to 259 

persist until additional regulations are implemented where appropriate (Borzée et al., 2021). 260 

 261 
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Table 1. Generalised types of use and primary sources of supply and demand of the global amphibian trade. 262 

Type of use Primary origin of supply Primary market driving demand Source (CITES) Notes 

Human consumption for 

food (subsistence, local 

consumption markets) 

Africa, Asia, South 

America Africa, Asia, South America W,C   

Human consumption for 

food (exotic gastronomy, 

global consumption 

markets) Asia North America, Europe W,C 

Bullfrogs constitute a 

notable case as they are 

traded globally but also 

imported into the US 

(where they are native to) 

Medicinal use 

Africa, Asia, South 

America Africa, Asia, South America W,C, O   

Pet trade 

Central and South 

America, Asia Mostly North America, Europe W,C,F, R, O   

Cultural use Africa, Asia, Americas Africa, Asia, Americas W,C   

Educational use Africa, Asia, Americas Africa, Asia, Americas W,C,F, O   
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Zoological use North America, Europe North America, Europe W,C,F, R  

 263 
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Trade in wild-collected amphibians reported as bred in captivity 264 

The trade in animals bred in captivity is often considered to exert reduced or negligible 265 

negative impacts on wildlife populations in their native environments compared to the trade 266 

in wild-collected animals. For this reason, the trade in wildlife produced in captivity is 267 

generally allowed to occur with fewer governmental restrictions in many countries. 268 

Particularly with respect to CITES-listed species, many countries that prohibit commercial 269 

exportation of wild-collected specimens allow for the regulated export of animals produced in 270 

captivity. Unfortunately, systems of relaxed provisions are sometimes exploited and there is 271 

growing evidence of illegal trade in wild-caught specimens of CITES-listed species traded 272 

with fraudulent documentation, particularly using incorrect source codes. The CITES source 273 

codes that are commonly used to describe the origin of a traded animal include W (wild: 274 

specimens taken from the wild), C (bred in captivity: Animals bred in captivity in accordance 275 

with CITES Resolution Conf. 10.16 (Rev.); https://cites.org/sites/default/files/document/E-276 

Res-13-02-R14.pdf), F (born in captivity: animals born in captivity (F1 or subsequent 277 

generations) that do not fulfil the definition of ‘bred in captivity’ in Resolution Conf. 10.16 278 

(Rev.)), and R (ranched: specimens of animals reared in a controlled environment, taken as 279 

eggs or juveniles from the wild, where they would otherwise have had a very low probability 280 

of surviving to adulthood; Table 2). To investigate and respond to this concern, in 2016 the 281 

Parties to CITES adopted Resolution Conf. 17.7 (Rev. CoP18) Review of trade in animal 282 

specimens reported as produced in captivity which stated that, “...the incorrect application of 283 

source codes and/or misuse or false declaration of source codes can reduce or negate such 284 

benefits where they exist, have negative implications for conservation and undermine the 285 

purpose and effective implementation of the Convention”. 286 

 287 

 288 
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Table 2. Definitions of commonly used CITES source codes for traded amphibians. 289 

Source 

Code  

Code Name Code Definition  

 

W Specimens 

taken from the 

wild 

Specimens taken from the wild. 

C Animals bred 

in captivity 

Animals bred in captivity in accordance with Resolution 

Conf. 10.16 (Rev.), as well as parts and derivatives thereof, 

exported under the provisions of Article VII, paragraph 5, 

of the Convention. 

F Animals bred 

in captivity 

that do not 

qualify for a 

“C” code 

Animals born in captivity (F1 or subsequent generations) 

that do not fulfil the definition of 'bred in captivity' in 

Resolution Conf. 10.16 (Rev.), as well as parts and 

derivatives thereof. 

R Ranched 

specimens 

Specimens of animals reared in a controlled environment, 

taken as eggs or juveniles from the wild, where they would 

otherwise have had a very low probability of surviving to 

adulthood. 

(Source: CITES Trade Database – User guide, version 8. Available at 

https://trade.cites.org/cites_trade_guidelines/en-CITES_Trade_Database_Guide.pdf) 

 290 

This Resolution established a process of review, dialogue, and evaluation to improve the 291 

capacity of CITES Parties to determine whether animals genuinely originated from the 292 

declared source or production system and to ascertain the legal origin of parental stock of 293 
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captive bred specimens, especially those that may have been sourced outside their native 294 

ranges. This review process occurs in multiple stages and is meant to complete one full cycle 295 

every 2-3 years, bookended by the start of each CITES Convention of the Parties. At present 296 

(September 2021), this cycle has occurred only once, and the start of the second cycle, 297 

beginning with the selection of new species/country combinations for review, is now 298 

postponed until after CITES CoP19 due to delays caused by the COVID19 pandemic (CITES 299 

AC31 Doc. 19.1; https://cites.org/sites/default/files/eng/com/ac/31/Docs/E-AC31-19-01.pdf). 300 

 301 

In the first iteration of this review process, two countries and two amphibian species were 302 

included for consideration: Panama for the strawberry poison frog (Oophaga pumilio) and 303 

Nicaragua for both the strawberry poison frog (Oophaga pumilio) and the red-eyed tree frog 304 

(Agalychnis callidryas). Both countries were sent a list of questions by the CITES Secretariat 305 

requesting information including the scientific basis by which these countries determined 306 

their exports were non-detrimental to these species, descriptions of the production methods 307 

by which they were producing frogs in captivity, wildlife trade and management methods, 308 

and additional details. The CITES Animals Committee then reviewed the responses received 309 

(see AC30 Doc. 13.1 A2 (Rev. 3); https://cites.org/sites/default/files/eng/com/ac/30/E-AC30-310 

13-01-A2-R3.pdf) and determined that the trade in specimens of A. callidryas by Nicaragua 311 

reported as bred in captivity was in compliance with Article III and Article IV of the CITES 312 

Convention, as well as Article VII, paragraphs 4 and 5, meaning that their use of source code 313 

“C” was found to satisfy all requirements. In September 2018, in accordance with paragraph 314 

2 g) of the Resolution, this species-country combination was excluded from further review 315 

(CITES AC31 Doc. 19.1).   316 

 317 

https://cites.org/sites/default/files/eng/com/ac/31/Docs/E-AC31-19-01.pdf
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Meanwhile, the trade in O. pumilio remained in review for both countries and the CITES 318 

Animals Committee recommended that by 1 February 2019, both Panama and Nicaragua 319 

should confirm that they would export specimens from facilities breeding this species only 320 

using the source code “W” or “F” and stop using the source code “C”, and will also make 321 

legal acquisition and non-detriment findings prior to authorising export (CITES SC70 322 

Doc.31.3). At CITES Standing Committee 71 in August 2019, it was reported that Nicaragua 323 

confirmed it would implement this recommendation, but no response was received from 324 

Panama (CITES SC71 Doc. 13). The Standing Committee then requested that the CITES 325 

Secretariat publish an interim zero export quota for specimens of O. pumilio from Panama in 326 

the absence of their response (CITES AC31 Doc. 19.1). Panama did subsequently respond to 327 

the CITES Secretariat, but at present (September 2021), the content and evaluation of this 328 

response has not yet been made publicly available in either the CITES Animals Committee or 329 

Standing Committee documents posted on the CITES website and this issue does not yet 330 

appear to be resolved. 331 

 332 

Spread of diseases by the amphibian trade 333 

Highly pathogenic amphibian pathogens 334 

The national and international trade in amphibians is the greatest contemporary source of 335 

global spread of amphibian pathogens (Kolby, 2016; Nguyen et al., 2017; O’Hanlon et al., 336 

2018). The most devastating amphibian pathogens with respect to the number of species 337 

impacted and propensity to cause mass mortality are the two species of amphibian chytrid 338 

fungus (Batrachochytrium dendrobatidis and B. salamandrivorans) and ranaviruses. It has 339 

been estimated that approximately 500 species have already been negatively affected by 340 

chytridiomycosis, the disease caused by infection with chytrid fungus, and nearly 100 species 341 
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may already be extinct due to this pathogen, in connection with other factors (Scheele et al., 342 

2019). 343 

 344 

Despite a growing body of scientific literature showing that the trade in amphibians is 345 

spreading deadly pathogens (Schloegel et al., 2009; Schloegel et al., 2012; Kolby et al., 2014; 346 

Kolby et al., 2015; Kolby, 2016; Nguyen et al., 2017; O’Hanlon et al., 2018), most 347 

governments have implemented relatively minimal biosecurity actions, if any at all. Novel 348 

regional strains of B. dendrobatidis with high virulence and the propensity to cause increased 349 

declines and extinctions if they spread continue to be identified (Schloegel et al., 2012), but 350 

there seems to be a general perception that since it’s already been detected in dozens of 351 

countries, it’s already too late for any meaningful efforts to reduce the continued global 352 

spread of this pathogen.  Instead, most governmental attention, particularly in North America, 353 

has been directed towards controlling the spread of salamander chytrid fungus (B. 354 

salamandrivorans) as it has only recently emerged in Europe following introduction from 355 

Asia, and it has not yet been detected in the Western Hemisphere (Martel et al., 2014; Grear 356 

et al., 2021). 357 

 358 

In 2016, the United States Fish and Wildlife Service banned the importation of 201 species of 359 

salamanders by listing them as injurious species under the Lacey Act. The intention was to 360 

prevent the introduction of species likely to carry this pathogen into the USA, based on 361 

results from laboratory exposure trials on a small number of tested species (Martel et al., 362 

2014). If a species was found to be susceptible to infection, the entire genus was then listed as 363 

injurious. The USA is the global hotspot of salamander biodiversity and thus has good reason 364 

to take every reasonable measure to prevent a biodiversity catastrophe if native wild 365 

amphibians were to become exposed to this pathogen. Still, the US chose not to take a more 366 



 

448 

 

precautionary approach, and does not prohibit the import and trade of species within genera 367 

for which susceptibility to infection is unknown. In 2017, it was discovered that frogs can 368 

also become infected with and vector B. salamandrivorans (Nguyen et al., 2017) but 369 

following this announcement, USFWS has continued allowing the importation of millions of 370 

frogs each year without any increased restrictions to control the possible presence of this 371 

pathogen among anurans.  372 

 373 

In contrast to the approach adopted by the USA, where only one-third of described 374 

salamander species have been prohibited from importation, Canada has enacted legislation 375 

which prohibits the importation of all species of salamanders based on, “...the precautionary 376 

principle, and takes into consideration the limited and evolving understanding of the disease, 377 

as well as the enforcement challenges associated with identifying different salamander 378 

species at Canada’s numerous ports of entry” (Government of Canada, 2017). Although 379 

initially enacted for one year pending further study, this import prohibition continues at 380 

present (September 2021). 381 

 382 

In the European Union, “The Scientific Working Group of the European Union recently (June 383 

2016) decided that an import prohibition for Asian salamanders should be implemented by 384 

placing those salamanders on Annex B of the EU regulation 338/97” (Auliya et al., 2016), 385 

and Switzerland has also banned their trade in amphibians (Schmidt, 2016). Although not 386 

specifically aimed to prevent the spread of amphibian diseases, shortly following the 387 

emergence of the COVID19 pandemic Vietnam enacted a ban on its wildlife trade, including 388 

amphibians, and the Republic of Korea now also prohibits the importation of non-native 389 

amphibians (Borzée et al., 2021). 390 

 391 
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Zoonotic pathogens carried by amphibians 392 

In addition to pathogens that cause harm to amphibians, some pathogens transported through 393 

handling and consuming these animals can also cause disease in humans. For example, 394 

Spirometra erinaceieuropaei, a highly pathogenic tapeworm parasite responsible for the 395 

human disease sparganosis, was detected in 9.8% of frogs sampled from food markets in 396 

Guangdong, China (Wang et al., 2018). Research in Thailand found that 90% of amphibians 397 

sampled from frog farms were infected with Salmonella, demonstrating how the trade in 398 

frogs for food can serve as a pathway of Salmonella dispersal and exposure (Ribas & 399 

Poonlaphdecha, 2017). Additionally, frogs sampled from the pet trade in Japan have recently 400 

been discovered to carry Veronaea botryosa, a pathogenic fungus that caused lethal 401 

chromomycosis in many of the affected amphibians (Hosoya et al., 2015). Previously, 402 

humans were the only animal known to be susceptible to this pathogen. Sampling of 403 

confiscated frogs in Peru designated for human consumption showed a predominance of 404 

Aeromonas spp. and Vibrio spp. on Lake Titicaca frogs (Edery et al., 2021). As millions of 405 

farmed frogs are internationally traded as a source of protein for humans (Warkentin et al., 406 

2009; Altherr, Goyenechea & Schubert, 2011), it is possible that the trade in amphibians for 407 

food may spread zoonotic pathogens more commonly than presently recognised. Major 408 

importing nations of live wildlife, such as the USA, do not sample amphibians for pathogens 409 

upon importation, and so there is little data to evaluate the frequency of zoonotic pathogen 410 

introduction through this dispersal pathway (Kolby, 2019). 411 

 412 

Discussion 413 

The global trade and use of amphibians are known to affect thousands of species (Hughes, 414 

Marshall & Strine, 2021), but records of amphibian trade are not often collected, maintained, 415 

or made publicly accessible for research purposes. Improved monitoring efforts are sorely 416 
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needed to better understand whether additional species are threatened by local or international 417 

use and how these activities may be managed in a more sustainable fashion. The role of trade 418 

in the spread of batrachochytrids  is particularly alarming because these pathogens are 419 

frequently detected among amphibians traded internationally (Kolby, 2016) and have caused 420 

more species declines and extinctions than any other disease in recorded history (Scheele et 421 

al., 2019). Despite the various uncertainties described in this chapter regarding regional and 422 

species-level amphibian population estimates, numbers of animals collected from the wild 423 

versus those bred in captivity, and how these factors relate to sustainable use, the overall 424 

trade in amphibians precautionarily appears currently unsustainable at the present time. This 425 

is particularly alarming due to the high frequency of disease vectors being transported 426 

without biosecurity measures to prevent pathogen transmission and the severely negative 427 

consequences of emerging infectious diseases on wild amphibians around the world today. 428 

Further research is needed to explore the feasibility of “pathogen-free” trade methods and 429 

governments should consider requiring animals to be free of chytrid, ranavirus, or other 430 

pathogens prior to allowing trade to occur. Although published case studies of species-431 

specific sustainable amphibian trade are uncommon, this does not imply the absence of 432 

sustainable amphibian trade, as the annual legal trade in thousands of CITES Appendix-II 433 

listed amphibians occurs with governmental scientific evaluations that this trade is not 434 

detrimental to these species (https://cites.org/eng/disc/species.php). Still, it is likely that some 435 

of the 7,000+ non-CITES listed amphibian species may qualify for future listing actions as 436 

more information becomes available to evaluate. Taking into consideration the data 437 

challenges, uncertainties, and recommendations described in this chapter, efforts to better 438 

characterise the nature of amphibian trade and reduce known and potential negative impacts 439 

are urgently needed to help protect global amphibian biodiversity. 440 

 441 
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Recommended actions (in no order of priority): 442 

1. Consider the development of a new Convention based upon principles similar to those 443 

of CITES, but specifically for monitoring and regulating the spread of wildlife 444 

diseases. Although the OIE functions in a similar manner, it only focuses on the 445 

spread of diseases among traded domesticated/farmed animals. An agreement was 446 

signed in 2015 between CITES and the OIE to cooperate in the control of diseases 447 

spread through wildlife trade, but no actions have yet been taken to reduce the spread 448 

of amphibian pathogens. 449 

2. Support population assessments and monitoring of species that are collected and 450 

potentially overharvested for domestic use, including those used for food, pets, and 451 

biological purposes (e.g. dissection in university classes). 452 

3. Encourage countries to establish stronger science-based policy actions to reduce the 453 

risk of B. salamandrivorans introduction through trade, based on recent publications 454 

showing that traded frogs to spread this pathogen, and not just salamanders. 455 

4. Encourage all governments of countries that trade amphibians to develop and 456 

implement a disease surveillance program for amphibians being imported and 457 

exported. This should minimally include ranavirus and the two known amphibian 458 

chytrid fungi (Bd and Bsal). 459 

5. Draft biosecurity policies to effectively control the spread of amphibian diseases 460 

through international trade. Particularly consider the unrestricted trade in species such 461 

as the American bullfrog (Lithobates catesbeiana) and African clawed frog (Xenopus 462 

laevis), which are known reservoir host species of amphibian chytrid fungus and 463 

ranavirus and traded in high quantities and densities. 464 
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6. Issue a request for countries to record their domestic and international trades in non-465 

CITES listed amphibians, in any language (not restricted to English), and make these 466 

data available for scientific review. 467 

7. Encourage governments, NGOs, and academics to report to the IUCN ASG 468 

Secretariat whether they have recorded in any language (not restricted to English), 469 

domestic and/or international amphibian trade data for non-CITES listed species. If 470 

available, these data should contribute towards future studies to better estimate threats 471 

to these species and help in the development of improved management plans to ensure 472 

amphibian trade sustainability, as appropriate. 473 

8. Examine the socioeconomic inequalities that are driving amphibian exports and 474 

establish a dialogue on how policies can be improved on both the import and export 475 

sides of the trade. 476 

9. Explore livelihood alternatives to frog consumption. 477 

10. Identify species in trade in local markets and develop an identification guide for these 478 

species to help build awareness. 479 

11. Build capacity to conduct surveys in local markets and support subsequent analysis of 480 

data. 481 

12. Develop a local or regional database to track domestic amphibian harvesting and 482 

trade. 483 

 484 

 485 
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Abstract 21 

Most instances of detrimental environmental conditions are caused by human behaviour, and 22 

the amphibian decline crisis is not an exception. Although some species can be highly 23 

popular, amphibians are in general among the least preferred animals by people. This 24 

situation represents a source of direct and indirect threats to amphibians. In this chapter we 25 
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review key research on the human dimensions of amphibian conservation. The first section 26 

looks at human attitudes and behaviours that act as threats to amphibians. The second section 27 

offers a review about the factors that have been identified as drivers of amphibian-focused 28 

human cognition. In the third section we provide an overview of different conservation 29 

education and outreach techniques that can be used to change human behaviours and improve 30 

public support for amphibians, as well as about the role of communication in the co-31 

production of usable science in amphibian conservation. We conclude this chapter by 32 

discussing some knowledge and methodological gaps that need to be addressed in order to 33 

better inform effective and strategic conservation education and communication actions to 34 

support amphibian conservation. Communications and education can increase stakeholder 35 

engagement and the success of amphibian conservation actions. Communicating the value of 36 

amphibian conservation using carefully designed messages, for instance by highlighting 37 

evidence about amphibians’ relevance for ecosystem functioning and human well-being, or 38 

about the imperilled status of these animals, might provide a good starting point to increase 39 

the willingness to protect amphibians in decision makers and the public. 40 

 41 

Introduction 42 

Although some species can be highly popular, amphibians are in general among the least 43 

preferred animals by people (reviewed in Prokop & Randler, 2018). These animals can be 44 

associated with negative values, emotions, and wrong perceptions, usually resulting from the 45 

direct interpretation of folklore and superstition (Ceríaco, 2012; Deutsch, Grisolia, Bilenca, & 46 

Agostini, 2021; Tarrant, Kruger, & du Preez, 2016). This situation represents a source of 47 

direct and indirect threats to amphibians. Most instances of detrimental environmental 48 

conditions are also caused by human behaviour (Schultz, 2011), and the amphibian decline 49 

crisis is not an exception. Think of a challenging conservation problem you have encountered 50 
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in relation to amphibians - protecting a rare species, cleaning up a river, implementing 51 

disinfection points to decrease pathogen dispersal in a protected area, or winning support for 52 

legislation. Inevitably, people are part of the problem and public education and outreach must 53 

be part of the solution (Jacobson, McDuff, & Monroe, 2015; Loyau & Schmeller, 2017). 54 

Good interpersonal relationships and communication among stakeholders is also necessary to 55 

produce usable science in amphibian conservation, to increase stakeholder engagement, and 56 

consequently, to boost the success of amphibian conservation actions (Wall, McNie, & 57 

Garfin, 2017; Wright et al., 2020). Therefore, although generally neglected, communications 58 

and education is a key topic to advance amphibian conservation science and practice. 59 

 60 

Several authors have argued that efforts to promote biodiversity conservation must change 61 

human behaviours (Ehrlich & Kennedy, 2005; Schultz, 2011; Schultz & Kaiser, 2012). 62 

Education and communication strategies can play a central role in fostering conservation 63 

behaviours. Research has shown that appropriate education and outreach encourage 64 

sustainable behaviour, improve public support for conservation, reduce vandalism and 65 

poaching in protected areas, improve compliance with environmental regulations, increase 66 

recreation-carrying capacities, and influence policies and decisions that affect the 67 

environment and natural resources (e.g. Day & Monroe, 2000; Jacobson, 2009; Knudson, 68 

Cable, & Beck, 2003). For instance, amphibian-focused outreach at institutions such as zoos 69 

and aquaria can be a crucial intervention to support amphibian conservation worldwide (Dos 70 

Santos, Griffiths, Jowett, Rock, & Bishop, 2019). 71 

 72 

In this chapter we review key research on the human dimensions of amphibian conservation. 73 

The first section looks at human attitudes and behaviours that act as direct or indirect threats 74 

to amphibians. The second section offers a review about the factors that have been identified 75 
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as drivers of amphibian-focused human cognition. In the third section we provide a brief 76 

overview of different conservation education and outreach techniques that can be used to 77 

change human behaviours and improve public support for amphibians, as well as the role of 78 

communication in the co-production of usable science in amphibian conservation. We 79 

conclude this chapter by discussing some knowledge gaps that need to be addressed in order 80 

to better inform effective and strategic conservation education and communication actions to 81 

support amphibian conservation. 82 

 83 

Direct and indirect threats 84 

Human behaviours as a direct threat to amphibians 85 

The presence of negative values and emotions towards amphibians can lead to anti-86 

conservation behaviours, such as torturing and killing amphibians, illegal consumption, or 87 

removing these animals from gardens (Fig 8.1; Deutsch et al., 2021; Pagani, Robustelli, & 88 

Ascione, 2007; Tarrant et al., 2016). In general, little is known about the prevalence of these 89 

human behaviours and their consequences for amphibian populations. Persecution of 90 

amphibians based on negative values and emotions appears to be a non-significant threat in 91 

the Mediterranean basin (Cox, Chanson, & Stuart, 2006). A cross-cultural study on high 92 

school students’ tolerance of frogs conducted in Chile, Slovakia, South Africa, and Turkey 93 

revealed that a low proportion of students reported negative behaviours toward amphibians 94 

such as active killing frogs (6% of respondents), although 30% of the students reported 95 

moving frogs away from their home gardens (Prokop et al., 2016). Contrastingly, a study 96 

conducted in Slovakia found that around 26% of pond owners killed adult amphibians 97 

(Prokop & Fančovičová, 2012). In South Africa, Xhosa people associate amphibians with 98 

witchery and perceive these animals as dangerous and poisonous (Brom, Anderson, 99 

Channing, & Underhill, 2020). The antidote to one of the many frog-related curses is to kill 100 
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the animal, for instance, by sprinkling salt on its back (Brom et al., 2020). This salt sprinkling 101 

also occurs in Argentina, Brazil and Uruguay, with all toads (T. R. Kahn and G. Agostini, 102 

pers. obs.) and is a practice recommended in other countries to keep amphibians away from 103 

gardens (e.g. https://www.bobvila.com/articles/how-to-get-rid-of-frogs/). In a study in 104 

Argentina, Brazil, and Uruguay, Deutsch et al. (2021) found that 45% of respondents have a 105 

strong aversion to the frog Ceratophrys ornata, a situation that led to the death of more than 106 

350 individuals. Keeping amphibians as pets can also represent a threat. For instance, 107 

Deutsch et al. (2021) revealed that 77% of the C. ornata individuals kept in captivity (=178 108 

individuals in this study) were illegally caught from the wild. Due to overexploitation, spread 109 

of pathogens, and risk of invasions, the pet trade remains a main threat to amphibians 110 

worldwide (Mohanty & Measey, 2019). 111 

 112 

Low conservation attention as an indirect threat to amphibians 113 

Unfortunately, the comparatively low likeability of a species can translate into low 114 

conservation efforts, indicating that human predispositions and attitudes toward animals 115 

determine conservation agendas (Prokop & Randler, 2018). For instance, Bellon (2019) 116 

found that federal funding allocated under the Endangered Species Act to vertebrate species 117 

in the US during 2013 was significantly influenced by species’ charisma and not by the 118 

federal priority assigned by the Fish and Wildlife Service. Although amphibians are among 119 

the most threatened vertebrates on Earth, they receive less conservation funding and research 120 

attention than mammals and birds (Dos Santos, 2018; Tapley, Michaels, Johnson, & Field, 121 

2017; Tarrant et al., 2016). For example, Troudet Grandcolas, Blin, Vignes-Lebbe, & 122 

Legendre (2017) found that amphibian species have a small number of occurrence data in the 123 

GBIF database in comparison with other vertebrates, a situation that has not changed over 124 

time. Most of these data were specimen-based occurrences (e.g., from museum collections) 125 
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rather than observation-based occurrences, which reflects a low number of records from 126 

enthusiasts (e.g., citizen scientists) compared to other vertebrate groups. Amphibians are also 127 

highly underrepresented among the flagship species featured on covers of US conservation 128 

and nature magazines (Clucas, McHugh, & Caro, 2008). Meredith, Van Buren, & Antwis 129 

(2016) argued that a poor representation of amphibians in education and outreach initiatives 130 

leads to little public engagement in the conservation of these animals. 131 

 132 

Public acceptance and compliance of conservation measures 133 

Amphibian-focused human cognition is also expected to affect the support and compliance of 134 

conservation measures, although this subject has been little explored. Prokop and 135 

Fančovičová (2012) found a high willingness to protect amphibians (similar to values 136 

received by birds and mammals) in participants attending five randomly selected primary and 137 

secondary schools in Slovakia. In the Pyrenees Mountains, Loyau and Schmeller (2017) 138 

found that all but one conservation measure (pay entrance fees) used to mitigate amphibian 139 

chytridiomycosis was well accepted by the public. Public willingness to support amphibian-140 

focused conservation actions increased when people heard about the amphibian extinction 141 

crisis (Espinosa-Molina, Rodriguez-Jorquera, & Beckmann, 2021; Loyau & Schmeller, 2017) 142 

and become  aware of the benefits that amphibians provide to human society (Tyler, 143 

Wassersug, & Smith, 2007).  144 

 145 

Factors influencing attitudes and behaviours toward amphibians 146 

Interpopulation variation in amphibian-focused human cognition 147 

People of different cultural backgrounds perceive and relate to amphibians in very different 148 

ways. Local folklore associated with negative attitudes and behaviours towards amphibians 149 

has been found in several regions worldwide, e.g. Argentina (Deutsch et al., 2021), Ethiopia 150 
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(Kassie, 2020), Portugal (Ceríaco, 2012), and South Africa (Brom et al., 2020). For instance, 151 

in Argentina, Deutsch et al. (2021) reported that a third of the respondents that encountered 152 

the frog Ceratophrys ornata killed the animal. This behaviour was associated with myths and 153 

tales telling the danger and evil of this species (Deutsch et al., 2021). In contrast, in other 154 

places, amphibians are perceived as beneficial to humans (Jimenez & Lindemann-Matthies, 155 

2015b). For example, in Southeast China, most people found toads and frogs beautiful and 156 

considered them important for pest control, medicinal purposes, and consumption (Jimenez & 157 

Lindemann-Matthies, 2015a). For some indigenous cultures, amphibians are sacred (Beebee, 158 

1996; Valiente, Tovar, González, & Eslava-sandoval, 2010), thus, there is a cultural and 159 

spiritual connection that involves responsibility for the amphibians’ welfare and their 160 

conservation for future generations (Cisternas et al., 2019). It is worth noting that local 161 

folklore and the related human behaviours toward amphibians can exhibit considerable 162 

differences even among groups of people inhabiting the same geographical area, as it is the 163 

case of South Africa between Xhosa-speaking and English-speaking people in their dislike 164 

towards amphibians (67% vs 6%, respectively) (Brom et al., 2020). 165 
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 166 

Figure 8.1. Factors that modulate amphibian-focused human cognition (black) and human 167 

behaviours that can represent a threat to amphibians (blue).  168 

 169 

Intrapopulation variation in amphibian-focused human cognition 170 

Research about the intrapopulation variation in attitudes and behaviours towards amphibians 171 

has highlighted that the interaction between intra- and interpopulation factors is common. For 172 

instance, gender is one of the main factors driving intrapopulation variation in attitudes and 173 

behaviours towards amphibians (Ceríaco, 2012; Deutsch et al., 2021; Prokop et al., 2016; 174 
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Tarrant et al., 2016), but whether women or men show more positive or negative attitudes or 175 

behaviours depends on the human population under scrutiny. For instance, in China, Jimenez 176 

and Lindemann-Matthies (2015a) found that women considered frogs more beautiful while 177 

the opposite was found in Colombia by the same authors (Jimenez & Lindemann-Matthies, 178 

2015b). Some studies suggest that the effect of gender might depend on the level of the 179 

cognitive hierarchy model that is evaluated (Prokop et al., 2016). For example, Ceríaco 180 

(2012) reported that women have more dislike for amphibians than men, but men are more 181 

likely to persecute these animals. Some personality traits such as pathogen disgust (which in 182 

turn can be associated with gender and other personality traits such as neuroticism) are 183 

associated with amphibian-focused human cognition (Prokop et al., 2016). For instance, in 184 

Chile, Slovakia, South Africa and Turkey, Prokop et al. (2016) found that pathogen disgust 185 

negatively correlates with frog tolerance in respondents. 186 

  187 

There is a positive correlation between direct past experiences with amphibians and positive 188 

attitudes and behaviours towards these animals (Schlegel & Rupf, 2010; Tomazic, 2008; 189 

Tomažič, 2011b, 2011a; Tomažic & Šorgo, 2017). For instance, in Indiana, Reimer et al. 190 

(2014) reported that respondents more familiar with hellbenders have more positive attitudes 191 

towards this salamander. Even human-wildlife interactions that can be considered as a threat 192 

(e.g., hunting for consumption) can be associated with positive attitudes towards amphibians 193 

(Jimenez & Lindemann-Matthies, 2015a; Nicholson et al., 2020). One important remark is 194 

the critical role that parental figures and other role models play in the experience that children 195 

might have with amphibians; children that were discouraged from playing with, observing, or 196 

going near amphibians in early childhood, retained their fear as adults, while those who were 197 

encouraged or facilitated by their parents showed affinity for these animals (Brom et al., 198 

2020). In the cross-cultural study conducted by Prokop et al. (2016), the tolerance of frogs 199 
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reported in parents or other family members positively influences the tolerance of frogs in 200 

high school students. 201 

 202 

Finally, knowledge about amphibians (Brom et al., 2020; Jimenez & Lindemann-Matthies, 203 

2015b, 2015a; Rommel, Crump, & Packard, 2016; Tarrant et al., 2016) and educational level 204 

in general (Deutsch et al., 2021; Kassie, 2020; Prokop & Fančovičová, 2012; Tarrant et al., 205 

2016, but see Ceríaco 2012) can increase positive attitudes and behaviours in relation to these 206 

animals. For example, in Indiana, providing respondents with a small amount of information 207 

about the rarity and endemism of hellbenders increased their positive attitudes towards this 208 

species (Reimer et al., 2014). The perceived importance of amphibians also positively 209 

correlates with peoples’ emotions, attitudes, and behaviours in relation to these animals 210 

(Jimenez & Lindemann-Matthies, 2015b, 2015a; Prokop & Fančovičová, 2012).  211 

 212 

The importance of amphibian traits 213 

Amphibian traits can influence how people perceive these animals. Some groups such as tree 214 

frogs (Schlegel & Rupf, 2010) or Darwin’s frogs (Azat et al., 2021; A. Valenzuela-Sánchez, 215 

unpublished data) can be highly charismatic. Differences among amphibian species in their 216 

likeability can relate to aesthetic factors and anthropomorphic relatability (Brom et al., 2020; 217 

Prokop & Fančovičová, 2013). For instance, in the Czech Republic, Frynta, Peléšková, 218 

Rádlová, Janovcová, & Landová (2019) found that worm-like, legless, and small-eyed 219 

amphibians, such as caecilians, were less preferred by people. Morphological analyses also 220 

revealed that anuran species with a round body shape, short forelegs, small eyes, warts, pink 221 

and grey colouration, or dark and dull colouration were perceived as disgusting or ugly 222 

(Frynta et al., 2019).  223 

 224 
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Strategic education and communication actions 225 

Education programmes 226 

The need for improved education and outreach about amphibians is growing as these animals 227 

continue to decline. Careful planning and evaluation are critical for success. Thus, the 228 

development of education and outreach programmes should follow a systematic framework: 229 

planning-implementation-evaluation (PIE) process (Jacobson et al., 2015). Planning involves 230 

identifying goals and objectives, audiences, and educational strategies. Implementation 231 

concerns the operation of activities. Monitoring and evaluation of the results help identify 232 

successful activities as well as components in need of improvement (Table 8.1). This 233 

interactive process-PIE-leads to an education and outreach programmes that avoids common 234 

problems like targeting the wrong audience or using an inappropriate message or medium 235 

(Jacobson et al., 2015). In Figure 8.2 we propose some questions and best practices that 236 

amphibian conservationists can use to guide the planning, implementation, and evaluation of 237 

their education and outreach programmes. 238 

 239 

The success of any education and communication strategy should be measurable. But what do 240 

we know about programme evaluation for amphibian conservation education? We found few 241 

studies that have evaluated the short and long-term impacts of amphibian-focused education 242 

activities. For instance, in a multi-partner educator workshop for the endangered Houston 243 

toad (Anaxyrus houstonensis), Rommel et al. (2016) reported significant increases in 244 

awareness/knowledge and values regarding general amphibian declines and the focal species. 245 

The workshop significantly increased participants’ belief that they had necessary resources to 246 

teach about the Houston toad. Ninety-nine percent of participants agreed that they cared more 247 

about wild toads after meeting live “ambassador” toads. Post-workshop, the authors observed 248 

a 33% increase in use of amphibians or Houston toads in participant learning settings.  249 
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 250 

An evaluation of public understanding of the amphibian decline crisis carried out at 15 zoos 251 

in Brazil, New Zealand, and the United Kingdom, found that visitors in the three countries 252 

had relatively little understanding of amphibians and the global amphibian crisis (Dos Santos 253 

et al., 2019). They also found that zoo visitors in Brazil knew less about amphibian 254 

conservation than those in New Zealand or the United Kingdom. There was less amphibian‐255 

focused content in educational materials in zoos in Brazil than there was in the United 256 

Kingdom. An evaluation of an amphibian conservation education programme for middle 257 

schoolers in southern Chile showed increased knowledge but to a less extent, increased 258 

awareness (Soto Silva, 2015). This study used pre and post-test measures, as well as a control 259 

group. 260 

 261 
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Table 8.1. Data collection methods for programme evaluation proposed by Ernst, Monroe, 262 

and Simmons (2009). 263 

Methods Overall purpose 

Interviews To fully understand someone’s impressions or experiences or learn 

more about their answers to questionnaires. 

Focus groups To explore a topic in depth through group discussion, e.g., reactions to 

an experience or suggestion, understanding common beliefs, etc. 

Questionnaires 

and surveys 

To quickly and/or easily get a lot of information from people in a non 

threatening way. 

Observation To gather accurate information about how a project actually operates, 

particularly about processes. 

Literature review To gather information on the audience and/or the issue. To identify 

what previous investigations have found about the state of the 

knowledge, skills, behaviours, or attitudes of the intended audience 

with relation to the issue. 

Tests To determine the audience’s current state of knowledge or skill 

regarding the issue. 

Concept or 

cognitive maps 

To gather information about someone’s understanding of and attitudes 

toward a complex subject or topic. 

Document or 

product review 

To gather information on how the project operates without 

interrupting the project. 
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Case studies or 

peer review 

To fully understand or depict experiences of end-users in a project, 

and conduct comprehensive examination through cross-comparison of 

cases. 

264 
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 265 

 266 

Figure 8.2: Best practices and questions during the planning-implementation-evaluation (PIE) 267 

of education programmes. Adapted from Jacobson et al. (2015).  268 

 269 
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Some authors have discussed the best type of learning experiences aimed at increasing 270 

knowledge and positive attitudes toward amphibians. In Slovenia, primary school students 271 

with prior direct experiences with amphibians were more willing to study animals and 272 

exhibited more positive attitudes towards them (Tomazic, 2008; Tomažič, 2011a). In 273 

Germany, Randler, Ilg, and Kern (2005) compared two types of learning experiences with 3rd 274 

and 4th graders (indoor-only vs. additional outdoor conservation action). They found that 275 

students who participated in the outdoor conservation action performed significantly better on 276 

achievement tests. Therefore, it seems that direct experiential activities (i.e. first-hand 277 

experiences) perform better than indirect experiences, such as classroom activities. There is a 278 

lack of information about the use and effectiveness of other education techniques in 279 

amphibian-focused contexts. In Figure 8.3 we show some examples of amphibian focused 280 

education and outreach interventions. 281 

 282 

Communications and audience mobilisation 283 

Strategic planning for amphibian conservation can use conservation psychology and 284 

behaviour change theories to connect actions to the threats amphibians face (Maynard, 285 

Monroe, Jacobson, & Savage, 2020). In Figure 8.4 we present a classification of conservation 286 

behaviours that can be used to guide strategic planning frameworks (Maynard et al., 2020). 287 

By promoting these behaviours, organisations can mobilise their audiences and enable the 288 

public to take action for amphibian conservation, increasing their reach and potential impact 289 

(Maynard et al., 2020; Salafsky et al., 2008) 290 

 291 

Organisations and individuals interested in mobilising their audiences for amphibians should 292 

consider the range of communication strategies for their programmes (Fig. 8.3). Strategic 293 

communications tools include: 1) Mass media, such as social media, press kits, and 294 
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advertisements; 2) Interpretive and educational media, such as exhibits, kiosks, publications, 295 

mail, social media, and clubs; 3) Events - such as presentations, workshops, tours, field trips, 296 

community running, meetings, and contests; and 4) community or citizen science, such as the 297 

iNaturalist “Global Amphibian BioBlitz” or the FrogWatch U.S.A. programme promoted 298 

across the Association of Zoos and Aquariums (AZA, 2021).  299 

 300 

A powerful communication and outreach technique to consider for amphibians is community-301 

based social marketing (Green, Crawford, Williamson, & DeWan, 2019; McKenzie-Mohr, 302 

2011). By assessing the needs, motivations, and interests of the target audience, as well as 303 

any barriers hindering conservation actions, your communications programmes can inspire 304 

behaviour change. Other conservation psychology theories suggest additional 305 

communications techniques, such as the Elaboration Likelihood Model which highlights how 306 

reminders, cues, or celebrity spokespersons can spark interest in your audience (Petty & 307 

Cacioppo, 1986), or the Theory of Planned Behaviour that integrated social norms with 308 

behavioural intention to act (Ajzen, 1985). An example social marketing campaign for 309 

amphibians that used such strategies is the Amphibian Report Card, which created clear 310 

messages, a framework relatable to all people, and direct connections between the threats 311 

amphibian species face and the suggested actions to help them (“Amphibian Report Card,” 312 

2018). 313 
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 314 

Figure 8.3. Examples of amphibian-focused education and outreach interventions. (A, B) 315 

Education activities. (A) Classroom sessions about the mountain chicken frog to school 316 

children on Dominica (credits: Benjamin Tapley). (B) Children from Chilean Patagonia 317 

collaborate with ONG Ranita de Darwin members during the monitoring of Darwin’s frog 318 

populations at the Reserva Elemental Melimoyu (credits: Daniel Casado). (C, D) Training 319 

workshops. (C) Training workshops for amphibian monitoring with tangata whenua (local 320 

indigenous communities in New Zealand) (credits: Phil Bishop). (D) A workshop in the 321 

Hoang Lien National Park, Viet Nam, encouraged porters and guides to adopt amphibian 322 



 

481 

 

friendly behaviours (credits: Benjamin Tapley). (E, F) Outreach activities. (E) Children paint 323 

frog watercolours at a zoo in central Chile. This outreach intervention also included a photo 324 

exhibition and infographics about amphibian ecology and conservation (credits: ONG Ranita 325 

de Darwin). (F) “Día de los anfibios” in the central square of Valdivia (southern Chile), a 326 

festival that gathered conservation organisations and the public to celebrate amphibians 327 

(credits: Felipe Rabanal). 328 

  329 
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 330 

Figure 8.4. Classification of behaviours that can be promoted to mobilise organisation 331 

audiences for amphibian conservation. Adapted from Maynard et al. (2020)  332 

 333 

The importance of stakeholder and community engagement 334 

When creating impactful communication and education programmes, stakeholder 335 

engagement and community involvement are key factors to consider in order to align the 336 

local context with the proposed conservation actions (Bennett et al., 2017; Lin, Cheng, Chen, 337 

& Chang, 2008). For example, Kanagavel et al. (2020) found that to develop amphibian-338 

based community conservation initiatives in the Western Ghats of India, frog conservation 339 
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must be linked within a wider concept of forest protection since a significant proportion of 340 

community livelihoods depend on the presence of forests. Similarly, Cisternas et al. (2019) 341 

proposed that for achieving the feasibility of biocultural partnerships in New Zealand, 342 

building a relationship between participants would be the best way to optimise 343 

communication and validate the incorporation of different perspectives on frog conservation. 344 

A partnership between rural farmers and scientists in Mexico allowed the creation of a 345 

restoration programme focused on improving Axolotl (Ambystoma mexicanum) habitat while 346 

maintaining traditional agricultural practices (Valiente et al., 2010). Long-term partnerships 347 

between private landowners and conservationists have also allowed to protect amphibians' 348 

habitat in the USA (Kuyper, 2011; Milmoe, 2008; Symonds, 2008), United Kingdom (Pond 349 

Conservation: The Water Habitats Trust, 2012), and Chile (ONG Ranita de Darwin, 2021) 350 

(Fig. 8.5). In Romania, Hartel, Scheele, Rozylowicz, Horcea-Milcu, & Cogălniceanu (2020) 351 

concluded that lack of engagement from a broad range of local stakeholders was crucial for 352 

the failure of maintaining amphibian conservation initiatives within a protected area that 353 

changed its custodian. Therefore, amphibian conservation initiatives that focus on the broader 354 

cultural-socio-economic context would benefit from public support and long-term impact. 355 

Partnerships could also help to produce actionable science in amphibian conservation. 356 

  357 
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 358 

Figure 8.5. Examples of community engagement in amphibian conservation. (A) Citizen 359 

conservationists (“toad patrollers”) set up a fence in canton Basel-Landschaft, Switzerland, to 360 

make sure that migrating amphibians are not killed on the road (credits: Benedikt Schmidt). 361 

(B) Landowners from southern Chile sign long-term voluntary or legal conservation 362 

agreements with a local amphibian conservation organisation to protect and monitor 363 

amphibians and related habitat in their land (credits: ONG Ranita de Darwin).  364 

 365 

Communication and collaboration for actionable science in amphibian conservation  366 

The need for actionable science in amphibian conservation is urgent, although generally there 367 

is a disconnection between research and practice (Grant, Muths, Schmidt, & Petrovan, 2019). 368 

This knowledge-implementation gap means that much of the amphibian scientific evidence 369 

available is not useful for end users, such as managers or decision makers (Schmidt et al. 370 

2019). A way to address this problem is to communicate research in a way that can be 371 

directly used by end users (Schmidt, Brenneisen, & Zumbach, 2020). For instance, Indermaur 372 

and Schmidt (2011) quantified the requirements for wood deposits for populations of 373 

common toads (Bufo bufo) and European green toads (Bufo viridis). These authors reported 374 

their findings in a way that managers can easily determine the amount of woody deposits per 375 

hectare that are required to sustain a population of any size (Indermaur & Schmidt, 2011). 376 

The Conservation Evidence project is another good example of knowledge communication 377 
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that can be directly used in conservation policy and management decisions. This project 378 

currently summarises evidence about the effectiveness of 129 amphibian conservation 379 

actions, mostly from North America, Europe, and Australia (Christie et al., 2021). 380 

 381 

When thinking about communicating research to inform practice, one should ask what 382 

format(s) should be used to meet the needs of multiple end users (Wall et al., 2017). These 383 

formats can include websites, scientific and outreach articles, policy briefs, guidelines, 384 

smartphone apps, seminars, or hands-on workshops. It is likely that in most situations more 385 

than one format must be required. For instance, Schmidt et al. (2020) used a comparative 386 

effectiveness study to evaluate the effect of underpasses for amphibians (toad tunnels) and its 387 

physical characteristics on nearby amphibian populations in Switzerland. These authors 388 

decided to publish the key conclusions of this study in two outreach articles in two languages 389 

well before the scientific article was published (Schmidt et al., 2020). 390 

 391 

Carefully thinking about how to communicate research findings does not guarantee that these 392 

findings will be relevant for solving amphibian conservation problems. If research is 393 

designed, implemented, and communicated only considering the scientist’s perspective and 394 

knowledge of a conservation problem, there is the risk of failing to provide the information 395 

that is required by those who make policy and management decisions (Enquist et al., 2017; 396 

Wall et al., 2017). Most amphibian conservation problems require changing this 397 

unidirectional flow of information paradigm to a multidirectional one. Communication 398 

between scientists, managers, decision makers, and other stakeholders can improve the 399 

chances that research makes a true positive impact for amphibian conservation. There is a 400 

robust body of literature concerning collaborative production of knowledge in several 401 

scientific and medical fields, including conservation, which can be consulted by readers 402 
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interested in the subject (e.g., Wall et al., 2017 and references therein). For example, 403 

translational ecology is “an approach that embodies intentional processes by which 404 

ecologists, stakeholders, and decision makers work collaboratively to develop and deliver 405 

ecological research that, ideally, results in improved environment-related decision making” 406 

(Enquist et al., 2017). A translational ecology approach, ideally guided by decision support 407 

frameworks (e.g. Wright et al., 2020), is an effective way to co-produce scientific evidence 408 

that informs conservation action (Wall et al., 2017).  409 

 410 

It is important to consider that actionable science does not guarantee conservation success, as 411 

institutional barriers can play a significant role in the success of any conservation project 412 

(Wright et al., 2020). Institutional barriers can include conservation not being a political 413 

priority, amphibians not being preferred by the primary decision makers, and deficient 414 

engagement and communication between scientists and decision makers (Rose et al., 2019). 415 

For instance, Wright et al. (2020) evaluated 12 amphibian conservation case studies from 416 

Australia, Canada, Italy, and USA that used decision science to plan and implement 417 

conservation actions. Although all these case studies provided usable science by identifying 418 

optimal actions, less than 25% of the studies achieved conservation success. Most of the 419 

barriers for success were institutional barriers related to the complexity of the governance 420 

structures for a given decision problem, which led to over half of the studies failing, at least 421 

partially, at securing funding and implementing the actions (Wright et al., 2020). Therefore, 422 

communication among, and engagement of the different individuals and organisations 423 

involved in a project is critical. A conservation project that uses a translation approach should 424 

explicitly consider since its inception by what means, how frequently, and at what depth of 425 

engagement (e.g., presential or online workshops, emails, etc.) the researchers, end users, and 426 

other stakeholders are expected to communicate (Wall et al., 2017). Key leadership needs to 427 
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be engaged to transcend organisational structures, which might require the involvement of 428 

multiple actors across time and space (Wright et al., 2020). This highly collaborative work 429 

can be an extenuating process, so careful consideration of “soft skills'' such as listening, 430 

communicating, mediating, negotiating, and sharing, is very important for success (Enquist et 431 

al., 2017; Wall et al., 2017). It is also important for researchers to acknowledge that effective 432 

communication may require the participation of boundary-spanning organisations or 433 

professionals that can be better prepared to facilitate the collaboration across multiple 434 

disciplines and sectors (Wall et al., 2017; Wright et al., 2020). 435 

 436 

Discussion 437 

In this chapter we reviewed a representative body of literature to assist those researchers and 438 

practitioners who may undertake research and/or actions for amphibian conservation. We 439 

acknowledge a taxonomic and geographical bias in the evidence here reported. For instance, 440 

most studies about amphibian-centred human cognition were focused on anurans and 441 

conducted in Europe, South America, and South Africa. Additionally, there was an evident 442 

methodological bias towards an interpretivism research approach, and the application of 443 

questionnaires was the predominant data collection tool. Based on innovative examples of 444 

community and stakeholder empowerment with conservation (e.g. Charles, 2021; Lyver, 445 

Timoti, Davis, & Tylianakis, 2019), we encourage amphibian researchers to also incorporate 446 

innovative research methods that allow a bottom-up approach to knowledge construction, 447 

such as participatory action research, decolonising methodologies, and biocultural 448 

approaches.  449 

 450 

Several factors have been identified as modulators of human attitudes and behaviours towards 451 

amphibians. These factors highlight different cultural and psychological sources of variation 452 
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that need to be considered when designing conservation education and communication 453 

programmes. Two important remarks are worth discussing. First, most studies have focused 454 

on factors associated with intermediate levels in the cognitive hierarchy model of human 455 

behaviour (see Fulton, Manfredo, & Lipscomb, 1996; Fig 1), such as beliefs, attitudes and 456 

norms. How these intermediate levels translate into behavioural intentions and behaviours 457 

affecting amphibians remains poorly understood. Second, most studies on this topic have 458 

focused on the general public, while much less is known about factors influencing behaviour 459 

towards amphibians among private landowners, farmers, producers and entrepreneurs, 460 

conservation professionals, educators, natural resources managers, and policymakers (but see 461 

Pontes-Da-Silva, Pacheco, Pequeno, Franklin, & Kaefer, 2016; Prokop & Fančovičová, 2012; 462 

Rommel et al., 2016 for exceptions). 463 

 464 

Conservation education and outreach techniques can be used to change human behaviours 465 

and improve public support for amphibian conservation. Although we found that some 466 

methods have produced positive results, programme evaluation in amphibian conservation 467 

education is still rare. Evaluation is critical to assess and improve the effectiveness of any 468 

conservation intervention, and therefore to ensure that limited funds go as far as possible in 469 

achieving conservation outcomes (Ferraro & Pattanayak, 2006). Most of the evaluation 470 

research that has been done focuses on classroom/experiential activities with pre- or middle-471 

schoolers, and uses surveys or interviews to measure knowledge and attitudes. Thus, there is 472 

no evidence about the effectiveness of conservation education programmes on changing 473 

human behaviours and improving public support for amphibian conservation. We strongly 474 

suggest expanding the range of evaluation designs and methods traditionally used (Table 8.1) 475 

and assess other target audiences and conservation education techniques that could be used 476 

for amphibians (e.g., citizen science, storytelling, visual arts, interactive web sites, see 477 
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Jacobson et al., 2015 for more examples). This information is crucial to inform effective and 478 

strategic conservation education and communication actions. For instance, citizen science 479 

could be a useful tool to engage stakeholders and communities in amphibian conservation 480 

(Bonney et al., 2014; Lee et al., 2021). Participants of citizen science benefit from the 481 

experiential hands-on and field-based activities as well as gain confidence from the mastery 482 

of concepts and associated skills required for their participation (e.g. Cisternas, Germano, 483 

Longnecker, & Bishop, 2017; Lee et al., 2021). Citizen scientists or “citizen conservationists” 484 

can also directly benefit declining amphibian populations, for instance by reducing road 485 

mortality of pond-breeding amphibians (Fig 8.5; Sterrett, Katz, Fields, & Grant, 2019).  486 

 487 

Communications and education can increase stakeholder engagement and the success of 488 

amphibian conservation actions. Increasing conservation attention towards amphibians could 489 

lead to a virtuous circle promoting career development of amphibian conservationists. For 490 

instance, media such as television, Internet, and magazines ranked as the most important 491 

career motivations for natural resources students in Florida (Haynes & Jacobson, 2015). 492 

Increasing the presence of amphibians in such media could increase students' interest in 493 

pursuing an amphibian-focused career. Improving positive attitudes toward amphibians in 494 

high-level decision makers (such as politicians, CEOs, board of directors, dean of colleges, or 495 

funders) should also be a high priority in the amphibian conservation community. Working 496 

with a species that is not preferred by the administration of your research institution or 497 

conservation organisation, or that receives less funding compared to other more charismatic 498 

species, can be a barrier difficult to sort in the career pipeline of an amphibian 499 

conservationist. Communicating the value of amphibian conservation using carefully 500 

designed messages, for instance by highlighting evidence about amphibians’ relevance for 501 

ecosystem functioning and human well-being, or about the imperilled status of these animals, 502 
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might provide a good starting point to increase concern about amphibians in decision makers 503 

and the public. 504 

 505 

Box 8.1. Glossary 

 

Actionable science = “data, analyses, projections, or tools that can support decisions in natural 

resource management; it includes not only information but also guidance on the appropriate 

use of that information” (Enquist et al., 2017). 

Biocultural partnerships = an association of persons joined as partners to develop conservation 

actions that sustain the biophysical and sociocultural components of dynamic, interacting, and 

interdependent social-ecological systems. 

Citizen science = broadly, can be defined as the involvement of volunteers non-experts in 

scientific research. 

Community involvement = the action of welcoming and integrating local people and 

communities into conservation decisions and implementation to effectively mobilise their 

action and reduce conflicts. 

Folklore = traditional description of local beliefs and customs of a people often expressed in 

stories, myths, legends, and other artistic representations. 

Stakeholders = include any community member, organisation, or individual with a stake in the 

conservation issue or location of a conservation project. 

 506 
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 31 

Abstract 32 

Comprehensive conservation planning is the starting point for effective conservation efforts. 33 

It clarifies the plan’s goals and expected outcomes, evaluates threats to species, identifies 34 

missing scientific information, identifies and prioritises the actions that are needed to achieve 35 

objectives, establishes a timeline, identifies necessary resources including funding, personnel, 36 

and partnerships, and creates a monitoring plan to assess conservation impact and adaptive 37 

management needs. Because effective conservation is a long-term process, the short-term 38 

impact is often difficult to assess, but evidence is emerging that shows improved species 39 

status as a result of comprehensive conservation planning. In this chapter we identify the 40 

various levels at which planning occurs, discuss tools and processes available to assist with 41 

conservation planning, including some specific to amphibians, outline some of the major 42 

challenges to planning and plan implementation, and provide key recommendations to 43 

facilitate successful amphibian conservation planning. 44 

 45 

Introduction 46 

Conservation planning has important components that occur at global, national, and local 47 

levels. The IUCN Amphibian Conservation Action Plan (ACAP; Gascon et al., 2007; Wren et 48 

al., 2015) has identified cross-cutting needs across broad geographic and jurisdictional scales 49 

for amphibian conservation and has provided direction for addressing those needs relative to 50 
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key risk factors. National and regional plans (e.g. Vaira, Akmentins, & Lavilla, 2018) often 51 

have established priorities regarding which species are most in need of conservation action at 52 

those spatial scales and what type(s) of actions are most urgent. In contrast, species action 53 

plans identify specific measures needed to implement the plans, as well as who would be 54 

responsible for which actions and over what timeframes, and the metrics of success. In 55 

addition to ensuring efficient use of resources, conservation action plans at all levels may be 56 

leveraged to increase funding opportunities and partnerships, and overall can improve the 57 

probability of success of grant applications as they ensure accountability with periodic reports 58 

and adaptive management, when needed. 59 

 60 

Strategic species conservation planning increases the potential for effective conservation 61 

action that results in positive outcomes for the species. Such a positive outcome depends on 62 

several aspects: (i) the inclusion of all affected stakeholders in the planning process; (ii) 63 

consensus around well-defined and achievable goals, objectives, and actions; (iii) the best 64 

available scientific information to inform management and policy decisions; (iv) check points 65 

over time that enable adaptive management; (v) periodic reporting to stakeholders for 66 

transparency and accountability; and (vi) clear articulation of the measure(s) of success. In 67 

addition to these elements, clarification of the regulatory authority over species for 68 

conservation actions (including its legal enforcement capability), matching actions with 69 

available resources such as funding and personnel that may limit the capacity of the 70 

conservation program, and an understanding of how stakeholders consider risk and 71 

uncertainty relative to conservation planning, implementation of actions, and results are 72 

needed to maximise the success of programs (Olson, 2007). The importance of species 73 

conservation planning is recognised by the IUCN Species Survival Commission (SSC) as one 74 

of the essential elements of species conservation in the Assess, Plan, Act Cycle (Figure 9.1).  75 
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 76 

 77 

Figure 9.1: The IUCN SSC Assess-Plan-Act Cycle. 78 

 79 

Conservation is a truly multi-disciplinary subject, requiring a wide range of expertise. 80 

Traditionally, biologists have moved into the conservation sphere as their research 81 

highlighted the decline of threatened species, but as the discipline of conservation planning 82 

has evolved, conservation biologists have recognised the need to engage diverse professions 83 

to improve the success of conservation initiatives. It might be beneficial, for example, to 84 

include experts in social marketing, human demographics, or resource economics in 85 

amphibian conservation decision-making. Undertaking a planning exercise is one of the best 86 

opportunities to bring that expertise together, strengthening stakeholder networks and 87 

increasing coordination and collaboration for, ultimately, better outcomes for the species, 88 

group of species, or site in question. 89 

 90 

The history of amphibian conservation planning 91 

The first conservation plans for amphibians (e.g. USFWS, 1983, 1984) were developed in the 92 

1980s in response to the United States Endangered Species Act of 1973 (The Endangered 93 

Species Act as Amended by Public Law 97-304 (the Endangered Species Act Amendments of 94 
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1982), 1983). These and other early plans brought together important ecological information 95 

about a threatened species, highlighted knowledge gaps, and sometimes prioritised actions 96 

required for species recovery, but often failed to provide recovery criteria, thus making it 97 

difficult to know when a species had been recovered successfully. Whereas the first edition of 98 

the ACAP (Gascon et al., 2007) did not include a chapter on conservation planning, it was 99 

included in the 2015 ACAP revision (Wren et al., 2015). Despite this, the number of 100 

conservation plans that are known to be completed for previously un-planned amphibian 101 

species post-2015 has been substantially lower than in preceding years (Figure 9.2). During 102 

the 1982-2007 period an average of 1.24 plans were produced per year. In the subsequent 103 

2007-2015 period, 4 plans per year were completed, while post-2015 only an average of 2.5 104 

plans were produced annually. A full accounting of species conservation plans has been 105 

difficult to compile, hence inadequate reporting may contribute to some differences among 106 

timeframes. 107 

 108 

 109 

Figure 9.2. Number of amphibian conservation action plans produced globally since 1982, 110 

split by pre-ACAP (before 2007), First ACAP (2007-2015), and second ACAP (2015-2021). 111 

All plans for which references could be found, either on the ASG website, the CPSG website, 112 
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the USFWS website and through internet search engines were included. This probably 113 

underestimates the actual number of plans as some countries (i.e., Sweden) were reported to 114 

have plans for all nationally endangered species, which were not available. NAP refers to 115 

National Action Plans covering an entire country; RAP refers to Regional Plans covering a 116 

region within a country; SAP refers to Species Action Plans, usually for a single species, 117 

although a multi-species plan for Atelopus has recently been published and is included in the 118 

SAP count. Plans are recorded based on the year they were first produced. Some were 119 

updated in subsequent years, but these were not recorded as separate plans.  120 

 121 

The number of plans produced between 1982 and 2021 also starkly differed with geographic 122 

region (Figure 9.3). The variation in number of plans among regions does not reflect species 123 

richness, relative number of threatened species within a region, or spatial extent of regions. 124 

Multiple complex interacting factors may explain variation in conservation plan initiation 125 

over time among geographic areas. Some of these are discussed further below.  Many tie to 126 

low priority for amphibian conservation, resulting in limited resources and capacity to assess 127 

amphibian species status and to develop and implement conservation plans.  128 

 129 
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 130 

Figure 9.3. The total number of amphibian species conservation action plans (National, 131 

Regional and Species combined) by Geographic Region. There may be additional amphibian 132 

conservation plans that we did not find when assembling these data. 133 

 134 

Assessing the effectiveness of conservation action plans is difficult for a number of reasons, 135 

not the least of which is identifying what measures will be used to evaluate success. At one 136 

end of the spectrum, success may be measured by activity, such as the number of prioritised 137 

actions completed, or by slowing declines in populations as is the case in a review of the 138 

Sahonagasy Action Plan (Andreone et al., 2012) published four years following the plan’s 139 

completion. Alternatively, success may be measured by outcomes, such as the long-term 140 

viability of a species in the wild, for example, via changes in Red List status (Young et al., 141 

2014). In general, it is difficult to quantify how many amphibian conservation plans have 142 

been implemented, and there is no standard review process of the effectiveness of amphibian 143 

conservation action plans in terms of achieving positive outcomes. This is not surprising, as 144 
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the literature suggests that there is little evidence for the conservation outcomes of any 145 

conservation action planning (McIntosh et al., 2018), although individual actions are quite 146 

diverse and many have had support for positive effects (Smith, Meredith, & Sutherland, 147 

2020). Assessing the impact of conservation planning for a species can take years as the 148 

effects of various efforts may not occur immediately. Lees et al. (2021), in an analysis of 35 149 

species conservation plans completed in 23 countries over 13 years for a wide variety of 150 

species have documented positive outcomes (either increased or stable populations) for 26 151 

species after periods of 15 years. Although the remaining species continued to decline over 152 

the same period, the decline slowed, and no species went extinct. As this analysis 153 

documented, measuring the impact of conservation planning is difficult and complex. It can 154 

take several decades for the effect of conservation actions to be seen, so it is unlikely that 155 

results will be seen immediately for more recently developed plans. 156 

  157 

Assessment – a critical first step in planning 158 

Good planning depends on good information about the current status of species. Several tools 159 

are available to assist in providing this information. The amphibian database assembled for 160 

The IUCN Red List of Threatened Species (IUCN Red List) provides collated information on 161 

species status across multiple standardised criteria, including some recommended 162 

conservation steps. The Conservation Needs Assessment (CNA) (Johnson et al., 2020) 163 

developed by the Amphibian Ark (AArk) is a transparent, logical and objective method 164 

which prioritises those species with the most pressing conservation needs. The CNA 165 

complements the IUCN Red List extinction risk assessments and together they provide a 166 

foundation for the development of holistic conservation action plans that combine in situ and 167 

ex situ actions as appropriate. Where they exist, National Red Lists or equivalent 168 

classification schemes also provide similar status information for species. Please see Chapters 169 
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2 and 10 for a deeper discussion on types of data required to make assessments, the issue of 170 

insufficient data, and methods that can be used for surveillance and monitoring to inform 171 

extinction risk assessments and planning. These assessment and prioritisation processes 172 

provide guidance for maximising the impact of limited conservation resources by identifying 173 

which measures could best serve those species requiring help. 174 

 175 

Planning tools 176 

Guidelines 177 

As experience with conservation planning has increased, methods for species conservation 178 

planning have evolved, incorporating knowledge and decision-making tools from other 179 

disciplines. Published conservation planning guidelines reflect this improved knowledge. 180 

 181 

Three fundamental approaches are described in the literature. The Open Standards for the 182 

Practice of Conservation (or ‘Conservation Standards’; Conservation Measures Partnership, 183 

2020) is an adaptive planning framework utilised to collaboratively and systematically 184 

conserve flora and fauna. It was created by the Conservation Measures Partnership (CMP). A 185 

full description of the Conservation Standards can be found at 186 

www.conservationmeasures.org. The IUCN SSC Conservation Planning Specialist Group 187 

(CPSG) publication Species Conservation Planning Principles & Steps, Ver. 1.0 (CPSG, 188 

2020); www.CPSG.org) provides guiding principles for conservation planning and 189 

systematically describes the steps essential for effective conservation planning 190 

(http://www.cbsg.org/species-conservation-planning-cycle). A number of similarities (e.g., 191 

clear articulation of issues, identification of goals, objectives and actions, evaluation of 192 

impact) exist between the Conservation Standards and CPSG planning methods, although 193 

they also differ in some respects. One key difference between the Open Standards and the 194 
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CPSG process is that the latter focuses more heavily on identifying the key threats to the 195 

species as an initial step in the planning process. Less similar to these two methods is a 196 

process known as Structured Decision Making (Gregory et al., 2012), an approach for 197 

organised analysis of natural resource management decisions that can help address risk and 198 

uncertainty in the conservation planning process. In particular, Structured Decision Making is 199 

designed for use when there is substantial uncertainty regarding the effectiveness of possible 200 

conservation actions, whether because of inadequate understanding of factors such as 201 

fundamental ecological requirements of a species, or the probable impact of proposed actions. 202 

AArk has developed templates for formatting both national and species action plans which 203 

can be found in the AArk website’s husbandry section (www.amphibianark.org). 204 

 205 

Although there are guideline documents for the different approaches described above, they 206 

share some key points, which enable development of an effective conservation plan, and 207 

facilitate the implementation of that plan. All the methods help a group come together and 208 

work through complicated challenges, which may include conflicting stakeholder priorities 209 

and lack of data or evidence, to agree on a conservation solution. A skilled facilitator is key 210 

to ensuring an inclusive process. These methods also rely on making clear objectives (often 211 

following the SMART model: Specific, Measurable, Achievable, Realistic, and Time-bound). 212 

Furthermore, all these techniques are ‘living methods’ with a cyclical nature, which involve 213 

regularly re-evaluating decisions based on new information, and encourage assessment of 214 

past decisions to ensure the best possible outcomes. 215 

  216 

Analytical tools 217 

In cases where sufficient demographic information is known, Population Viability Analysis 218 

(PVA; Lacy, 2000) is an analytical tool that can project the future of threatened species’ 219 
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populations under various scenarios describing current and future conditions. This method is 220 

used in the management of threatened species to evaluate the relative impacts of threats, 221 

develop plans of action, judge outcomes of proposed management options, evaluate 222 

population recovery efforts and assess possible impacts of habitat modification or loss. It 223 

considers the interacting factors that could drive populations to extinction. PVA is used to 224 

estimate the likelihood of a population becoming extinct and to point out the need for 225 

conservation efforts, identifying key life stages or processes that should be the target of such 226 

conservation. One key value of a PVA is that it points out where data and expert opinion or 227 

intuition often lead to quite different results. While the predictive accuracies of PVAs have 228 

been criticised for lack of applied validation, they are objective and repeatable (Chaudhary & 229 

Oli, 2020; Doak et al., 2015) and the benefits of their use has been demonstrated in 230 

amphibians (Auffarth, Krug, Pröhl, & Jehle, 2017; Pickett, Stockwell, Clulow, & Mahony, 231 

2016). 232 

 233 

Unfortunately, these simulation models require solid data on population sizes and 234 

demographic parameters, information often not available for many threatened amphibian 235 

species. To date, only seven of the 60 amphibian species conservation action plans included 236 

PVA modelling. In all seven plans information on demographic parameters came mostly 237 

from captive populations or a single, small wild population. 238 

 239 

Multi-species planning 240 

With increasing recognition of the need to plan for threatened species across taxonomic 241 

groups, we are faced with the issue of limited capacity to plan for all the species that need 242 

these conservation efforts. Currently, 2,488 amphibian species are listed as Threatened on the 243 

IUCN Red List (classified as either Critically Endangered, Endangered, or Vulnerable), and 244 
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from a global perspective it would not be feasible to undertake conservation planning for 245 

these species one-by-one. Therefore, efforts have been made to develop and carry out multi-246 

species planning, to address the needs of several species in one process. This might be 247 

through the development of country-wide plans, e.g. the Action Plan for the Conservation of 248 

Amphibians of the Republic of Argentina (Vaira et al., 2018), which was developed 249 

following a nation-wide Conservation Needs Assessment; the Sahonagasy Action Plans 250 

developed by ASG Madagascar (Andreone, Dawson, Rabemananjara, Rabibisoa, & 251 

Rakotonanahary, 2016; Andreone & Randriamahazo, 2008; and see Box 9.2) and the China 252 

Herpetological Conservation Action Plan I: Amphibians (Pi-peng, 2010) Conservation plans 253 

may also cover a region within a country, e.g. the Action Plan for the Conservation of the 254 

Amphibians of the Valle del Cauca Region (Corredor Londoño et al., 2010). 255 

 256 
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Table 9.1: Software that may be useful in making objective decisions when conservation planning. 257 

 
VORTEX RAMAS HexSim PMX Outbreak 

Author Lacy & Pollak (2021); Lacy 

(2000b) 

Akcakaya & Root (2005) Schumaker (2016) Lacy et al. 

(Lacy, Ballou, 

& Pollak, 

2012) 

Lacy et al. 

(Lacy, Pollak, 

Miller, 

Hungerford, & 

Bright, 2014) 

Location www.scti.tools/vortex/ www.ramas.com/software www.hexsim.net www.scti.tools www.scti.tools 

Cost Free $1K - $5K Free Free Free 
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Description Monte Carlo simulation, 

models population dynamics 

as discrete, sequential events 

(e.g., births, deaths, 

catastrophes, etc.) that occur 

according to defined 

probabilities. Probabilities of 

events are modelled as 

constants or as random 

variables that follow specified 

distributions. 

Models population dynamics as 

discrete, sequential events (e.g., 

births, deaths, catastrophes, etc.) 

that occur according to defined 

probabilities. Probabilities of 

events are modelled as constants 

or as random variables that follow 

specified distributions, allows for 

species that live in multiple 

patches 

Versatile, multi-

species, life history 

simulator used for 

building spatially 

explicit and 

individual-based 

models of animal and 

plant population 

viability, interactions, 

and responses to 

disturbance. 

Software for 

managing 

captive 

populations 

Software for 

modelling 

dynamics of 

infectious 

diseases 

258 
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Another option is taxon-based multi-species planning, suitable where there are taxonomic 259 

groups of amphibians with high numbers, or a high proportion, of threatened species and 260 

where the same actions are likely to have a positive impact on the whole group. For example, 261 

harlequin toads (Genus Atelopus) are among the most threatened amphibian genera; 82 of the 262 

94 species that have been assessed by the IUCN Red List are categorised as Threatened or 263 

Extinct. In response, a partnership of organisations formed the Atelopus Survival Initiative, a 264 

collaborative network which aims to coordinate conservation responses for Atelopus species 265 

through a conservation action plan – HarleCAP - for the genus (Valencia & Fonte, 2021). 266 

 267 

Multi-species plans don’t need to be taxon-specific, covering only amphibians; it may be that 268 

we can increase the number of threatened amphibian species covered by conservation plans 269 

by explicitly including these species in site-based plans, for example plans for protected areas 270 

(e.g. Pulgar Vidal, Gamboa Moquillaza, Cabello Mejía, & Valdivia Pacheco, 2015), wetlands 271 

where waterfowl protections are implemented, or forests where stream-riparian protections 272 

are implemented to meet water quality standards or sensitive fish (e.g. Olson & Ares, 2022). 273 

These approaches may be especially effective for species where a significant proportion of 274 

their range falls within a protected area.  275 

 276 

Another approach, which remains to be tested for amphibians, is the Assess to Plan (or A2P) 277 

approach, developed by the Conservation Planning Specialist Group (Gibson, Silva, Tognelli, 278 

& Karunarathna, 2020; C. Lees et al., 2020). A2P aims to move species more quickly through 279 

the Assess-Plan-Act Cycle (Figure 9.1) by using the IUCN Red List database to develop 280 

“bundles” of species that are sensible for multi-species conservation planning. Good bundles 281 

would comprise species anticipated to respond positively to the same set of conservation 282 

actions and whose conservation can be addressed by the same conservation actors or 283 
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agencies. Typical planning categories expected from the A2P process might include: habitat-284 

directed planning, for species dependent on the same habitat type which is subject to a 285 

common threat or set of threats; site-directed planning, for bundles of species inhabiting a 286 

defined area and subject to multiple localised threats linked to that site; threat-directed 287 

planning, for groups of species targeted by a common threat that is not anchored to a site, e.g. 288 

disease, overharvesting, or climate change; ex situ conservation feasibility 289 

assessment/planning, for species for which in situ conservation alone is considered unlikely 290 

to prevent extinction within the time available; and individual species recovery planning, for 291 

outlier species whose conservation needs do not overlap significantly with those of other 292 

species. 293 

 294 

While single-species planning will remain key for some species, increasing efficiencies 295 

through multi-species planning approaches will be necessary; with such a large number of 296 

threatened amphibian species currently on the Red List, and a further 1193 listed as Data 297 

Deficient, as well as the continued discovery of new species (Tapley et al., 2018), planning 298 

and conservation efforts need to be scaled up significantly if we are to address the 299 

conservation needs of all amphibian species currently listed as threatened, and efficiencies 300 

can be gained with multi-species planning approaches. 301 

 302 

Virtual planning 303 

Traditionally, one of the key stages in a quality conservation planning process has been to 304 

bring together stakeholders in a multi-participatory planning workshop. There are several 305 

benefits to this method, including building stronger relationships and encouraging 306 

participants to focus on the task to hand. However, in 2020-21 in the face of the global 307 

pandemic, where international travel came to a halt, it was necessary to adapt and develop 308 
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methods for continuing conservation planning work virtually. 309 

 310 

There are significant challenges to effective virtual planning, not least ensuring that all 311 

participants have access to the relevant technology – both in terms of having reliable access 312 

to internet, as well an acceptable level of familiarity with the programmes used. It can be 313 

more challenging in a virtual process to ensure that there is equal engagement of all 314 

participants, and it may take additional capacity on the facilitation team to ensure that all 315 

avenues of communication – such as video, chat bar, and polls – are monitored sufficiently 316 

well, and that there is always somebody available to fix participants’ technical issues. 317 

 318 

Scheduling virtual meetings may present additional difficulties; first, timing meetings to be 319 

during working hours in all relevant time zones is not always possible, so some participants 320 

will be working at unusual hours. Furthermore, online sessions can often be more mentally 321 

draining for participants, so a virtual workshop may not be able to include day-long sessions, 322 

as is traditionally the practice for in-person workshops. Rather, it may be necessary to 323 

schedule workshops over a series of shorter sessions, which will extend the process, but allow 324 

participants to remain fully engaged within each session. However, sessions should not be 325 

scheduled too far apart, otherwise much time will be required to re-cap. Further guidance on 326 

setting up and facilitating a virtual workshop can be found in CPSG’s document A Guide to 327 

Facilitating Virtual Workshops (IUCN SSC CPSG, 2020). 328 

 329 

Despite these challenges to implementing effective workshops online, there are also benefits 330 

to this approach including significant reductions in cost and carbon emissions, and often the 331 

ability to invite a larger number of participants due to the lack of travel costs. As such, even 332 

when international travel increases again, it is likely that virtual workshops will remain a part 333 
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of the future of conservation planning.  334 

 335 

Challenges to planning 336 

Key challenges to conservation planning in this section come from members of the ASG 337 

Conservation Planning Working Group who contributed their experiences in a brainstorm 338 

process. The factors listed below can be frequent and substantial challenges; some ways in 339 

which these challenges might be addressed are suggested. 340 

 341 

Knowledge gaps. Although the ASG has tried to collate past and existing plans on the ASG’s 342 

website (https://www.iucn-amphibians.org/resources/publications/action-plans/action-plans-343 

by-regions/), this is not a comprehensive list, and it is difficult to track development and 344 

implementation of conservation plans. There may be species-specific plans that have been 345 

missed (e.g., those not appearing in an online literature search due to language differences), 346 

or species could be included in protected-area or habitat-management plans but are not 347 

specifically mentioned in the plan’s title or keywords. It is important that efforts are made to 348 

better track and monitor the existence and implementation of plans for amphibian species to 349 

help decision-making for future planning efforts.  350 

 351 

For individual conservation plans, actual or perceived lack of data is a further obstacle to 352 

undertaking planning for amphibians; decision-making can become more difficult where data 353 

is poorly available. Some evidence suggests that there may be a lower incentive for academic 354 

research on amphibians, due to the relatively low impact factor of herpetology compared with 355 

other biological sciences (Urbina-Cardona, 2008). The competitive academic system in many 356 

countries rewards research that can be completed and published quickly as opposed to the 357 

collection of data that, while not novel or cutting edge, would be useful to inform 358 
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conservation decision-making, such as long-term monitoring of amphibian populations. 359 

Traditionally, much amphibian research has focused on taxonomy and systematics, with little 360 

or no attention paid to ecological research addressing life history parameters, population 361 

trends, or environmental threats, although this is gradually changing in a number of countries. 362 

Furthermore, specific impacts to amphibians may be overlooked even in research on relevant 363 

subjects; climate change, for example, is a threat to many amphibian species, but most studies 364 

modelling the impact of climate change focus on temperature rather than more difficult to 365 

model hydrological changes that are more likely to impact amphibians. It will be an ongoing 366 

challenge to ensure that sufficient data is available for decision-making in amphibian 367 

conservation planning. However, in cases where data is poor, an adaptive management 368 

approach may be used to test proposed actions (e.g. Canessa et al., 2019). 369 

 370 

Amphibians aren’t valued. Many participants felt that amphibians are often overlooked, not 371 

perceived as important as some other taxonomic groups (see more detailed discussion in 372 

Chapter 2), and therefore end up not being priorities for conservation planning. Addressing 373 

this may take education (see Chapter 8) to improve understanding of the importance of 374 

amphibians in the ecosystem. This reflects the importance of environmental education 375 

programmes to improve the direct experiences and interactions of people with amphibians 376 

beginning in childhood, that can develop more positive feelings and perceptions (Brom, 377 

Anderson, Channing, & Underhill, 2020). In this sense, education programmes at zoos are 378 

key for urban children while participatory sampling with rural people could be the most 379 

efficient strategy (Vergara-Rios et al., 2021). One strategy potentially useful with adults is to 380 

pinpoint the beneficial effects that amphibians have as controllers of pests, and to encourage 381 

the development of citizen science initiatives to bring understanding, interest, and care to the 382 

global public. Once such programme is the Global Amphibian BioBlitz organised by 383 
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www.inaturalist.org and supported by the ASG (https://www.inaturalist.org/projects/global-384 

amphibian-bioblitz). 385 

 386 

Planning isn’t valued. Another major challenge to undertaking conservation planning for 387 

amphibians is a lack of appreciation for the benefits of planning. It is true that it has been 388 

difficult to show the impact of developing a conservation plan empirically, partly due to the 389 

long time-period necessary to see impacts. However, evidence is now starting to show the 390 

positive impact of developing species-based conservation plans (IUCN SSC CBSG, 2017; C. 391 

M. Lees et al., 2021). Further, individuals that have participated in a conservation planning 392 

process often note the benefits of going through the steps of examining the evidence, 393 

developing a joint vision and goals, and critically thinking in a group setting with a variety of 394 

expertise present, about how best to achieve those objectives. 395 

 396 

Conservation planning is perceived as difficult. Individuals may be daunted by the process 397 

of undertaking conservation planning, but as shown above, several guidelines are available to 398 

help support those undertaking planning for the first time (Conservation Measures 399 

Partnership, 2020; Copsey, Lees, & Miller, 2020; CPSG, 2020; Gregory et al., 2012; see Box 400 

9.3 for a list of useful documents), as well as support offered from groups such as CPSG. 401 

 402 

Lack of planning capacity can be another obstacle to developing conservation plans. 403 

Managing multi-stakeholder participation in the planning process requires facilitators with 404 

knowledge of planning processes and skill in facilitating both the interpersonal interactions 405 

within the stakeholder group and complex decision-making processes. A facilitator that can 406 

speak the major languages represented in the stakeholder group is also highly beneficial. 407 

 408 
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Limited funding. Funding for conservation planning is often limited and difficult to obtain. 409 

Bringing multiple stakeholders together, often including individuals from several different 410 

countries, requires significant financial resources; it is often perceived that such resources are 411 

better spent on action rather than planning. Some savings may be made with a virtual 412 

planning process, although virtual planning presents its own difficulties (see above). The use 413 

of virtual workshops for planning is a way to reduce the costs of planning, while allowing for 414 

even broader stakeholder participation. 415 

 416 

Scientists and conservationists are disconnected. Finally, a lack of connection between 417 

research scientists and those implementing conservation actions was mentioned as a problem 418 

in undertaking planning. Scientists may follow a research cycle for knowledge discovery, 419 

focused on attainment of grants, research project implementation, and reporting in the 420 

scientific literature where information may not be freely available to conservation decision-421 

makers and implementers. However, this highlights one of the specific benefits of bringing 422 

together diverse experts in a multi-participatory planning process – here information 423 

exchange is encouraged, and participants may benefit from networking with individuals who 424 

have both a different expertise and knowledge. It is this diversity of participants that helps 425 

build quality decision-making at a planning workshop, and ensures that proposed actions are 426 

based on the best possible evidence. 427 

 428 

Challenges to implementing plans. Plans, once developed, must be implemented. Far too 429 

often plans are developed, made into a glossy document and then sit on shelves only to be 430 

referred to in funding proposals. The most successful conservation plans include an 431 

implementation component which identifies who is going to implement each action, by when, 432 

how that will be funded, etc. The same brainstorm of Working Group members identified a 433 
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number of factors that may impede plan implementation. 434 

 435 

Lack of resources. Implementing conservation plans requires resources – both human 436 

capacity and funding – over extended periods. This need for sustained resources may be a 437 

hurdle to implementing conservation plans, especially when funding for amphibians can be 438 

more difficult to obtain than for other taxa (see Chapter 2). The development of a 439 

conservation plan can assist with fundraising for the actions within the plan; some funders 440 

now request that applications are backed up by a conservation plan, and even for those that 441 

don’t there are benefits to showing that a project is part of a larger, coordinated, and 442 

collaborative conservation strategy. This shift from funders may indicate that the benefits of 443 

planning are increasingly understood by funders, potentially increasing the availability of 444 

funds for planning itself. 445 

 446 

Ineffective coordination or a breakdown in trust between partners can hinder 447 

implementation of a conservation plan; however, having a dedicated programme coordinator 448 

can help alleviate this issue. Someone who can review progress on specific actions, keep up 449 

communication with groups or individuals who had agreed to support or lead an action, 450 

identify new project partners, and report back to the wider stakeholder group on progress, 451 

helping to maintain the network that was instigated at the initial planning workshop and 452 

ensuring regular communication between relevant parties (Olson & Van Horne, 2017). 453 

Enhancing communication of conservation plan efficacy, such as through annual reports, can 454 

improve conservation plan accountability and engagement with complex stakeholder 455 

communities. 456 

 457 

Lack of government support can be a major impediment to implementing a conservation 458 
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plan, and this was also a common response in a more general survey of ASG members, when 459 

asked for impediments to conservation success (ASG Membership forms, 2013-2016 460 

quadrennium and 2017-2020 quadrennium). There is often a disconnect between 461 

conservationists who identify problems and propose solutions, and the political actors 462 

necessary to ensure their execution. Conservation initiatives do not often transcend the 463 

scientific field and are rarely established as national policies that receive sustained state 464 

funding. Linked to a lack of government support, is the potential conflict (either real, or 465 

perceived) between economic development and species conservation. This problem may be 466 

alleviated when appropriate officials from relevant government agencies are afforded time-467 

on-the-job to participate in or lead the development of a conservation action plan. As such, 468 

we recommend including relevant government departments in identified stakeholders when 469 

undertaking conservation planning.  470 

 471 

Among local communities, lack of public support also can be a hurdle to conservation plan 472 

implementation, especially where there are negative public perceptions towards amphibians, 473 

or lower social values than other conservation priorities. These values may be related to 474 

negative experiences, oral traditions and superstitions, or negative media coverage of 475 

herpetofauna (Ceríaco, 2012; Iosif, Vlad, Stănescu, & Cogălniceanu, 2019; Prokop & 476 

Fančovičová, 2012; Tomažic & Šorgo, 2017). Urban dwellers may also show apathy towards 477 

amphibians, reducing support for implementation of conservation strategies. 478 

 479 

Conclusions and approaches 480 

Good conservation planning accrues a number of benefits. In addition to creating a roadmap 481 

for mitigating threats, it engages stakeholders in the conservation process, and increases 482 

funding opportunities. Evidence is beginning to emerge that conservation planning also 483 
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results in positive outcomes for species. Implementation of the following steps will increase 484 

effective amphibian conservation planning. 485 

 486 

1. Strive to include all Critically Endangered amphibians in a conservation plan that 487 

identifies threats and appropriate threat mitigation strategies, along with specific 488 

goals, objectives, actions, a timeline, monitoring, adaptive management, and expected 489 

positive outcomes. 490 

2. Proceed with planning despite imperfect data; identify imperfect data, risks, and 491 

uncertainty in development of a plan. 492 

3. Address all relevant areas identified in the ACAP (e.g., disease mitigation, education, 493 

genome banking) in plan development. 494 

4. Identify trained facilitators and technical advisors to assist with conservation 495 

planning. 496 

5. Include all relevant stakeholders in planning workshops. 497 

6. Identify amphibian species of concern in all protected area (reserve) and habitat (e.g., 498 

forest, wetland) management plans that are not species conservation plans per se. 499 

7. Establish a central database in which all amphibian conservation plans and plan 500 

updates are recorded, with capacity to include adaptive management, lessons learned, 501 

and implementation progress. 502 

8. Ensure public access to plans and reports (e.g., see 7, above). 503 

9. Promote planning as valuable to amphibian conservation efforts.  504 
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Box 9.1: Recovery of the El Rincon-stream frog - planning and execution by Federico 505 

Kacorilis 506 

Plan development 507 

In 2012 faculty and graduate students at La Plata Museum in Argentina started a planning 508 

project with a clear vision, ensuring the long-lasting viability of one of the most threatened 509 

amphibians in Argentina, the El Rincon-stream Frog, Pleurodema somuncurense. This frog 510 

was listed as Critically Endangered in the IUCN Red List and among the Top 100 EDGE 511 

amphibians worldwide due to its restricted range, declining population (including local 512 

extinctions), and the existence of several threats. However, as it happens with many 513 

threatened amphibians, there was a lack of information to clearly identify and set 514 

management actions. So, a stakeholder workshop was organised aimed at developing a 515 

Logical Framework for this species. Workshop participants first helped build a tree of threats 516 

and then, turned it into a tree of objectives to guide management activities (see Figure 9.4). 517 

However, because the real impact of threats was not fully known, it was decided to apply 518 

adaptive management to both measure the conservation impact of actions and, at the same 519 

time gather scientific information to allow assessment of the real effect of these threats on the 520 

frogs. 521 

 522 

Plan implementation 523 

Initially, the team focused on alleviating the main threats, invasive trout, which restricted 524 

frogs to a few remnants of habitat, and livestock, which promoted loss and fragmentation of 525 

these remnants through grazing and trampling. Removal of these threats was identified as 526 

crucial to enhance connectivity and natural movement of individuals to restored habitats, 527 

which would help the natural recovery of extinct sub-populations. However, there was a 528 

delay in obtaining permits to remove invasive trout, making natural recolonisation 529 
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impossible. To address this, the team decided to add an ex-situ component and a translocation 530 

programme to help re-establishment of extinct sub-populations until permits to manage trout 531 

were approved. 532 

While waiting for the permit to remove invasive trout, progress was made on the next step in 533 

the plan; working to exclude livestock from some sites, allowing rapid habitat regeneration of 534 

suitable frog habitat. Successful breeding in the ex-situ colony of this species, allowed for 535 

translocations from ex-situ facilities to the restored habitats, achieving the re-establishment of 536 

extinct sub-populations. Five years later, the permit to remove invasive trout was approved, 537 

which allowed   the work of enhancing corridors to connect isolated sub-populations to begin, 538 

thus starting the recovery of the meta-population dynamics of the El Rincon-stream Frog. 539 

 540 

Process evaluation 541 

The Log Frame, or Logical Framework, represents a powerful tool for planning successful 542 

projects. This planning tool consists of a matrix which provides an overview of a project’s 543 

goal, activities and anticipated results. It provides a structure to help specify the components 544 

of a project and its activities and for relating them to one another. It also identifies the 545 

measures by which the project’s anticipated results will be monitored. Within this framework 546 

action plans resulting from a planning process should be flexible enough to address some 547 

uncertainty. In this case, the re-establishment of extinct sub-populations by natural 548 

recolonisation of frogs could have failed due to a delay in permits. This problem was solved 549 

by developing an ex-situ population and adding a translocation component to the original 550 

action plan. Additionally, adaptive management proves to be helpful to face both the lack of 551 

information about the real impact of some potential threats and the effectiveness of planned 552 

management actions. 553 
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 554 

Figure 9.4: A tree of problems and threats that was developed during a conservation planning workshop for the El Rincon-stream Frog, Pleurodema 555 

somuncurense to guide management decisions. 556 
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Box 9.2: The endemic amphibians of Madagascar and the development of a country-557 

wide conservation strategy 558 

Background 559 

Madagascar is well known for its astonishing biodiversity and endemicity rate. Amphibians 560 

are one of the most prominent vertebrate groups living there: current estimates indicate 561 

around 380 described species and many others still await formal description. The increasing 562 

deforestation rate of the natural habitats of Madagascar justifies priority attention be given to 563 

the conservation of this peculiar fauna. This was highlighted by the Global Amphibian 564 

Assessment and the first Amphibian Conservation Action Plan. 565 

Plan development 566 

A meeting was held in 2006 in Antananarivo to develop “A Conservation Strategy for the 567 

Amphibians of Madagascar” (ACSAM). During this meeting participants exchanged 568 

information, identified issues, and developed proposals for amphibian conservation in 569 

Madagascar. These discussions led to the formalization of the Sahonagasy Action Plan 570 

(SAP), “sahonagasy” being a Malagasy neologism, with “sahona” meaning “frog” and “gasy” 571 

an equivalent adjective to “Malagasy”. The SAP was the first initiative to implement the 572 

ACAP at a national level and one of the first plans in a high endemism country. In the plan 573 

the meeting discussions were translated into eight themes addressing the major needs of 574 

Madagascan amphibians, including coordination of research and conservation activities, 575 

managing threats such as emerging disease, harvesting, and climate change, and monitoring 576 

species, accompanied by active safeguard and awareness initiatives. 577 

Plan implementation and revision 578 

The Sahonagasy Action Plan prompted research on iconic species and important amphibian 579 

communities. Workshops focussing on aspects of the plan were held, including one dedicated 580 

to chytrid fungus (Bd) and its prevention. This eventually led to the activation of a Chytrid 581 
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Emergency Cell and regular monitoring after screening found Bd positive individuals. 582 

Another workshop provided training on captive breeding and husbandry science for 583 

Malagasy amphibians. Conservation actions included a collaboration with Madagascar Fauna 584 

and Flora Group to organise a festival dedicated to the tomato frog (Dyscophus antongilii). 585 

At an ACSAM2 workshop held in Ranomafana National Park in 2012, participants assessed 586 

the results and process of the first SAP. A review of progress had been published prior to the 587 

workshop (Andreone et al., 2012), then at the meeting talks were followed by a brainstorm 588 

analysis and revision of the many tasks and objectives. Outcomes of the revised plan included 589 

a collaboration between ASG Madagascar, ASA and Durrell Wildlife Conservation Trust, 590 

who received funding from the Critical Ecosystem Partnership Fund to implement the new 591 

plan, including capacity building of local people, and the recruitment of two dedicated 592 

personnel. Further outcomes included scientific research training to support the 593 

understanding of the Ministry staff on how research is undertaken, with the goal of 594 

facilitating the delivery of scientific permits; a workshop sharing knowledge on the different 595 

amphibian-oriented protocols used in the field; a conference dedicated to the amphibians at 596 

Toamasina University; and an amphibian festival in the Ivoloina Park to increase public 597 

knowledge of amphibian conservation. Furthermore, a new species action plan, the McAP 598 

Mantella cowanii Action Plan, was finalised in 2021. 599 

Process evaluation 600 

The activity of ASG Madagascar and the workshops dedicated to amphibians highlighted 601 

these vertebrates as an important component of Madagascar’s biodiversity; after being 602 

involved in the ACSAM the Malagasy Government is more aware of the importance of 603 

amphibians, which are now always considered in biodiversity strategies. Getting an 604 

amphibian action plan formally accepted by the Madagascar Government is a success in 605 

itself, and while there have been successful outcomes of the SAP, a lack of funding and 606 
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insufficient coordination limited implementation of the original plan (see Andreone et al., 607 

2012 for a full evaluation). While engaging the government has produced positive outcomes, 608 

implementation of long-term activities in a national strategy is possible only when there are 609 

stakeholders ready to support the actions with funds. For this it is compulsory that an NGO 610 

dedicated to amphibians is active in Madagascar to promote and sustain conservation actions. 611 

This is a great opportunity but also a great challenge for the Madagascar scientific 612 

community. 613 

 614 

Franco Andreone & Andolalao Rakotoarison 615 

IUCN SSC Amphibian Specialist Group - Madagascar 616 

  617 



 

533 
 

Box 9.3: Useful documents for undertaking conservation planning 618 

Breitenmoser, U., Lanz, T., Vogt, K., & Breitenmoser-Würsten, C. (2015). How to save the 619 

cat - Cat Conservation Compendium, a practi- cal guideline for strategic and project 620 

planning in cat conservation. In Cat News Special Issue (Vol. 9). Retrieved from 621 

http://www.catsg.org/index.php?id=293 622 

Conservation Measures Partnership. (2020). Open standards for the practice of conservation. 623 

Version 4.0. Retrieved from https://conservationstandards.org/download-cs/ 624 

Copsey, J., Lees, C., & Miller, P. (2020). A Facilitator’s Guide to Species Conservation 625 

Planning. IUCN SSC Conservation Planning Specialist Group: Apple Valley, MN. 626 

Retrieved from https://www.cpsg.org/content/facilitators-guide-species-conservation-627 

planning 628 

CPSG. (2020). Species Conservation Planning Principles & Steps, Ver. 1.0. IUCN SSC 629 

Conservation Planning Specialist Group: Apple Valley, MN. Retrieved from 630 

https://www.cpsg.org/sites/cbsg.org/files/documents/CPSG Principles %26 631 

Steps_English.pdf 632 

Foden, E. W. B., & Young, B. E. (2016). IUCN SSC Guidelines for assessing species’ 633 

vulnerability to climate change. Version 1.0. Occasional Paper of the IUCN Species 634 

Survival Commission No. 59. Cambridge, UK and Gland, Switzerland. doi: 635 

10.2305/iucn.ch.2016.ssc-op.59.en 636 

Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., & Ohlson, D. (2012). 637 

Structured Decision Making: A Practical Guide to Environmental Management 638 

Choices. Wiley-Blackwell. 639 

IUCN/SSC. (2008). Strategic Planning for Species Conservation: A Handbook. Version 1.0. 640 

Gland, Switzerland. Retrieved from 641 

http://files/179/scshandbook_2_12_08_compressed.pdf 642 
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IUCN/SSC. (2013). Guidelines for Reintroductions and Other Conservation Translocations. 643 

Version 1.0. Gland, Switzerland: IUCN Species Survival Commission. Retrieved 644 

from IUCN Species Survival Commission website: 645 

https://www.iucn.org/content/guidelines-reintroductions-and-other-conservation-646 

translocations 647 

IUCN/SSC. (2014). Guidelines on the Use of Ex Situ Management for Species Conservation. 648 

Version 2.0. Gland, Switzerland. Retrieved from 649 

https://portals.iucn.org/library/sites/library/files/documents/2014-064.pdf 650 

IUCN SSC CPSG. (2020). A guide to Facilitating Virtual Workshops. Apple Valley, MN, 651 

USA. Retrieved from https://www.cpsg.org/content/guide-facilitating-virtual-652 

workshops 653 

Linhoff, L. J., Soorae, P. S., Harding, G., Donnelly, M. A., Germano, J. M., Hunter, D. A., … 654 

Eckstut, M. E. (2021). IUCN Guidelines for amphibian reintroductions and other 655 

conservation translocations. Gland, Switzerland. Retrieved from https://www.iucn-656 

amphibians.org/wp-content/uploads/2021/05/Ampb-Guidelines_170521_Final.pdf 657 

World Organisation for Animal Health (OIE) & International Union for Conservation of 658 

Nature (IUCN). (2014). Guidelines for wildlife disease risk analysis. OIE, Paris. 659 

Retrieved from https://www.oie.int/en/document/guidelines-for-wildlife-disease-risk-660 

analysis/ 661 

  662 
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Abstract 20 

Surveys and monitoring are the core means of generating knowledge about the distributions, 21 

natural history, and conservation status of amphibians. In an age of rapid declines and 22 

discoveries across the globe, it is increasingly urgent that surveys and monitoring efforts are 23 

well-designed and linked to clear conservation goals. Here, we surveyed the amphibian 24 

conservation community and literature to review the state of the field and update 25 
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recommendations for surveys and monitoring. Many of the advances of the past 15 years 26 

have been technological, including shrinking size and cost of hardware like data loggers and 27 

transmitters, which has enabled collection of vast amounts of data and required concomitant 28 

advances in analytical tools. Visual encounter surveys are still the most common field method 29 

for sampling amphibians, though, use of eDNA and automated recorders have increased in 30 

recent years. There are new opportunities to couple field techniques with rigorous sampling 31 

frameworks and recent advances in analytical methods. Myriad knowledge gaps persist, 32 

however, including basic understanding of amphibian biodiversity and natural history in 33 

under-sampled regions like the Congo basin and in understudied groups, such as caecilians. 34 

Because many knowledge gaps exist and surveys are resource intensive, there is heightened 35 

need to apply decision science to prioritise limited resources available for surveying and 36 

monitoring. The links between surveys and monitoring and conservation outcomes can 37 

ultimately be strengthened by: (1) defining clear conservation objectives for surveys and 38 

monitoring through a participatory process with stakeholders; (2) using decision support 39 

frameworks to prioritise survey efforts; (3) selecting the most appropriate combination of 40 

survey methods, monitoring framework, and analytical approach for the conservation 41 

objective; and (4) effectively communicating survey and monitoring results to decision-42 

makers. Finally, (5) by leveraging new methods, technologies, and funding mechanisms, 43 

scientists and practitioners can enhance the surveys and monitoring efforts that are essential 44 

to achieving amphibian conservation goals. 45 

 46 

Introduction  47 

Surveys and monitoring are the means by which we not only detect changes in species 48 

distributions and populations but also discover and rediscover species. Across the globe, 49 

environmental changes are causing rapid amphibian declines, while at the same time more 50 
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than 100 new species are described every year (Catenazzi, 2015). Rapid declines and 51 

discoveries together compound the urgency and challenges of linking surveys and monitoring 52 

to effective amphibian conservation. The threats causing amphibian declines – including land 53 

use, climate change, and disease – vary geographically in both degree of intensity and overlap 54 

with other threats (Hof, Araújo, Jetz, & Rahbek, 2011). Moreover, the diverse ecological 55 

traits of amphibians underlie considerable variation in species’ sensitivity to threats (Lips, 56 

Reeve, & Witters, 2003; Nowakowski et al., 2018). Resources for mitigating threats and 57 

monitoring populations are also unevenly distributed across the globe, with fewer resources 58 

available in hyper-diverse regions with the highest rates of species discovery and 59 

endangerment (Balmford & Whitten, 2003). These multidimensional challenges underscore 60 

the need to improve coordination of monitoring efforts, capitalise on effective new methods 61 

and technologies, prioritise limited resources, and strengthen the links among surveys, 62 

monitoring, and conservation action.  63 

 64 

Decades of research and practice have led to a set of standards for integrating surveys and 65 

monitoring with conservation action through evidence-based adaptive management 66 

(Conservation Measures Partnership, 2020; Gillson, Biggs, Smit, Virah-Sawmy, & Rogers, 67 

2019). Surveys and monitoring critically underpin several of the iterative stages of the 68 

adaptive management framework, including initial assessment of threats and population 69 

status, monitoring of changes in threats and populations, and evaluation of the effectiveness 70 

of interventions. Surveys and monitoring, therefore, provide the crucial evidence base for 71 

evaluating management options, decision making, and prioritising conservation actions. 72 

These actions can be most effective when designed and monitored with participation of local 73 

stakeholders and practitioners. Without adequate survey data and stakeholder participation, 74 

the adaptive management cycle breaks down. 75 



 

545 
 

 76 

The exact methods for surveying and monitoring amphibians are largely determined by the 77 

diverse life histories of species (Angulo, Rueda Almonacid, Rodríguez-Mahecha, & La 78 

Marca, 2006; Dodd, 2010; Heyer, Donnelly, McDiarmid, Hayek, & Foster, 1994). These 79 

characteristics frequently include a bi-phasic lifecycle, species-specific calling of male frogs, 80 

temporal variability in activity, and a common association with waterbodies. Anurans alone 81 

exhibit at least 39 known reproductive modes (Crump, 2015; Haddad & Prado, 2005), which 82 

determine how and where we survey for eggs, larvae, and adults. The habitat associations of 83 

species also have an outsized influence on our ability to detect and monitor amphibians. For 84 

example, fossorial species like most caecilians and canopy-dwelling species like some tree 85 

frogs are difficult to detect with conventional survey methods (Basham & Scheffers, 2020; 86 

Basham, Seidl, Andriamahohatra, Oliveira, & Scheffers, 2019; Gower & Wilkinson, 2005). 87 

Practitioners will need to carefully choose the most appropriate survey methods from a wide 88 

range of recent advancements and well-established techniques to effectively monitor focal 89 

species.  90 

 91 

Confronted with these myriad challenges to amphibian conservation, how can scientists and 92 

practitioners more effectively survey and monitor amphibians? Recent advancements in 93 

technology in concert with continued population declines create a need to update our 94 

knowledge of current monitoring methods and identify existing knowledge gaps to better 95 

coordinate and prioritise future surveys. We solicited input from the amphibian conservation 96 

community to identify key developments and challenges in amphibian surveys and 97 

monitoring. Drawing on these responses, this chapter aims to highlight key knowledge gaps 98 

and recommendations for surveys and monitoring programmes (Table 10.1). In the sections 99 

below, we summarise (1) commonly used methods and recent methodological advancements; 100 
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(2) key knowledge gaps in amphibian conservation; (3) approaches to prioritising surveys and 101 

monitoring; (4) improving integration of survey and monitoring data into extinction risk 102 

assessments; (5) avenues for bridging the gap between surveys and conservation action; and 103 

(6) opportunities on the horizon for continued advancement of surveys and monitoring for 104 

amphibian conservation.  105 

 106 
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Table 1. Summary of key knowledge gaps and priorities for surveys and monitoring. 107 

Key knowledge gaps   

  1)   Knowledge of highly biodiverse and understudied landscapes - for example, the Congo rainforest 

  2)   Knowledge of understudied and difficult to detect groups, such as fossorial and arboreal species 

  3)   Resolution of cryptic species complexes 

  4)   Improved natural history and identification information, including calls and larval morphology  

  5)   Improved prediction of species responses to threats based on niches and adaptive capacity 

  6)   Understanding of interactive effects of threats on populations and assemblages 

  7)   Moving beyond presence-absence data to understand long-term population trends for many species 

        

Priorities for better integration of survey data into IUCN Red List assessments 

  1)   Increasing capacity for conducting species assessments through Red List training programmes 

  2)   Increased efficiency in integrating survey data into Red List assessments 

  

3) 

  

Encouraging species descriptions, which often represent the only information available for Red List assessments, to include 

information useful for assessments (e.g., survey effort, number of individuals, etc.)  

  4)   The development and maintenance of fewer but more permanent repositories for survey and monitoring data  
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  5)   A centralised platform for submitting relevant survey and monitoring data for species assessments 

          

Priorities for survey and monitoring programmes 

  1)   Designing surveys and monitoring to address clear questions 

  2)   Identifying questions and design monitoring programmes in collaboration with local stakeholders 

  3)   Addressing priority knowledge gaps that have clear outcomes for conservation 

  4)   Using decision-support frameworks to prioritise limited resources for conservation projects  

  

5) 

 

6) 

  

When possible, designing surveys and monitoring to evaluate effectiveness of interventions, as part of an adaptive management 

cycle 

Facilitating use of standard database formats for survey and monitoring data by incorporating archival intent into study designs 

prior to survey implementation. 

  
 

  
 

Potential advancements on the horizon   

  

1) 

  

Improved machine learning methods to classify both visual (video and photos) and acoustic data for improved monitoring in 

remote locations 

  2)   Continued development of new bioinformatic methods to increase the processing and analysis of increasingly large datasets  
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3) 

  

Increased portability of genetic analyses – such as portable sequencers and PCR machines – allow for molecular work in 

increasingly remote locations  

  

4) 

  

Through open data repositories and other sharing platforms, improve the interoperability and accessibility of survey and 

monitoring data 

  

5) 

  

Governments and institutions will need to better coordinate the collection and distribution of biodiversity monitoring data, 

adopting shared frameworks for information systems such as those promoted by the GEO Biodiversity Observation  

  

6) 

  

Conservation financing and other creative funding mechanisms needed to address the large funding gap for surveys and 

monitoring  

        

108 
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Advancements in amphibian surveys and monitoring in the last 15 years 109 

Amphibian surveys and monitoring have a long history over which researchers have 110 

developed methods that are now commonly used across the globe (Figure 10.1). While many 111 

of these methods are established and well-tested, the last 15 years have brought technological 112 

advances in hardware, software and data analyses, as well as increases in knowledge and 113 

innovative techniques that have improved amphibian survey and monitoring efforts. For 114 

example, researchers have increasingly surveyed vertical transects using “persistent digging” 115 

to uncover fossorial species (Biju, Kamei, Gower, & Wilkinson, 2009) and climbing 116 

equipment to study the little-known ecology of canopy-dwelling amphibians (Basham et al., 117 

2019). Hardware improvements have lowered the cost and enhanced performance of tools 118 

used for surveys and monitoring (Pimm et al., 2015) including autonomous recording units 119 

for passive acoustic monitoring (PAM) (Deichmann et al., 2018; Hill et al., 2018), tracking 120 

devices like passive integrated transponder (PIT) tags and miniaturised radio transmitters 121 

(Connette & Semlitsch, 2015; Forin-Wiart, Hubert, Sirguey, & Poulle, 2015; Lennox et al., 122 

2017), eDNA samplers (Thomas, Howard, Nguyen, Seimon, & Goldberg, 2018), camera 123 

traps (M. T. Hobbs & Brehme, 2017), and drones (Koh & Wich, 2012). Growth in software 124 

development, machine learning, and bioinformatic tools has improved our ability to track 125 

species, analyse large scale spatial data (GIS), classify and detect species in images or audio 126 

recordings, and analyse big molecular datasets, such as those produced through 127 

metabarcoding and next-generation sequencing methods (e.g., whole genome sequencing). 128 

Novel molecular methods are allowing for species detection in samples of water, soil and 129 

faeces, identification of cryptic species complexes, and detection of pathogens and other 130 

microbiota through improved assays. Rapid accumulation of new species descriptions and 131 

natural history information has facilitated large-scale phylogenies and resolved taxonomies 132 

(Frost, 2021; Jetz & Pyron, 2018; Pyron & Wiens, 2011), improving the way we design 133 
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surveys. Likewise, enhanced capacity at a local level has increased our ability to survey sites 134 

at broader spatial and temporal scales, for example, through national-level programmes for 135 

biodiversity monitoring (Schmeller et al., 2017) and coordinated citizen science programmes 136 

(Aceves-Bueno et al., 2015; O’Donnell & Durso, 2014). Advancements in statistical and 137 

conceptual approaches have resulted in new ways to design surveys (e.g., through 138 

participation of local communities as well as citizens across the globe; Table 10.2), integrate 139 

disparate datasets, and analyse survey data (e.g., recent advances in hierarchical population 140 

models) (DiRenzo, Che‐Castaldo, Saunders, Campbell Grant, & Zipkin, 2019; Dorazio, 2014; 141 

Zipkin et al., 2014).  142 

 143 

Although many survey and monitoring methods are currently widely used (Fig 10.1), each 144 

nevertheless has disadvantages to weigh alongside their benefits before implementation. For 145 

example, pitfall and funnel trapping can result in high mortality rates (Enge, 2001) and 146 

marking methods such as toe clipping and PIT tagging can also reduce survival in some 147 

species (Guimarães et al., 2014). Time- and area-constrained survey methods are often 148 

implemented in a way that precludes analysing the data with more rigorous statistical 149 

methods, such as those that account for imperfect detection.  Methods that result in the 150 

accumulation of big data, like PAM, DNA sampled from an organism’s environment 151 

(eDNA), camera trapping, or photographic mark-recapture, have the added challenge of 152 

immense data storage and management needs, as well as complex analytical methods that are 153 

still under development. Finally, it is important to consider sampling biases associated with 154 

different methods that can affect estimates of population abundances and demographic 155 

structure (Nowakowski & Maerz, 2009; Ribeiro-Júnior, Gardner, & Ávila-Pires, 2008). 156 

These challenges underlie the importance of carefully designing surveys around a question 157 

and selecting the most suitable method or combination of methods for answering that 158 
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question. Fortunately, there is no end to the ingenuity of amphibian biologists and many of 159 

these methods, if combined with an effective monitoring framework (Table 10.2) and/or 160 

additional methodologies, can result in efficient data collection and high-quality data. For 161 

example, pairing on-the-ground methods (e.g., visual encounter surveys, quadrats, pitfalls) 162 

with remote sensing or molecular methods (PAM, eDNA) can provide complimentary data 163 

streams that, through modelling, can provide insights over much broader temporal and spatial 164 

scales than one method alone. These recent advances in surveys and monitoring can be used 165 

to address key knowledge gaps that currently hinder a concerted global conservation response 166 

to amphibian declines. 167 

  168 
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 169 

Figure 10.1 Trends in prevalence of active (A) and passive (B) sampling methods and 170 

marking techniques (C) in published literature. Active survey methods include those that 171 

require observers to actively search or listen for individual animals, including visual 172 

encounter searches (VES; inclusive of area and/or time constrained sampling such as 173 

transects and plots), dip netting, electrofishing, and active call surveys. Passive sampling 174 

methods include those where observed animals are detected in artificial structures (traps or 175 

coverboards), with sensors (passive acoustic monitoring and camera traps), or in 176 

environmental samples (eDNA). Common marking techniques include use of natural marking 177 

(e.g., dorsal patterns), toe clipping, passive integrated transponders (PIT tags), and visual 178 

implant elastomer (VIE). These trends are based on a Web of Science search of published 179 

literature from 2006-2021.  180 

 181 
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Table 10.2. A non-exhaustive list of frameworks for surveying and monitoring amphibians. Within each temporal category (static and dynamic) 182 

general sampling frameworks are listed in order of increasing rigour, complexity, and cost for a given number of locations. Opportunistic 183 

observations are playing an increasingly important role due to rapid increases in citizen science programmes and data platforms. However, these 184 

approaches come with limitations on analytical methods and inferences, stemming from lack of standardisation. Well-designed, planned surveys 185 

offer greater opportunity for standardisation and generate data that can be analysed with a wider array of modelling approaches, including those 186 

that account for imperfect detection. A ‘robust design’ generally refers to a class of standardised surveys wherein there are replicated temporal or 187 

spatial sub-samples within a defined spatial unit of aggregation (e.g., 1-ha plot) and that occur over a short enough time period to assume the 188 

populations are closed to immigration and emigration (MacKenzie & Royle, 2005; Pollock, 1982). Acronyms: SDM = species distribution 189 

model; GLM = generalised linear model; GLMM = generalised linear mixed model; VES = visual encounter surveys; MR = mark-recapture. 190 
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  Opportunistic observations         

    Citizen science (FrogWatch, eBird, 

iNaturalist, etc), rapid inventories, 

expert elicitation 

  Habitat suitability, projected range 

shifts, species lists, presence only, 

known range expansions 

  SDMs, integrated models 

        

        

  Single visit, standardised surveys         

        GLM/GLMM, distance sampling, 
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Surveys of occupancy and counts, 

distance sampling, molecular sampling 

  Drivers of spatial variation in 

occurrence, abundance, and genetic 

diversity; habitat associations; weaker 

inferences about interventions 

  ordination, single-season 

occupancy models 

  

      

  Repeated surveys         

    Camera trapping, acoustic surveys, 

multiple VES 

  Drivers of spatial variation in 

occurrence or abundance while 

accounting for imperfect detection 

  Single-season occupancy, N-

mixture models, MR abundance 

estimation 
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  Multiyear opportunistic observations      

    Citizen science (FrogWatch, eBird, 

iNaturalist, etc), rapid inventories, 

expert elicitation 

  Phenology changes (e.g., timing of 

breeding), projected range shifts, and 

species lists 

  SDMs, integrated models 

        

        

  Multiyear single visit (per year), standardised surveys     

    Mark-recapture, surveys of occupancy 

and counts, distance sampling 

  Population or community dynamics 

(survival, immigration), drivers of 

  GLM/GLMM, state-space 

models, integrated population 

model 
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trends; demographic rates, stronger 

inferences about interventions   

  Robust design         
    Mark-recapture, Camera trapping, 

acoustic surveys, multiple VES, 

tracking studies 

  Population or community dynamics, 

drivers of trends, stronger inferences 

about interventions, accounting for 

imperfect detection 

  Dynamic occupancy and N-

mixture models; multiyear MR 

abundance estimates 

        

        

        

        

 191 

 192 
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Key knowledge gaps that could be addressed with additional surveys  193 

Considerable gaps remain in our knowledge of amphibians. At the most basic level, it is 194 

estimated that ~27% of amphibian species (~3,000 species) remain undescribed (Giam et al., 195 

2012), and 25% of those that are described have too few range data to accurately predict 196 

threat status (González-del-Pliego et al., 2019). The primary causes of these data deficiencies 197 

are: 1) insufficient surveys in highly biodiverse and understudied landscapes, for example, 198 

the Congo rainforest, Papua New Guinea, and other habitats that are difficult to access in 199 

regions that are amphibian species-rich but resource-limited (Guerra, Jardim, Llusia, 200 

Márquez, & Bastos, 2020; Vieites, Wollenberg, & Andreone, 2009), and 2) difficulty in 201 

detecting some amphibian groups, including caecilians and canopy dwelling species. Thus, 202 

monitoring programmes that target understudied biodiversity hotspots combined with canopy 203 

and sub-surface survey methods, for example, would significantly improve our global 204 

understanding of amphibian distributions and status. Increased surveys and monitoring in 205 

these contexts would also lead to increased understanding of natural history, which would not 206 

only improve our overall ability to detect species, but also help us better understand how 207 

amphibians may be impacted by environmental change. 208 

 209 

Undescribed species hidden within cryptic species complexes represent another important 210 

knowledge gap (McLeod, 2010). Such species make up a significant proportion of 211 

undescribed amphibian diversity (Funk, Caminer, & Ron, 2012) and resolution of these taxa 212 

could be addressed with increases in both the number of genetic studies and more widespread 213 

geographic sampling. These efforts can be accelerated by integrating genetic sampling 214 

(eDNA or tissue samples) and laboratory methods like gene sequencing into standard 215 

monitoring protocols. As they become increasingly affordable, genetic methods will uncover 216 

considerable hidden diversity and help overcome inaccuracies in field identifications, which 217 
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can be an issue even for local experts (Deichmann et al., 2017). In addition to collecting 218 

tissues for molecular studies, it is also essential to collect additional data that can improve the 219 

efficacy of surveys and monitoring. Examples include tadpole morphology data that will 220 

allow for improved identification of larvae when adults are not present (Schulze, Jansen, & 221 

Köhler, 2015), and calls and photographs of voucher specimens that can be used as training 222 

data in machine learning methods for species classification (i.e. call and image recognition 223 

models) (Xie, Towsey, Zhang, & Roe, 2016). 224 

 225 

With climate extremes increasing and habitat loss decimating tropical biodiversity hotspots, 226 

concerted survey efforts coupled with information on both species’ exposure and sensitivity 227 

to threats –including traits, niche dimensions, and adaptive capacities – are needed to 228 

adequately forecast current and future threat impacts (Murray, Nowakowski, & Frichkoff, 229 

2021; Urban et al., 2016). In particular, efforts to manage or conserve species may fall short 230 

of their goals if they fail to anticipate interactive effects of co-occurring threats, such as land 231 

use, climate change, and disease (Hof et al., 2011). As >70% of the Earth’s land surface is 232 

modified by human activities (R. J. Hobbs, Higgs, & Harris, 2009), more work is needed to 233 

identify key habitats for amphibian persistence in working landscapes, such as riparian 234 

corridors and remnant trees (Mendenhall et al., 2014), while also identifying at-risk, intact 235 

habitats with high numbers of threatened species to prioritise for site protection (Nowakowski 236 

& Angulo, 2015; Venter et al., 2014). An important outcome of survey and monitoring can be 237 

the prioritization of areas of intact habitat that can serve as climate refugia and connected 238 

nodes in climate resilient protected areas networks (Marquet, Lessmann, & Shaw, 2019). 239 

 240 

Although many datasets exist describing the presence of species in localities, there is very 241 

little information on population trends over time. Long-term data are needed to rigorously 242 
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assess population and range dynamics, sensitivity to threats like land use and climate change, 243 

and the impacts of management interventions. Recent advances in statistical methods, such as 244 

dynamic occupancy and N-mixture models, and computing can be employed in conjunction 245 

with long-term monitoring of populations and communities, thereby enabling the detection of 246 

slow declines and species range shifts (Zipkin et al., 2014). Increases in open data 247 

repositories are facilitating comparative analyses and synthesis of amphibian population 248 

trends (Collen et al., 2009; Dornelas et al., 2018). Existing knowledge gaps are manifold and 249 

resolving each will likely have unequal returns on investment for conservation. In the face of 250 

such uncertainty, addressing the knowledge gaps identified here may serve as only one 251 

important criterion for prioritising limited resources for surveys and monitoring.  252 

 253 

Prioritising limited resources for surveys and monitoring 254 

Reliable, timely, and accessible information on the status of species and their threats is 255 

critical to achieving successful conservation interventions. However, despite considerable 256 

progress over recent decades in the standardisation of research methods and early detection of 257 

species declines, we have largely failed to halt ongoing declines in both common and rare 258 

amphibian species (Bishop et al., 2012; Campbell Grant, Muths, Schmidt, & Petrovan, 2019). 259 

Given the limited resources available for surveys and monitoring, a key goal should be to 260 

prioritise the collection of actionable information that provides the greatest chance to change 261 

conservation outcomes (Buxton et al., 2020; Lindenmayer, Piggott, & Wintle, 2013). 262 

 263 

Even with this ‘value of information’ perspective, the challenge of how and where to 264 

prioritise research efforts remains daunting. Many rare and at-risk species are 265 

disproportionately under-studied by researchers (da Silva et al., 2020; Walls, 2014), while at 266 

the same time the proactive monitoring of widespread, common species can both decrease the 267 
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cost of management interventions and increase the likelihood of success (Sterrett et al., 268 

2019). In light of such trade-offs, decision science has produced an array of decision support 269 

frameworks that help practitioners and scientists structure potentially overwhelming 270 

complexity, including stakeholder interests and system uncertainty, to prioritise limited 271 

resources for conservation projects (See recent reviews of decision support frameworks) 272 

(Schwartz et al., 2018; Wright et al., 2020). Decision frameworks can help researchers 273 

identify cases where surveys and monitoring are needed and avoid cases where additional 274 

monitoring efforts would be unlikely to change management actions (McDonald-Madden et 275 

al., 2010). However, the evidence base for informing management decisions remains 276 

extremely limited for certain taxa and geographies, due to a lack of data on population status 277 

and effectiveness of management interventions (Canessa, Spitzen-van der Sluijs, Martel, & 278 

Pasmans, 2019; Christie et al., 2020). Although widely adopted, successful application of 279 

decision frameworks throughout a project, from initial planning to intervention and 280 

evaluation stages, remains relatively rare, including among amphibian projects (Redford, 281 

Hulvey, Williamson, & Schwartz, 2018; Wright et al., 2020). This clearly highlights the need 282 

for an objective-oriented approach to setting research priorities to provide baseline 283 

information on species with limited data, identify threats, monitor population status, and 284 

inform the implementation of specific management interventions (Table 10.3). 285 

 286 

Addressing the magnitude of global amphibian declines requires considerable effort to 287 

expand the coverage of existing monitoring, particularly in under-studied geographies and for 288 

species lacking data. Filling these information gaps requires an increased commitment by 289 

funders and researchers to ensure that local researchers have the skills and resources to do 290 

effective monitoring, data reporting, and conservation planning. Establishing new monitoring 291 

networks in under-studied areas of high amphibian species richness would offer the potential 292 
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for rapid, widespread deployment of standardised survey methods. Such monitoring networks 293 

would also ensure that data are accessible and comparable across time and space, while 294 

potentially affording opportunities for further expansion of surveillance capacity through the 295 

integration of volunteers and citizen scientists (Aceves-Bueno et al., 2015). As much of the 296 

tropics remain understudied, additional layers of prioritization of new monitoring networks 297 

could include (1) areas with many threatened or data deficient species, (2) highly threatened 298 

ecosystems, (3) areas with high endemism, (4) rediscovery of “lost species” that have not 299 

been observed for years or decades (González-Maya et al., 2013) and (5) using phylogenetic 300 

information to prioritise sensitive clades and evolutionarily distinct species (González-del-301 

Pliego et al., 2019; Jetz & Pyron, 2018). Although this broadening of surveillance efforts 302 

would undoubtedly improve our ability to detect and respond to species declines, it is also 303 

imperative that researchers are equally committed to proactively proposing and evaluating 304 

potential conservation interventions in order to avoid simply monitoring species into 305 

extinction (Canessa, Spitzen-van der Sluijs, et al., 2019; Lindenmayer et al., 2013). 306 
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Table 10.3. Priorities for survey and monitoring in relation to perceived risk of species 

decline.  (Adapted from Lindenmayer et al., 2013; Sterrett et al., 2019). 

Perceived Risk 

of Decline 

Survey & Monitoring Approaches 

Unknown 1. Species discovery (prioritise poorly studied and species rich 

areas) 

2. Basic assessment of genetic diversity (prioritise detection of 

cryptic species and evolutionarily-distinct lineages) 

3. Collect distribution data to delineate species range, identify 

habitat associations, and identify potential threats 

Low 4. Targeted surveillance with standardised methods to detect 

change 

5. Targeted disease surveillance 

Medium 1. Targeted monitoring of occurrence/abundance (ideally using 

methods capable of detecting gradual population trends) 

2. Perform studies to evaluate management effectiveness 

(prioritise setting management triggers) 

3. Test and adapt potential management strategies 

4. Predict impacts of potential threats (e.g., habitat loss, climate 

change, etc.) 

High 1. Intensive demographic monitoring of populations 

2. Evaluate relative importance of threats 

3. Intensive adaptive management and threat monitoring 

4. Species rediscovery efforts 

 307 
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Improving integration of survey and monitoring data into red list assessments 308 

IUCN Red List assessments are widely accepted standards for measuring species’ risk of 309 

extinction on global and national scales and a powerful tool for conservation policy and 310 

planning (Brito, 2010; Hoffmann et al., 2010; Rodrigues, Pilgrim, Lamoreux, Hoffmann, & 311 

Brooks, 2006). Assessments are designed to be consistent, transparent, and structured by 312 

objective criteria and guidelines (Mace et al., 2008) to ensure repeatability over time. The 313 

effectiveness of the IUCN Red List depends on each assessment containing up-to-date 314 

information; however, data and the capacity needed to complete these assessments are 315 

unevenly distributed among geographic regions and across different taxonomic groups 316 

(Collen et al., 2009).  317 

 318 

The high proportion of amphibian species that have not been assessed (13% of described 319 

species) or that are Data Deficient (16-17% of assessed species) illustrate the challenges 320 

posed by rapid species discovery and lack of meaningful data for many species, especially in 321 

the tropics (Collen, Ram, Zamin, & Mcrae, 2008; IUCN, 2021; Stuart et al., 2004). During 322 

the previous Global Amphibian Assessment for The IUCN Red List of Threatened Species 323 

(GAA), 5,743 amphibian species had been described, of which 22.5% were assessed as Data 324 

Deficient (Stuart et al., 2004). Since then, the number of known species has increased 325 

remarkably ( currently 8,309 species; Frost, 2021). With so many new and little-known 326 

species, there is interest within the amphibian conservation community to increase the rate of 327 

species assessments. Addressing these challenges requires increased assessment capacity, 328 

new survey data, and more efficient integration of survey data into the assessment process. 329 

 330 

Expanding the network of experts contributing to assessments and increasing Red List 331 

training and mentoring opportunities for the broader conservation community could help 332 
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improve the speed, standardisation, and interpretation of Red List assessments. Training can 333 

enhance knowledge of the guidelines for applying the Red List Categories and Criteria as 334 

well as the data required to estimate trends in species abundance and distributions (Collen et 335 

al., 2016), assisting the design of future surveys and improving data integration into species 336 

assessments. For instance, assessment rates could be increased if authors of species 337 

descriptions, which often represent the only information available for species assessments, 338 

routinely included information such as descriptions of survey effort, abundance, habitats, and 339 

threats (Tapley et al., 2018). To this end, IUCN, in collaboration with The Nature 340 

Conservancy (TNC), developed a free online Red List training course available in IUCN’s 341 

three official languages (see https://www.iucnredlist.org/resources/online). Expanded 342 

networks and increased capacity may also facilitate knowledge transfer and data sharing 343 

within and across regions, thereby synergising efforts across assessments and working groups 344 

and increasing rates of assessment. 345 

 346 

As capacity to support Red List assessments improves and monitoring programmes continue 347 

to increase data availability, there is a need for more efficient dataflow to ensure that different 348 

types of survey and monitoring data effectively contribute to assessments. New approaches to 349 

data-sharing (e.g., online databases, repositories, data papers, data archiving) are required to 350 

improve dataflow and increase the availability of data across multiple regions. Current 351 

biodiversity data are spatially biased and are either scattered in many databases or reside on 352 

paper or behind pay walls, impeding access and collation for assessments (Beck, Böller, 353 

Erhardt, & Schwanghart, 2014; Chavan & Penev, 2011). A sustainable data management 354 

system requires the development and maintenance of fewer but more permanent data 355 

repositories (Bach et al., 2012) that are subject to data quality control (Costello, Michener, 356 

Gahegan, Zhang, & Bourne, 2013; Huang, Hawkins, & Qiao, 2013). Current standards and 357 
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best practices for the management and publication of biodiversity data are already available 358 

(Costello & Wieczorek, 2014). Furthermore, the implementation of a process that awards 359 

professional recognition for contributors (e.g. citation and co-authorship) would likely 360 

increase contributions of scientists to open data repositories.  However, to improve 361 

integration of available survey and monitoring data into Red List assessments, specific 362 

guidelines and a platform for submitting relevant data for species assessment could be 363 

implemented, strengthening links among experts and allowing a broader participation of 364 

trained professionals and citizen scientists alike. New survey and monitoring projects could 365 

facilitate data sharing and integration into Red List assessments by including data standards 366 

and plans for archival in the design phase of the project. 367 

 368 

Bridging the gap between survey and monitoring data and conservation action 369 

Frameworks for linking surveys and monitoring data to conservation actions 370 

Adaptive management is a framework – widely used by non-governmental organisations 371 

(NGOs), government agencies and funders – that links survey and monitoring to conservation 372 

actions (Conservation Measures Partnership, 2020; Gillson et al., 2019; Schwartz et al., 373 

2018). Following this framework, survey and monitoring data inform assessment of threats 374 

and population status, tracking of progress toward conservation goals, and evaluation of 375 

management interventions (Conservation Measures Partnership, 2020). Adaptive 376 

management is data and resource intensive, however, as it is tailored to system complexities 377 

and idiosyncrasies on the ground. In many understudied biodiversity hotspots, detailed 378 

population data are lacking and can take years or decades to accumulate; by then, actions may 379 

be too late (T. G. Martin et al., 2012). Other decision support frameworks exist – such as 380 

structured decision-making and evidence-based practice – and tools from each can be blended 381 

to achieve conservation objectives (Schwartz et al., 2018). For example, evidence-based 382 
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conservation is a complementary framework that instead draws on the broader body of survey 383 

data and impact assessments to identify best practices, when at least some information exists 384 

on the state of the system; this approach mirrors the learning process widely used by medical 385 

practitioners (Gillson et al., 2019; Sutherland, Pullin, Dolman, & Knight, 2004). Adaptive 386 

management and evidence-based frameworks can be integrated to implement best practices 387 

as a starting point and then adapt interventions as monitoring data and impact assessments 388 

accumulate for a system. A complete cycle of adaptive management would (1) define clear 389 

conservation objectives that are part of a ‘theory of change’ results chain (Salafsky et al., 390 

2008), with input from stakeholders; (2) plan and implement interventions alongside 391 

standardised, recurring surveys to monitor threats and focal taxa; and (3) use survey data to 392 

evaluate and adapt management interventions over time. 393 

 394 

Linking surveys and monitoring to clear conservation objectives with stakeholder input 395 

Critical to bridging the gap between data and effective conservation actions, is designing 396 

survey and monitoring efforts around clear conservation objectives, which are ideally defined 397 

with input from multi-stakeholder groups. These objectives may include: (1) protection of 398 

iconic places for a species or a location’s natural heritage such as a national park; (2) 399 

assessing the status of rare or little-known species; (3) reversing suspected population 400 

declines; and (4) monitoring responses to specific threat factors. While long-term monitoring 401 

programmes are ideal for obtaining actionable data, such programmes often require 402 

significant human and financial resources and are less common outside of developed 403 

countries (Proença et al., 2017). With limited resources, it may only be possible to survey a 404 

site a single time. These one-off inventories are nevertheless essential for evidence-based 405 

conservation, as well-designed surveys may still allow researchers to discover new species, 406 
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update species ranges, understand habitat associations, or identify potential threats (Tables 407 

10.1 & 10.2).  408 

 409 

Identifying the conservation objectives that guide a monitoring programme should ideally be 410 

a participatory process, involving input from multiple stakeholders and drawing on local 411 

knowledge. The importance of integrating stakeholder input into species monitoring and 412 

conservation programmes is increasingly recognised, especially for amphibians (Olson & 413 

Pilliod, 2021). This may include integration of local or regional communities in programme 414 

planning and implementation through conservation cooperatives, participatory panels, and 415 

citizen science involvement. Outreach and education can inspire appreciation for the awe, 416 

wonder, and importance of amphibians, which is needed to ensure their persistence for 417 

generations to come. Importantly, educating natural resource managers and policymakers 418 

about amphibians and their importance to ecosystems may be needed, especially if resources 419 

have been historically diverted to other priorities. 420 

 421 

Development of Monitoring Programmes 422 

The combination of standardised methodologies with recurrent surveys forms the foundation 423 

of a monitoring programme (example amphibian monitoring programmes: Boxes 10.1-10.4; 424 

Table S1). These programmes generate information on population status and dynamics that 425 

can be fed into decision support frameworks, such as adaptive management, and contribute to 426 

the planning and learning phases of a conservation project (Schwartz et al., 2018). A key aim 427 

of new monitoring programmes is often to conduct initial surveys that establish baseline 428 

information (Proença et al., 2017). This baseline can be used to assess current threats and the 429 

status of focal populations and may then contribute to conservation planning by prompting 430 

decisions about the need for additional monitoring and interventions. Other common aims of 431 
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survey programmes are to understand species occurrence patterns and habitat associations, to 432 

quantify population trends and identify drivers of occurrence and trends, and to support 433 

planning and evaluation of management interventions. Some programmes may span multiple 434 

monitoring objectives. For example, the US northwest federal “Survey and Manage Program” 435 

is focused on five plethodontid salamanders (Text Box 10.4) and expanded over time to 436 

include surveys at additional sites, and of additional species, and using new survey methods 437 

to improve inferences about populations and their habitat associations across the landscape 438 

(Olson, Van Norman, & Huff, 2007).  439 

 440 

Additionally, survey and monitoring programmes may have qualitative or quantitative goals, 441 

or a mix of each. For example, annual visits to breeding sites may generate qualitative 442 

information such as the date of breeding, lists of calling species, and anomalies noted – data-443 

poor metrics that are potentially informative for detecting changing conditions that may 444 

warrant more rigorous follow-up surveys. At the other end of the spectrum, a mark-recapture 445 

programme could generate information about individuals across their life spans for more 446 

quantitative assessments of demographic status and trends. Data from long-term monitoring 447 

programmes can be used to develop reliable models that can inform conservation actions 448 

(e.g., determining extinction risk of development activities on focal species or identifying 449 

habitat critical for preservation to ensure survival of target metapopulations; Howell, R, 450 

Muths, Sigafus, & CHandler, 2020). Ancillary data collected during surveys for amphibian 451 

occurrence or population status may also have enormous long-term benefits to advance basic 452 

species knowledge, conservation, or research (Boxes 10.1-10.4). Lastly, tracking of multiple 453 

monitoring, conservation, or restoration programmes can facilitate synthesis of actions and 454 

outcomes across broad geographic areas. For example, the Canadian province of British 455 
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Columbia has developed an amphibian conservation and restoration database to help track 456 

these efforts across their province (Table S1). 457 

 458 

Considerations of paramount importance for the long-term success of surveys and monitoring 459 

efforts include: 1) institutional support (e.g., can the programme become institutionalised, or 460 

are there multi-partner trust agreements to ensure longevity [researchers, local people, 461 

governments, decision makers, others]); 2) clear priorities and design; 3) capability 462 

(personnel infrastructure [e.g., biological, technical, administrative, policy]); 4) funding; 5) 463 

communication (stakeholder updates, reports, outreach and education, media and social 464 

media information releases); and 6) adaptive management (cyclic learning to improve 465 

execution of the programme). The last two considerations, communication and adaptive 466 

management, are opportunities to build stakeholder trust and leverage the results of surveys 467 

and monitoring into reactive conservation actions.  468 

 469 

Impact assessments for adapting interventions 470 

Evaluating the effectiveness of conservation interventions depends on the availability and 471 

design of survey and monitoring datasets. Often, interventions and monitoring programmes 472 

are designed independently, requiring retrospective impact evaluations that use existing 473 

monitoring data. In these cases, monitoring data from treated and untreated sites can be 474 

statistically matched after data collection, while accounting for confounding variables 475 

(Schleicher et al., 2020). In other cases, surveys and monitoring programmes are co-designed 476 

alongside interventions and ideally built on theories of change (Rice, Sowman, & Bavinck, 477 

2020). Surveyed sites for planned impact assessments are either haphazardly assigned to 478 

treatments (sites receiving the intervention) and controls – as is most common – or are 479 

randomly assigned to each. Randomised controlled trials are the research gold standard but 480 



 

570 
 

are rare in conservation impact assessments (Burivalova, Miteva, Salafsky, Butler, & 481 

Wilcove, 2019), perhaps owing to logistics or ethical concerns under certain contexts. Co-482 

designing interventions and monitoring for impact evaluation requires a greater level of 483 

planning and coordination but, when well-implemented, can lead to stronger inferences about 484 

intervention effectiveness (Baylis et al., 2016; Burivalova et al., 2019), which in turn can 485 

reduce uncertainty and wasted resources in conservation (Buxton et al., 2021). Lessons 486 

learned from impact assessments then inform future implementation and adaptation of 487 

management interventions. For example, Canessa, Ottonello et al. (2019) monitored stage-488 

specific survival rates of the threatened toad, Bombina variegata, to evaluate effectiveness of 489 

three methods of reintroduction, captive rearing, headstarting, and direct translocations. They 490 

then adapted to focus survey and implementation efforts solely on headstarting, based on the 491 

data generated during the first years of monitoring. The specific interventions implemented 492 

for an amphibian conservation initiative will invariably depend on species life history and 493 

system context; the evidence base for a number of interventions is reviewed in Smith, 494 

Meredith, & Sutherland (2018). 495 

 496 

 On the horizon: potential for advancing surveys and monitoring 497 

As threats to amphibian populations increase, the future of surveying and monitoring will 498 

require increased capacity, efficiency, and funding if conservation is to succeed. Advances in 499 

technologies are enhancing efficiency of monitoring through remote detection and tracking of 500 

species with higher spatial and temporal resolution. A broad trend in greater accessibility of 501 

micro technologies for tracking small-bodied amphibians with corresponding analytical tools 502 

is likely to further increase the resolution of monitoring and the breadth of species that are 503 

appropriate to different methods. More passive monitoring through drones and remote 504 
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technologies can help expand the geographic coverage of monitoring efforts by reducing time 505 

and resource requirements (Marvin et al., 2016; Wilson et al., 2016). 506 

 507 

For amphibians in particular, technology has been an effective aid to surveys and monitoring. 508 

Many populations are now monitored through acoustic sensors at very high temporal 509 

resolution, thereby generating massive amounts of data. However, lags in development of 510 

analytical tools still constrain our ability to comprehensively process acoustic data (Brodie, 511 

Allen-Ankins, Towsey, Roe, & Schwarzkopf, 2020; Deichmann et al., 2018). In the future, 512 

we are likely to resolve these issues with improved machine learning methods that will 513 

classify both visual (video and photos) and acoustic data to enable the identification of 514 

cryptic species and allow improved monitoring in remote locations. This may lead to real-515 

time monitoring at a large scale, for example, by employing automated detection of calls. 516 

Additionally, cutting-edge artificial intelligence, such as algorithms used in the gaming 517 

industry, may provide a means to test and predict scenarios as they unfold through 518 

monitoring and to guide management (Barbe, Mony, & Abbott, 2020). At the same time, 519 

continued development of new bioinformatic methods will enable the processing and analysis 520 

of increasingly large datasets (La Salle, Williams, & Moritz, 2016; Snaddon, Petrokofsky, 521 

Jepson, & Willis, 2013). 522 

 523 

Accompanying advances in technology, the accessibility of genetic methods to inform 524 

monitoring has increased greatly. Genetic methods are an important piece of the conservation 525 

puzzle, informing our understanding of the underlying resilience of populations, resolving 526 

cryptic species, and guiding conservation strategy. The ongoing reduction in cost and 527 

increase in portability of genetic analyses – such as portable sequencers and PCR machines 528 

for molecular work in remote locations (Menegon et al., 2017) – coupled with the increased 529 
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utility and complexity of laboratory and statistical analysis, will likely continue apace. For 530 

threatened amphibians, the continued rise in throughput and resolution of genetic methods 531 

will aid managers in prediction and decision-making around interventions for threatened 532 

species. Already we have seen the unit of focus change from species to sub-species 533 

management units in many cases, and with the advent of genomics we may soon be 534 

monitoring many populations at the individual or gene level. 535 

 536 

Through open data repositories and other sharing platforms, there is a need to further improve 537 

the interoperability and accessibility of survey and monitoring data, including those generated 538 

by new technologies and molecular methods. However, these efforts will require a 539 

transformation in organisation and political will to ensure usefulness and equity of open data 540 

resources for conservation action (Stephenson et al., 2017). Governments and institutions will 541 

need to better coordinate the collection and distribution of biodiversity monitoring data, 542 

adopting shared frameworks for information systems such as those promoted by the GEO 543 

Biodiversity Observation Network (Navarro et al., 2017). The need for science to become 544 

more openly accessible, more robust and replicable is becoming increasingly crucial as 545 

resources are further restricted (Hampton et al., 2013). Digital platforms that manage data and 546 

enable sharing globally will need to become more coordinated and regulated over time, 547 

including adherence to meta-data standards. As developing countries gain better access to 548 

technology and communication, open data repositories and resources should be intentionally 549 

designed and maintained to improve equity of access and use of open data. Open data 550 

platforms can facilitate collaborations and knowledge exchanges between specialties and 551 

disciplines, from those collecting data on the ground to those analysing data in the cloud. 552 

Technology has the potential to reduce the resource disparity between different 553 

socioeconomic backgrounds and to provide access to open-source software and related 554 
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training modules needed for planning and analysis of survey and monitoring data. This 555 

should increase the capacity of local stakeholders, which is an important goal in conservation 556 

(Brooks, Waylen, & Borgerhoff Mulder, 2012). 557 

 558 

While there will always be a need for well-designed, on-the-ground monitoring programmes, 559 

surveys and monitoring efforts may increasingly take advantage of non-traditional sources of 560 

data to minimise the resources needed to gather data necessary for decision-making. With the 561 

proliferation of environmental impact assessments associated with infrastructure development 562 

projects, grey literature reports of species occurrences are becoming more accessible. 563 

Similarly, as the push to improve data formatting and data sharing bears fruit, mining 564 

biodiversity data portals may provide some of the information traditionally gathered in on-565 

the-ground surveys. Consulting these portals will be an important initial step in designing 566 

strategic amphibian surveys and monitoring programs (Garcia Fontes, Stanzani, & Pizzigatti 567 

Correa, 2015). In addition, social media harbours a wealth of georeferenced biodiversity 568 

information that could be scraped and accessed through content analysis or other methods to 569 

inform amphibian surveys and monitoring (Toivonen et al., 2019). 570 

 571 

Arguably, the greatest impediment to amphibian surveys and monitoring and to achieving 572 

amphibian conservation goals is lack of funding. This necessitates creativity to look beyond 573 

traditional sources of conservation research financing. Fortunately, there are opportunities on 574 

the horizon: it is increasingly feasible to engage the private sector to generate funding for 575 

biodiversity conservation. In some locations, the private sector’s stake in biodiversity is tied 576 

to its obligation to meet national and global development goals (Nationally Determined 577 

Contributions, post-2020 Biodiversity Targets, UN Sustainable Development Goals, etc.), to 578 

the will of activist shareholders and board members, and to the value of ecosystem services 579 
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upon which corporations rely (Barbier, Burgess, & Dean, 2018). Multilateral development 580 

banks often fund projects initiated by corporations and they also play a role in financing 581 

conservation as part of the environmental responsibility standards tied to those projects. 582 

Development projects funded by the banks signed on to the Equator-Principles are required to 583 

implement the mitigation hierarchy to manage their impacts to biodiversity and to implement 584 

biodiversity offset mechanisms. Amphibian conservation activities can be strategically woven 585 

into these projects (Deichmann et al., 2013). Among private investors, there is growing 586 

interest in “impact projects”, those that generate a measurable social or environmental benefit 587 

alongside a financial return (Rodewald et al., 2020). In amphibian-rich but resource-limited 588 

countries, these projects are often driven by an initial philanthropic contribution (blended 589 

financing), that catalyses investment from other entities. Ensuring survey objectives are clear 590 

and intentionally tied to national and global conservation goals will be essential in securing 591 

outside support for projects and conservation initiatives in resource-limited nations.  592 

 593 

Amphibian surveys and monitoring vitally underpin much of our knowledge about the natural 594 

history, status, and population trends of amphibian species. As many populations have 595 

declined across the globe, ensuring that surveys and monitoring efforts are linked to 596 

conservation outcomes is increasingly urgent. These links can be strengthened by (1) defining 597 

clear, applied objectives for amphibian surveys and monitoring through a participatory 598 

process; (2) using decision support frameworks (such as adaptive management) to prioritise 599 

surveys; (3) selecting the most appropriate survey methods among traditional and recently 600 

advanced techniques; (4) and communicating survey and monitoring data in formats 601 

appropriate for informing decision-making. Finally, (5) by leveraging new methods, 602 

technologies, and funding mechanisms, we can ensure surveys and monitoring contribute to 603 
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achieving amphibian conservation goals in an age of rapid amphibian declines and 604 

discoveries. 605 

  606 
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Box 10.1. Ancillary data  607 

While in the field conducting surveys and/or monitoring, information that is important for 608 

conservation planning and research objectives can be collected with little additional effort. 609 

These data include: (1) habitat and microhabitat attributes (e.g., habitat types and sizes, 610 

vegetation, canopy cover, water depth and flow, stream gradient, substrates, water quality, 611 

calling site, hiding refugia); (2) species life history or behavioural observations (e.g., life 612 

stage occurrence, breeding/foraging/dispersal behaviours); (3) community composition (e.g., 613 

prey, predators, invasive species); (4) human activities (e.g., timber harvest, livestock 614 

grazing, agriculture, wildlife harvesting, nearby human community activities); (5) threats 615 

(e.g., algal bloom, fire, trees killed by pests/disease, chemical contamination, erosion, 616 

pathogens or poor animal health observations). For long-term monitoring, it could be useful 617 

to establish a monumented photo point (e.g., phenocams; Brown et al., 2016) to compare the 618 

habitat condition throughout the years, to show natural succession or effects of disturbances. 619 

As weather and microclimate conditions drive amphibian activity and distributions, it is 620 

important to obtain data from the nearest weather station or, preferably, to deploy weather 621 

data loggers at sampled sites. Additional sampling could include collection of a species 622 

voucher (adult, tadpole/larval and egg stages), genetic sample, carcass, vocalisations, eDNA 623 

samples for full analyses of the community and /or a photographic voucher - taken with 624 

species-specific characteristics shown, which may be of great value for later species 625 

confirmation or disease detection. Metadata from surveys should include disposition of 626 

samples and survey data in archived databases. Including these ancillary data and materials in 627 

standard survey and/or monitoring protocols will ensure they are collected. Although it may 628 

seem ambitious to record as many ancillary data as feasible and some data may require 629 

additional permitting (e.g., species vouchers and DNA samples), these ancillary data provide 630 

critical context to the species occurrence or abundance data and potentially the entire 631 
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programme. Information ancillary to amphibian species occurrence or abundance is 632 

particularly useful for discerning environmental changes in long-term monitoring 633 

programmes and can shed light on the cause(s) of later-documented trends, information 634 

essential for conservation planning.  635 

  636 
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Box 10.2. The Mountain Chicken Recovery Programme 637 

Once found on seven islands in the Caribbean, the Mountain Chicken (Leptodactylus fallax) 638 

is a Critically Endangered frog now restricted to the islands of Montserrat and Dominica. 639 

Chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) 640 

resulted in the near extinction of the species. In the early 2000s, a 3-year population 641 

monitoring and disease surveillance programme was established to determine the extent and 642 

impact of chytridiomycosis in Dominica (Cunningham, Lawson, Burton, & Thomas, 2008). 643 

Data from multiple years (2002-2014 on Dominica; 1998-2012 on Montserrat), showed a loss 644 

of over 85% of the population in fewer than 18 months on Dominica and near extinction on 645 

Montserrat, in one of the fastest observed vertebrate declines of all time (Hudson, Young, 646 

D’Urban Jackson, et al., 2016).  This prompted Monserrat to develop the Mountain Chicken 647 

Species Action Plan, prioritising biosecurity measures (L. Martin et al., 2007). Despite this, 648 

Bd was detected in Montserrat in 2009 and subsequent surveys detected presence of the 649 

fungus in the last healthy Mountain Chicken population. In 2010, the Mountain Chicken 650 

Recovery Programme was formed (Adams et al., 2014), a collection of European Zoos and 651 

the governments of Dominica and Montserrat that coordinate conservation for this species 652 

based on robust long-term monitoring data. Between 2011-2014, the programme 653 

implemented experimental reintroductions of captive-bred animals (Hudson, Young, Lopez, 654 

et al., 2016), and in 2019 27 frogs were introduced to a semi-wild enclosure in Montserrat in 655 

an attempt to use environmental manipulation to enable frogs to survive in the face of 656 

endemic Bd in reservoir species. The first breeding pairs were recorded in 2020, culminating 657 

in what likely represents the first observed fertilised nest in Montserrat in 11 years, though 658 

this nest later failed. As part of the Long-Term Recovery Plan for the Mountain Chicken 659 

(Adams et al., 2014), monitoring of the species and pathogen continues on both islands, 660 
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alongside research into mechanisms to ensure the survival of remnant populations and the 661 

reintroduction of others.   662 
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Box 10.3: Atelopus conservation 663 

Survey efforts in Central America uncovered the first evidence of massive amphibian 664 

declines in the 1980s (Fig 10.2). Although the cause was unknown, continued monitoring in 665 

Costa Rica and Panama documented a south-east progression of population declines moving 666 

towards Colombia (Lips, 1999). By 1999, the emerging infectious disease chytridiomycosis, 667 

caused by the fungal skin pathogen Batrachochytrium dendrobatidis (Bd), had been 668 

identified as a major threat to the Atelopus genus of bufonid toads in particular. Survey data 669 

showed that Bd was an imminent threat to the continued existence of multiple threatened 670 

species, including the Panamanian Golden Frog (Atelopus zeteki), one of the world’s most 671 

culturally significant, recognisable, and Critically Endangered amphibians (Gagliardo et al., 672 

2008). Based on these alarming survey results, representatives from an international 673 

collaboration of universities, zoos, and conservation organisations established colonies of 674 

wild populations of multiple Atelopus species in ex-situ management centres (Zippel, 2002). 675 

In 2004, wild populations from Panamanian sites were decimated by Bd as predicted, 676 

rendering many Atelopus species Critically Endangered or possibly extinct in the wild 677 

(Zippel, 2002). Remnant captive populations have since been successfully bred in captivity as 678 

source populations for reintroductions, where surplus individuals are also providing a key 679 

role in understanding infection pathways and fungal resistance (Becker et al., 2011). 680 

 681 
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 682 

Figure 10.2. Amphibian surveys and monitoring in Central America documented a 20-year 683 

southeast progression of population declines that was eventually attributed to the skin disease 684 

chytridiomycosis caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis 685 

(Box 10.3).  686 
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Box 10.4. The Survey and Manage Program: Siskiyou Mountains and Scott Bar 687 

salamanders 688 

The US Pacific Northwest federal “Survey and Manage Program” was developed to address 689 

persistence of species associated with late-successional and old-growth forest conditions that 690 

were not protected by federal reserved lands (Molina, Marcot, & Lesher, 2006). One of the 691 

five amphibian species included in the programme was the Siskiyou Mountains salamander, 692 

(Plethodon stormi), a terrestrial woodland salamander with rocky substrate and shade habitat 693 

associations (Suzuki, Olson, & Reilly, 2008). Its range was not well delineated upon 694 

programme initiation in 1993, when 47 site localities were known for the species across a 695 

~61-ha area. Hence, salamander occurrence surveys were mandated within 25 miles (40 km) 696 

of the outer-most known localities before any forest management proposals could be 697 

developed on federal lands within the species range. In addition, strategic surveys and 698 

independent research projects were conducted to collect additional data on occurrence, 699 

habitat associations, and genetic diversity. By 1999, there were 163 sites known for the 700 

species and the known range had doubled in size (~137 ha), extending 18 km to the south, 11 701 

km to the east, and 16 km to the west (Nauman & Olson, 1999). To the south, a new 702 

morphologically and genetically distinct species was encountered, the Scott Bar salamander 703 

(Plethodon asupak; Mead, Clayton, Nauman, Olson, & Pfrender, 2005). The combined 704 

survey and research efforts for the Siskiyou Mountains salamander resulted in a tri-agency 705 

Conservation Agreement in Oregon where high-priority sites for conservation were identified 706 

as a pre-emptive effort to avoid its listing as federally Threatened or Endangered, while 707 

allowing for continued forest management within the species’ range (Olson, Clayton, 708 

Nauman, & Welsh Jr, 2009). Additionally, species-management recommendations were 709 

developed to reduce fuel loading to reduce risk of wildfire at salamander sites (Clayton, 710 

Olson, Nauman, & Reilly, 2009). At this time, a multi-agency Conservation Agreement is in 711 
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development for the Siskiyou Mountains and Scott Bar salamanders in California. The 712 

outcome of the Survey-and Manage Program for this originally little-known species has been 713 

significant knowledge discovery  (reviewed in Olson et al., 2007) and a series of successful 714 

conservation measures with reconciliation of forest management disturbances and proactive 715 

measures to address the threat of wildfire.  716 



 

584 
 

Acknowledgements 717 

We are grateful for the invaluable survey responses of ASG members and other amphibian 718 

experts whose feedback guided the topics and scope of the surveys and monitoring chapter. 719 

These contributors include: Antonio W. Salas, Andrés Merino-Viteri, Andrés Rymel Acosta 720 

Galvis, Segniagbeto H. Gabriel, Benedikt Schmidt, Ariel Rodríguez, Robert Ward, John 721 

Measey, Karthikeyan Vasudevan, Mark C Urban, David Bickford, Karen Lips, Rob Stuebing, 722 

Prof. Dr. Thomas Ziegler, Ángela M. Suárez Mayorga, Nicolas Urbina-Cardona, Luis 723 

Alberto Rueda Solano, John Wilkinson, Federico Kacoliris, Jean-Marc Hero, Francis 724 

Lemckert, Rayna Bell, Tahar Slimani, Ariadne Angulo, Nikki Roach, S.C. Bordoloi, Paul 725 

Crump, Víctor Jassmani Vargas García, Bill Peterman, Robert Puschendorf, Dede Olson, 726 

Vanessa K. Verdade, Dan Cogalniceanu, Maureen Donnelly, Daniel Rodríguez, Paul 727 

Doughty, Natalie Calatayud, PK Malonza, Karthikeyan Vasudevan, Francois Becker, 728 

N'Guessan Emmanuel Assemian, Diego Gómez-Hoyos, Aarón Josué Quiroz Rodríguez, 729 

Mark-Oliver Rödel, Luis Castillo Roque, Iñigo Martinez-Solano, Jeff Dawson, Valia Esther 730 

Herrera Alva, Amir Hamidy, Ninad Amol Gosavi, Amaël Borzée, Joseph Doumbia, Franco 731 

Andreone, Javiera Cisternas, Florina Stanescu, Dion Kelly, James Watling, Lily Rodriguez, 732 

Michelle Thompson, Cynthia Paszkowski, N`guessan Emmanuel Assemian, Luke Linhoff, 733 

Mauricio Akmentins, and Brett Scheffers. Thanks also to Ruth Marcec-Greaves and Sally 734 

Wren for their feedback on a draft of this chapter.  735 



 

585 
 

References736 

Aceves-Bueno, E., Adeleye, A. S., 737 

Bradley, D., Brandt, W. T., Callery, 738 

P., Feraud, M., … Tague, C. (2015). 739 

Citizen science as an approach for 740 

overcoming insufficient monitoring 741 

and inadequate stakeholder buy-in in 742 

adaptive management : Criteria and 743 

evidence. Ecosystems, 18(3), 493–744 

506. doi: 10.1007/s10021-015-9842-4 745 

Adams, S. L., Morton, M. N., Terry, A., 746 

Young, R. P., Dawson, J., Martin, L., 747 

… Gray, G. (2014). Long-Term 748 

recovery strategy for the Critically 749 

Endangered mountain chicken 2014-750 

2034. doi: 751 

10.13140/RG.2.1.3836.8487 752 

Angulo, A., Rueda Almonacid, J. V, 753 

Rodríguez-Mahecha, J. V, & La 754 

Marca, E. (2006). Tecnicas de 755 

inventario y monitoreo para los 756 

anfibios de la region tropical andina. 757 

Colombia. 758 

Bach, K., Schäfer, D., Enke, N., Seeger, 759 

B., Gemeinholzer, B., & Bendix, J. 760 

(2012). A comparative evaluation of 761 

technical solutions for long-term data 762 

repositories in integrative biodiversity 763 

research. Ecological Informatics, 11, 764 

16–24. doi: 765 

10.1016/j.ecoinf.2011.11.008 766 

Balmford, A., & Whitten, T. (2003). Who 767 

should pay for tropical conservation, 768 

and how could the costs be met? 769 

Oryx, 37(2), 238–250. doi: 770 

10.1017/S0030605303000413 771 

Barbe, L., Mony, C., & Abbott, B. W. 772 

(2020). Artificial intelligence 773 

accidentally learned ecology through 774 

video games. Trends in Ecology & 775 

Evolution, 35(7), 557–560. doi: 776 

10.1016/j.tree.2020.04.006 777 

Barbier, B. E. B., Burgess, J. C., & Dean, 778 

T. J. (2018). How to pay for saving 779 

biodiversity. Science, 360(6388), 780 

486–488. doi: 781 

10.1126/science.aar3454 782 

Basham, E. W., & Scheffers, B. R. (2020). 783 

Vertical stratification collapses under 784 



 

586 
 

seasonal shifts in climate. Journal of 785 

Biogeography, 47(9), 1888–1898. 786 

doi: 10.1111/jbi.13857 787 

Basham, E. W., Seidl, C. M., 788 

Andriamahohatra, L. R., Oliveira, B. 789 

F., & Scheffers, B. R. (2019). 790 

Distance-decay differs among vertical 791 

strata in a tropical rainforest. Journal 792 

of Animal Ecology, 88(1), 114–124. 793 

doi: 10.1111/1365-2656.12902 794 

Baylis, K., Honey-Rosés, J., Börner, J., 795 

Corbera, E., Ezzine-de-Blas, D., 796 

Ferraro, P. J., … Wunder, S. (2016). 797 

Mainstreaming impact evaluation in 798 

nature conservation. Conservation 799 

Letters, 9(1), 58–64. doi: 800 

10.1111/conl.12180 801 

Beck, J., Böller, M., Erhardt, A., & 802 

Schwanghart, W. (2014). Spatial bias 803 

in the GBIF database and its effect on 804 

modeling species’ geographic 805 

distributions. Ecological Informatics, 806 

19, 10–15. doi: 807 

10.1016/j.ecoinf.2013.11.002 808 

Becker, M. H., Harris, R. N., Minbiole, K. 809 

P. C., Schwantes, C. R., Rollins-810 

Smith, L. A., Reinert, L. K., … 811 

Gratwicke, B. (2011). Towards a 812 

better understanding of the use of 813 

probiotics for preventing 814 

chytridiomycosis in Panamanian 815 

golden frogs. EcoHealth, 8, 501–506. 816 

doi: 10.1007/s10393-012-0743-0 817 

Biju, S. D., Kamei, R., Gower, D. J., & 818 

Wilkinson, M. (2009). Conservation 819 

of Caecilians in the Eastern 820 

Himalayas Region. 821 

Bishop, P. J., Angulo, A., Lewis, J. P., 822 

Moore, R. D., Rabb, G. B., & Garcia 823 

Moreno, J. (2012). The amphibian 824 

extinction crisis - what will it take to 825 

put the action into the Amphibian 826 

Conservation Action Plan? 827 

S.A.P.I.EN.S, 5(2), 97–111. 828 

Brito, D. (2010). Overcoming the Linnean 829 

shortfall : Data deficiency and 830 

biological survey priorities. Basic and 831 

Applied Ecology, 11(8), 709–713. 832 

doi: 10.1016/j.baae.2010.09.007 833 

Brodie, S., Allen-Ankins, S., Towsey, M., 834 



 

587 
 

Roe, P., & Schwarzkopf, L. (2020). 835 

Automated species identification of 836 

frog choruses in environmental 837 

recordings using acoustic indices. 838 

Ecological Indicators, 119, 106852. 839 

doi: 10.1016/j.ecolind.2020.106852 840 

Brooks, J. S., Waylen, K. A., & 841 

Borgerhoff Mulder, M. (2012). How 842 

national context, project design, and 843 

local community characteristics 844 

influence success in community-845 

based conservation projects. 846 

Proceedings of the National Academy 847 

of Sciences of the United States of 848 

America, 109(52), 21265–21270. doi: 849 

10.1073/pnas.1207141110 850 

Brown, T. B., Hultine, K. R., Steltzer, H., 851 

Denny, E. G., Denslow, M. W., 852 

Granados, J., … Richardson, A. D. 853 

(2016). Using phenocams to monitor 854 

our changing earth: toward a global 855 

phenocam network. Frontiers in 856 

Ecology and the Environment, 14(2), 857 

84–93. doi: 10.1002/fee.1222 858 

Burivalova, Z., Miteva, D., Salafsky, N., 859 

Butler, R. A., & Wilcove, D. S. 860 

(2019). Evidence types and trends in 861 

tropical forest conservation literature. 862 

Trends in Ecology & Evolution, 863 

34(7), 669–679. doi: 864 

10.1016/j.tree.2019.03.002 865 

Buxton, R. T., Avery-Gomm, S., Hsein-866 

Yung, L., Smith, P. A., Cooke, S. J., 867 

& Bennett, J. R. (2020). Half of 868 

resources in threatened species 869 

conservation plans are allocated to 870 

research and monitoring. Nature 871 

Communications, 11(1), 4668. doi: 872 

10.1038/s41467-020-18486-6 873 

Buxton, R. T., Nyboer, E. A., Pigeon, K. 874 

E., Raby, G. D., Rytwinski, T., 875 

Gallagher, A. J., … Roche, D. G. 876 

(2021). Avoiding wasted research 877 

resources in conservation science. 878 

Conservation Science and Practice, 879 

3(2), e329. doi: 10.1111/csp2.329 880 

Campbell Grant, E. H., Muths, E., 881 

Schmidt, B. R., & Petrovan, S. O. 882 

(2019). Amphibian conservation in 883 

the Anthropocene. Biological 884 



 

588 
 

Conservation, 236(November 2018), 885 

543–547. doi: 886 

10.1016/j.biocon.2019.03.003 887 

Canessa, S., Ottonello, D., Rosa, G., 888 

Salvidio, S., Grasselli, E., & Oneto, 889 

F. (2019). Adaptive management of 890 

species recovery programs: A real-891 

world application for an endangered 892 

amphibian. Biological Conservation, 893 

236, 202–210. doi: 894 

10.1016/j.biocon.2019.05.031 895 

Canessa, S., Spitzen-van der Sluijs, A., 896 

Martel, A., & Pasmans, F. (2019). 897 

Mitigation of amphibian disease 898 

requires a stronger connection 899 

between research and management. 900 

Biological Conservation, 236, 236–901 

242. doi: 902 

10.1016/j.biocon.2019.05.030 903 

Catenazzi, A. (2015). State of the world’s 904 

amphibians. Annual Review of 905 

Environment and Resources, 40, 91–906 

119. doi: 10.1146/annurev-environ-907 

102014-021358 908 

Chavan, V., & Penev, L. (2011). The data 909 

paper: a mechanism to incentivize 910 

data publishing in biodiversity 911 

science. BMC Bioinformatics, 912 

12(Suppl 15), S2. doi: 10.1186/1471-913 

2105-12-S15-S2 914 

Christie, A. P., Amano, T., Martin, P. A., 915 

Petrovan, S. O., Shackelford, G. E., 916 

Simmons, B. I., … Sutherland, W. J. 917 

(2020). Poor availability of context-918 

specific evidence hampers decision-919 

making in conservation. Biological 920 

Conservation, 248, 108666. doi: 921 

10.1016/j.biocon.2020.108666 922 

Clayton, D., Olson, D. H., Nauman, R. S., 923 

& Reilly, E. C. (2009). Managing for 924 

the Siskiyou Mountains salamander 925 

(Plethodon stormi) in fuel treatment 926 

areas around at-risk communities. In 927 

Deanna H. Olson, D. Clayton, R. S. 928 

Nauman, & H. H. Welsh Jr. (Eds.), 929 

Conservation of the Siskiyou 930 

Mountains salamander (Plethodon 931 

stormi). Northwest Fauna 6 (pp. 39–932 

42). Society for Northwestern 933 

Vertebrate Biology. 934 



 

589 
 

Collen, B., Dulvy, N. K., Gaston, K. J., 935 

Gärdenfors, U., Keith, D. A., Punt, A. 936 

E., … Akçakaya, H. R. (2016). 937 

Clarifying misconceptions of 938 

extinction risk assessment with the 939 

IUCN Red List. Biology Letters, 12, 940 

20150843. doi: 941 

10.1098/rsbl.2015.0843 942 

Collen, B., Loh, J., Whitmee, S., McRae, 943 

L., Amin, R., & Baillie, J. E. M. 944 

(2009). Monitoring change in 945 

vertebrate abundance: the Living 946 

Planet Index. Conservation Biology, 947 

23(2), 317–327. doi: 10.1111/j.1523-948 

1739.2008.01117.x 949 

Collen, B., Ram, M., Zamin, T., & Mcrae, 950 

L. (2008). The tropical biodiversity 951 

data gap: addressing disparity in 952 

global monitoring. Tropical 953 

Conservation Science, 1(2), 75–88. 954 

Connette, G. M., & Semlitsch, R. D. 955 

(2015). A multistate mark-recapture 956 

approach to estimating survival of 957 

PIT-tagged salamanders following 958 

timber harvest. Journal of Applied 959 

Ecology, 52(5), 1316–1324. doi: 960 

10.1111/1365-2664.12472 961 

Conservation Measures Partnership. 962 

(2020). Open standards for the 963 

practice of conservation. Version 4.0. 964 

Retrieved from 965 

https://conservationstandards.org/dow966 

nload-cs/ 967 

Costello, M. J., Michener, W. K., 968 

Gahegan, M., Zhang, Z., & Bourne, 969 

P. E. (2013). Biodiversity data should 970 

be published, cited, and peer 971 

reviewed. Trends in Ecology & 972 

Evolution, 28(8), 454–461. doi: 973 

10.1016/j.tree.2013.05.002 974 

Costello, M. J., & Wieczorek, J. (2014). 975 

Best practice for biodiversity data 976 

management and publication. 977 

Biological Conservation, 173, 68–73. 978 

doi: 10.1016/j.biocon.2013.10.018 979 

Crump, M. L. (2015). Anuran reproductive 980 

modes: Evolving perspectives. 981 

Journal of Herpetology, 49(1), 1–16. 982 

doi: 10.1670/14-097 983 

Cunningham, A. A., Lawson, B., Burton, 984 



 

590 
 

M., & Thomas, R. (2008). Addressing 985 

a threat to Caribbean amphibians: 986 

capacity building in Dominica. 987 

Darwin Initiative Final Report. 988 

da Silva, A. F., Malhado, A. C. M., 989 

Correia, R. A., Ladle, R. J., Vital, M. 990 

V. C., & Mott, T. (2020). Taxonomic 991 

bias in amphibian research: Are 992 

researchers responding to 993 

conservation need? Journal for 994 

Nature Conservation, 56, 125829. 995 

doi: 10.1016/j.jnc.2020.125829 996 

Deichmann, J. L., Acevedo-Charry, O., 997 

Barclay, L., Burivalova, Z., Campos-998 

Cerqueira, M., D’Horta, F., … Aide, 999 

T. (2018). It’s time to listen: there is 1000 

much to be learned from the sounds 1001 

of tropical ecosystems. Biotropica, 1002 

50(5), 713–718. doi: 1003 

10.1111/btp.12593 1004 

Deichmann, J. L., Mulcahy, D. G., 1005 

Vanthomme, H., Tobi, E., Wynn, A. 1006 

H., Zimkus, B. M., & McDiarmid, R. 1007 

W. (2017). How many species and 1008 

under what names? Using DNA 1009 

barcoding and GenBank data for west 1010 

Central African amphibian 1011 

conservation. PLoS ONE, 12(11), 1012 

e0187283. doi: 1013 

10.1371/journal.pone.0187283 1014 

November 1015 

Deichmann, J. L., Sahley, C., Vargas, V., 1016 

Chipana, O., Velasquez, W., Smith, 1017 

E., … Catenazzi, A. (2013). 1018 

Monitoring an endemic amphibian 1019 

along a natural gas pipeline in the 1020 

Peruvian Andes. FrogLog, 21, 65–68. 1021 

DiRenzo, G. V, Che‐Castaldo, C., 1022 

Saunders, S. P., Campbell Grant, E. 1023 

H., & Zipkin, E. F. (2019). Disease‐1024 

structured N‐mixture models: A 1025 

practical guide to model disease 1026 

dynamics using count data. Ecology 1027 

and Evolution, 9, 899–909. doi: 1028 

10.1002/ece3.4849 1029 

Dodd, C. K. (2010). Amphibian ecology 1030 

and conservation. Oxford University 1031 

Press Inc., New York, 556. doi: 1032 

10.1073/pnas.0703993104 1033 

Dorazio, R. M. (2014). Accounting for 1034 



 

591 
 

imperfect detection and survey bias in 1035 

statistical analysis of presence-only 1036 

data. Global Ecology and 1037 

Biogeography, 23(12), 1472–1484. 1038 

doi: 10.1111/geb.12216 1039 

Dornelas, M., Antão, L. H., Moyes, F., 1040 

Bates, A. E., Magurran, A. E., Adam, 1041 

D., … Zettler, M. L. (2018). 1042 

BioTIME: A database of biodiversity 1043 

time series for the Anthropocene. 1044 

Global Ecology and Biogeography, 1045 

27(7), 760–786. doi: 1046 

10.1111/geb.12729 1047 

Enge, K. M. (2001). The pitfalls of pitfall 1048 

traps. Journal of Herpetology, 35(3), 1049 

467–478. 1050 

Forin-Wiart, M. A., Hubert, P., Sirguey, 1051 

P., & Poulle, M.-L. (2015). 1052 

Performance and accuracy of 1053 

lightweight and low-cost GPS data 1054 

loggers according to antenna 1055 

positions, fix intervals, habitats and 1056 

animal movements. PLoS ONE, 1057 

10(6), e0129271. doi: 1058 

10.1371/journal.pone.0129271 1059 

Frost, D. R. (2021). Amphibian species of 1060 

the world: an online reference. 1061 

Version 6.1. doi: 1062 

doi.org/10.5531/db.vz.0001 1063 

Funk, W. C., Caminer, M., & Ron, S. R. 1064 

(2012). High levels of cryptic species 1065 

diversity uncovered in Amazonian 1066 

frogs. Proceedings of the Royal 1067 

Society B, 279, 1806–1814. doi: 1068 

10.1098/rspb.2011.1653 1069 

Gagliardo, R., Crump, P., Griffith, E., 1070 

Mendelson, J., Ross, H., & Zippel, K. 1071 

(2008). The principles of rapid 1072 

response for amphibian conservation, 1073 

using the programmes in Panama as 1074 

an example. International Zoo 1075 

Yearbook, 42, 125–135. doi: 1076 

10.1111/j.1748-1090.2008.00043.x 1077 

Garcia Fontes, S., Stanzani, S. L., & 1078 

Pizzigatti Correa, P. L. (2015). A data 1079 

mining framework for primary 1080 

biodiversity data analysis. In A. 1081 

Rocha, A. M. Correia, S. Costanzo, & 1082 

L. P. Reis (Eds.), New contributions 1083 

in information systems and 1084 



 

592 
 

technologies (pp. 813–821). Springer 1085 

International Publishers. doi: 1086 

10.1007/978-3-319-16486-1 1087 

Giam, X., Scheffers, B. R., Sodhi, N. S., 1088 

Wilcove, D. S., Ceballos, G., & 1089 

Ehrlich, P. R. (2012). Reservoirs of 1090 

richness : least disturbed tropical 1091 

forests are centres of undescribed 1092 

species diversity. Proceedings of the 1093 

Royal Society B, 279, 67–76. doi: 1094 

10.1098/rspb.2011.0433 1095 

Gillson, L., Biggs, H., Smit, I. P. J., Virah-1096 

Sawmy, M., & Rogers, K. (2019). 1097 

Finding common ground between 1098 

adaptive management and evidence-1099 

based approaches to biodiversity 1100 

conservation. Trends in Ecology & 1101 

Evolution, 34(1), 31–44. doi: 1102 

10.1016/j.tree.2018.10.003 1103 

González-del-Pliego, P., Freckleton, R. P., 1104 

Edwards, D. P., Koo, M. S., 1105 

Scheffers, B. R., Pyron, R. A., & Jetz, 1106 

W. (2019). Phylogenetic and trait-1107 

based prediction of extinction risk for 1108 

data-deficient amphibians. Current 1109 

Biology, 29(9), 1557-1563.e3. doi: 1110 

10.1016/j.cub.2019.04.005 1111 

González-Maya, J. F., Belant, J. L., Wyatt, 1112 

S. A., Schipper, J., Cardenal, J., 1113 

Corrales, D., … Fischer, A. (2013). 1114 

Renewing hope: The rediscovery of 1115 

Atelopus varius in Costa Rica. 1116 

Amphibia Reptilia, 34(4), 573–578. 1117 

doi: 10.1163/15685381-00002910 1118 

Gower, D. J., & Wilkinson, M. (2005). 1119 

Conservation biology of caecilian 1120 

amphibians. Conservation Biology, 1121 

19(1), 45–55. 1122 

Guerra, V., Jardim, L., Llusia, D., 1123 

Márquez, R., & Bastos, R. P. (2020). 1124 

Knowledge status and trends in 1125 

description of amphibian species in 1126 

Brazil. Ecological Indicators, 118, 1127 

106754. doi: 1128 

10.1016/j.ecolind.2020.106754 1129 

Guimarães, M., Corrêa, D. T., Filho, S. S., 1130 

Oliveira, T. A. L., Doherty Jr, P. F., 1131 

& Sawaya, R. J. (2014). One step 1132 

forward: contrasting the effects of 1133 

Toe clipping and PIT tagging on frog 1134 



 

593 
 

survival and recapture probability. 1135 

Ecology and Evolution, 4(8), 1480–1136 

1490. doi: 10.1002/ece3.1047 1137 

Haddad, C. F. B., & Prado, C. P. A. 1138 

(2005). Reproductive modes in frogs 1139 

and their unexpected diversity in the 1140 

Atlantic Forest of Brazil. BioScience, 1141 

55(3), 207–217. 1142 

Hampton, S. E., Strasser, C. A., 1143 

Tewksbury, J. J., Gram, W. K., 1144 

Budden, A. E., Batcheller, A. L., … 1145 

Porter, J. H. (2013). Big data and the 1146 

future of ecology. Frontiers in 1147 

Ecology and the Environment, 11(3), 1148 

156–162. doi: 10.1890/120103 1149 

Heyer, W. R., Donnelly, M. A., 1150 

McDiarmid, R. W., Hayek, L. C., & 1151 

Foster, M. S. (1994). Measuring and 1152 

monitoring biological diversity: 1153 

Standard methods for amphibians. 1154 

Smithsonian Institution Press: 1155 

London; Washington. 1156 

Hill, A. P., Prince, P., Piña Covarrubias, 1157 

E., Doncaster, C. P., Snaddon, J. L., 1158 

& Rogers, A. (2018). AudioMoth: 1159 

Evaluation of a smart open acoustic 1160 

device for monitoring biodiversity 1161 

and the environment. Methods in 1162 

Ecology and Evolution, 9(5), 1199–1163 

1211. doi: 10.1111/2041-210X.12955 1164 

Hobbs, M. T., & Brehme, C. S. (2017). An 1165 

improved camera trap for amphibians, 1166 

reptiles, small mammals, and large 1167 

invertebrates. PLoS ONE, 12(10), 1168 

e0185026. 1169 

Hobbs, R. J., Higgs, E., & Harris, J. A. 1170 

(2009). Novel ecosystems: 1171 

implications for conservation and 1172 

restoration. Trends in Ecology and 1173 

Evolution, 24(11), 599–605. doi: 1174 

10.1016/j.tree.2009.05.012 1175 

Hof, C., Araújo, M. B., Jetz, W., & 1176 

Rahbek, C. (2011). Additive threats 1177 

from pathogens, climate and land-use 1178 

change for global amphibian 1179 

diversity. Nature, 480(7378), 516–1180 

521. doi: 10.1038/nature10650 1181 

Hoffmann, M., Hilton-Taylor, C., Angulo, 1182 

A., Böhm, M., Brooks, T. M., 1183 

Butchart, S. H. M., … Stuart, S. N. 1184 



 

594 
 

(2010). The impact of conservation 1185 

on the status of the world’s 1186 

vertebrates. Science, 330(6010), 1187 

1503–1509. doi: 1188 

10.1126/science.1194442 1189 

Howell, P. E., R, H. B., Muths, E., 1190 

Sigafus, B. H., & CHandler, R. B. 1191 

(2020). Informing amphibian 1192 

conservation efforts with abundance-1193 

based metapopulation models. 1194 

Herpetologica, 76(2), 240–250. doi: 1195 

10.1655/0018-0831-76.2.240 1196 

Huang, X., Hawkins, B. A., & Qiao, G. 1197 

(2013). Biodiversity data sharing: 1198 

Will peer-reviewed data papers work? 1199 

BioScience, 63(1), 5–6. 1200 

Hudson, M. A., Young, R. P., D’Urban 1201 

Jackson, J., Orozco-Terwengel, P., 1202 

Martin, L., James, A., … 1203 

Cunningham, A. A. (2016). 1204 

Dynamics and genetics of a disease-1205 

driven species decline to near 1206 

extinction: Lessons for conservation. 1207 

Scientific Reports, 6, 1–13. doi: 1208 

10.1038/srep30772 1209 

Hudson, M. A., Young, R. P., Lopez, J., 1210 

Martin, L., Fenton, C., McCrea, R., 1211 

… Cunningham, A. A. (2016). In-situ 1212 

itraconazole treatment improves 1213 

survival rate during an amphibian 1214 

chytridiomycosis epidemic. 1215 

Biological Conservation, 1216 

195(February 2019), 37–45. doi: 1217 

10.1016/j.biocon.2015.12.041 1218 

IUCN. (2021). The IUCN Red List of 1219 

Threatened Species. Retrieved March 1220 

30, 2021, from Version 2021-2 1221 

website: https://www.iucnredlist.org 1222 

Jetz, W., & Pyron, R. A. (2018). The 1223 

interplay of past diversification and 1224 

evolutionary isolation with present 1225 

imperilment across the amphibian 1226 

tree of life. Nature Ecology & 1227 

Evolution, 2, 850–858. doi: 1228 

10.1038/s41559-018-0515-5 1229 

Koh, L. P., & Wich, S. A. (2012). Dawn of 1230 

drone ecology: low-cost autonomous 1231 

aerial vehicles for conservation. 1232 

Tropical Conservation Science, 5(2), 1233 

121–132. 1234 



 

595 
 

La Salle, J., Williams, K. J., & Moritz, C. 1235 

(2016). Biodiversity analysis in the 1236 

digital era. Philosophical 1237 

Transactions of the Royal Society B: 1238 

Biological Sciences, 371, 20150337. 1239 

doi: 10.1098/rstb.2015.0337 1240 

Lennox, R. J., Aarestrup, K., Cooke, S. J., 1241 

Cowley, P. D., Deng, Z. D., Fisk, A. 1242 

T., … Young, N. (2017). Envisioning 1243 

the Future of Aquatic Animal 1244 

Tracking: Technology, Science, and 1245 

Application. BioScience, 67(10), 1246 

884–896. doi: 10.1093/biosci/bix098 1247 

Lindenmayer, D. B., Piggott, M. P., & 1248 

Wintle, B. A. (2013). Counting the 1249 

books while the library burns: why 1250 

conservation monitoring programs 1251 

need a plan for action. Frontiers in 1252 

Ecology and the Environment, 1253 

11(10), 549–555. doi: 1254 

10.1890/120220 1255 

Lips, K. R. (1999). Mass mortality and 1256 

population declines of anurans at an 1257 

upland site in Western Panama. 1258 

Conservation Biology, 13(1), 117–1259 

125. doi: 10.1046/j.1523-1260 

1739.1999.97185.x 1261 

Lips, K. R., Reeve, J. D., & Witters, L. R. 1262 

(2003). Ecological traits predicting 1263 

amphibian population declines in 1264 

Central America. Conservation 1265 

Biology, 17(4), 1078–1088. doi: 1266 

10.1046/j.1523-1739.2003.01623.x 1267 

Mace, G. M., Collar, N. J., Gaston, K. J., 1268 

Hilton-Taylor, C., Akçakaya, H. R., 1269 

Leader-Williams, N., … Stuart, S. N. 1270 

(2008). Quantification of extinction 1271 

risk: IUCN’s system for classifying 1272 

Threatened species. Conservation 1273 

Biology, 22(6), 1424–1442. doi: 1274 

10.1111/j.1523-1739.2008.01044.x 1275 

MacKenzie, D. I., & Royle, J. A. (2005). 1276 

Designing occupancy studies : 1277 

general advice and allocating survey 1278 

effort. Journal of Applied Ecology, 1279 

42, 1105–1114. doi: 10.1111/j.1365-1280 

2664.2005.01098.x 1281 

Marquet, P. A., Lessmann, J., & Shaw, M. 1282 

R. (2019). Protected-area 1283 

management and climate change. In 1284 



 

596 
 

T. E. Lovejoy & L. Hannah (Eds.), 1285 

Biodiversity and climate change: 1286 

Transforming the biosphere (p. 283). 1287 

Yale University Press. doi: 1288 

10.12987/9780300241198-033 1289 

Martin, L., Morton, M. N., Hilton, G. M., 1290 

Young, R. P., Garcia, G., 1291 

Cunningham, A. A., … Mendes, S. 1292 

(2007). A Species Action Plan for the 1293 

Montserrat mountain chicken 1294 

Leptodactylus fallax. 1295 

Martin, T. G., Nally, S., Burbidge, A. A., 1296 

Arnall, S., Garnett, S. T., Hayward, 1297 

M. W., … Possingham, H. P. (2012). 1298 

Acting fast helps avoid extinction. 1299 

Conservation Letters, 5, 274–280. 1300 

doi: 10.1111/j.1755-1301 

263X.2012.00239.x 1302 

Marvin, D. C., Pin, L., Lynam, A. J., 1303 

Wich, S., Davies, A. B., 1304 

Krishnamurthy, R., … Asner, G. P. 1305 

(2016). Integrating technologies for 1306 

scalable ecology and conservation. 1307 

Global Ecology and Conservation, 7, 1308 

262–275. doi: 1309 

10.1016/j.gecco.2016.07.002 1310 

McDonald-Madden, E., Baxter, P. W. J., 1311 

Fuller, R. A., Martin, T. G., Game, E. 1312 

T., Montambault, J., & Possingham, 1313 

H. P. (2010). Monitoring does not 1314 

always count. Trends in Ecology and 1315 

Evolution, 25(10), 547–550. 1316 

McLeod, D. S. (2010). Of Least Concern? 1317 

Systematics of a cryptic species 1318 

complex: Limnonectes kuhlii 1319 

(Amphibia: Anura: Dicroglossidae). 1320 

Molecular Phylogenetics and 1321 

Evolution, 56(3), 991–1000. doi: 1322 

10.1016/j.ympev.2010.04.004 1323 

Mead, L. S., Clayton, D. R., Nauman, R. 1324 

S., Olson, D. H., & Pfrender, M. E. 1325 

(2005). Newly discovered 1326 

populations of salamanders from 1327 

Siskiyou County California represent 1328 

a species distinct from Plethodon 1329 

stormi. Herpetologica, 61(2), 158–1330 

177. doi: 10.1655/03-86 1331 

Mendenhall, C. D., Frishkoff, L. O., 1332 

Santos-Barrera, G., Pacheco, J., 1333 

Mesfun, E., Mendoza Quijano, F., … 1334 



 

597 
 

Pringle, R. M. (2014). Countryside 1335 

biogeography of Neotropical reptiles 1336 

and amphibians. Ecology, 95(4), 856–1337 

870. 1338 

Menegon, M., Cantaloni, C., Rodriguez-1339 

Prieto, A., Centomo, C., Abdelfattah, 1340 

A., Rossato, M., … Delledonne, M. 1341 

(2017). On site DNA barcoding by 1342 

nanopore sequencing. 2, 1–18. 1343 

Molina, R., Marcot, B. G., & Lesher, R. 1344 

(2006). Protecting rare, old-growth, 1345 

forest-associated species under the 1346 

survey and manage program 1347 

guidelines of the Northwest Forest 1348 

Plan. Conservation Biology, 20(2), 1349 

306–318. doi: 10.1111/j.1523-1350 

1739.2006.00386.x 1351 

Murray, A. H., Nowakowski, A. J., & 1352 

Frichkoff, L. O. (2021). Climate and 1353 

land-use change severity alter trait-1354 

based responses to habitat conversion. 1355 

Global Ecology and Biogeography, 1356 

30, 598–610. doi: 10.1111/geb.13237 1357 

Nauman, R. S., & Olson, D. H. (1999). 1358 

Survey and Manage salamander 1359 

known sites. In Deanna H. Olson 1360 

(Ed.), Survey protocols for 1361 

amphibians under the Survey and 1362 

Manage provision of the Northwest 1363 

Forest Plan. Version 3.0. (pp. 43–78). 1364 

Interagency publication of the 1365 

Regional Ecosystem Office, Portland, 1366 

OR. Bureau of Land Management 1367 

Publication BLM/OR/WA/PT-1368 

00/033+1792; U.S. G. 1369 

Navarro, L. M., Fernández, N., Guerra, C., 1370 

Guralnick, R., Kissling, W. D., 1371 

London, M. C., … Pereira, H. M. 1372 

(2017). Monitoring biodiversity 1373 

change through effective global 1374 

coordination. Current Opinion in 1375 

Environmental Sustainability, 29, 1376 

158–169. doi: 1377 

10.1016/j.cosust.2018.02.005 1378 

Nowakowski, A. J., & Angulo, A. (2015). 1379 

Targeted habitat protection and its 1380 

effects on the extinction risk of 1381 

threatened amphibians. FrogLog, 23 1382 

(4)(116), 8–10. 1383 

Nowakowski, A. J., & Maerz, J. C. (2009). 1384 



 

598 
 

Estimation of larval stream 1385 

salamander densities in three 1386 

proximate streams in the Georgia 1387 

Piedmont. Journal of Herpetology, 1388 

43(3), 503–509. 1389 

Nowakowski, A. J., Watling, J. I., 1390 

Thompson, M. E., Brusch IV, G. A., 1391 

Catenazzi, A., Whitfield, S. M., … 1392 

Todd, B. D. (2018). Thermal biology 1393 

mediates responses of amphibians 1394 

and reptiles to habitat modification. 1395 

Ecology Letters, 21(3), 345–355. doi: 1396 

10.1111/ele.12901 1397 

O’Donnell, R. P., & Durso, A. M. (2014). 1398 

Harnessing the power of a global 1399 

network of citizen herpetologists by 1400 

improving citizen science databases. 1401 

Herpetological Review, 45(1), 151–1402 

157. 1403 

Olson, D. H., Clayton, D., Nauman, R. S., 1404 

& Welsh Jr, H. (2009). Conservation 1405 

of the Siskiyou Mountains 1406 

Salamander (Plethodon stormi). 1407 

Northwest Fauna 6. The Society for 1408 

Northwestern Vertebrate Biology. 1409 

Olson, D. H., & Pilliod, D. S. (2021). 1410 

Philosophy, authority, and strategic 1411 

pragmatism of amphibian and reptile 1412 

conservation. In S. C. Walls & K. M. 1413 

O’Donnell (Eds.), Strategies for 1414 

conservation success in herpetology. 1415 

Society for the Study of Amphibians 1416 

and Reptiles. 1417 

Olson, D. H., Van Norman, K. J., & Huff, 1418 

R. D. (2007). The utility of strategic 1419 

surveys for rare and little-known 1420 

species under the Northwest forest 1421 

plan. General technical report PNW-1422 

GTR-708. Portland. 1423 

Pimm, S. L., Alibhai, S., Bergl, R., 1424 

Dehgan, A., Giri, C., Jewell, Z., … 1425 

Loarie, S. (2015). Emerging 1426 

technologies to conserve biodiversity. 1427 

Trends in Ecology & Evolution, 1428 

30(11), 685–696. doi: 1429 

10.1016/j.tree.2015.08.008 1430 

Pollock, K. H. (1982). A capture-recapture 1431 

design robust to unequal probability 1432 

of capture. The Journal of Wildlife 1433 

Management, 46(3), 752–757. 1434 



 

599 
 

Proença, V., Martin, L. J., Pereira, H. M., 1435 

Fernandez, M., McRae, L., Belnap, J., 1436 

… van Swaay, C. A. M. (2017). 1437 

Global biodiversity monitoring: From 1438 

data sources to Essential Biodiversity 1439 

Variables. Biological Conservation, 1440 

213, 256–263. doi: 1441 

10.1016/j.biocon.2016.07.014 1442 

Pyron, R. A., & Wiens, J. J. (2011). A 1443 

large-scale phylogeny of Amphibia 1444 

including over 2800 species, and a 1445 

revised classification of extant frogs, 1446 

salamanders, and caecilians. 1447 

Molecular Phylogenetics and 1448 

Evolution, 61, 543–583. doi: 1449 

10.1016/j.ympev.2011.06.012 1450 

Redford, K. H., Hulvey, K. B., 1451 

Williamson, M. A., & Schwartz, M. 1452 

W. (2018). Assessment of the 1453 

Conservation Measures Partnership’s 1454 

effort to improve conservation 1455 

outcomes through adaptive 1456 

management. Conservation Biology, 1457 

32(4), 926–937. doi: 1458 

10.1111/cobi.13077 1459 

Ribeiro-Júnior, M. A., Gardner, T. A., & 1460 

Ávila-Pires, T. C. S. (2008). 1461 

Evaluating the efectiveness of 1462 

herpetofaunal sampling techniques 1463 

across a gradient of habitat change in 1464 

a tropical forest landscape. Journal of 1465 

Herpetology, 42(4), 733–749. 1466 

Rice, W. S., Sowman, M. R., & Bavinck, 1467 

M. (2020). Using Theory of Change 1468 

to improve post-2020 conservation: A 1469 

proposed framework and 1470 

recommendations for use. 1471 

Conservation Science and Practice, 1472 

e301. doi: 10.1111/csp2.301 1473 

Rodewald, A. D., Arcese, P., Sarra, J., 1474 

Tobin-de la Puente, J., Sayer, J., 1475 

Hawkins, F., … Wachowicz, K. 1476 

(2020). Innovative finance for 1477 

conservation: Roles for ecologists 1478 

and practitioners. Issues in Ecology 1479 

Report No. 22. 1480 

Rodrigues, A. S. L., Pilgrim, J. D., 1481 

Lamoreux, J. F., Hoffmann, M., & 1482 

Brooks, T. M. (2006). The value of 1483 

the IUCN Red List for conservation. 1484 



 

600 
 

Trends in Ecology and Evolution, 1485 

21(2), 71–76. doi: 1486 

10.1016/j.tree.2005.10.010 1487 

Salafsky, N., Salzer, D., Stattersfield, A. 1488 

J., Hilton-Taylor, C., Neugarten, R., 1489 

Butchart, S. H. M., … Wilkie, D. 1490 

(2008). A standard lexicon for 1491 

biodiversity conservation: Unified 1492 

classifications of threats and actions. 1493 

Conservation Biology, 22(4), 897–1494 

911. doi: 10.1111/j.1523-1495 

1739.2008.00937.x 1496 

Schleicher, J., Eklund, J., Barnes, M., 1497 

Geldmann, J., Oldekop, J. A., & 1498 

Jones, J. P. G. (2020). Statistical 1499 

matching for conservation science. 1500 

Conservation Biology, 34(3), 538–1501 

549. doi: 10.1111/cobi.13448 1502 

Schmeller, D. S., Arvanitidis, C., Böhm, 1503 

M., Brummitt, N., Chatzinikolaou, E., 1504 

Costello, M. J., … Belnap, J. (2017). 1505 

Case studies of capacity building for 1506 

biodiversity monitoring. In M. 1507 

Walters & R. J. Scholes (Eds.), The 1508 

GEO handbook on biodiversity 1509 

observation networks (pp. 309–326). 1510 

Springer Nature. doi: 10.1007/978-3-1511 

319-27288-7 1512 

Schulze, A., Jansen, M., & Köhler, G. 1513 

(2015). Tadpole diversity of Bolivia’s 1514 

lowland anuran communities: 1515 

molecular identification, 1516 

morphological characterisation, and 1517 

ecological assignment. Zootaxa, 1518 

4016(1). 1519 

Schwartz, M. W., Cook, C. N., Pressey, R. 1520 

L., Pullin, A. S., Runge, M. C., 1521 

Salafsky, N., … Williamson, M. A. 1522 

(2018). Decision support frameworks 1523 

and tools for conservation. 1524 

Conservation Letters, 11(2), e12385. 1525 

doi: 10.1111/conl.12385 1526 

Smith, R. K., Meredith, H., & Sutherland, 1527 

W. J. (2018). Amphibian 1528 

Conservation. In W. J. Sutherland, L. 1529 

V. Dicks, N. Ockendon, S. O. 1530 

Petrovan, & R. K. Smith (Eds.), What 1531 

Works in Conservation 2018 (pp. 9–1532 

66). Cambridge, UK: Open Book 1533 

Publishers. 1534 



 

601 
 

Snaddon, J., Petrokofsky, G., Jepson, P., & 1535 

Willis, K. J. (2013). Biodiversity 1536 

technologies: tools as change agents. 1537 

Biology Letters, 9, 20121029. 1538 

Stephenson, P. J., Bowles-Newark, N., 1539 

Regan, E., Stanwell-Smith, D., 1540 

Diagana, M., Höft, R., … 1541 

Thiombiano, A. (2017). Unblocking 1542 

the flow of biodiversity data for 1543 

decision-making in Africa. Biological 1544 

Conservation, 213, 355–340. doi: 1545 

10.1016/j.biocon.2016.09.003 1546 

Sterrett, S. C., Katz, R. A., Brand, A. B., 1547 

Fields, W. R., Dietrich, A. E., 1548 

Hocking, D. J., … Campbell Grant, 1549 

E. H. (2019). Proactive management 1550 

of amphibians: Challenges and 1551 

opportunities. Biological 1552 

Conservation, 236, 404–410. doi: 1553 

10.1016/j.biocon.2019.05.057 1554 

Stuart, S. N., Chanson, J. S., Cox, N. A., 1555 

Young, B. E., Rodrigues, A. S. L., 1556 

Fischman, D. L., & Waller, R. W. 1557 

(2004). Status and trends of 1558 

amphibian declines and extinctions 1559 

worldwide. Science, 306(5702), 1560 

1783–1786. doi: 1561 

10.1126/science.1103538 1562 

Sutherland, W. J., Pullin, A. S., Dolman, 1563 

P. M., & Knight, T. M. (2004). The 1564 

need for evidence-based 1565 

conservation. Trends in Ecology and 1566 

Evolution, 19(6), 305–308. doi: 1567 

10.1016/j.tree.2004.03.018 1568 

Suzuki, N., Olson, D. H., & Reilly, E. C. 1569 

(2008). Developing landscape habitat 1570 

models for rare amphibians with 1571 

small geographic ranges: A case 1572 

study of Siskiyou Mountains 1573 

salamanders in the western USA. 1574 

Biodiversity and Conservation, 17(9), 1575 

2197–2218. doi: 10.1007/s10531-1576 

007-9281-4 1577 

Tapley, B., Michaels, C. J., Gumbs, R., 1578 

Böhm, M., Luedtke, J., Pearce-Kelly, 1579 

P., & Rowley, J. J. L. (2018). The 1580 

disparity between species description 1581 

and conservation assessment: A case 1582 

study in taxa with high rates of 1583 

species discovery. Biological 1584 



 

602 
 

Conservation, 220, 209–214. doi: 1585 

10.1016/j.biocon.2018.01.022 1586 

Thomas, A. C., Howard, J., Nguyen, P. L., 1587 

Seimon, T. A., & Goldberg, C. S. 1588 

(2018). eDNA Sampler: A fully 1589 

integrated environmental DNA 1590 

sampling system. Methods in Ecology 1591 

and Evolution, 9(6), 1379–1385. doi: 1592 

10.1111/2041-210X.12994 1593 

Toivonen, T., Heikinheimo, V., Fink, C., 1594 

Hausmann, A., Hiippala, T., Järv, O., 1595 

… Di Minin, E. (2019). Social media 1596 

data for conservation science : A 1597 

methodological overview. Biological 1598 

Conservation, 233, 298–315. doi: 1599 

10.1016/j.biocon.2019.01.023 1600 

Urban, M. C., Bocedi, G., Hendry, A. P., 1601 

Mihoub, J.-B., Pe’er, G., Singer, A., 1602 

… Travis, J. M. J. (2016). Improving 1603 

the forecast for biodiversity under 1604 

climate change. Science, 353(6304), 1605 

1113. doi: 10.1126/science.aad8466 1606 

Venter, O., Fuller, R. A., Segan, D. B., 1607 

Carwardine, J., Brooks, T., Butchart, 1608 

S. H. M., … Watson, J. E. M. (2014). 1609 

Targeting global protected area 1610 

expansion for imperiled biodiversity. 1611 

PLoS Biology, 12(6), e1001891. doi: 1612 

10.1371/journal.pbio.1001891 1613 

Vieites, D. R., Wollenberg, K. C., & 1614 

Andreone, F. (2009). Vast 1615 

underestimation of Madagascar’s 1616 

biodiversity evidenced by an 1617 

integrative amphibian inventory. 1618 

Proceedings of the National Academy 1619 

of Sciences, 106(20), 8267–8272. 1620 

Walls, S. C. (2014). Identifying 1621 

monitoring gaps for amphibian 1622 

populations in a North American 1623 

biodiversity hotspot, the southeastern 1624 

USA. Biodiversity and Conservation, 1625 

23, 3341–3357. doi: 10.1007/s10531-1626 

014-0782-7 1627 

Wilson, K. A., Auerbach, N. A., Sam, K., 1628 

Magini, A. G., Moss, A. S. L., 1629 

Langhans, S. D., … Meijaard, E. 1630 

(2016). Conservation research is not 1631 

happening where it is most needed. 1632 

PLoS ONE, 14(3), e1002413. doi: 1633 

10.1371/journal.pbio.1002413 1634 



 

603 
 

Wright, A. D., Bernard, R. F., Mosher, B. 1635 

A., O’Donnell, K. M., Braunagel, T., 1636 

DiRenzo, G. V., … Campbell Grant, 1637 

E. H. (2020). Moving from decision 1638 

to action in conservation science. 1639 

Biological Conservation, 249, 1640 

108698. doi: 1641 

10.1016/j.biocon.2020.108698 1642 

Xie, J., Towsey, M., Zhang, J., & Roe, P. 1643 

(2016). Acoustic classification of 1644 

Australian frogs based on enhanced 1645 

features and machine learning 1646 

algorithms. Applied Acoustics, 113, 1647 

193–201. doi: 1648 

10.1016/j.apacoust.2016.06.029 1649 

Zipkin, E. F., Thorson, J. T., See, K., 1650 

Lynch, H. J., Grant, E. H. C., Kanno, 1651 

Y., … Royle, J. A. (2014). Modeling 1652 

structured population dynamics using 1653 

data from unmarked individuals. 1654 

Ecology, 95(1), 22–29. 1655 

Zippel, K. (2002). Conserving the 1656 

Panamanian Golden Frog: Proyecto 1657 

Rana Dorada. Herpetological Review, 1658 

Vol. 33, pp. 11–12. 1659 



 

604 
 

Supplemental information 1660 

Table S1. Example amphibian survey and monitoring programs. Dept. = Department; Univ. = University; NGOs = non-governmental 1661 

organizations [Note: suggested examples are welcome, particularly beyond the USA] 1662 

Program Partners Objectives Methods Geography/ Time References 

Agile Frog  

NGOs, Jersey 

zoo, Jersey 

government 

Prevent the 

extinction of the 

Agile Frog in 

Jersey 

Pond survey of adult 

frogs; tadpole release 

and monitoring 

Jersey/late 1980-

present 
  

Amphibian 

Research and 

Monitoring 

Initiative 

ARMI) 

US Dept. 

Interior, US 

Geological 

Survey; other 

US Depts., 

academia, 

States 

Monitor 

amphibians on 

public lands and 

determine factors 

affecting their 

status 

Diverse survey and 

research methods 

used 

US-wide with a 

focus on US federal 

and state lands/2000 

to present 

ARMI 2020 (see publication); 

Adams et al. 2013; Grant et al. 2016) 

Atelopus 

Survival 

Initiative 

National and 

international 

individuals, 

groups and 

institutions  

Improve the 

conservation 

status of 

harlequin toads  

  

Range-wide plan for 

the next 20 years 

(2021-2041) 

https://www.atelopus.org/the-

initiative 

British 

Columbia, 

Canada 

amphibian 

conservation 

and restoration 

database 

British 

Columbia 

Ministry of the 

Environment, 

Canada 

Track amphibian 

conservation and 

restoration 

actions inclusive 

of inventory and 

monitoring 

programs 

Any Any 

Leigh Anne Isaac, pers. Commun., 

BD Ministry of Environment, 

herpetofaunal expert 
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Corroboree 

Frog Recovery 

Program 

AUS 

government, 

Zoos, NGOs  

Secure the 

survival of the 

Northern and 

Southern 

Corroboree Frog 

in AUS, annually 

monitor wild 

populations 

Survey number of 

calling males 

Alpines of New 

South Wales and the 

Australian Capital 

Territory/2003 to 

present 

https://www.corroboreefrog.org.au/ 

FrogID 
Australian 

Museum 

Understand the 

true species 

diversity, 

distribution and 

breeding habitats 

of Australian 

frogs  

Anuran call surveys; 

citizen science  
Australia/2017-2021 https://www.frogid.net.au/ 

Frogwatch 

USA 
AZA   

Citizen science; frog 

calls 
US wide/1998-2014 www.aza.org/frogwatch 

Golden 

Mantella 

Malagasy 

NGOs, zoos 

Address 

fundamental 

questions around 

species 

dispersion, 

migration and 

colonization 

Capture-mark-

recapture 

Mangabe-

Ranomena-

Sahasarotra New 

Protected Area, 

Madagascar/2012-

present 

  

Greater 

Yellowstone 

Inventory and 

Monitory 

Network’s 

Amphibian 

Monitoring 

Program 

US Dept. 

Interior, US 

National Park 

Service, US 

Geological 

Survey; 

academia 

Annually 

monitor native 

amphibian 

species and their 

habitats across 

300 wetland sites 

in 30 watershed 

units. 

Visual observations, 

Dip net surveys 

Yellowstone 

National Park, Grant 

Teton National Park; 

Wyoming, 

USA/2005 to present 

Ray et al. 2016, 2020; Hossack et al. 

2015; Gould et al. 2019 
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Idaho 

Amphibian and 

Reptile 

iNaturalist 

Project 

Idaho State 

Univ. 

Herpetology 

Laboratory; 

iNaturalist; 

citizen 

scientists 

Improve species 

occurrence and 

distribution data 

in Idaho by 

collecting 

observations 

using iNaturalist, 

a mobile 

application 

Crowdsourcing 

(iNaturalist) 

observations and 

purposive surveys 

Idaho, USA/2016 to 

present 
Peterson 2020 

Long Term 

Ecological 

Research 

Program 

(LTER or 

PELD) 

Brazilian 

government, 

National 

Institute for 

Research in the 

Amazon 

Establish 

permanent 

research sites 

integrated in a 

network for the 

development and 

monitoring of 

long-term 

ecological 

research 

Temporal dynamics 

of amphibians; visual 

and acoustic surveys 

PELD Amazon/early 

1990-present 
https://ppbio.inpa.gov.br/ 

Mountain 

Chicken 

Recovery 

Programme 

NGOs, zoo, 

academia, 

governments 

To have healthy 

mountain 

chicken 

populations 

across their 

former year-

2000 ranges on 

each of 

Montserrat and 

Dominica by 

2034 

Visual  population 

surveys; screening 

the animals for 

disease  

Montserrat and 

Dominica/2014-

present 

https://www.mountainchicken.org/ 
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National 

Amphibian 

Survey 

NGOs, UK 

government, 

academia 

Determine trends 

in the occurrence 

and relative 

abundance of 

frogs, toads and 

newts in the UK 

Trapping; capture-

mark-recapture; 

citizen science 

UK wide/2007-

present 

https://amphibian-survey.arc-

trust.org/ 

North 

American 

Amphibian 

Monitoring 

Program 

(NAAMP) 

US Dept. 

Interior, 

Geological 

Survey, Citizen 

science, 

academia, 

States, NGOs 

Monitor calling 

amphibian 

populations 

Anuran call surveys 

from roads 

Eastern and central 

USA/1997 to 2015 

NAAMP 2020 (see publications); 

Cosentino et al. 2014; Villena Carpio 

et al. 2016 

Ranita de 

Darwin 

NGOs, zoo, 

academia, 

governments 

Long-term 

monitoring of 

Southern 

Darwin's frog 

(Rhinoderma 

darwinii) 

populations 

Visual surveys; 

capture-recapture 

4 sites across South 

Chile (Contulmo, 

Neltume, Chiloé, 

Melimoyu)/2014-

present 

https://www.ranitadedarwin.org/ 

Sierra Nevada 

Amphibian 

Monitoring 

Program 

US Dept. 

Agriculture, US 

Forest Service 

Long-term multi-

scale monitoring 

of amphibians on 

national forest 

lands in the 

Sierra Nevada 

Randomised, unequal 

probability, rotating 

panel design; Visual 

observations; 

Capture-mark-

recapture; Egg mass 

surveys 

Sierra Nevada 

Range, California: 

>2200 sites, 124 

basins/2002 to 2009 

Brown et al. 2012, 2013, 2014  

US Dept. 

Defense 

Partners in 

Amphibian and 

Reptile 

US Dept. 

Defense 

(Army, Air 

Force, Navy 

Species 

inventory of 415 

DoD properties 

(sites) 

Literature, Database 

searches; 

Observations using 

variable methods 

US-wide; 2013 to 

2016 
Petersen et al. 2018 
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 28 

Abstract 29 

In the face of overwhelming and sometimes acute threats to many amphibians, such as 30 

disease or habitat destruction, the only hope in the short-term for populations and species at 31 

imminent risk of extinction is immediate rescue for the establishment and management of 32 

captive survival-assurance colonies (CSCs). Such programmes are not the final solution for 33 

conservation of any species, but in some circumstances may be the only chance to preserve 34 

the potential for eventual recovery of a species or population to threat-ameliorated habitat. A 35 

captive-assurance strategy should always be implemented as part of an integrated 36 

conservation plan that includes research on amphibian biology, advances in husbandry and 37 

veterinary care, training and capacity-building in range countries, mitigation of threats in the 38 

wild, and ongoing habitat and species protection and, where appropriate, disease risk 39 

analysis. The existence of captive assurance colonies also facilitates many of the goals of 40 

other ACAP branches, including research on amphibians and their diseases as well as the 41 

development and validation of methods that may be later used in the field. Captive 42 

programmes do not replace important programmes related to, inter alia, habitat preservation, 43 

control of harvesting, climate change, and ecotoxicology, but instead provide options and 44 

resources to enable survival of some species while these research programmes proceed, and 45 

to directly or indirectly support such programmes. 46 

 47 

Introduction 48 

The Amphibian Ark (AArk) was formed in 2007 to coordinate and support the ex situ 49 

component of the Amphibian Conservation Action Plan (ACAP), with the mission of 50 
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ensuring the survival and diversity of amphibian species focusing on those that cannot 51 

currently be safe-guarded in their natural environments. AArk focuses its efforts on range-52 

country programmes for those species which are otherwise likely to become extinct before 53 

the threats they face can be mitigated. In order for the Conservation Breeding Working Group 54 

(CBWG) priorities within the ACAP to be implemented, the global network of captive 55 

breeding programmes, which include CSCs, capacity-building programmes using analogue 56 

species, and applied ex situ research populations, must be explicitly linked to conservation 57 

and research programmes, both ex situ and in situ. To this end, AArk recommends that 58 

activities are implemented in five phases: 59 

1. Assessment and prioritisation of species’ conservation needs (Conservation Needs 60 

Assessment). 61 

2. Establishment of captive operations in the range countries. 62 

3. Research and long-term maintenance of captive operations. 63 

4. Providing animals for research and reintroduction programmes. 64 

5. Post-reintroduction monitoring and assessment (see translocation chapter). 65 

 66 

The requirement and capacity for ex situ conservation varies regionally and is linked to 67 

spatial variation in amphibian species diversity, socioeconomic status of range states and the 68 

degree of threats posed to amphibian species in different parts of the world. The degree to 69 

which these variables are understood also varies considerably, and only ongoing field 70 

surveys, research and assessments will identify the actual numbers of species that will require 71 

a captive component to their overall conservation plan, and therefore determine the relative 72 

capacity of a region. 73 

 74 
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It should also be noted that, despite continuing advances in our understanding of the captive 75 

requirements of amphibians, captive husbandry capability is not sufficient to allow some 76 

species to thrive and breed ex situ. This is usually due to insufficient species-specific data, 77 

infrastructure and/or expertise. 78 

 79 

Recognised challenges 80 

A number of challenges can be faced by amphibian conservation breeding programmes, 81 

including a lack of funding, resources and expertise; inability to reverse some threats; 82 

insufficient understanding of species’ life history and environmental parameters; limited 83 

capacity to establish the number of conservation programs required; and sometimes very low 84 

founder numbers. Table 1.1 includes a summary of recognised challenges that can be faced 85 

by ex situ amphibian conservation programs. 86 
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Table 11.1: Recognised challenges faced by amphibian conservation breeding programmes 87 

Insufficient funding / resources 

 

Relative to other taxa, amphibians remain grossly underfunded. Funding for CSCs comes from a diversity 

of sources but is often piecemeal, localised and short-term. CSCs require long term investment and take 

time to establish, this often results in project fatigue. Difficulties in sourcing specialist equipment in some 

range states has the potential to undermine programmes once they have been established. 

Insufficient technical expertise 

and a lack of species champions 

Amphibian captive husbandry expertise is sometimes lacking in the countries which support the greatest 

amphibian biodiversity and disproportionately threatened amphibian assemblages. Attempts have been 

made to address this balance, however the lack of technical expertise remains a problem. It can be difficult 

to train the appropriate people, there is high staff turnover and once training has occurred there are no 

mechanisms in place to ensure that the knowledge gained through training is put into practice and 

disseminated to others. This last issue is due, at least in part, to a lack of species champions to develop and 

formally manage programmes for target species. Some captive husbandry practitioners also have difficulty 

accessing scientific literature on amphibian husbandry. The expertise underpinning many programmes is 

based on short training experience and some programmes may lack the longer term experience required to 

adapt to the problems in husbandry. 
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Identifying suitable candidate 

species that require CSCs 

Not all amphibians are suitable candidates for CSCs. The threats for some species are not currently 

reversible or may not ever be reversible. Deciding which species should be established as a CSC can be 

problematic and must to take into account the geo-political context and likelihood that the programme will 

succeed. 

Failing to act and acting too late 

 

CSCs are often seen as a measure of last resort and the establishment of a CSC is often postponed until 

numbers in the wild are dangerously low. This can greatly reduce the chances of establishing a viable CSC 

due to the issues inherent with small population sizes and the time potentially required to develop species-

specific husbandry techniques. There is a choice to be made between prioritising small populations or 

larger, rapidly declining populations; in the one case extinction may be imminent, but programmes may 

fail, while in the other case there is still time for in situ only intervention. 

Lack of field data on species 

biology and reliance on non–

evidence based husbandry 

practices 

Data on life history and environmental parameters are lacking for many species and life stages. This 

paucity of information has the potential to undermine CSCs for species which are established where little 

to nothing is known about the species biology, ecology and habitat / microhabitat requirements. There is a 

prevalence of anecdote-based husbandry over evidence-based approaches. There is a need to engage with 

field biologists, the scientific literature and the application of a methodical approach to changing 
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husbandry. Engagement with industry / technical expertise may facilitate the design of better CSC facilities 

to provide appropriate conditions. 

New threats and limited capacity 

 

The captive breeding community must be able to respond to new threats as they emerge, in particular, 

emerging infectious disease. There is already limited captive breeding capacity and more species in need of 

CSCs than there are programmes established. As new threats emerge and more species become threatened 

there is a risk that the captive breeding community will be unable to respond. Working with field biologists 

to conduct health surveillance of wild populations is crucial. 

Ex situ management can 

produce maladapted amphibians 

 

Some amphibians fail to thrive and breed in captivity under the conditions currently provided to them. The 

husbandry requirements of amphibians are more complex than previously thought and for many species 

that require CSCs, the husbandry requirements are unknown. There is a danger of not producing any 

captive bred offspring or producing maladapted amphibians in CSCs which may not be suitable for 

reintroduction, especially if captive conditions differ greatly from field conditions. 

Risk of novel pathogens in ex 

situ facilities 

 

CSC facilities should be located within the indigenous range of a species to minimise the risk of 

individuals in such programmes becoming exposed to novel pathogens, or bringing pathogens into existing 

captive populations. Doing so may also simplify the provision of some environmental and climatic 

variables that may be important for successful husbandry. Capacity may be lacking in some regions, and as 
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a result, facilities may need to be located outside of the range state and / or distributional range of the target 

species and there is a risk that such populations of amphibians will become exposed to novel pathogens. 

This is especially an issue if hosting organisations maintain cosmopolitan animal collections. Many 

pathogens of concern cannot currently be effectively screened for and this has the potential to undermine 

programmes and risk sympatric species at release sites at risk. 

National, regional or local 

conservation authorities are / 

become unsupportive 

Conservation priorities depend on the scale of operation. A regionally threatened species may not be a 

national or global priority, and vice versa. This can result in different priorities within organisations 

operating at different scales. Equally, the level of support provided will depend on the political motivations 

of the authorities concerned. State support is likely to improve with appropriate engagement with in-

country parties. 

Lack of sufficient numbers or 

genetic diversity for founding 

populations 

Genetic analysis is expensive and the resources and expertise are not available to determine the genetic 

viability of many populations both in the field and in captivity that would benefit from it. Currently, some 

studbooks are not well implemented in existing CSCs. 

 

Lack of post release monitoring 

 

Inadequate post-release monitoring does not allow captive breeding practitioners to assess the success of 

their programmes. Poor survival and / or breeding of captive bred animals following their release to the 
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wild needs to be identified as quickly as possible so that husbandry changes aimed at improving success 

can be identified and implemented. 

Conflict of interests 

 

Whilst conservation research has an important role in developing new husbandry techniques, disease 

mitigation and for developing reintroduction strategies, there is a risk that producing animals for research 

becomes the priority to the detriment of the captive population. The practical benefits of using captive bred 

offspring for research rather than release need to be critically assessed on a case-by-case basis. 

Government and political 

constraints 

If CSCs are implemented outside of range countries, the acquisition of permits to export wild-caught 

founder animals (and to subsequently import animals for eventual reintroduction) can be time-consuming 

and problematic. In-country collection permits can also be difficult to obtain in some countries, with long 

delays leading to further population declines in the wild. 

Lack of stakeholder buy-in or 

involvement 

Not all threatened amphibians are charismatic, and can be more difficult to attract resources, community 

and government buy-in to conservation actions. Within the ex situ community, these are also often ignored 

in favour of more charismatic species, not only other amphibians, but charismatic, larger species. There is 

an increasing trend in zoos and aquariums for merging departments together, which can lead to a loss of 

species-specific expertise. 

88 
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Status update 89 

 90 

Advances in species prioritisation and holistic programme planning 91 

Given the inadequate global capacity to establish and maintain CSCs for all threatened 92 

species, and the necessary long-term nature of most CSCs, species prioritisation is a critical 93 

tool in a strategic approach to amphibian conservation, and a number of advances have been 94 

made in this area since the first ACAP (e.g. Gumbs, Gray, Wearn, & Owen, 2018; Isaac, 95 

Redding, Meredith, & Safi, 2012; Johnson et al., 2018). Additionally, the need for integration 96 

of ex- and in situ interventions (i.e. following the IUCN Conservation Planning Specialist 97 

Group’s One Plan Approach), which was not always the case for captive breeding 98 

programmes historically, was highlighted initially by the IUCN/SSC (2002), then 99 

subsequently by the first ACAP (Gascon et al., 2007) and continues to be the case. In 2006, a 100 

taxon selection and prioritisation working group developed a decision tree to help select and 101 

prioritise which species are most in need of ex situ assistance. In 2009 the AArk began 102 

expanding and refining this tool into the Conservation Needs Assessment (CNA) process 103 

(www.ConservationNeeds.org), as a method to promote needs-based species prioritisation, 104 

and holistic programme planning with defined exit strategies. A CNA assigns recommended 105 

actions to a species from a range of eleven conservation roles, from no current needs, through 106 

in situ conservation or research only, to full ex situ rescue or ark operations (Johnson et al., 107 

2018), with national species priorities determined by scores allocated to responses within 108 

each CNA. Prioritisation of species is still constrained partly by incomplete knowledge of the 109 

total diversity of amphibians, and the current conservation status of the majority of described 110 

amphibian species (Tapley et al., 2018), and CNAs should be updated as additional or 111 

updated data are available, to ensure accurate priorities and recommendations for action. In 112 

order to inform conservation prioritisation the conservation needs of all threatened 113 
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amphibians must be evaluated, and then re-evaluated on a ten-yearly basis, or when new data 114 

are available, to ensure the assessments remain current and valuable. CSCs should be 115 

established based on priorities at the time and reviewed as priorities change. Since 2018, a 116 

number of joint amphibian IUCN Red List and Conservation Needs Assessment workshops 117 

have taken place. This joint approach considerably reduces the financial and human resources 118 

required compared to conducting the two assessments separately and facilitates the necessary 119 

close link between the processes. It is envisioned that joint IUCN Red List and CNA 120 

assessments will continue into the future. However, completing assessments for all threatened 121 

amphibians and updating them on a cyclic basis to inform conservation action is costly. 122 

Moreover, the prioritisation process is only of value if it is followed by the establishment of 123 

captive programmes, as well as the other CNA recommendations, for those species that are 124 

identified as requiring them as part of integrated (or holistic) conservation recovery 125 

programmes. Therefore, the ex situ response must be strategically linked to the CNA process. 126 

 127 

The conservation breeding community has responded positively to CNAs (Figure 11.1), as 128 

these assessments have been a pivotal consideration in the collection planning processes 129 

adopted by the ex situ conservation community (e.g. Barber & Poole, 2014; Garcia et al., 130 

2020). However, mechanisms need to be developed to ensure that CNA recommendations are 131 

more-widely adopted at the national level when conservation strategies are developed for 132 

amphibians. 133 
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 134 

Figure 11.1. The number of amphibians that have had their conservation needs assessed, the 135 

proportion of assessed species that require urgent ex situ rescue and the proportion of the 136 

species requiring urgent ex situ rescue that are currently established as an CSC (data from 137 

AArk’s programme progress database). 138 

 139 

Paradigm shift and the development of regional capacity 140 

The first ACAP recognised the importance of establishing CSCs within species range 141 

countries and using facilities dedicated to sympatric species with shared management 142 

histories (Gascon et al., 2007), and this recommendation is maintained by the CBWG and 143 

AArk (Zippel et al., 2011). If this is not the case, exposure to alien pathogens is possible 144 

(Pessier & Mendelson III, 2017; Zippel et al., 2011), which may create additional threats for 145 

the focal species and/or syntopic taxa following translocation of captive individuals 146 

(Cunningham, Daszak, & Rodríguez, 2003). Such pathogens have been detected in 147 

cosmopolitan amphibian collections (Cunningham et al., 2015; Miller et al., 2008; Walker et 148 

al., 2008), or may be unknown or unreliably detected and difficult to eradicate (e.g. Blooi et 149 
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al., 2015; Rijks et al., 2018), and so pose a substantial and real threat (e.g. Walker et al., 150 

2008). In addition to infectious disease, hosting CSCs outside of range countries potentially 151 

has cultural, political, legal and social implications for the long-term success of conservation 152 

programmes (Tapley, Bradfield, Michaels, & Bungard, 2015). An in-range approach requires 153 

capacity building, however, as regions most in need of CSCs are often those where few 154 

resources currently exist (Edmonds et al., 2012; Gagliardo et al., 2008). A number of high-155 

profile CSCs have therefore been established outside of range countries because it was not 156 

possible to build capacity in time to rescue populations from acute declines, e.g. mountain 157 

chicken frogs (Leptodactylus fallax) and Kihansi spray toads (Nectophrynoides asperginis). 158 

Although these programmes are key to species survival and supported by AArk, they are 159 

acknowledged to be suboptimal in this respect. Both programmes work closely with in-range 160 

governments and communities, however, to partially address this issue. 161 

 162 

In the years immediately following the publication of the ACAP in 2007, the number of 163 

amphibian captive programmes increased (Harding, Griffiths, & Pavajeau, 2016), and a 164 

number of well-equipped facilities dedicated to amphibian conservation breeding were 165 

established in regions where capacity was previously lacking (Bourke, 2010; Edmonds et al., 166 

2012; Harding et al., 2016; Hernández Díaz, 2013; Tapley, Harding, et al., 2014; Ziegler, 167 

2015). According to Harding et al. (2016), by 2014, approximately half of captive breeding 168 

programmes were undertaken by government or non-government agencies rather than zoos or 169 

aquariums. It is therefore important to avoid conflation of ex situ conservation as a concept 170 

with zoo and aquarium populations of animals. 171 

 172 
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Captive husbandry: advances and current limitations 173 

There have been notable advances in a number of relevant areas since the publication of the 174 

first ACAP (Table 11.2). 175 

 176 

Table 11.2. Advances in amphibian husbandry since the publication of the first ACAP. 177 

Area of husbandry Associated references 

Nutrition Antwis et al., 2014; Byrne & Silla, 2017; Dugas, Yeager, & 

Richards-Zawacki, 2013; Edwards, Byrne, Harlow, & Silla, 2017; 

Jayson et al., 2018; McInerney, Silla, & Byrne, 2019; Michaels et 

al., 2021; Ogilvy & Preziosi, 2012; Ogilvy, Preziosi, & Fidgett, 

2012; Rodríguez & Pessier, 2014; Silla, McInerney, & Byrne, 

2016; Venesky, Mendelson III, Sears, Stiling, & Rohr, 2012 

Keogh et al., 2018 

Provision of 

appropriate lighting 

Baines et al., 2016; Michaels, Antwis, & Preziosi, 2015; Shaw et 

al., 2012; Tapley, Rendle, et al., 2014; Verschooren, Brown, 

Vercammen, & Pereboom, 2011; Whatley et al., 2020 

Provision of 

enrichment 

Michaels, Downie, & Campbell-Palmer, 2014 

Behavioural 

syndromes 

See review in Kelleher, Silla, & Byrne, 2018 

Artificial 

manipulation of 

seasonally dependent 

adaptations 

Calatayud et al., 2015 Calatayud et al., 2020 
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(brumation, 

aestivation, torpor) 

Larval rearing 

techniques 

Behr & Rödder, 2018; Ciani et al., 2018; Fenolio et al., 2014; 

Gawor et al., 2012; Gower et al., 2012; Higgins et al., 2021; 

Lassiter et al., 2020; Michaels, Antwis, & Preziosi, 2014; 

Michaels & Preziosi, 2015; Michaels, Tapley, Harding, Bryant, & 

Grant, 2015; Pasmans, Janssens, Sparreboom, Jiang, & 

Nishikawa, 2012 

Health assessment Davis & Maerz, 2011; Jayson, Harding, et al., 2018; Narayan & 

Hero, 2011 

Disease treatment 

protocols and 

pathogen management 

Blooi, Martel, et al., 2015; Blooi, Pasmans, et al., 2015; 

Brannelly, Richards-Zawacki, & Pessier, 2012; Garner, Garcia, 

Carroll, & Fisher, 2009; Martel et al., 2011; Michaels et al., 2018; 

Rendle et al., 2015; Ujszegi et al., 2021. 

Pre translocation 

training 

Crane & Mathis, 2011 

Assisted reproductive 

techniques and 

biobanking 

See Chapter 12 

 178 

Species-specific husbandry and management protocols have also been developed for a host of 179 

species via a range of channels including peer-reviewed articles and technical reports 180 

(Jameson et al., 2019; Poole & Grow, 2012; Tapley et al., 2016). Furthermore, techniques 181 

have been developed and validated that aid in situ actions such as population monitoring and 182 

disease mitigation (Hudson et al., 2016; Jayson, Ferguson, et al., 2018; Scheele et al., 2014; 183 
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Tapley, Michaels, Gower, & Wilkinson, 2020) and the establishment of facilities in range 184 

states (e.g. Nicolson et al., 2017). 185 

 186 

While these advances have contributed to the ex situ community’s ability to successfully 187 

maintain and breed an increasing number of species (e.g Ettling et al., 2013; McFadden et al., 188 

2018; Michaels et al., 2015; Preininger, Weissenbacher, Wampula, & Hödl, 2012), it is still 189 

unable to meet the needs of many species due to husbandry limitations that ultimately derive 190 

from inadequate understanding of species biology and pathology, and insufficient resources 191 

and regional expertise (Flach et al., 2020; Pessier et al., 2014). 192 

 193 

Adaptation to captivity 194 

Over time, any captive population of amphibians will adapt genetically, phenotypically and 195 

behaviourally to captive environments, which inevitably differ from wild conditions in 196 

myriad ways. Potential adaptations to captivity include: 197 

1. vocalisations / phonotaxis (Passos, Garcia, & Young, 2021, 2017); 198 

2. antipredator behaviour (Crane & Mathis, 2011); 199 

3. induced morphological antipredator responses (Kraaijeveld-Smit, Griffiths, Moore, & 200 

Beebee, 2006); 201 

4. microbial communities (Antwis et al., 2014; Becker, Richards-Zawacki, Gratwicke, & 202 

Belden, 2014; Michaels & Preziosi, 2020; Passos, Garcia, & Young, 2018); 203 

5. colouration (Dugas et al., 2013; Ogilvy et al., 2012); 204 

6. size/morphology (Bennett & Murray, 2015); 205 

7. nutritional state (Silla et al., 2016); 206 

8. fecundity and offspring viability (Dugas et al., 2013); 207 

 208 
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Maximising genetic diversity is crucially important, particularly in instances where animals 209 

bred in captivity serve as a source population for reintroduction and translocation (Grueber, 210 

Hogg, Ivy, & Belov, 2015; Jameson et al., 2019). Understanding species-specific histories, 211 

early viability selection and local environmental adaptation is necessary as not all species will 212 

respond to inbreeding and artificial selection uniformly (Grueber et al., 2015). Suboptimal 213 

captive husbandry may also result in individuals with lower phenotypic fitness that are less 214 

likely to establish in wild habitats following translocation. 215 

 216 

Adaptation to artificial captive environments could be reduced if every aspect of the natural 217 

environments could be replicated in captivity, although this is currently logistically and / or 218 

technologically impossible (Tapley et al., 2015) or ethically challenging in the case of 219 

predators, pathogens, parasites, and other stressors. Minimising the number of generations 220 

that a species is kept in captivity by reducing the length of time a species is held in captivity, 221 

increasing generation length or using cryopreservation are other methods that can be used to 222 

minimise adaptation to artificial captive environments (Frankham, 2008; Williams & 223 

Hoffman, 2009). Periodically importing individuals from the wild (Frankham & Loebel, 224 

1992) and equalising families at each generation (Frankham, Manning, Margan, & Briscoe, 225 

2000) are other strategies that can substantially reduce adaptation to captivity. Another 226 

strategy is to manage a population as several small reproductively isolated units where 227 

different components of diversity are lost randomly by drift, then crossing these units to 228 

rescue genetic diversity and produce animals for translocations (Margan et al., 1998). 229 

 230 

Lessons learnt from reintroductions and translocations 231 

Several high-profile amphibian species have been subject to captive breeding programmes 232 

which also include reintroduction efforts. Some of the reintroductions have been more 233 
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successful than others, but for all of them, learning from any failings which are identified, as 234 

well as modifying processes, is vital to improving the success of future attempts. 235 

Reintroductions and other translocations are covered in far more detail in Chapter 14 of this 236 

publication; however, examples of lessons learned from a few programmes are included here.  237 
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Box 11.1: Puerto Rican crested toad (Peltophryne lemur) 238 

As the Puerto Rican crested toad (Peltophryne lemur) reintroduction programme nears its 239 

fourth decade, the ebb and flow of failures and achievements is recognised as part of our 240 

functionality. Throughout this process, we have discovered that trust between partners is 241 

paramount and failures are not about proving someone wrong or assigning blame. Rather, 242 

failures are learning opportunities to build upon, adapt, and move forward as a group. 243 

 244 

One of the biggest hurdles for this programme has been transitioning leadership from a few 245 

invested individuals overseeing a small reintroduction effort, to an island-wide programme 246 

instilling stewardship for a critically endangered species- connecting volunteers, universities, 247 

zoos, local and federal agencies, and nongovernmental organisations. The development of a 248 

Memorandum of Understanding (MOU) between primary agency partners responsible for the 249 

species protection and recovery, establishment of a Puerto Rican crested toad Working Group 250 

for all stakeholders, and increased communication and capacity building has been a slow 251 

process, but resulted in improved functionality and will prove paramount for this 252 

programme’s long-term stability. 253 

 254 

Wild crested toad populations were originally divided into two distinct northern (N) and 255 

southern (S) populations. Genetic analysis of N and S toads revealed that mitochondrial 256 

haplotypes within the lineages were moderately divergent, but they were determined to be no 257 

more divergent than other populations of amphibians (Beauclerc, Johnson, & White, 2010). 258 

By 1992 the N wild population was believed to be extirpated but N toads were still 259 

maintained as a distinct breeding group in the captive population. The N zoo population was 260 

established in 1980 from four inbred siblings and by 2008 was exhibiting signs of inbreeding 261 

depression. In 2011 it was decided to perform a genetic rescue of the N population by 262 
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breeding them with wild caught S toads to establish a captive NxS population. Releases of 263 

NxS toads began at northern reintroduction sites in 2012 while S population releases 264 

continued at the southern sites. For the next several years, the Puerto Rican crested toad were 265 

managed as two populations (NxS and S), but limited space and resources created the need to 266 

manage the population as one species. However, not all partners agreed to a final merger 267 

despite the NxS toads’ adaption to northern wet forests. There were concerns that there could 268 

be some deleterious alleles that might negatively impact survivorship for toads released in the 269 

dry scrub forest habitat in the south. After soliciting opinions from geneticists and biologists 270 

outside of the programme and thoughtful debate, it was agreed in 2017 to combine the 271 

captive populations and manage the Puerto Rican crested toad as one species. Resources were 272 

simply too limited to continue effective management of two captive populations and 273 

maximisation of genetic diversity and the potential for increasing overall fitness for the 274 

population outweighed concerns of low probability of negative outbreeding effects. 275 

Additionally, all reintroduction sites are isolated by geographic and man-made barriers, 276 

which helped alleviate concerns of causing any risk to the remaining wild population. 277 

 278 

Lastly, there have been many challenges related to the creation and maintenance of 279 

reintroduction sites and monitoring in general. We still have limited knowledge of the toads’ 280 

natural history and population sizes, and despite proven survivorship and recruitment at all 281 

but one reintroduction site, funding and staff shortages continue to hinder this programme. 282 

However, the establishment of reintroduction and field management standard operating 283 

procedures to assist partners at pond sites and increase monitoring efforts has become a 284 

useful tool and most importantly, we continue to move above the rising tide and use our 285 

mistakes to revaluate and adapt as we protect the remaining wild population and establish 286 

new ones for this species’ recovery.  287 
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Box 11.2: White-bellied frog (Geocrinia alba) 288 

Critically Endangered white-bellied frogs (Geocrinia alba) have a highly restricted and 289 

fragmented distribution in south-west Western Australia, with more than 50% of known 290 

populations disappearing over recent decades. Perth Zoo has been head-starting white-bellied 291 

frogs since 2008 to contribute to in situ recovery efforts. This is an effective strategy as more 292 

than 95% of fertile eggs / larvae brought into the Zoo survive to release, whereas survival to 293 

metamorphosis in the wild is only approximately 20% (McFadden et al., 2018). By late 2020, 294 

over 1,000 juvenile white-bellied frogs had been released to the wild to establish new 295 

populations and supplement existing small ones (K. Bradfield, pers. comm.). To minimise 296 

any adverse impacts of egg clutch collection on source populations, a proportion of each 297 

clutch is released at the site where it was collected (McFadden et al., 2018). 298 

 299 

The results of post-release monitoring indicate that translocations of this species can be 300 

successful; a population established with head-started frogs is now one of the largest self-301 

sustaining wild populations with others in a stable or increasing trend. However, one 302 

translocation attempt appears to have failed, and the distribution of frogs at one of the 303 

supplementation sites has changed (K. Williams, pers. comm.). Understanding the primary 304 

drivers of translocation success vs failure is therefore critical to on-going recovery efforts. 305 

Hoffmann, Williams, Hipsey, & Mitchell (2021) found that dry season soil moisture, which is 306 

likely to be decreasing in the area where G. alba occurs due to regional changes in climate 307 

and hydrology, predicts the outcomes of the translocations undertaken to date with a high 308 

degree of accuracy, and also explains the persistence/extinction of naturally-occurring 309 

populations. This clearly highlights the importance of understanding the fine-scale habitat 310 

associations of threatened amphibians when selecting release sites, particularly for species 311 

with limited dispersal ability.  312 
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Box 11.3: El Rincon Stream frog (Pleurodema somuncurense) 313 

The El Rincon Stream frog, (Pleurodema somuncurense), is an endemic species conformed 314 

by a few isolated subpopulations, restricted to the hot springs of the headwaters of the 315 

Valcheta Stream in northern Patagonia, Argentina (Velasco, 2018). During the last four 316 

decades, this frog’s range dramatically declined, and some subpopulations have gone extinct 317 

(Velasco, 2018). 318 

 319 

In 2012 an ambitious recovery plan for this species and its habitat began, following 320 

guidelines highlighted in the Amphibian Conservation Action Plan (Gascon et al., 2007), the 321 

El Rincon Stream Frog Conservation Action Plan (Kacoliris et al., 2018), and the 322 

Conservation Action Plan for Amphibians of Argentina (Vaira, Akmentins, & Lavilla, 2018). 323 

As part of this plan, in 2015 we established an ex situ colony of this species aimed at 324 

producing individuals to conduct a reintroduction plan for this species. Between 2017 and 325 

2021, we conducted a total of five translocations of individuals born in captivity to restored 326 

wild habitats where subpopulations of this species went extinct. Further monitoring allowed 327 

us to register the establishment of the reintroduced individuals (Martínez Aguirre et al., 328 

2019). This news encouraged us to continue with the second step of the reintroduction plan, 329 

concluding in 2021 with three translocations of a total of 2,500 tadpoles born in captivity to 330 

three new restored habitats. Monitoring carried up a few months later showed that the 331 

tadpoles completed metamorphosis in the wild. If successful, these reintroductions will add a 332 

total of four new subpopulations of this Critically Endangered species, enhancing 333 

metapopulation dynamics and increasing long-lasting viability. Further observation will let us 334 

know which strategy is best in terms of effort and biological success (i.e. translocation of 335 

tadpoles vs translocation of froglets). 336 

 337 



 

632 
 

The reintroduction attempts carried on with the El Rincon Stream frog are the first rewilding 338 

experience made in Argentina with amphibians. Although results are even more positive than 339 

we expected, the road to get here was not easy and we had to face several barriers in terms of 340 

scepticism coming mainly from colleagues from the academic realm. This scepticism, based 341 

on the fact that no previous reintroductions were carried with amphibians in Argentina, made 342 

environmental authorities to be more cautious about giving permits, causing delays, and 343 

sometimes overcrowding in the ex situ facilities. This experience let us learn that future 344 

reintroduction programmes must be based on strong support coming from several 345 

stakeholders, thus in a more participative development of the conservation actions planned.  346 
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Box 11.4: El Valle Amphibian Conservation Center (EVACC) 347 

Based on our experiences we highly recommend that before an amphibian ex situ programme 348 

with conservation purposes is launched, a complementary “Emergency Release Plan” (ERP) 349 

should be developed, which includes actions to be taken in the event of a serious situation 350 

within the ex situ facility (e.g. long-term lack of access during a pandemic, political 351 

instability, natural disaster or other emergency). This ERP does not replace a long-term 352 

release/reintroduction plan and would be implemented in cases involving releasing the 353 

animals back into the wild, when failing to do so could result in the imminent loss of the 354 

entire captive population. Based on the circumstances and magnitude of a given event, those 355 

releases could be evaluated as necessary and classified as soft or hard releases. 356 

 357 

Under normal circumstances, releases or reintroductions should not be considered if life 358 

history or habitat requirements are not yet known. Basic population demographic data on the 359 

species should be gathered if these parameters are not already known, as these will be 360 

required for population viability analysis and for informing decisions about which stages of 361 

the life cycle should be used for the reintroductions. Similarly, habitat requirements need to 362 

be determined so that habitat management, restoration and creation can be carried out in a 363 

way that will maximise the chances of the reintroduction succeeding (Moore & Church, 364 

2008).  365 
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Future directions 366 

The amphibian ex situ community has made major advances in core areas since the launch of 367 

the first ACAP. However, further development is required in order to meet the global need 368 

for these programmes. 369 

 370 

Whilst substantial advances have been made in the development of regional amphibian 371 

husbandry capacity, there are still gaps, particularly West, Central and East Africa, and 372 

southern and South-East Asia, which should be addressed by investment in these regions 373 

going forward. Furthermore, there must be continued effort to identify the conservation needs 374 

of individual species through the CNA process and to ensure that these CNAs remain up-to-375 

date. 376 

 377 

Our knowledge of the ex situ requirements of many amphibians has been enhanced by a 378 

substantial number of research projects over the past 15 years but gaps remain, particularly 379 

with regard to nutrition, diagnosis of disease and subsequent treatment, and methods for 380 

maintaining and breeding particular species in captivity, especially under biosecure 381 

conditions. These gaps can be addressed through further collaborative and co-ordinated 382 

research and partnership with, inter alia, nutritionists, wildlife health experts, field biologists 383 

and husbandry experts. The development of model systems based on existing knowledge 384 

from species that have been maintained successfully in captivity may be advantageous in 385 

understanding CSC requirements and implications for species that have not previously been 386 

kept in captivity, although this is not always the case. 387 

 388 

Many amphibian conservation breeding programmes were established as a response to 389 

infectious diseases, especially fungal pathogens. Whilst there are promising advances in the 390 
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mitigation of Bd and Bsal in the wild (e.g. Scheele et al., 2014; Woodhams et al., 2011), we 391 

are not at a stage where we can re-establish wild populations of amphibians that have been 392 

extirpated by Bd and Bsal, or other pathogens, while pathogens are still present in the 393 

environment (Mendelson III, 2018; See Chapter 6). Overcoming this challenge is critical to 394 

the success of many CSCs. As a result, the ex situ community must continue to fund costly 395 

breeding programmes for an indefinite period of time (Tapley et al., 2015). Exit strategies 396 

should be identified for all captive breeding programmes to ensure that limited resources are 397 

being used to the greatest effect. 398 

  399 

The continued integration of ex situ interventions within well-defined holistic, prioritised 400 

conservation plans is critical to ensure that conservation efforts result in species recovery 401 

(e.g. Adams et al., 2014; Azat et al., 2021; Kissel, Palen, Govindarajulu, & Bishop, 2014; 402 

Lewis et al., 2019; Rosa et al., 2015; Scheele et al., 2014). Good communication and 403 

relationship-building skills, and thoughtful planning with appropriate participants who have 404 

the authority to implement actions and establish shared achievable goals are critical to 405 

achieving this. Holistic and inclusive planning processes such as those utilised by the IUCN 406 

Conservation Planning Specialist Group (CPSG, 2020) should be followed. Staff at captive 407 

institutions need to devote time to establishing relationships with those that work with 408 

threatened species in their region / focus area if they do not already exist and maintaining or 409 

strengthening existing relationships by engaging with all relevant stakeholders such as 410 

landowners, government, academia and local communities etc. Even with the above 411 

knowledge gaps addressed, there is not currently sufficient resourcing to meet the global need 412 

for CSCs. The pursuit and securing of additional funding streams and models to support long 413 

term, holistic conservation projects incorporating CSCs is needed. 414 

 415 
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It is encouraging to see the advances made over the past 15 years, and a number of successful 416 

programmes have been implemented despite the conservation breeding community falling 417 

short of the original aspiration due the constraints mentioned above. Many amphibian taxa 418 

will still become extinct without ongoing or new ex situ intervention, and it is more important 419 

than ever that new CSCs are established strategically, and as part of an integrated approach to 420 

recover highly threatened amphibian species. 421 

 422 
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 34 

Abstract 35 

Continued amphibian species and population declines have led to the prioritisation of ex situ 36 

conservation breeding programme (CBPs) as one of the major strategies to safeguard and 37 

mitigate amphibian extinction. In the original version of the Amphibian Conservation Action 38 

Plan (ACAP), assisted reproductive technologies (ARTs) were incorporated as an appendix 39 

of the captive breeding programme’s chapter, suggesting their application as an innovative 40 

and supplementary approach that could enhance the efficacy of CBPs. This updated version 41 

of the ACAP includes, for the first time, an entire chapter dedicated to ARTs and Biobanking 42 

exclusively. Created by a group of experts in the field, this chapter describes: 1) The current 43 

state of amphibian ARTs and biobanking, including hormonal stimulation for gamete release 44 

and collection, sperm and egg collection from live animals, sperm recovery form carcasses 45 

and wild-caught individuals, biobanking success in producing live animals and health and 46 

welfare considerations; 2) The acceptance of ARTs as viable tools for amphibian 47 

conservation, their evolution and general recommendations for expanding global amphibian 48 

ARTs and; 3) The incorporation of ARTs into a broader conservation action, describing their 49 

application in species conservation needs assessments and the incorporation of ARTs and 50 
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strategic gamete biobanking into CBP genetic management. The authors of this chapter are 51 

optimistic the information relayed here is a great contribution for amphibian conservation 52 

since ARTs could facilitate and aid in the preservation of genetic material to manage, 53 

augment or rescue populations and species from extinction. As with any ex-situ management 54 

strategy, ARTs including biobanking, should complement and support CBPs and habitat 55 

management programmes in conjunction with efforts to reduce or remove the pressures that 56 

initially led to a species’ decline. This complementary conservation approach is 57 

recommended by the IUCN. 58 

 59 

Introduction: statement and actions – the aim of the Working Group 60 

With amphibians continuing to decline at an alarming rate, the establishment and 61 

management of ex situ conservation breeding programmes (CBPs1) to safeguard threatened 62 

species are of the utmost priority. In the original version of the Amphibian Conservation 63 

Action Plan (Gascon et al., 2007) the incorporation of assisted reproductive technologies 64 

(ARTs) was proposed as a necessary approach to enhance the efficacy of CBPs. Assisted 65 

reproductive technologies include procedures such as the use of hormones, biobanking, in 66 

vitro fertilisation to improve breeding success. In this updated version of the ACAP, and as 67 

proposed by Della Togna et al. (2020), the inclusion of a dedicated chapter on the role of 68 

ARTs will provide evidence of the legitimacy and practicality of their applications to 69 

amphibian conservation. Additionally, this chapter will provide up-to-date evidence of the 70 

ongoing use and value of ARTs and provide guidance to the broader amphibian conservation 71 

community on how these technologies can be incorporated into and complement existing 72 

conservation practices. In reviewing the progress of amphibian ARTs to date this document 73 

aims to provide the necessary information to establish a future framework for the 74 
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incorporation of ARTs into existing conservation practises as well as promoting the growth 75 

of the ART and Biobanking Amphibian Working Group’s international community. 76 

Furthermore, it is acknowledged that outside of the immediate biobanking community, the 77 

information set out in this chapter should address the concerns and goals of a diverse set of 78 

stakeholders, governmental and non-governmental entities, and the conservation, academic 79 

and scientific communities. Incorporating ARTs into programmes and policies could help 80 

individuals and organisations to make accurate decisions, balancing the risks and costs of 81 

implementation. 82 

 83 

As mentioned in the Conservation Breeding Working Group’s chapter and, in alignment with 84 

the IUCN’s World Conservation Strategy (Talbot, 1980) and the World Zoo Conservation 85 

Strategy (Wheater, 1995), ARTs should not act as the final solution for the management of 86 

declining amphibian biodiversity. Rather, ARTs should facilitate and aid the preservation of 87 

genetic material to manage, augment, or rescue populations and species from extinction. As 88 

with any ex-situ management strategy, ARTs including biobanking should complement and 89 

support CBPs and habitat management programmes in conjunction with efforts to reduce or 90 

remove the pressures that initially led to a species’ decline. This complementary approach is 91 

recommended by the IUCN (Gascon, 2007). Release of individuals following ARTs should 92 

conform to the IUCN’s reintroduction and translocation policies (Linhoff et al., 2021). 93 

Many approaches improve the management and success of amphibian CBPs. These include 94 

induction of spermiation and ovulation through the use of hormonal stimulation, gamete 95 

cryopreservation and refrigerated/cold, short-term storage and artificial fertilization (Browne, 96 

Wolfram, García, Bagaturov, & Pereboom, 2011; Clulow, Upton, Trudeau, & Clulow, 2019; 97 

Della Togna, 2015; Della Togna et al., 2020). However, successful genetic management 98 

using strategic biobanking can only be accomplished as part of a multidisciplinary approach 99 
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in collaboration with all institutional, governmental, and private stakeholders. Therefore, the 100 

ASG Assisted Reproduction and Gamete Biobanking Working Group aims to coordinate 101 

international, regional, and local efforts for the development and implementation of ARTs for 102 

at-risk/threatened amphibian populations around the globe. 103 

  104 

The current state of amphibian reproductive technologies and gamete banking 105 

Gamete collection is the cornerstone of ARTs. Optimising protocols for gamete collection 106 

can improve the fertilization capability of individuals, artificial fertilization and artificial 107 

insemination (for internal fertilising species), and the quality of cryopreserved gametes in 108 

order to manage and maintain genetic diversity in CBPs. 109 

 110 

In the 1800s, the concept of genome resource banks (GRBs) for cryopreserved gametes was 111 

established (Mantegazza, 1866). Commercial needs have driven major advances in ART 112 

protocols in fish aquaculture (Tiersch, Yang, Jenkins, & Dong, 2007; Walters, Benson, 113 

Woods, & Critser, 2009), agriculture, birds (Blesbois, 2007), mammals (Walters et al., 2009) 114 

2009), and humans (Sherman, 1980; Walters et al., 2009). The uptake of GRBs in 115 

conservation has been slower, and despite catastrophic amphibian declines, the utility of 116 

biobanks for this class was not acknowledged until recently, where the importance of its 117 

development and application has become evident (Gascon, 2007). 118 

 119 

In amphibians, protocols for cryopreserved gametes have been applied to in vitro fertilisation 120 

with free swimming sperm (reported for some species, both with fresh or cryopreserved 121 

sperm), cloning, and intracytoplasmic sperm injection (ICSI), but further refinements and 122 

improvements in protocols are needed to complement the conservation efforts. Here we 123 

review the current advances to date in amphibian ARTs. 124 



 

659 

 

 125 

Hormonal stimulation for gamete release 126 

Several amphibian studies have demonstrated the successful use of exogenous hormones for 127 

the collection of spermatozoa from Anura and Caudata. The most utilised hormones include 128 

peptides such as gonadotropin-releasing hormone agonist (GnRH-A [des-Gly10, D-Ala6, 129 

Pro-NHEt9]), human Chorionic Gonadotropin (hCG), and combinations of GnRH-A and 130 

dopamine antagonists such as metoclopramide, domperidone, or pimozide (Browne et al., 131 

2019; Clulow et al., 2018; Della Togna et al., 2017; Silla & Langhorne, 2021; Silla, 132 

McFadden, & Byrne, 2019; Vu & Trudeau, 2016). Figure 12.1 shows some examples of 133 

successful hormonal treatments on amphibians (Della Togna et al., 2020). 134 

 135 

The most commonly used methods of hormone administration are via injection either 136 

intraperitoneal, subcutaneous, or intramuscular. These techniques are minimally disruptive 137 

and provide the most rapid and effective delivery method reported to date. However, they do 138 

require basic training as they are considered ‘invasive’. In the USA, these procedures are 139 

categorised by the Institutional Animal Care and Use Committee (IACUC) [SW2] [GDT3] as 140 

a category “C” as they do not cause more than momentary or slight pain or distress and do 141 

not require the use of pain-relieving drugs (Federal Animal Welfare Regulations [CFR Ch.1, 142 

2.36(b) (5-7), (Albus, 2012)]; however, the categorisation of these types of procedures will 143 

vary globally and even between institutions so it is up to researchers to inform themselves as 144 

to local procedural requirements. 145 

 146 

  147 
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 150 

Figure 12.1. A summary of exogenous hormone treatments reported in the literature used for 151 

the induction of spermiation in anurans and caudates. When available, cryopreservation 152 

treatments have also been identified. The most commonly reported mode of hormone 153 

administration is intraperitoneal injection; however, some species have also been successfully 154 

stimulated using topical application, subcutaneously and intra-muscular injections. Species 155 

were assigned to the continent of origin, not the location where the study took place. The 156 

figure does not show all the species reported in the literature. 157 

 158 

In recent years, other forms of administration not requiring injection have been tested. These 159 

alternative methods include topical, oral ingestion, and nasal dripping and have been 160 

successfully tested in six anuran species (Anaxyrus americanus, A. baxteri, A. valliceps, A. 161 

fowleri, Pseudophryne pengilleyi and, Xenopus laevis) (Obringer et al., 2000; Ogawa, Dake, 162 

Iwashina, & Tokumoto, 2011; Rowson, Obringer, & Roth, 2001; Silla, Roberts, & Byrne, 163 

2020). However, it is important to highlight that while hormonal administration through non-164 

injectable methods requires less training and is less invasive, a basic knowledge of 165 
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endocrinology is necessary to know how and when to apply these hormones. Furthermore, 166 

the success of all these studies have required the use of much higher concentrations of 167 

hormones compared to those used through injection, and had much lower rates of efficacy 168 

compared to injections, most likely due to partial absorbance. Therefore, the disadvantages of 169 

using non-injectable methods would imply that trading momentary discomfort for a far 170 

greater financial investment and the need to safely dispose of water containing hormones, 171 

does not offer viable alternative strategies to the traditional injection approach, unless they 172 

are used in instances where there is a restriction to the use of injections because of the size of 173 

the animals (Della Togna et al., 2020). Topical use of GnRH-A has been reported in only one 174 

species of caudate (Eurycea rathbuni) with successful increase in gamete production and 175 

breeding behaviour from both sexes post application (Glass Campbell, Anderson, & Marcec-176 

Greaves, 2022). One study has successfully collected eggs from Xenopus laevis through non-177 

invasive stimulation using progesterone and estradiol dissolved in water (Ogawa et al., 2011). 178 

 179 

Gamete collection 180 

Sperm and egg collection from live animals 181 

Hormonal stimulation for gamete collection via injection has been successfully implemented 182 

in a number of amphibian species (Figure 12.1; Table 12.1). Sperm has been collected with 183 

different concentrations of hCG, GnRH, GnRH with hCG and, GnRH + dopamine 184 

antagonists (such as Amphiplex) in several species of caudates and anurans, some of which 185 

are shown in Figure 12.1. Non-invasive methods such as oral, dermal, or topical 186 

administration have also resulted in the successful collection of gametes for 5 anuran species 187 

using hCG and GnRH (Julien et al., 2019; Obringer et al., 2000; Rowson et al., 2001; Silla et 188 

al., 2019). Additionally, oocyte collection has been more challenging than sperm, but, 189 

nevertheless, successful collections have occurred with the use of different concentrations of 190 
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hCG, GnRH, and GnRH with hCG, GnRHa with Metacloromide (Amphiplex), Follicle-191 

stimulating hormone (FSH), pituitary extract (PE), pregnant mare serum gonadotropin 192 

(PMSG), Testosterone (T), corticosterone (C), Domperidone (D), Pimozide (P) and Lucrin to 193 

name a few (Table 12.1). 194 

 195 

To date, most hormonally induced sperm and egg collections have been accomplished by the 196 

implementation of empirically developed protocols, or replicating those reported successful 197 

for other species, without further exploring if, in fact, those are the optimum protocols for 198 

new target species. Ideally, hormonal stimulation protocols should be standardised in a 199 

species-specific manner (for males and females), taking into consideration the identification 200 

of the best working hormones and concentrations, gamete concentration, quality and viability, 201 

sperm production peaks and oviposition timepoints (Della Togna, et al., 2020). 202 
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Table 12.1. A summary of amphibian species and corresponding exogenous hormones protocols used to induce ovulation. 203 

 204 
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Sperm recovery from carcasses 205 

Testicular sperm sampling is usually achieved by euthanasia, followed by maceration of the 206 

testes, sperm analysis, and storage (either refrigerated or cryopreserved) for its immediate or 207 

later use. In cases where gamete recovery is part of a conservation strategy, euthanasia is not 208 

recommended; however, opportunistic sperm collection may be possible in instances where 209 

animals have died naturally or have had to be euthanised for medical reasons. Researchers 210 

must ensure dead animals are sufficiently intact and fresh, to ensure that an adequate quality 211 

sample can be obtained. Regardless of the environment and situation, this approach requires 212 

rapid detection and processing of the carcass to yield the highest quality gametes possible. 213 

Where samples may be collected opportunistically due to the death of a captive animal, a 214 

high degree of coordination between institutional departments (e.g. husbandry, reproductive 215 

biology, and pathology staff) is required to ensure timely processing and successful gamete 216 

recovery. We recommend establishing these communications before embarking on any 217 

collection, thereby ensuring all internal and external permitting and bureaucratic 218 

requirements are cleared, since any delay related to this process may result in the loss of 219 

valuable viable cells.  In addition to opportunistic collection of testes from recently deceased 220 

animals, it is recommended that coordination with researchers for planned euthanasia also 221 

occurs. For example, euthanasia of type specimens or other common species used in 222 

approved research are sources of gametes that could be collected. 223 

 224 

Sperm collection from wild-caught individuals 225 

An important conservation strategy, particularly in the management of ex-situ populations, is 226 

preventing or mitigating the loss of genetic variability. The introduction of diverse genes into 227 

captive or inbred populations through in-situ gamete collection of wild individuals or 228 

populations increases the resilience of the rescued population without increasing the number 229 
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of individuals in it. Additionally, these approaches can be complemented by using sperm 230 

cryopreserved in-situ as a potentially low-cost, spatially conservative, and long-term strategy 231 

to manage genetic diversity of CBPs. Equipment and resources that are cost-effective and are 232 

adaptable are optimal for use in the field and methods t should include some key 233 

considerations: 234 

1. Knowledge of the best timing of when samples should be collected (e.g. peak 235 

concentrations and sperm quality parameters). 236 

2. Use of effective and established cryopreservation protocols that have been pre-tested 237 

on the target species or a close relative). 238 

3. Knowledge of field site accessibility to inform whether the operation requires a fully 239 

independent mobile laboratory facility, reduced capacity mobile laboratory facility or 240 

a field-kit only approach (see Della Togna et al., 2020 for specifics). 241 

4. Implementation of established biosecurity protocols. 242 

 243 

Biobanking success: producing viable offspring 244 

Biobanking is a multi-decadal strategy that has been used to store biological samples for 245 

research and conservation of genetic information for a number of taxonomic groups by 246 

cryopreservation (Hewitt & Watson, 2013). To date, amphibian cryopreservation remains 247 

limited mostly to sperm and cell lines because of the large size, composition, and volume of 248 

oocytes, eggs, and embryos. Further technologies have been proposed to tackle the logistical 249 

challenges facing cryopreservation of the maternal lineage but will not be expanded upon in 250 

this chapter and we refer the reader to some of the following references for more detail 251 

(Browne et al., 2019; Clulow & Clulow, 2016; Clulow et al., 2019; Zimkus, Hassapakis, & 252 

Houk, 2018). Since the ACAP was published in 2007, papers citing sperm cryopreservation 253 

have been published for 41 species (35 Anurans and 6 Caudata) (Figure 12.1). 254 
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 255 

Six (and one sub-species) of the 41 biobanked species known to us represent salamanders, 256 

and include Cryptobranchus alleganensis (Peng, Xiao, & Liu, 2011; Unger, Mathis, & 257 

Wilkinson, 2013), Ambystoma mexicanum (Figiel, 2013) Ambystoma tigrinum (Gillis, Allen, 258 

& Marcec-Greaves, 2020; González, 2018; Marcec, 2016), Notophthalmus meridionalis, 259 

Tylototriton kweichowensis (Guy, Gillis, et al., 2020) and Andrias davidianus (Browne et al., 260 

2019; McGinnity, Reinsch, Schwartz, Trudeau, & Browne, 2022). No caecilian species have 261 

been reported in biobanks to date (Figure 12.1). 262 

 263 

Few publications report post-thaw artificial fertilization (Burger et al., 2021; Langhorne, 264 

2016; Marcec, 2016; McGinnity et al., 2022; Upton et al., 2021; Upton, Clulow, Mahony, & 265 

Clulow, 2018) and truly demonstrate the biological competence of frozen amphibian sperm 266 

with the production of viable F1 individuals. Studies which reportedly produced offspring 267 

that successfully metamorphosed after artificial fertilisation include: Anaxyrus boreas boreas, 268 

Lithobates sevosa (Langhorne, 2016) and Ambystoma tigrinum (Marcec, 2016), Litoria aurea 269 

(Upton et al., 2021), Litoria fallax (Upton et al., 2018) and Cryptobranchus alleganiensis 270 

(Peng et al., 2011; Unger et al., 2013). Yet only two studies have demonstrated the 271 

reproductive fitness of those offspring, the L. aurea and L. fallax males produced by 272 

cryopreserved sperm reached sexual maturity and were capable of sperm production while 273 

ultrasounds showed that the two L. aurea females produced had reached sexual maturity and 274 

were gravid (Upton et al., 2021, 2018). 275 

 276 

Health and welfare considerations 277 

The health of an animal must be taken into consideration when preparing for ARTs. Certain 278 

species may be unable to withstand the stress of procedures such as sperm or egg collection. 279 
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Although at present, there is no evidence that the principal hormones used in ART directly 280 

cause toxicity or health complications in amphibians, the application of exogenous hormones 281 

should be done under careful consideration and consultation with trained personnel. Since 282 

hormonal control of amphibian reproduction is often species-specific (Norris, 2004; Ogielska 283 

& Bartmanska, 2009), caution is recommended when applying hormones to any species for 284 

the first time (Clulow et al., 2019; Silla, Calatayud, & Trudeau, 2021). To date, a few studies 285 

suggest that collection frequency can affect sperm quality in at least one anuran species (Guy, 286 

Martin, Kouba, Cole, & Kouba, 2020; McDonough, Martin, Vance, Cole, & Kouba, 2016) 287 

and overall animal health (Green, Parker, Davis, & Bouley, 2007; Wright & Whitaker, 2001). 288 

Contrasting studies suggest that while the effects of long-term or repeated exogenous 289 

hormone treatment may cause liver and kidney damage (Chai, 2016), with the appropriate 290 

attention, ARTs can provide benefits to animal health. In a captive setting, full or partial egg 291 

retention (dystocia) may occur in female amphibians when husbandry parameters are not 292 

ideal. Egg retention that does not resolve may follow in a multitude of secondary health 293 

complications that may result in death. However, in the event of egg retention, exogenous 294 

hormones can be administered to promote egg deposition (Calatayud, Chai, Gardner, Curtis, 295 

& Stoops, 2019; Chai, 2016; Wright & Whitaker, 2001). Furthermore, the use of 296 

cryopreservation in conjunction with hormone-induced gamete collection, allows for 297 

decreased transportation of animals from the wild, or between breeding colonies, which 298 

eliminates transport-induced stress and potentially life-threatening situations (Della Togna et 299 

al., 2020; Langhorne, 2016). ARTs also allow for improved long-term management of 300 

genetics and the prevention of inbreeding (Byrne, Gaitan-Espitia, & Silla, 2019; Howell, 301 

Mawson, et al., 2021; Silla et al., 2021) while offering greater potential of good health and 302 

high survivability in offspring. 303 

   304 
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Acceptance of ARTs as viable conservation tools 305 

Evolution of ARTs as amphibian conservation tools 306 

It is beyond the scope of this document to present information on the technical details of the 307 

emerging technologies that could be applied to amphibian conservation. A number of 308 

approaches have been reviewed by other authors and are referenced in this section. The future 309 

of ARTs relies on how these technologies will overcome the difficulties conservationists face 310 

with managing amphibian genome resources while preserving the highest genetic diversity 311 

(Clulow et al., 2019; Holt, Pickard, & Prather, 2004; Mastromonaco & Songsasen, 2020). 312 

Cloning (somatic cell nuclear transfer) is probably the most well-known technology resulting 313 

in the production of live young, but despite its success, it has not been incorporated into 314 

amphibian conservation.  First described in an amphibian species, Rana pipiens and later 315 

Xenopus laevis, cloning was implemented to explore the fundamentals of developmental 316 

biology (reviewed by Gurdon & Byrne, 2002).  Reproductive cloning followed shortly after 317 

when Gurdon (1968) reported the production of normal adult clones (individuals derived 318 

from nuclear transplantation that are identical to the parent). A suite of approaches is now 319 

available to support conservation across a number of taxonomic groups, particularly 320 

mammals (Mastromonaco & Songsasen, 2020). Cell transplantation (primordial and 321 

spermatogonial) may provide alternate sources of genetic material of a wild or threatened 322 

endangered species compared to sperm and oocytes alone. Through reprogramming and 323 

regeneration, cells can diversify into renewable and operational genetic material of infinite 324 

potential (Clulow & Clulow, 2016; Mastromonaco, González-Grajales, Filice, & Comizzoli, 325 

2014; Mastromonaco & Songsasen, 2020). Somatic cell technologies also offer promise since 326 

their use precludes the need for viable gametes, thereby enabling genetic contribution of 327 

individuals that are reproductively dysfunctional or perish before reaching sexual maturity 328 

and fail to contribute to the gene pool (Mastromonaco et al., 2014). 329 
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 330 

General recommendations for expanding global amphibian ARTs 331 

The 2020 global COVID-19 pandemic revolutionised work practises and this has once again 332 

transformed the manner in which training can be delivered to a wide and diverse group of 333 

users. Web-based communication will be instrumental in training but will still be limited by 334 

the number of people who have access to specific softwares and the internet. In many cases, 335 

increasing sustainable conservation will still require the considerations outlined by Della 336 

Togna et al. (2020) and at its core, fundamentally still needs the existence of human resources 337 

that can be trained and are backed by adequate resources with which to perform ARTs. The 338 

basic recommendations for increasing ARTs on-site, for sustainable conservation are: 339 

1. Gamete collection and cryopreservation protocols tested for broad taxa. 340 

2. Identification of biobanks in different regions of the globe that have secured long-341 

term funding (Figure 12.2). 342 

3. International (Nagoya Protocol (Kamau, Fedder, & Winter, 2010)) and national laws 343 

and policies that allow and facilitate the collection of gametes from existing CBPs or 344 

from the wild, transportation, and storage of biological materials. 345 

4. Access to collection sites using local knowledge and expertise, taking into account 346 

that many species are located in or near indigenous communities and protected areas, 347 

each with particular restrictions. 348 

5. Country policies on access to genetic resources allow such large-scale operations and 349 

have sustainable funding in place for long-term preservation of the collections. 350 

 351 
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 352 

Figure 12.2. Location of known biobanks for wildlife species. Data collected by the ASG 353 

Amphibian ARTs and Biobanking Working Group from a survey conducted from 2018-2021. 354 

 355 

Incorporating ARTs into broader conservation action: Informing effective management 356 

Conservation Needs Assessments 357 

The Amphibian Ark works with a range of amphibian field biologists and other experts to 358 

develop Conservation Needs Assessments (CNAs) for amphibian species, which in turn 359 

generate a range of recommended strategies, including ex-situ conservation actions (Johnson 360 

et al., 2020). This evaluation and prioritization help conservation managers to maximise the 361 

impact of limited conservation resources by identifying which amphibian species are most in 362 

need and are likely to receive the most benefit from particular types of conservation action. 363 

Biobanking is one of the conservation actions and is recommended for species which are 364 

under imminent danger of extinction (locally or globally) because the threats they face cannot 365 

or will not be reversed in time to prevent likely species extinction. They, therefore, require 366 



 

673 

 

ex-situ management, or rescue, as part of an integrated program to ensure their survival. To 367 

date, CNAs have been completed for 3,461 amphibian species, out of which 372 have been 368 

recommended for biobanking (refer to Conservation Needs Assessments, 2021) (Figure 369 

12.3). CNAs are one of the few conservation assessment tools which generate prioritised lists 370 

of species for biobanking, and as such, provide not only a logical and transparent procedure 371 

for guiding amphibian conservation activities within a country or region, but also a good 372 

reference for those involved with ARTs when considering species which should be targeted 373 

for biobanking (Figure 12.3). The Amphibian Ark recommends that detailed and 374 

collaborative species actions plans should be jointly developed by all relevant stakeholders 375 

for species which are considered for ex-situ rescue (Amphibian Ark, 2020), and the use of 376 

ARTs and gamete cryopreservation should be considered when appropriate in these action 377 

plans. Further detail on planning can be found within the Species Conservation Planning 378 

chapter.  379 

 380 

Feasibility and design (strategy): Incorporation of ARTs and strategic gamete biobanking 381 

into CBP programmes 382 

The integration of biobanking and ARTs into genetic management programmes has long been 383 

realised for agriculturally important animal and plant species yet continues to lag for wildlife 384 

species. This is likely due to a multitude of factors that differ between conservation 385 

management programs and these for-profit industries, including: access to sustainable 386 

financial resources and infrastructure, clear species prioritisation, need for taxa- or species-387 

specific protocols, coordinated stakeholder engagement, and government support. Wildlife 388 

biobanking is a long-term genetic management strategy that requires all of these factors to 389 

work in concert and be dynamic and responsive to evolution in needs, technologies and 390 
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management strategies over long-time scales; timescales that may reflect many generations of 391 

the target species. 392 

 393 

 394 

Figure 12.3. Existing biobanks containing general wildlife biomaterials or amphibian-specific 395 

samples superimposed over the regions where amphibian biobanking has been recommended 396 

by the Conservation Needs Assessments. Countries with biobanks marked with a triangle 397 

denote those with wildlife collections but that do not currently hold amphibian material or for 398 

which there has been no confirmation of banked amphibian samples. Circles denote areas 399 

where current amphibian-specific biobanks are located. 400 

 401 

The current and emerging ARTs (Table 12.2) are primarily integrated within CBP 402 

programmes and, like many conservation actions, will be of greatest benefit when combined 403 

with a multifaceted conservation action plan. As such, biobanking strategic goals and 404 

decision frameworks are likely to reflect those for establishment of CBPs and may include 405 

additional considerations, i.e. do gamete collection protocols exist for this species? Is there a 406 
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suitable model or subspecies should hybridisation be the only available sample end-use? Are 407 

there existing in-situ programmes that offer potential for opportunistic collection? Albeit 408 

collection of samples from species where data remains deficient or development of a CBP has 409 

not been forecast are not necessarily excluded, but this runs the risk of these resources 410 

becoming nothing more than a museum serving to support phylogenetic analysis and 411 

taxonomy, but little else. 412 

 413 

Table 12.2. Summary of some of the institutions holding amphibian samples around the 414 

world which are linked to CBP programmes. 415 

 416 

 417 

One of the most significant driving factors of the poor representation of amphibians across 418 

CBP programs is high costs. The proposed budget for the development of CBP programmes 419 

in the original ACAP document was US$120,000 (2007) per year per species, with estimates 420 

of US$12,500,000 to captive-manage 100 species each for one year (Mendelson et al., 2006). 421 

Outdated by over a decade and lacking detail, these costs are likely highly conservative. More 422 

recent (2018) estimates in Australia suggest CBP programmes cost on average around 423 

A$200,000 per year per species, often for many years or even decades (Harley, Mawson, 424 

Olds, McFadden, & Hogg, 2018). Despite these high costs, there is emerging evidence of the 425 

cost-benefits and cost-reductions that are possible when integrating biobanking technology 426 

and ARTs into CBP programmes as practical support tools. Economic and genetic modelling 427 

using real-world data for the CBP program for Oregon spotted frogs (Rana pretiosa) suggests 428 
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that biobanking technology could lower the size of the live colony required to be held in 429 

captivity, substantially lowering the costs of CBP programs, as well as reducing inbreeding of 430 

output amphibians from these programmes (Howell, Frankham, et al., 2021). This modelling 431 

provides an examination of programme costs and captive genetic diversity (heterozygosity 432 

Ht/Ho values derived from inbreeding rates) when a simple low-cost biobanking set-up 433 

(consisting of basic additional freezing infrastructure; e.g., freezers and liquid nitrogen 434 

dewars) is integrated into an established amphibian CBP programme. In hypothetical captive 435 

colonies designed to meet the same genetic retention target (90% of source population 436 

heterozygosity for a minimum of 100 years, in line with accepted global genetic benchmarks; 437 

Soulé, Gilpin, Conway, & Foose, 1986) there was a 26-fold cost reduction in populations 438 

with biobanking integrated compared to populations under conventional CBP programme 439 

conditions (Howell, Frankham, et al., 2021). This means that 26 species could be captive bred 440 

for the price of one in programs designed to meet globally accepted genetic retention targets 441 

under the with- and without-biobanking scenarios. 442 

 443 

This research is further supported by recent modelling in Australian species, the Orange-444 

bellied frog (Geocrinia vitellina) and White-bellied frog (Geocrinia alba), where similar 445 

proportionate cost and genetic benefits were exhibited (Howell, Mawson, et al., 2021). This 446 

study modelled the genetic and cost benefits of incorporating ARTs and biobanking into CBP 447 

programs of G. vitellina and G. alba at Perth Zoo, Australia. To meet the 90% heterozygosity 448 

retention target in conventional CBP program conditions would require 400 live G. vitellina 449 

and G. alba, costing A$1.1 million and A$718k in year one and A$466 million and A$284 450 

million across 100 years respectively, compared to just 17 live individuals for each species, 451 

costing A$68k and A$48k in year one, and A$21 million and A$13 million across 100 years 452 

in CBP programs integrating ARTs and biobanking. The study also revealed that world-first 453 
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ambitious targets of 95% and 99% Ht/Ho retention are also possible in amphibian CBP 454 

programs under realistic cost frameworks. 455 

 456 

The integration of frozen founder spermatozoa would also provide significant genetic 457 

benefits. Conventional CBP programmes have various challenges with genetic diversity 458 

which can compromise the value of captive-bred animals for release to the wild, including 459 

inbreeding depression in unavoidably small captive colonies (Ralls, Ballou, & Templeton, 460 

1988), reduced reproductive fitness (Farquharson, Hogg, & Grueber, 2018), and 461 

domestication and adaptation to captivity (Frankham, Briscoe, & Ballou, 2009). Biobanking 462 

and ARTs would reduce the rate of inbreeding in amphibian CBP programmes, and 463 

biobanked males would not be subject to domestication and adaptation to captivity, which 464 

would generally make animals produced using ARTs and biobanking better suited for release 465 

to the wild (Howell, Frankham, et al., 2021; Howell, Mawson, et al., 2021). Ultimately, these 466 

studies reveal a promising and potentially feasible model; the integration of ARTs and low-467 

cost additional biobanking infrastructure into existing amphibian CBP programs globally to 468 

achieve cost and genetic outcomes for species, institutions and end-users. Given the generally 469 

poor understanding and transparency around the costs associated with amphibian biobanking, 470 

the slow progress towards a viable funding mechanism for amphibian biobanking, and the 471 

limited funding landscape for amphibian conservation efforts, this is likely the most feasible 472 

model for the integration of biobanking and ARTs into CBP programs (Della Togna et al., 473 

2020). Amphibian conservationists and ART practitioners should focus on developing 474 

examples of this model in practice. 475 

 476 

Howell, Mawson et al., (2021) provide a broad pathway of actions required to transition 477 

ARTs and biobanking into Australian CBP programmes under this model to produce practical 478 
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examples. Since the model described above would be highly transferable, the pathway may 479 

also provide a feasible strategy to transition ARTs and biobanking into CBP programmes 480 

globally. The strategy is provided in more detail in Howell, Mawson et al. (2021), but would 481 

involve various key steps, including: 1) Continue building the case for amphibian biobanking 482 

using economic and genetic arguments; 2) Secure captive colonies of target species, through 483 

partnership with captive institutions or development of novel amphibian CBP programmes; 484 

3) Financial planning and funding mechanism development (focussing on long-term biobank 485 

sustainability, understanding long-term required costs and the applicability of biobank 486 

funding mechanisms developed for biobanks in other sectors; 4) Leverage existing CBP 487 

program infrastructure through partnerships and secure additional biobanking and freezing 488 

infrastructure. This model of integrating additional biobanking infrastructure into established 489 

programs will be a low-cost option, e.g., around A$14,000 for basic freezing infrastructure as 490 

modelled in Howell, Mawson et al. (2021), which are supported by estimates of A$22,000 to 491 

incorporate basic biobanking capacity into CBP programs at Zoos Victoria (Della Togna et 492 

al. 2020) and the low-cost self-contained mobile laboratories for aquatic species 493 

cryopreservation presented in Childress, Caffey, & Tiersch (2018) and (Childress, Bosworth, 494 

Chesney, Walter, & Tiersch (2019); 5) Close species-specific knowledge gaps in target 495 

amphibian species in order to develop optimised species-specific biobanking protocols. This 496 

will require applied research effort, access to colony animals and skilled labour, and access to 497 

significant research funding (up to A$3.25 million in targeted applied research funds per 498 

species across 5-year research programs, as estimated in Howell, Mawson et al., (2021). 499 

 500 

Conclusions and future directions 501 

With more than 900 amphibian species requiring some form of ex-situ insurance population, 502 

(Zippel et al., 2011) predictions that global resources needed to sustain amphibian CBPs are 503 
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extremely limited and are already around a decade old (Bishop et al., 2012). The reality is 504 

that the situation has worsened and continues to highlight the poor representation of 505 

amphibians in global CBP efforts. Therefore, maximising the global impact of amphibian 506 

gene banking is now at its most critical. Strategies for the best way to implement ARTs into 507 

broader amphibian conservation programs depend on biopolitical, biogeographical, and 508 

phylogenetic targeting. Biopolitical targeting should be designed and executed to target the 509 

obvious and publicly accessible benefits of safeguarding the target species. This will 510 

reciprocally garner greater public influence and political support leading to further resource 511 

allocation. The development of techniques for amphibian ARTs has almost exclusively been 512 

in moderate to high-income industrialised countries. Yet most amphibian species, except 513 

southeast Asia North America and eastern Australia, occur in the low to moderate-income 514 

countries within Central and South America, SE Asia, New Guinea, and Africa (Figure 12.3). 515 

Most threatened Anura come from Central and South America, Caudata from Asia and North 516 

America, and Gynophiona (caecilians) from India and Africa. 517 

 518 

As we enter the new age of the sustainable management of biodiversity, increasingly 519 

technical options, such as the merging of CBPs and ARTs, are being offered to assist in 520 

achieving realistic goals. However, despite their application and reliability, financial 521 

constraints still pose a major obstacle. Generally, CBPs have been largely financed and 522 

supported by zoos as part of their conservation work; however, over the last two decades 523 

private groups, supported by seed grants or ongoing finance from various amphibian 524 

conservation organisations, have established private amphibian CBPs. When these are located 525 

in a priority region they provide the ideal opportunity to begin the merging of CBPs with 526 

gene banking of tissue, gamete or cell lines. 527 

 528 
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Biogeographically, emphasis should be on CBPs facilities that are located in the regions 529 

predicted to suffer the most loss of amphibian phylogenetic biodiversity. With the appropriate 530 

training, in-country CBPs can easily maintain fully genetically varied populations of species 531 

through broodstock management that incorporates sperm collected from individuals in their 532 

CBPs and in the field. However, this will require the adequate representation of experienced 533 

personnel on the ground willing to exchange, support and train in-country researchers, 534 

especially in instances where no technical expertise exists. For this, we propose the 535 

establishment of regional teams, led by one or more personnel specifically trained in ARTs 536 

procedures to be funded and willing to support any area where immediate intervention is 537 

required. The IUCN, the ASG and other large entities should help facilitate funding avenues 538 

to sustain this strategy if there is to be a long-term commitment to the preservation of 539 

amphibian species and the incorporation of ARTs into mainstream amphibian conservation 540 

strategies. Thus, biobanking can become incorporated into associated fieldwork for the 541 

species including maintaining or increasing suitable habitat. These works contribute not only 542 

to the perpetuation of amphibian species but also to global sustainability. 543 

 544 

Prioritisation of regions for amphibian CBPs ARTs should address the urgency for 545 

conservation but should also take into account the practicality of conserving species based on 546 

their intrinsic value to the ecosystem and not on a singular species criterion. Second, 547 

determining what species to biobank should also consider the available, biogeographical 548 

patterns in genetic and phylogenetic diversity (Hu et al., 2021; Upton et al., 2021), 549 

predictions of future habitat loss through vegetation destruction or through changes in global 550 

temperatures (Zhang et al., 2021), and from recommendations generated by Conservation 551 

Needs Assessments (Johnson et al., 2020) and IUCN’s amphibian Red List. By prioritising 552 

resources to maximise conservation efficiency toward the protection of ecoregions closest to 553 
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meeting targets, there can be a doubling benefit to cost, whilst excluding some areas of high 554 

biodiversity for species of particular taxon including amphibians (Chauvenet et al., 2020). 555 

Upton (2020) showed that up to 40% of amphibian phylogenetic diversity could be protected 556 

by increasing protection of 1.9% of global terrestrial area. Thus, the targeting of CBPs/ARTs 557 

should also be focused on these regions both in terms of their biodiversity but also in terms of 558 

increased risk to amphibian species.559 

 560 

 561 
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 28 

Abstract 29 

Amphibians are the most threatened major group of vertebrates worldwide and yet they are 30 

lagging behind other taxa in genomic resources that could aid in their conservation 31 

management. Here, we provide a status update on genomics technologies, how they have 32 

been used in amphibian research, and an outlook on how these approaches could inform 33 

future conservation planning and management strategies. Overall, amphibians lag far behind 34 

other vertebrates in the number of sequenced genomes, although both transcriptome and 35 

reduced representation sequencing have become popular tools for understanding amphibian 36 

physiology and population dynamics. Environmental DNA sequencing and epigenomics are 37 

also becoming useful tools for amphibian biology, although their adoption by the community 38 

has been slower. In addition to summarising technologies, their applications, and their 39 

challenges, we also provide case studies on how these approaches have been used for 40 

amphibian conservation projects. We focus on projects aimed at increasing pathogen 41 

resistance, informing captive breeding programs, and biocontrol of invasive species, although 42 

we acknowledge that many more unpublished projects are progressing our understanding of 43 

amphibian biology and conservation. Our future outlook includes pressing needs for 44 

increasing whole genome assemblies across the amphibian phylogeny, providing more 45 

bioinformatics training opportunities for conservation biologists, and increasing accessibility 46 

to genomics technologies and training to researchers in countries that hold most of the 47 

amphibian diversity on the planet. 48 

 49 
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Glossary 50 

Chromatin conformation capture: a method to analyse the spatial organisation of 51 

chromatin in a cell. 52 

Chromosome FISH: a method to identify the physical location of a piece of DNA on a 53 

chromosome by fluorescence in situ hybridisation. 54 

Contigs: a DNA sequence reconstructed from a series of overlapping DNA fragments. 55 

CRISPR gene editing: a method for engineering genetic elements of an organism derived 56 

from the prokaryotic antiviral system with clustered regularly interspaced short palindromic 57 

repeats (CRISPR). 58 

DNA barcoding: a method of identifying species by sequencing a short segment of DNA that 59 

is conserved across distantly related species. 60 

Environmental DNA (eDNA): DNA collected from environmental samples (e.g., water, 61 

faeces, soil) rather than directly from the organism. 62 

Epigenetic sequencing: A method to analyse the gene activity changes caused by 63 

mechanisms other than DNA sequence changes, such as histone modification and DNA 64 

methylation. 65 

Expressed transcripts: RNAs actively transcribed from DNA. 66 

Genome annotations: A process to identify functional elements, such as genes, pseudogenes, 67 

promoters, repeats, on the genome. 68 

Gene editing: techniques that modify DNA by inducing small changes such as single base 69 

pair edits. 70 

Genetic rescue: method for increasing genetic diversity by facilitating immigration and gene 71 

flow into an isolated population. 72 

Genome: an organism’s complete genetic sequence information. 73 
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Genome assembly: creation of a contiguous genome by piecing together smaller DNA 74 

sequence fragments decoded experimentally. 75 

Genomic selection: a selective breeding method that predicts phenotypes of prospective 76 

breeding stock using impacts of genome-wide markers evaluated from a reference population. 77 

Genetic markers: the physical location on a genome (and the DNA sequences associated 78 

with it) used to track genetic inheritance. 79 

Genotype-by-sequencing (GBS): a method to analyse genotypes of samples by identifying 80 

genetic variants of a subset of genomic information. 81 

Genome-wide association study (GWAS): A study to analyse associations between traits 82 

and genetic variations in distinct populations. 83 

High-throughput sequencing: The technology that sequences millions of DNA and RNA 84 

simultaneously. Also known as next-generation sequencing (NGS). 85 

Metagenomics: A collection of genetic material from a mixed community of organisms. 86 

Optical mapping: a method to order the single molecule of DNA to construct a high-87 

resolution map of restriction enzyme recognition sites. 88 

Reduced representation sequencing: an umbrella term for many technological approaches 89 

that centre on obtaining genetic information for an organism by sequencing small portions of 90 

the genome. 91 

Restriction-site associated DNA sequencing (RADseq): a method for obtaining genotype 92 

data throughout the genome of an organism by sequencing small fragments generated by 93 

restriction enzymes. 94 

Transcriptome: A collection of RNAs transcribed from DNA, including messenger RNAs, 95 

long non-coding RNAs, microRNAs, transfer RNAs, ribosomal RNAs. 96 
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Whole Genome Sequencing (WGS): various methods for sequencing the entire genome of 97 

an organism by iterative sequencing of smaller fragments. Methods include Illumina short 98 

read, PacBio Hifi, and Oxford nanopore.  99 

 100 

Introduction 101 

Genetic diversity is critical for natural selection and the continued survival and fitness of 102 

species in a rapidly changing environment. The ability to generate genomic data for any 103 

species has progressed in technological approaches, accessibility through declining prices, 104 

and more widespread computational resources. However, the adoption of sequencing has 105 

been slow in amphibian research, including whole genome assembly, expressed transcripts, 106 

genomic markers and epigenetic modifications. This is surprising given how quickly 107 

amphibian species are declining and these technologies would be useful for rapid responses 108 

in establishing conservation strategies. Others have recently reviewed the state of amphibian 109 

genomes (Sun, Zhang, & Wang, 2020) and their application to understanding amphibian 110 

behaviour, physiology, and evolution (Funk, Zamudio, & Crawford, 2018; Shaffer et al., 111 

2015; Walls & Gabor, 2019). Here we bring together the fields of genomics and conservation 112 

to provide a status update on sequencing technologies and their use for amphibian genomics 113 

and conservation projects. As genetic diversity is often used as a predictor of the long-term 114 

survival of populations, genomics is a toolkit that is broadly useful for every amphibian 115 

conservation project. 116 

 117 

Many different genomics approaches have been used to study amphibian biology, although 118 

its application is not well distributed across species and geographic regions, which creates 119 

many challenges for amphibian conservation. Although genomics research in amphibians is 120 

more advanced than non-avian reptiles, it lags far behind birds and mammals (Figure 13.1a). 121 
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Most genomic research in amphibians has been conducted on IUCN Least Concern taxa, but 122 

among the threatened categories, the Critically Endangered species have received 123 

proportionately more attention (Figure 13.1b). Moreover, there is a geographic bias with 124 

respect to the percentage of species with genomics data in the Sequence Read Archive 125 

(SRA), where regions with more amphibian species have less genomic data (Figure 13.2). As 126 

we move forward with utilising genomics technologies for a greater understanding of 127 

amphibian biodiversity, we need to address the inequity in access to training and sequencing 128 

platforms in both instrumentation and the cost of data collection, especially in regions of the 129 

world that hold the greatest amphibian biodiversity. With equal access to training and 130 

technologies, amphibian conservation is poised to utilise genomics technologies in assessing 131 

species biodiversity and resilience to environmental stressors to inform conservation 132 

priorities, captive breeding programs, reintroduction surveillance, and management planning. 133 

 134 

 135 

Figure 13.1: Genomic sequencing efforts in amphibians compared to other tetrapods. (a) 136 

Cumulative sum, in logarithmic scale, of high-throughput sequencing data stored in the 137 

Sequence Read Archive (SRA) for four main tetrapod groups. (b) Distribution of amphibian 138 

biosamples (equivalent to individuals) stored in SRA for each threatened category in the 139 
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IUCN Red List categories (UA: unassessed), the inset shows the number of species in each 140 

threat category. Data from SRA (www.ncbi.nlm.nih.gov/sra, accessed in January 2021) and 141 

IUCN Red List (www.iucnRed List.org/, accessed in January 2021). 142 

 143 

Figure 13.2: Biased geographic distribution of high-throughput sequencing effort. (A) 144 

Percentage of amphibian species sequenced and (B) amphibian species richness. Distribution 145 

polygons from the IUCN Red List and SRA records were spatially joined at ~10km 146 

resolution in ArcGIS® software (ESRI, Redlands, CA) to estimate the species richness and 147 
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the percentage of occurring species with high-throughput sequence information. Data from 148 

SRA (www.ncbi.nlm.nih.gov/sra, accessed in January 2021) and IUCN Red List 149 

(www.iucnRed List.org/, accessed in January 2021). 150 

 151 

Status update 152 

Genomic approaches to amphibian conservation 153 

Genomics encompasses many approaches, including whole genome sequencing (WGS), 154 

RNA sequencing (RNASeq and IsoSeq), reduced representation sequencing (RRL), 155 

metagenomics, and epigenetic sequencing. Different approaches have been used depending 156 

on the scientific question and there are advantages and disadvantages of each approach 157 

(Table 13.1). 158 

 159 
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Table 13.1: Popular genomics approaches for amphibians. Advantages and disadvantages of each approach are summarised. Cost range 160 

estimates, in USD, refer to the direct sequencing cost (library preparation and sequencing). These cost estimates represent the authors’ 161 

experience (in January 2021) and are provided as guidance, actual price quotes should be obtained from providers. 162 

Advantages Disadvantages Costs 

Whole Genome Sequencing 

1. Most comprehensive, genome-

wide representation. 

2. Broad taxonomic and biological 

applicability. 

3. Provides detailed reference for the 

study of the target species and 

close relatives. 

 

4. Cost: Medium to High depending on coverage and 

genome size. 

5. Practicality: Limited by the cost of sequencing (re-

sequencing), assembly and annotation. 

6. Particularities: Repetitive regions in some amphibian 

genomes make assembly difficult. 

$10K – 50K USD depending 

on genome size. Assembly and 

annotation are additional costs. 

Transcriptomics 

7. Broad taxonomic and biological 

applicability. 

11. Cost: Medium $170 – 1,000 USD per sample 

(library prep. and sequencing). 
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8. Provides reference information for 

development of genomic markers 

for diverse applications. 

9. Provides information on coding 

and limited non-coding genomic 

regions. 

10. Functionally interpretable results 

that may provide genomic insights 

into the mechanisms underlying 

phenotypic variation and 

adaptation.  

 

12. Practicality: Restricted (RNA instability prevents its 

application to museum samples). 

13. Particularities: 1) Variability in gene expression at cell, 

tissue, organ, and individual levels; 2) Sub-optimal de-

novo assemblies can affect downstream results; 3) 

Transcriptome annotation and construction of gene-to-

transcript models can be challenging without a reference 

genome; 4) Misses most non-coding features of the 

genome 

 

Price varies according to target 

exome size and desired depth. 

Reduced Representation Libraries 

14. Reduced genome-wide 

representation at a relatively low 

cost. 

17. Cost: Low $8.5 – 100 USD per sample 

(price varies depending on the 
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15. Provides sufficient genotypic 

information for highly informative 

population genetic analyses. 

16. Capture assays targeting 

conserved regions have broad 

applicability in terms of sampling 

and taxonomic scope.  

 

18. Practicality: Restricted sampling and scalability (except 

for targeted capture protocols that can be applied to 

museum samples across many species). 

19. Particularities: 1) Design of the capture probes or 

selection of restriction enzyme is critical; 2) Strategies 

for loci selection can affect genotype calling in RADSeq 

assays; 3) Functional interpretation of results are limited 

without a reference genome. 

amount of data, desired depth, 

and protocol) 

Metagenomics 

1. A cost-effective approach that can 

target specific genome regions to 

assess a wide variety of fields, 

including systematics, ecology 

and conservation. 

2. May be developed in the field or 

laboratory with portable devices. 

1. Cost: Various techniques are available at relatively low 

costs. 

2. Practicality: Restricted field availability of reagents, 

high variation in cost. 

3. Particularity: 1) Studies on a single species need 

specific primers and the risk amplification of non-target 

sequences; 2) Bias from  primers mismatches, 

$10 – 100 USD per sample 

(price varies depending 

technology, target, desired 

depth, and protocol) 
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3. Accessible worldwide with 

standardised protocols that can 

improve the robustness of results. 

bioinformatic issues, molecule and consensus accuracy, 

contamination, undersampling or incomplete databases. 

Epigenetics 

1. Can quickly provide genome-wide 

estimates of epigenetic 

modification patterns related to 

adverse. environmental changes 

for rapid screening purposes. 

2. May be used as biomarkers for 

population stress vs. health. 

1. Cost: Costs of different methods are  reviewed 

extensively in (Eirin-Lopez and Putnam, 2019). 

2. Practicality: More affordable methods give genome-

wide resolution, more expensive ones specific 

modifications in specific loci or proteins.  

3. Particularity: More research is needed as to which type 

of epigenetic modification and which genes modified are 

indicative of different stressors. 

From $10 USD for mass 

spectrometry or gel-based 

assessment of global 

methylation to $1000 per 

sample for whole genome 

bisulfite sequencing. 

 163 
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A large taxonomic bias in sequencing effort exists in NCBI’s Sequence Read Archive (SRA), 164 

where a limited number of amphibian families with few species are represented, including 165 

Caudata (Cryptobranchidae) and Archeobatrachian Anura (Ascaphidae, Pelobatidae, 166 

Pelodytidae, and Rhinophrynidae). Most amphibian families, however, are underrepresented 167 

with 23% of extant families having less than 5% of their species diversity represented in 168 

SRA. 169 

 170 
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 171 

Figure 13.3. Taxonomic representation of amphibians in the Sequence Read Archive (SRA: 172 

www.ncbi.nlm.nih.gov/sra, accessed in January 2021). The percentage of species in each 173 

family is displayed on the amphibian phylogeny (sensu (Jetz & Pyron, 2018), pruned to 174 

family level), with bar plots on the right representing the percentage for each of the following 175 
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SRA assay categories: Whole genome sequencing (WGS), RNA sequencing (RNASeq), 176 

Reduced Representation Libraries (RRL), and all other assays (includes other approaches 177 

such as the sequencing of amplicons, transposase-accessible chromatin, bisulfite 178 

modifications, microRNA, and many others). Families with available reference genomes (as 179 

per the NCBI Genomes database, accessed in April, 2021) are highlighted in bold with the 180 

number of genomes in parentheses. 181 

 182 

Amphibian genomes 183 

Whole genome approaches 184 

There are several amphibian genomes currently available and vary greatly in size and quality. 185 

The western clawed frog (Xenopus tropicalis) was the first amphibian species with a whole 186 

genome assembly (Hellsten et al., 2010). The African clawed frog (Xenopus laevis) was later 187 

sequenced at the chromosome level using high-throughput sequencing, chromatin 188 

conformation capture and chromosome FISH (Session et al., 2016). XenBase 189 

(https://www.xenbase.org) is the central resource for Xenopus genomic data and phenotyping 190 

information. Available genomes of 19 amphibian species are summarised in a recent review 191 

(Sun et al., 2020) and genomes of 22 species are currently deposited in the NCBI genome 192 

database (see Figure 13.3). Two additional species, the common toad (Bufo bufo) and the 193 

hourglass treefrog (Dendropsophus ebraccatus), are available through the GenomeArk of the 194 

Vertebrate Genome Project (https://vgp.github.io/genomeark/), and a third, the rufous 195 

grassfrog (Leptodactylus fuscus) was made available more recently (Mohammadi et al., 196 

2021). Gene annotations are critical for these genomes to be widely useful to the community, 197 

and yet only eight amphibian genomes are fully annotated (Xenopus laevis, X. tropicalis, 198 

Nanorana parkeri, Bufo bufo, Rana temporaria, and three caecilians Microcaecilia unicolor, 199 

Geotrypetes seraphini and Rhinatrema bivittatum). UniProt (https://www.uniprot.org) is a 200 
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broad resource for annotated genes and its current version (2021_01) contains five amphibian 201 

species (Anura: X. laevis, X. tropicalis, L. catesbeianus; Gymnophiona: M. unicolor, G. 202 

seraphini). 203 

 204 

Genome assembly and annotation can be difficult due to the large size and repetitive elements 205 

of many amphibian genomes, especially in Caudata (Figure 13.4), For example, the 30 Gb 206 

haploid genome size of the axolotl Ambystoma mexicanum is about 10 times larger than the 207 

human genome (Nowoshilow et al., 2018; Smith et al., 2019). In Anura, some of the existing 208 

assemblies are also larger than the human genome: 5.8 Gb in Lithobates catesbeianus 209 

(Hammond et al., 2017), 6.76 Gb in Oophaga pumilio (Rogers et al., 2018), and 4.55 Gb in 210 

Bufo gargarizans (Lu et al., 2021). Nevertheless, some anuran genomes are much smaller, 211 

like the 1.7 Gb genome of X. tropicalis and the 1.1 Gb genome of Platyplectrum ornatum 212 

(Lamichhaney, Catullo, Keogh, Clulow, & Edwards, 2021). 213 
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 214 

Figure 13.4: Genome size distribution across amphibian families and whole-genome 215 

sequencing (WGS) projects. (A) Genome size estimates (C-value, coloured by order with 216 

anurans in grey-blue, caecilians in light blue, and salamanders in green) vary widely by 217 

family. Human genome size is displayed at the top as a point of reference. (B) The 218 

relationship between genome sizes and submissions (WGS) per species is shown with 219 

assembled genomes marked by orange dots. C-values from Liedtke et al. (2018) and WGS 220 

records from NCBI SRA (www.ncbi.nlm.nih.gov/sra, accessed January 2021). 221 

 222 

Whole genome challenges 223 

The assembly of amphibian genomes remains challenging due to their large size and the vast 224 

amount of repeat elements (Rogers et al., 2018). The quality of available amphibian genomes 225 

ranges from near-complete chromosomal-scale genomes to fragmented contigs, and future 226 
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efforts should focus on improving contiguity and completeness of these reference assemblies 227 

(Rhie et al., 2020). There are numerous threatened species with moderate genome sizes that 228 

we suggest be prioritised for sequencing (Table 13.2). Obtaining good estimates of genome 229 

sizes should be considered a top priority for threatened species, as this information is crucial 230 

for sequencing prioritisation. Data on genome size and chromosome numbers can be found at 231 

the phylogenetically aware database, GoaT (Genomes on a Tree; 232 

https://goat.genomehubs.org/). Even smaller genomes require sufficient computational 233 

resources, analytical expertise, and time to complete assembly and annotation. High repeat 234 

content necessitates that genome assemblers incorporate a variety of data types, including 235 

long reads (PacBio HiFi or Oxford Nanopore platforms), medium-range linked reads (Hi-C 236 

approaches by Dovetail or Arima Genomics), and optical mapping of genetic markers on 237 

whole chromosomes (e.g., BioNano platform) (Formenti et al., 2020; Nowoshilow et al., 238 

2018; Rhie et al., 2020; Session et al., 2016). Dense genetic maps of F1 progenies can 239 

contribute to finalising chromosome-scale genome assembly (Mitros et al., 2019; Smith et al., 240 

2019), and light-coverage sequencing of parental genomes can resolve a diploid genome 241 

assembly into its two component haploid genomes (Koren et al., 2018). 242 

 243 

A central resource for amphibian genomic data (outside of Xenopus) with a standard 244 

procedure for annotation is critically needed. Amphibase (http://www.amphibase.org) was 245 

established to organise transcriptome resources with a unified gene annotation procedure, but 246 

more community effort is required for this to become a comprehensive resource. A database 247 

with diverse species is critically needed, as other sequence databases like UniProt are mostly 248 

derived from five amphibian species, which hinders our understanding of amphibian genome 249 

diversity. Overall, whole genome sequencing has not yet become a widespread tool for 250 

amphibian conservation. For example, a chromosome-scale reference genome is a valuable 251 
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resource for understanding genetic diversity, although additional genomic samples are needed 252 

to estimate species genetic variation. We expect with decreased sequencing costs and more 253 

widely available annotation tools, whole genome sequencing will become a valuable 254 

conservation tool in the near future.  255 

 256 

Table 13.2. Threatened species with moderate genome sizes that should receive priority in 257 

future genome sequencing projects. This list is not exhaustive and should be expanded as 258 

genome size estimates of more species become available. Estimates of genome size from 259 

(Liedtke, Gower, Wilkinson, & Gomez-Mestre, 2018) Red List categories from IUCN 260 

(2021). 261 

Species Genome size 

(C-value) 

Lineage Red List 

category 

Leptopelis vermiculatus 3.1 Anura, Arthroleptidae Endangered 

Conraua goliath 3.1 Anura, Conrauidae Endangered 

Quasipaa boulengeri 3.1 Anura, Dicroglossidae Endangered 

Boulengerula taitana 2.9 Gymnophiona, Herpelidae Endangered 

Osteopilus vastus 2.5 Anura, Hylidae Vulnerable 

Phrynobatrachus krefftii 1.7 Anura, Phrynobatrachidae Endangered 

Buergeria oxycephala 1.6 Anura, Rhacophoridae Vulnerable 

Sooglossus sechellensis 1.8 Anura, Sooglossidae Endangered 

Telmatobius culeus 2.1 Anura, Telmatobiidae Endangered 

 262 
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Transcriptomics 263 

Transcriptomics approaches 264 

Messenger RNA sequencing (RNASeq) is a method that sequences the expressed fraction of 265 

the genome. The assembled coding sequences of mRNAs can be compared with orthologous 266 

sequences in reference protein databases to infer and annotate their function. Transcript 267 

coding sequences could be used to design targeted enrichment probes and, along with the 268 

non-coding mRNA regions, can be used to develop microsatellite markers or genotyping 269 

panels for population genetic studies. The possibilities presented by the ability to quantify 270 

functional (presumptive amino acid sequence) variation without a reference genome makes 271 

this technique appealing for studying many molecular processes linked to conservation 272 

biology. Reference transcriptomes from 40 amphibian species are currently deposited in the 273 

NCBI Transcriptome Sequence Archive (TSA), a database of transcriptomes representing a 274 

fraction of the 222 species in SRA Database. 275 

 276 

Best approaches for generating a transcriptome vary depending on the research question, and 277 

factors such as age, sex, and tissue type should be considered. For species with no reference 278 

genome assembly, transcriptomic data need to be assembled ‘de novo’ into transcripts. 279 

Accurate annotation of the reference is also important for functional interpretation of 280 

downstream results (Hart et al., 2020; Musacchia, Basu, Petrosino, Salvemini, & Sanges, 281 

2015) and several pipelines are now available for transcriptome assembly, annotation, and 282 

analyses (Cabau et al., 2017; Conesa et al., 2016; MacManes, 2018; McKenna et al., 2010; 283 

Smith-Unna, Boursnell, Patro, Hibberd, & Kelly, 2016; Van Den Berge et al., 2019). 284 

Although not currently widespread, transcriptomics studies are expected to benefit from long-285 

read sequencing platforms (e.g., PacBio Iso-Seq, Oxford Nanopore Tech) for increased 286 

assembly contiguity and resolution of alternative splicing variants. However, the deep 287 
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sequencing provided by short-read Illumina platforms may provide better depth, thus 288 

detecting rare transcripts useful for annotation. 289 

 290 

Transcriptomics challenges 291 

RNA sequencing is starting to be more widely applied to amphibian conservation projects 292 

and the current challenges are mostly associated with limited taxonomic diversity, as 76% of 293 

extant families have less than 5% of their species diversity represented by transcriptomic data 294 

(see Figure 13.3). In addition to identifying differentially expressed genes, RNA sequencing 295 

can also be used to study a range of important phenotypes linked to conservation planning. 296 

For example, these data can be used to identify a large set of SNPs to study signatures of 297 

selection in imperiled amphibian species to identify genotypes associated with adaptive 298 

polygenic traits like thermal tolerance, habitat preference, or disease resistance (Spurr et al., 299 

2020). Finally, co-expression network analyses could be used to identify networks of genes 300 

with similar expression patterns across samples and how these vary under different conditions 301 

(Serin, Nijveen, Hilhorst, & Ligterink, 2016; van Dam, Võsa, van der Graaf, Franke, & de 302 

Magalhães, 2018). Combining gene co-expression networks with time series analyses in 303 

species experiencing drastic environmental challenges has the potential to uncover modules 304 

of co-expressed genes and changes in their interactions associated with a challenge of 305 

interest. This approach could pinpoint gene modules as markers for resilience or 306 

vulnerability, thus providing crucial information for implementing effective conservation 307 

measures. 308 

 309 
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Reduced representation library (RRL) sequencing 310 

RRL approaches 311 

Reduced Representation Libraries (RRL) are designed to focus sequencing on a subset of the 312 

genome. Restriction-site associated DNA sequencing (RADseq) and the targeted capture and 313 

sequencing of specific genomic regions are the two most common approaches currently used 314 

in amphibian genomics. RADseq was designed by (Miller et al., 2007) and further modified 315 

into genotyping-by-sequencing (GBS) (Elshire et al., 2011), double-digest RADseq (ddRAD, 316 

two restriction enzymes are used) (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012), triple-317 

digest RADseq (3RAD, three restriction enzymes are used) (Bayona-Vásquez et al., 2019), 318 

and Diversity Arrays Technology DArTseq (Lambert, Skelly, & Ezaz, 2016). There are also 319 

multiple methods of targeted capture such as Ultra Conserved Elements (UCE) (Faircloth et 320 

al., 2012; Mccormack et al., 2012), Anchored Hybrid Enriched (AHE) loci (Lemmon, Emme, 321 

& Lemmon, 2012). Restriction enzyme digestion and sequence capture probes can also be 322 

combined, as in the RADcap protocol (Hoffberg et al., 2016), and is exceptional at 323 

sequencing hundreds of specific loci across hundreds of individuals. 324 

 325 

RRL methods provide hundreds to thousands of loci that allow for fine-scale analysis of 326 

population structure and genetic diversity, even with samples having low DNA quality like 327 

museum specimens, and thus have important implications in conservation recommendations. 328 

As a consequence, RRL techniques are useful for understanding reproductive isolation and 329 

gene flow as well as estimating hybridisation rates, species delimitation, and the 330 

identification of cryptic species (Dufresnes & Martínez-Solano, 2020; Dufresnes, Mazepa, et 331 

al., 2018; Guillory et al., 2019; Homola et al., 2019). Within species, population structure and 332 

demography are equally important, as gene flow and inbreeding depression influence 333 

adaptive potential and resilience to environmental change. For these questions, one of the 334 
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most important parameters to quantify is effective population size, which can be used to 335 

study demographic history and extinction risk of populations. For example, RAD sequencing 336 

has been used with Ambystoma salamanders to determine effective population size, which 337 

could prove useful for population monitoring and management planning (Nunziata, Lance, 338 

Scott, Lemmon, & Weisrock, 2017; Nunziata & Weisrock, 2018). 339 

 340 

RRL data has also been used for improving whole genome assembly methods by sequencing 341 

specific chromosomes (also known as ChromSeq, (Iannucci et al., 2021)). This approach 342 

resolved the assembly of the sex chromosomes of Xenopus tropicalis (Seifertova et al., 2013) 343 

and Amolops mantzorum (Luo, Xia, Yue, & Zeng, 2020), and helped to assemble the large 344 

genomes of Ambystoma mexicanum (Keinath et al., 2015; Smith et al., 2019) and 345 

Notophthalmus viridescens (Keinath, Voss, Tsonis, & Smith, 2017). In addition, RRL 346 

sequencing has enabled the identification of important genome features, such as sex-related 347 

markers (Cauret et al., 2020; Lambert et al., 2016) or candidate genes linked to conservation 348 

relevant traits (Guo, Lu, Liao, & Merilä, 2016). 349 

 350 

RRL challenges 351 

RRL approaches are likely to remain popular tools for informing amphibian conservation 352 

given their cost-effectiveness, especially for large amphibian genomes. However, a biased 353 

taxonomic distribution of RRL sequencing effort is noticeable (see Figure 13.3), as there is 354 

currently no data for Gymnophiona and multiple families of Anura (mostly Neobatrachians) 355 

and Caudata. Most families are underrepresented and only Pelobatidae and Pelodytidae have 356 

all of their species sequenced with RRL assays. Although public datasets may accelerate the 357 

improvement of specimen samplings, combining different RRL datasets may be very 358 

challenging, especially when they resulted from non-targeted genome-subsampling methods. 359 
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As the data produced by RADseq are randomly sampled across the genome, the sequences 360 

recovered in different experiments are not necessarily the same, even if the same restriction 361 

enzymes are used. Another challenge of RRL is that functional interpretations can be limited 362 

without a reference genome. 363 

 364 

Metabarcoding and metagenomics 365 

Metabarcoding and metagenomics approaches 366 

Emerging from DNA barcoding (Hebert, Cywinska, Ball, & deWaard, 2003), metabarcoding 367 

focuses on the amplification and sequencing of specific genetic markers from multiple 368 

individuals while metagenomics corresponds to the study of genetic material from many 369 

individuals within an environment. Both approaches have broad applicability in taxonomy, 370 

ecology, population dynamics, evolution and biogeography, all of which are essential 371 

contributors to amphibian conservation biology (Ficetola, Manenti, & Taberlet, 2019). 372 

Metabarcoding and metagenomics, along with RNA sequencing, are also being used to 373 

profile microbial and parasitic communities of amphibians (Shakya, Lo and Chain, 2019). 374 

Successful examples include profiling parasites in the eastern dwarf tree frog (Litoria fallax) 375 

(Ortiz-Baez et al., 2020) and poison frogs (Dendrobatidae) (Santos, Tarvin, Connell, 376 

Blackburn, & Coloma, 2018). 377 

 378 

The use of environmental DNA (eDNA) metabarcoding has been applied to survey 379 

amphibian communities in threatened ecosystems ( Lopes et al., 2017; Sasso et al., 2017) 380 

rediscover “extinct” or “rare” species (Goldberg, Strickler, & Fremier, 2018; Lopes et al., 381 

2021), detect invasive species (Bento, Egeter, Rebelo, Chaves, & Pinto, 2021; Dufresnes et 382 

al., 2019; Dufresnes, Denoël, Santo, & Dubey, 2017; Dufresnes, Leuenberger, et al., 2018; 383 

Secondi, Dejean, Valentini, Audebaud, & Miaud, 2016), identify emerging diseases 384 
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(Romero-Zambrano, Bermúdez-Puga, Sánchez-Yumbo, Yánez-Galarza, & Ortega-Andrade, 385 

2021), and develop strategies in accordance with the Amphibian Conservation Action Plan 386 

(Wren et al., 2015). For example, this approach has successfully been used to monitor the 387 

distribution of the threatened great crested newt (Triturus cristatus) and detect invasive 388 

species associated with population declines (Harper et al., 2019). 389 

 390 

Metabarcoding and metagenomics challenges 391 

The success of metabarcoding studies for amphibian conservation is dependent on 392 

representative reference sequences within these databases. Metabarcoding and metagenomics 393 

facilitate the identification of relevant taxa from high-throughput sequencing data (Wilson, 394 

Sing, & Jaturas, 2019; Xu, Dimitrov, Rahbek, & Wang, 2015) and rely on reference 395 

sequences in public databases like BOLD (www.boldsystems.org), ENA 396 

(www.ebi.ac.uk/ena), GenBank (www.ncbi.nlm.nih.gov/genbank), and Silva (www.arb-397 

silva.de), among others. BOLD, for example, contains reference sequences for only 3,247 398 

species of amphibians (39% of described species) with Anura (2,728 spp., 37% of total 399 

species diversity) and Gymnophiona (84 spp., 39%) taxa being less well represented than 400 

those in Caudata (435 spp, 57%). Therefore, efforts toward reducing taxonomic gaps in 401 

reference databases are encouraged. 402 

 403 

Epigenetics 404 

Epigenetics approaches 405 

Epigenetics describes genome-wide patterns of DNA modifications and structures that impact 406 

gene regulation. These can be inherited somatically or through the germline without altering 407 

the DNA sequence (Rando & Verstrepen, 2007). Such modifications can serve as stress 408 

biomarkers predicting population persistence in unstable environments (Rey et al., 2020). In 409 
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this context, whole genome bisulfite-sequencing (WGBS) can be used, which relies on the 410 

conversion of cysteines into thymines by sodium bisulfite. Activity levels of methylation-411 

inducing genes can then be measured using qPCR (Hudson, Lonhienne, Franklin, Harper, & 412 

Lehnert, 2008) or DNA methylation-specific antibodies (Hawkins & Storey, 2018; Zhang, 413 

Hawkins, & Storey, 2020). For example, temperature-related research in amphibians includes 414 

studies of expression of genes whose products have gene silencing functions in striped 415 

burrowing frogs (Cyclorana alboguttata) (Hudson et al., 2008), changes in methylation 416 

patterns linked to the freeze-thaw cycle in Wood Frogs (Rana sylvatica) (Hawkins & Storey, 417 

2018; Hudson et al., 2008), and histone modifications linked to the onset of metamorphosis in 418 

L. catesbeianus (Mochizuki, Ishihara, Goda, & Yamauchi, 2012). 419 

 420 

Epigenetic modifications can change under other environmental stressors such as endocrine 421 

disrupting chemicals (Jacobs, Marczylo, & Guerrero-Bosagna, 2017) or radiation. For 422 

example, exposure of Xenopus laevis to the pesticide atrazine causes disturbances in 423 

steroidogenesis via epigenetic modifications (Hayes et al., 2002). Japanese tree frogs 424 

(Dryophytes japonicus) sampled two years after the Fukushima nuclear accident show 425 

genome-wide increases in methylation patterns (Gombeau et al., 2020). These connections 426 

highlight the importance of epigenetic modifications as stress biomarkers and the untapped 427 

potential of this tool for amphibian conservation. 428 

 429 

Epigenetics challenges 430 

This approach requires a high quality reference genome and extensive sequencing depth, 431 

which is expensive at present but likely to decrease in cost in the future. Once epigenome 432 

markers are identified (Thorson et al., 2020), other more cost-effective methods may be used 433 

to assess their modification (reviewed in (Eirin-Lopez & Putnam, 2019)). To reliably relate 434 
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epigenetic changes with environmental stressors, baseline research is needed to identify 435 

which external variables influence gene methylation (Mochizuki et al., 2012; Rey et al., 436 

2020). Additionally, considering the longevity of epigenetic modifications across generations, 437 

there is a need for understanding the role of long-term acclimatisation in reintroduction 438 

efforts (van Oppen, Oliver, Putnam, & Gates, 2015). Including epigenetics in conservation 439 

planning (conservation epigenetics sensu (Rey et al., 2020)) would ensure that recent 440 

ecological history and phenotypic plasticity are taken into account. 441 

 442 

Case studies on applying genomics approaches to amphibian conservation 443 

The recent revolution in genomics technologies means that many projects are underway for 444 

which the successes and failures are not yet known. Here, we look at specific conservation 445 

projects that have successfully used genomics technologies to inform conservation 446 

approaches to disease resistance, captive breeding, and biocontrol of invasive species. 447 

 448 

Understanding and increasing chytridiomycosis resistance 449 

Understanding the genetic contribution to chytridiomycosis susceptibility caused by 450 

Batrachochytrium dendrobatidis (Bd) infection is critical for prioritising species for 451 

conservation efforts and producing species capable of surviving the disease through captive 452 

breeding programs. Most efforts to identify genetic regions associated with Bd immunity 453 

have involved targeted studies of immune genes or gene expression comparisons between 454 

infected and uninfected frogs (Table 3). The majority of Bd genetic association studies have 455 

targeted the major histocompatibility complex (MHC), which have detected correlations 456 

between MHC variation and Bd resistance (Table 3). One of the best examples comes from 457 

lowland leopard frogs (Lithobates yavapaiensis), where an MHC allele (the Q-allele) predicts 458 

increased survival (Savage & Zamudio, 2011; Sommer, 2005). RNA sequencing approaches 459 
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have identified many immune genes that are differentially expressed in response to Bd 460 

infection including the MHC, B-cells, complement, and chitinase (Table 3). These studies 461 

also found that Bd suppresses lymphocyte expression (Ellison, Savage, et al., 2014), more 462 

resistant populations exhibit robust early immune response (Grogan et al., 2018), and 463 

dysregulation of immune genes is associated with susceptibility (Grogan et al., 2018; Savage, 464 

Gratwicke, Hope, Bronikowski, & Fleischer, 2020). Although these approaches have 465 

identified many candidate resistance genes for future study, their design does not permit 466 

testing the link between gene expression differences and Bd survival given study animals 467 

were euthanised for tissue sampling. 468 

 469 

A thorough understanding of the genes underlying chytrid immunity and their effect size is 470 

critical for managing amphibians threatened by Bd. To date, only two studies have used 471 

genome approaches to investigate Bd resistance: a genome-wide association study in 472 

Southern Corroboree frogs (see Box 1) (Kosch et al., 2019) and targeted exome sequencing in 473 

harlequin frogs (Byrne et al., 2021). Although pioneering in their approaches, these studies 474 

lack the robust statistical power recommended before use in management. With the rapid 475 

development of genomics technologies in recent years, and the ever increasing availability of 476 

amphibian reference genomes, such investigations are now possible in many species. Future 477 

efforts should apply genomics approaches discussed in this Status Update to better 478 

understand genetic contributions to Bd resistance. 479 

 480 

  481 
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Table 13.3. Bd immunity studies using genetic/genomic approaches. 482 

Species Experimental 

Design 

Gene Region Reference 

Bufo calamita Field study MHCII (May, Zeisset, & 

Beebee, 2011) 

Lithobates 

yavapaiensis 

Laboratory challenge MHCII (Savage & Zamudio, 

2011) 

Multiple sp. Field study and 

laboratory challenge 

MHCII (Bataille et al., 2015) 

Lithobates 

yavapaiensis 

Field study MHCII (Savage & Zamudio, 

2016) 

Physalaemus 

pustulosus 

Field study MHCII (Kosch et al., 2016)  

Lithobates 

chiricahuensis 

Field study MHCII (Savage, Mulder, Torres, 

& Wells, 2018)  

Thoropa taophora Field study MHCII (Belasen, Bletz, Leite, 

Toledo, & James, 2019)  

Lithobates pipiens Field study MHCII (Trujillo et al., 2021) 

Japanese Rana spp. Field study TLRs (Lau, Igawa, Kosch, & 

Satta, 2018) 
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Xenopus tropicalis Laboratory challenge Transcriptome (Rosenblum et al., 2009) 

Lithobates muscosa, 

L. sierrae 

Laboratory challenge Transcriptome (Rosenblum, Poorten, 

Settles, & Murdoch, 

2012) 

Atelopus zeteki Laboratory challenge Transcriptome (Ellison, Savage, et al., 

2014) 

Agalychnis 

callidryas, Atelopus 

glyphus, Atelopus 

zeteki, Craugastor 

fitzingeri 

Laboratory challenge Transcriptome (Ellison, Tunstall, et al., 

2014)  

Rana temporaria Laboratory challenge Transcriptome (Price et al., 2015)  

Rhinella marinus, 

Anaxyrus boreas 

Laboratory challenge Transcriptome (Poorten & Rosenblum, 

2016)  

Lithobates sylvatica, 

L. catesbeianus 

Laboratory challenge Transcriptome (Eskew et al., 2018)  

Litoria verreauxii 

alpina 

Laboratory challenge Transcriptome (Grogan et al., 2018; 

Savage et al., 2020)  

Lithobates 

yavapaiensis 

Laboratory challenge Transcriptome (Savage et al., 2020)  
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Pseudophryne 

corroboree 

Laboratory challenge Genome-wide 

SNPs, MHCI 

(Kosch et al., 2019)  

Atelopus varius, A. 

zeteki 

Field study Exome (Byrne et al., 2021)  

 483 

 484 

<begin Box 1> 485 

Box 13.1. Developing methods to increase Bd-resistance in Southern Corroboree Frogs 486 

Southern Corroboree frogs (Pseudophryne corroboree) – an Australian alpine endemic 487 

species – have been driven to functional extinction in the wild by chytridiomycosis (Hunter et 488 

al., 2010) and their continued survival is dependent on captive breeding and reintroduction. 489 

Although a successful breeding program has been in place for over a decade, self-sustaining 490 

populations have yet to be established in the wild (Kosch et al., 2019). One of the challenges 491 

of re-establishing this species is that it co-occurs with Bd-tolerant reservoir species Crinia 492 

signifera (Scheele, Hunter, Brannelly, Skerratt, & Driscoll, 2017). As culling the reservoir 493 

host is not a desirable option, Bd-resistance will have to be increased to allow this species to 494 

survive along with the Bd pathogen. 495 

 496 

Research is underway to understand the genetic basis of Bd-resistance and develop methods 497 

to enhance it in currently susceptible species (Kosch et al., 2019; Skerratt, 2019). The 498 

Southern Corroboree Frog Restoration Project consists of a multi-institutional group of 499 

academics, threatened species managers, and zoo practitioners dedicated to restoring this 500 

species in the wild (Lee Berger; Deon Gilbert; David Hunter; Tiffany Kosch; Michael 501 

McFadden; Jacques Robert; Kyall Zenger; James Cook University; NSW Department of 502 

Planning, Industry and Environment; Taronga Conservation Society; University of 503 
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Melbourne; University of Rochester; and Zoos Victoria). As genetic intervention is a long-504 

term endeavour requiring decades before animals are fit for release, participants have 505 

committed to proceeding cautiously, involving all stakeholders, and vetting the safety and 506 

efficacy of each step before proceeding. The program consists of multiple stages: 1) 507 

understanding the genetic basis of immunity to Bd, 2) developing genetic tools to increase 508 

resistance, 3) testing effectiveness of genetic intervention by Bd-challenge in the lab and the 509 

field (by release into exclosures), 4) testing for off-target effects in the lab and the field, 5) 510 

release into the wild, and 6) long-term monitoring to evaluate success. Such methods, if 511 

successful, can be used as a proof of concept for other threatened amphibians worldwide. 512 

 513 

One of the biggest challenges for this project has been developing genetic resources for P. 514 

corroboree. However, current efforts to sequence a reference genome and develop gene 515 

editing and transgenesis tools should help alleviate this problem. Pilot studies have been 516 

conducted to sequence immune genes, develop genome-wide DArT-seq markers, and begin 517 

to understand the genetic architecture of resistance (Kosch et al., 2017, 2019). Future plans 518 

involve testing other genotyping technologies such as targeted sequence capture and low-pass 519 

sequencing to increase genotyping coverage and performing well-powered genome-wide 520 

association studies with increased sample size. There are also plans to expand the standard 521 

phenotypes used to measure Bd-resistance by including molecular phenotypes and 522 

longitudinal gene expression data to better understand genetic architecture and identify 523 

putative Bd-resistance variants. 524 

 525 
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 526 

Box Figure 13.1. Southern corroboree frogs (Pseudophryne corroboree) are conservation-527 

reliant due to their susceptibility to Bd. A captive-bred P. corroboree frog (left, photograph 528 

by Corey Doughty), P. corroboree breeding facility at the Melbourne Zoo (middle, 529 

photograph by Mikaeylah Davidson), and outdoor enclosures maintained by the Australian 530 

National Parks and Wildlife Service (right, photograph by Michael McFadden). 531 

<end of Box 1> 532 

 533 

Genomic approaches for invasive amphibian biocontrol 534 

Invasive species are linked to approximately one-third of amphibian extinctions and threaten 535 

16% of extant amphibian species (Blackburn, Bellard, & Ricciardi, 2019). These effects 536 

occur primarily through habitat alteration, predation, competition, hybridisation, and disease 537 

spread (Falaschi, Melotto, Manenti, & Ficetola, 2020; Nunes et al., 2019). The use of 538 

genomic approaches for understanding and managing invasions has rapidly increased in 539 

recent years (McCartney, Mallez, & Gohl, 2019), but is only beginning to be applied to 540 

amphibian systems (see Box 13.2).  541 

 542 

Genomic tools offer powerful methods to study invasive-native hybridisation. For example, 543 

hybridisation with invasive salamanders (Ambystoma tigrinum mavortium) threatens endemic 544 

native salamanders (Ambystoma californiense) in California (Mccartney-Melstad & Shaffer, 545 

2015), where hybrids outcompete and cannibalise pure natives and prey upon other 546 

amphibians in the community (Ryan, Johnson, & Fitzpatrick, 2009). Preservation of the 547 
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native species requires introgression prevention, and genomic scans have been used to track 548 

the movement of non-native alleles (Shaffer et al., 2015). Moreover, genome regions 549 

associated with traits critical to population viability are candidates that may indicate to 550 

managers which populations have the strongest potential to further spread non-native alleles 551 

(Shaffer et al., 2015). For example, genomic regions associated with metamorphosis were 552 

identified using RRL sequencing (Voss, Kump, Walker, Shaffer, & Voss, 2012) and genes 553 

promoting thermal tolerance have been identified using RNA sequencing (Cooper & Shaffer, 554 

2021). Thus, genomics approaches are critical tools for understanding invasive-native 555 

population dynamics and can inform conservation management practices (Dufresnes & 556 

Dubey, 2020). 557 

 558 

Genomic tools also offer new perspectives into invader-mediated population declines.  559 

Invasive cane toads (Rhinella marina) in Australia increase parasitic infections in native 560 

amphibians (Kelehear, Brown, & Shine, 2013) that can be fatal (Pizzatto & Shine, 2011). 561 

RNA sequencing of invasive Australian cane toad livers revealed a novel virus at high 562 

prevalence (Russo et al., 2018), while follow up studies showed that native range cane toads 563 

contained a diversity of viruses (Russo et al., 2021). This suggests an “enemy release”, where 564 

viruses left behind in the native range may serve as effective control agents due to 565 

evolutionary distance (Russo et al., 2021). Although biocontrol through pathogenic agents 566 

has been suggested, selection of a suitable agent would require careful investigation due to 567 

the risk of infecting native frog species. 568 

 569 

Cane toads also carry lethal toxins that lead to population-level declines in Australian 570 

predators (Shine, 2010), as well as shifts in behavioural traits of some predator populations 571 

(Pettit, Ward-Fear, & Shine, 2021). Gene editing in cane toads using CRISPR has been used 572 
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to knock-out a toxin hydrolase that converts toad toxin from its storage form to a lethal active 573 

form (Cooper et al., 2020). Other genes that may enhance the toad’s invasion success may 574 

also serve as future knockout candidates using these protocols. However, this approach 575 

requires caution due to the potential risk of gene-edited toads being inadvertently introduced 576 

back to the native South America range through human translocation. 577 

 578 

  579 
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<begin Box 2> 580 

Box 13.2. Genomics of the cane toad invasion 581 

Box 2 Figure. The invasive Australian cane toad (Rhinella marina). Photograph taken by Dr. 582 

Matt Greenlees. 583 

 584 

Originally sourced from native South American populations, cane toads (Rhinella marina) 585 

were introduced to Puerto Rico in 1920, then to Hawaii in 1932, and finally to northeastern 586 

Australia in 1935 (Turvey, 2013). The cane toad invasion has since garnered much attention 587 

in Australia due to its ecological effects on a diversity of native taxa (Shine, 2010). 588 

 589 

The collection of genomic data on invasive cane toads is relatively recent, enabled by the 590 

development of a multi-tissue reference transcriptome (Richardson et al., 2018) and draft 591 

genome assembly (Edwards et al., 2018). These tools have been critical for elucidating 592 

genetic changes that occur as the toads disperse across northern Australia to the arid western 593 

regions. Population genetics studies using RNA-Seq (Selechnik, Richardson, Shine, DeVore, 594 

et al., 2019) and RADSeq (Trumbo et al., 2016) have characterised population structure and 595 

identified two genetic clusters separated at a continental divide marked by an abrupt change 596 
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in rainfall and temperature. Candidate genes involved in heat and dehydration resistance 597 

(Selechnik, Richardson, Shine, DeVore, et al., 2019) and those involved in metabolism and 598 

stress responses (Rollins, Richardson, & Shine, 2015) have been identified that may underlie 599 

the successful range expansion. Differential expression analyses on the RNA-Seq dataset 600 

suggest that environment-driven gene expression follows a similar pattern across the 601 

continental divide (Selechnik, Richardson, Shine, Brown, & Rollins, 2019). 602 

 603 

The application of genomic techniques to the cane toad system has allowed for the 604 

investigation of invasion from novel perspectives. Analyses using 16S rRNA sequencing data 605 

to characterise colon microbiota in toads from each side of the continental divide revealed 606 

differences in both microbial compositional and functional variation (Zhou et al., 2020). 607 

Furthermore, behavioural traits were linked to microbial functional variation while infection 608 

prevalence of lungworm parasites was linked to both compositional and functional variation 609 

(Zhou et al., 2020). Further exploration of the relationships between gut microbiota, 610 

endoparasites, and invasive behaviours may cultivate new management strategies. 611 

 612 

The role of epigenetics in shaping the cane toad invasion has also been investigated. Reduced 613 

representation bisulfite sequencing on common garden-bred cane toad tadpoles exposed to 614 

conspecific alarm cues revealed differential changes to DNA methylation in lineages from 615 

each side of the continental divide (Sarma et al., 2020). Further, these alarm cue-exposed 616 

individuals exhibited an induced defence mechanism and this defence was shown to be 617 

transferred to the next generation (Sarma et al., 2021). These are among the first studies to 618 

demonstrate a potential role for epigenetics in rapid evolution during invasion and suggest 619 

that such effects should be considered in future biocontrol studies. 620 

<end of Box 2> 621 
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 622 

Discussion 623 

Amphibians are less intensively researched than mammals or birds (Figure 13.1) and most 624 

genomic sequencing efforts in amphibians have concentrated on Least Concern taxa. Being 625 

the tetrapod group with the most threatened species, a boost on genome sequencing projects 626 

in threatened amphibian species is urgent. Although the lack of high-quality reference 627 

genomes may preclude some genomic applications, the use of reduced genome representation 628 

techniques (e.g. RNA-Seq, RAD-Seq, and Targeted Capture assays) are a viable alternative to 629 

genome-based approaches and should be more extensively applied to imperilled amphibian 630 

species. We strongly suggest that Red List assessments incorporate genomics approaches for 631 

estimating genetic diversity and species delimitation in biodiverse regions. We can now 632 

envision a future where genomic-informed interventions in translocations, genomic rescue, 633 

and disease prevention and mitigation are part of our arsenal for ensuring the long-term 634 

preservation of amphibian biodiversity. 635 

 636 

Many approaches have been successfully used to conserve threatened amphibians including 637 

habitat conservation, restoration, and supplementation (Cook, 2010; Woodhams et al., 2011). 638 

Unfortunately, these approaches are not always effective for threats that are hard to mitigate 639 

such as disease, climate change, and invasive species, thus requiring the development of 640 

novel approaches to increase survival. If the goal of a conservation program is to establish 641 

self-sustaining populations in the wild, then genomic methods that promote survival 642 

alongside the threat should be considered. Measurement of genetic diversity is critical for 643 

assessing inbreeding and outbreeding depression prior to population augmentation or captive 644 

breeding strategies and genomics is currently the simplest way of tackling this problem 645 

(Byrne & Silla, 2020; Frankham et al., 2011). Although more complex and drastic, genetic 646 
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intervention is also a promising approach for establishing self-sustaining populations of 647 

amphibians that can survive alongside key threats. Genetic intervention methods can include 648 

genetic rescue, CRISPR gene editing, and genomic selection, all of which rely on genomics 649 

technologies and reference genomes. Of these, only genetic rescue has been used for 650 

conservation purposes (but see (Newhouse & Powell, 2021; van Oppen & Oakeshott, 2020); 651 

Box 13.1). However, the widespread success of gene editing and/or genomic selection 652 

methods in medicine and agriculture (Meuwissen, Hayes, & Goddard, 2016; Piaggio et al., 653 

2017) suggests these methods should be considered. Genetic intervention in wildlife is 654 

controversial (Kardos & Shafer, 2018; Redford, Brooks, Nicholas, & Adams, 2019) and 655 

should be performed with utmost caution along with careful testing to ensure that 656 

manipulated animals pose no environmental risk and are fit for release. Another challenge of 657 

applying genetic intervention methods in amphibians is the lack of fundamental genomic 658 

understanding of key survival traits, but this should increase as more genomic resources 659 

become available in the near future. 660 

 661 

This Genomics Status Update has highlighted several critical needs for the amphibian 662 

conservation community, including equity in training and technology access, data resource 663 

management and transparency, and the involvement of stakeholders and conservation 664 

practitioners in genomics analyses. There is a clear geographic bias in the origins of 665 

genomics data compared to amphibian biodiversity hotspots (Figure 31.2). We call for more 666 

equity in training opportunities and access to genomics technologies for researchers from 667 

Central and South America, Africa, and Southeast Asia. Cheap and portable sequencing 668 

platforms are one promising avenue, coupled with bioinformatics training and decolonisation 669 

of field-based genomic studies. Data transparency and accessibility is another community 670 

challenge, as annotation and genomic resource management often lack funding but are 671 
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critical for rapid progress. Additionally, transparency in data and sequencing should be a 672 

requirement of any funded project, including rapid public release of sequence data prior to 673 

publications that may take years to appear. Finally, there is a clear need to involve 674 

stakeholders and conservation practitioners in genomics research, which could include 675 

community driven annotation or metadata necessary for genome usability as well as “plug 676 

and play” platforms coupled with free online bioinformatics training opportunities that make 677 

these approaches more accessible in concept and in practice. Portable high-throughput 678 

nanopore MinION sequencers are now being used directly in the field to generate genomic 679 

data for rapid biodiversity assessments, thus strengthening local capacities for monitoring and 680 

conservation (Pomerantz et al., 2018). The ability to conduct massively parallel DNA 681 

sequencing studies in situ can also alleviate the need to export genetic material or digital 682 

sequence information on genetic resources (DSI), two key components of the Convention on 683 

Biological Diversity (CBD) and the Nagoya Protocol (https://www.cbd.int/dsi-gr/). Portable 684 

devices with quick high-throughput sequencing and analysis capabilities can boost data 685 

accessibility for decision-makers, researchers, and local government officials to improve 686 

amphibian management decisions. Genomics can make an important contribution to global 687 

amphibian conservation, but only if access to its power is equitable for all people involved.  688 
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Glossary 14 

Translocation: the movement of an organism by human agency that is then released in a 15 

different area; the most general and highest order term referring to human mediated 16 

movement of a species/subspecies/taxon. 17 

Conservation translocation: intentional movement and release of living organisms where 18 

the primary objective is for conservation purposes. 19 

Assisted colonisation: is the intentional movement and release of an organism outside its 20 

indigenous range to avoid extirpation of populations or extinction of the focal species. 21 

Assisted colonisation is primarily carried out where protection from current or likely future 22 

threats in the current range is deemed less feasible than at alternative sites outside the current 23 

range. 24 

Reintroduction: is the intentional movement and release of an organism(s) inside the 25 

species’ indigenous range from which the species has disappeared. 26 

Reinforcement/Supplementation: is the intentional movement and release of an 27 

organism(s) into an existing population of conspecifics, and is synonymous with the terms 28 

augmentation, supplementation, and restocking. Reinforcement may be done for several 29 

reasons, including to enhance population viability, increase genetic diversity, or increase the 30 

representation of specific demographic groups or stages. 31 

Mitigation translocation: the intentional removal of organisms from habitat that will be lost 32 

through anthropogenic land-use change or threat, and release at an alternative site. 33 

Definitions are based on the 2013 IUCN Guidelines for Reintroductions and Other 34 

Conservation Translocations. 35 

 36 
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Abstract 37 

Species translocations are highly complex and challenging and those involving amphibians 38 

are no exception to this. While outcomes have improved over the decades, the last review of 39 

published herpetofauna translocations found a success rate of 41%. This is likely due to the 40 

interplay of numerous factors that need to be addressed to give releases the greatest 41 

opportunity to thrive. Some of these factors include source population, animal behaviour, 42 

habitat quality, disease risks, genetics, welfare, and ensuring that the root cause of decline has 43 

been addressed. Where questions exist around key factors, trial releases and experimental 44 

research can help to address uncertainties. Additionally, it is critical that sufficient time and 45 

resources are put into planning and monitoring, with a contingency or exit strategy in place if 46 

the project does not go as planned. Future challenges that need to be addressed by the 47 

amphibian reintroduction community include the use of translocations in the mitigation space 48 

to deal with habitat destruction and human development as well as the application of assisted 49 

colonisation in the face of the global climate change crisis. 50 

 51 

Introduction 52 

Amphibian translocations, and in fact translocations of any taxonomic group, are complex 53 

undertakings. Success is not guaranteed, as project-specific uncertainties are inevitable and 54 

translocations require consideration of animal behaviour, disease, genetics, population 55 

ecology, political, socioeconomic, and stakeholder contexts (Ewen, Armstrong, Parker, & 56 

Seddon, 2012; IUCN/SSC, 2013; Linhoff et al., 2021). They are long-term commitments that 57 

do not end when animals are released. Often, they require years of adaptive management and 58 

years, if not decades, of monitoring to establish the level of success. Furthermore, if the 59 

initial threats to the species are not mitigated and if long-term security of the release site is 60 

not ensured, then these newly translocated populations will fail. 61 
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 62 

Historically, translocations have been used for a range of reasons. For amphibians, most past 63 

releases have been for conservation. Additionally, many releases have been carried out for 64 

pest control (e.g., cane toads) or inadvertently (e.g., American bullfrog) and while there are 65 

many lessons that can be learned from the study of invasive species, these are outside the 66 

scope of this chapter. In the past two decades, as the science of reintroduction biology has 67 

developed and gained international recognition, there has been a substantial increase in the 68 

use of translocations for the mitigation of habitat destruction for human development 69 

(Bradley, Tomlinson, Craig, Cross, & Bateman, 2021; Germano & Bishop, 2009; Germano et 70 

al., 2015; Miller, Bell, & Germano, 2014; Romijn & Hartley, 2016; Sullivan, Nowak, & 71 

Kwiatkowski, 2015). These mitigation translocations have lower success rates than 72 

conservation translocations (Germano & Bishop, 2009) and may not meet the animal welfare 73 

or species goals that they set out to achieve (Bradley et al., 2021; Germano & Bishop, 2009). 74 

The motivations driving future amphibian translocations are likely to continue to evolve. 75 

Perhaps one of the most probable developments over the coming years will be the use of 76 

assisted colonisation in an attempt to guarantee the survival of species facing dire 77 

circumstances in the face of climate change. 78 

 79 

Status update 80 

Progress in reintroductions and conservation translocations 81 

The use of translocations for the conservation of amphibians and wildlife in general has been 82 

growing worldwide (Bubac & Johnson, 2019; Dodd & Seigel, 1991; Germano & Bishop, 83 

2009). A comparison of data collected from 1966 to 2006 (Griffiths & Pavajeau, 2008) to 84 

data collected between the first ACAPs release in 2007 and 2014 showed the number of 85 

amphibian species involved in both captive breeding and translocation projects to have 86 
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increased by 57% (Harding, Griffiths, & Pavajeau, 2016). Alongside this growth, a 87 

comparison of reviews of published herpetofauna releases have shown an increase in positive 88 

outcomes from a 19% success rate of reviewed cases in 1991 (Dodd & Seigel, 1991) to 41% 89 

in 2008 (Germano & Bishop, 2009). These successes are likely due to the development of 90 

reintroduction biology as a whole and a push towards adaptive management and the use of 91 

scientific approaches to address a priori goals. The trend after the 2007 ACAP also showed a 92 

shift towards research and a focus on captive assurance populations with very few new 93 

reintroductions (Harding et al., 2016). With more many releases targeting specific research 94 

questions this continues to add to our knowledge, refine our management practices and 95 

increase the chances of future successes. Detailed information and best practice can be found 96 

in the IUCN guidelines for amphibian reintroductions and other conservation translocations 97 

(Linhoff et al., 2021). 98 

 99 

Planning and feasibility 100 

Planning and feasibility studies are vital steps before a reintroduction is undertaken. Each 101 

programme will require consideration of different elements depending on the threats to the 102 

species and potential impacts to habitat, ecosystems and communities. There are numerous 103 

factors to consider and a wealth of tools available to assist with the process (Canessa et al., 104 

2016). Although the focus of each programme will be different there are a few key 105 

considerations which apply (see Box 14.1). 106 

 107 
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Box 14.1: Key considerations for planning 

1. Is the species a suitable candidate for reintroduction 

2. Have other interventions such as habitat enhancement or threat management been 

considered 

3. Are there ways to protect the species in situ 

4. Is there sufficient knowledge on the species biology, ecology, and reasons for decline 

5. Are there support and resources for a reintroduction (e.g., long-term funding, expertise, 

partnerships, political and community support) 

6. Have threats been considered/removed/mitigated 

7. Have release sites been identified 

8. Is there a contingency plan or exit strategy for the reintroduction if needed 

Detailed information on the considerations is listed in the IUCN Guidelines (IUCN/SSC 2013) 

and the IUCN guidelines for amphibian reintroductions (Linhoff et al., 2021). 

Useful tools and procedures to assist feasibility and knowledge gathering 

1. Species Action Planning Workshops (IUCN/SSC, 2014; IUCN – SSC Species 

Conservation Planning Sub-Committee, 2017) 

2. Population modelling (see Linhoff et al., 2021) 

3. Habitat Suitability Analysis (Jarchow, Hossack, Sigafus, Schwalbe, & Muths, 2016; 

Romero, Olivero, & Real, 2013) 

4. Genetic studies (Wilson et al., 2008) and analysis (Weiser, Grueber, & Jamieson, 2012) 

5. Strategic planning tools - Using decision analysis framework (Ewen, Soorae, & 

Canessa, 2014) 

6. Collaborations with zoos, government, researchers, non-profit, traditional 

owners/indigenous people (Cisternas et al., 2019; Miller et al., 1994) 

 108 
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Experimental research such as trial translocations with a small number of individuals or using 109 

a similar species can provide useful data and test neutralization of threats and broaden 110 

feasibility. When undertaking trials, it is important to impose the same stringent protocols 111 

and procedures as the same risks are present. There are published trial releases that can 112 

provide examples of how to test translocation feasibility (Bodinof et al., 2012; Kemp, 113 

Norbury, Groenewegen, & Comer, 2015; McCallen, Kraus, Burgmeier, Fei, & Williams, 114 

2018; Mortelliti, Santulli Sanzo, & Boitani, 2009; Valdez et al., 2019). 115 

 116 

There are very few published examples of the process and decision-making elements 117 

involved in planning, particularly by programmes where translocations did not go ahead 118 

based on the outcomes of feasibility studies or research. It would therefore be useful to have 119 

examples of potential reintroductions that were not undertaken as a result of low feasibility or 120 

alternative management options. Similarly, it would be useful to have more examples of 121 

translocations that did not go to plan (see Case Study, Borzée, Kim, Kim, & Jang, 2018), and 122 

adaptive management that resulted in alternative interventions. Examples of amphibian 123 

reintroductions along with lessons learned can be found within the IUCN Reintroduction 124 

Perspective Publications (Soorae, 2008; 2010; 2011; 2013; 2016; 2018; 2021) and via 125 

Conservation Evidence, particularly the Amphibian Synopses (Smith & Sutherland, 2014; 126 

Sutherland, Dicks, Petrovan, & Smith, 2021). 127 

 128 

 129 
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Box 14.2. Case study: The Suweon treefrog 

 

Background 

The Suweon treefrog Dryophytes suweonensis was described in the eponymous city of Suwon 

in 1980, before becoming functionally extinct in the early 2010s. The local government 

decided to bring the frogs back a few years later and terraformed an island in a reservoir with 

all the habitat and vegetation types known to be needed for by the species at the time of the 

project. Researchers from local universities were tasked with the translocation part of the 

project, and selected a few localities based on genetic information and population dynamics at 

the site to be the origin of the translocated individuals. 

 

Methods 

To ensure a higher chance of success, amplexed pairs were caught and kept in clear plastic 

tanks filled with water from the rice paddy where they had been caught. Eggs were collected in 

the morning, and transferred to a laboratory to head start the froglets before release. The 

tadpoles, and metamorphs, were kept isolated by clutch, and as only 150 froglets were released 

at the translocation site, all others were released at the point of capture to reinforce the 

population at the site of capture (data non-published), after screening for pathogens.  

 

Results and outcomes 

The frogs at the translocation site were surveyed until the beginning of hibernation, and a few 

young males were found calling the following spring (showing a shorter generation time than 

expected). No amplexus or female were observed, a commonality in the species, but tadpoles 

were found, and their identity confirmed through molecular tools. More males were found 

calling the subsequent spring, highlighting the adequacy of protocols used. This was however 
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the last year of the project, and management changed the following fall, with all hibernation 

sites removed and the vegetation cut as they did not look clean for the public. No observation 

of the Suweon treefrogs at the site could be confirmed at a later date, and the site was 

transformed into a water purification plan and car park shortly afterwards. 

 

Current status and threats 

The Suweon treefrog is listed as Endangered, it is present at other locations, but the probability 

of extinction through a PVA for the Republic of Korea is 1 within 50 years. 

 

(Please refer to Borzée et al., 2018 for further details). 

 130 

Source populations for translocations 131 

Captive populations 132 

Amphibians exhibit a variety of characteristics that make them suitable for captive breeding 133 

and head-starting for translocation such as their high fecundity, applicability of reproductive 134 

technologies, short generation time, small body size, lack of parental care, hard-wired 135 

behaviour, and low maintenance requirements (Balmford, Mace, & Leader-Williams, 1996; 136 

Bloxam & Tonge, 1995). However, not all amphibians are suitable for such programmes, and 137 

many species have husbandry requirements that are poorly understood or difficult to 138 

implement (Tapley, Bradfield, Michaels, & Bungard, 2015). Captive breeding over many 139 

generations can have unintended genetic consequences, possibly leading to inbreeding or loss 140 

of genetic diversity; additionally, populations may undergo selection to captive conditions 141 

unless they are carefully managed (Gilligan & Frankham, 2003; Groombridge, Raisin, 142 

Bristol, & Richardson, 2012; McDougall, Réale, Sol, & Reader, 2006; Witzenberger & 143 

Hochkirch, 2011). For an overview of conservation breeding, see Chapter 11. 144 
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 145 

Head-starting, the process by which early life stages (eggs, larvae, or juveniles) are 146 

temporarily raised in captivity and released at a later stage to avoid the heavy mortality 147 

associated with younger age classes in the wild, has also been used extensively in 148 

translocation efforts (Smith, Meredith, & Sutherland, 2020). Both captive bred and head-149 

started animals may become behaviourally adapted to captive conditions and may not be 150 

suitable for release to the wild if they do not demonstrate appropriate anti-predator responses 151 

or foraging behaviour (Griffin, Blumstein, & Evans, 2000; McDougall et al., 2006). 152 

Behavioural adaptation may be partially mitigated by maintaining animals in conditions that 153 

closely resemble the wild; individuals may also benefit from pre-release and anti-predator 154 

training (Crane & Mathis, 2011; Griffiths & Pavajeau, 2008; Mendelson & Altig, 2016; 155 

Tapley et al., 2015; Teixeira & Young, 2014; Teixeira, de Azevedo, Mendl, Cipreste, & 156 

Young, 2007). 157 

 158 

Captive breeding and reintroduction programmes have increased for threatened amphibian 159 

species. In the seven years following the first ACAP an estimated 83% of releases involved a 160 

captive breeding component (Harding et al., 2016). Although the number of captive breeding 161 

and reintroduction programmes are on the rise, this is primarily occurring in countries in 162 

South America, the Caribbean and Central America as programmes are shifted to within-163 

country efforts where amphibian diversity and declines are greatest, meanwhile, the number 164 

of programmes in more developed, industrialised countries have decreased over the same 165 

time frame (Harding et al., 2016). 166 

 167 

There is a lack of understanding about genetics, animal husbandry, and basic life history traits 168 

such as breeding cues for many species, and this has hampered the success of captive 169 
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breeding programmes. Furthermore, captive bred animals often suffer from poor nutrition and 170 

health that can impact breeding behaviour and physiology, leading to poor production of 171 

offspring for translocation efforts. However, recent advancements have been made in the 172 

field of amphibian reproductive technologies (see Chapter 12) such as hormone therapies, 173 

artificial fertilization and cryobanking of sperm and eggs, all of which can improve 174 

reproductive capacity (e.g., Kouba, Vance, & Willis, 2009; Silla & Byrne, 2019). However, 175 

further research on amphibian reproductive biology, as well as on-going development and 176 

application of these tools, is needed (Della Togna et al., 2020). 177 

 178 

Wild source populations 179 

Wild-wild translocations avoid the costs and logistics involved with establishing and 180 

maintaining a captive facility. Equally, it circumvents the risk of adaptation to captivity 181 

through multiple generations of captive breeding. However, genetic management needs 182 

consideration, and it may be important to ensure individuals are from multiple clutches to 183 

avoid a founder effect at the release site. Likewise, although biosecurity may be less of an 184 

issue than in a zoo setting, care needs to be taken to avoid the transfer of invasive plants or 185 

pathogens between sites during the action. Wild-wild translocations are best carried out using 186 

eggs or tadpoles, as these can develop and disperse naturally at the release site (Denton, 187 

Hitchings, Beebee, & Gent, 1997; Ward, Liddiard, Goetz, & Griffiths, 2016). Translocation 188 

of post-metamorphic stages needs careful consideration given that such stages can have a 189 

strong homing ability (Pašukonis et al., 2013), and may become disoriented if moved to a 190 

new site. Consideration also needs to be given to the potential impact of removing stock from 191 

the donor site. Given the relatively high natural mortality of eggs and larval stages, 192 

combining head-starting of larvae – either in-situ in protective enclosures or ex-situ at a 193 
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nearby facility – may be the optimal solution for amphibians whose life cycle suits such an 194 

approach. 195 

 196 

Habitat 197 

Habitat loss and degradation is the greatest single driver of amphibian population declines 198 

and species loss (Bishop et al., 2012). As such reintroductions and conservation 199 

translocations can be a valuable action to address these threats and safeguard amphibian 200 

populations (Pelophylax lessonae; (Foster, Buckley, Martin, Baker, & Griffiths, 2018); Rana 201 

fisheri (Saumure et al., 2021). Additionally, habitat quality is a key predictor of translocation 202 

outcomes (Bubac, Johnson, Fox, & Cullingham, 2019; Germano & Bishop, 2009; Griffith, 203 

Scott, J, Carpenter, & Reed, 1989). 204 

 205 

Amphibians depend on the quality and quantity of microhabitats that provide adequate 206 

conditions for shelter, feeding, reproduction, stimulation, and escape from predators. Many 207 

amphibian species, particularly those that are threatened, have narrow or specific habitat 208 

requirements making them less adaptable to modified environments. It is therefore important 209 

to assess the habitat at a proposed translocation site to ensure it is suitable for the focal 210 

species. Whilst broad habitat requirements are generally known (e.g., if a species is forest 211 

dependent), specific habitat needs and therefore sensitivity to habitat modification is lacking 212 

(Nowakowski, Thompson, Donnelly, & Todd, 2017). Equally, as many poorly-known 213 

threatened species may be hanging on in degraded habitats that are far from optimal, caution 214 

is needed in trying to use such habitats as a template for restoration elsewhere in order to 215 

expand the species range. Further research into this area is required, both to understand the 216 

reasons for population declines and to help inform conservation translocations. 217 

 218 
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Obtaining this information prior to a translocation may be difficult, but we suggest some 219 

options. First, understanding the broad macro and micro-habitat features at a known species 220 

site and proposed translocation site will help inform site suitability. Second, when there is no 221 

or very little information about the species of conservation concern, evaluate available 222 

information on natural history known for a closely-related species – or a species thought to 223 

occupy a similar niche - to help inform the translocation. 224 

 225 

Receptor site and habitat protection is crucial to ensure long-term success of the 226 

translocation. Protected areas are a cornerstone of global conservation of biodiversity, 227 

including amphibians, and operate under a diverse range of management models (Dudley, 228 

2008). Effectiveness of protected areas is dependent on various factors including socio-229 

economic and governance conditions (Barnes et al., 2016; Schleicher, Peres, Amano, 230 

Llactayo, & Leader-Williams, 2017) as well as management and resource capacity 231 

(Geldmann et al., 2018). Successful translocations will therefore need to ensure appropriate 232 

measures are in place to safeguard receptor site integrity. 233 

 234 

Some final considerations: 235 

1. Assess the impact of climate change on habitat suitability when selecting a site, as 236 

what is suitable now may not be in 20- or 50-years’ time. Assisted colonisation is 237 

likely to become a more frequently used conservation tool in the future in light of 238 

climate change, increasing habitat loss, invasive species and the additional challenges 239 

this poses (Brodie et al., 2021). 240 

2. Habitat restoration at the site may be required in order to provide the range of 241 

microhabitats or to connect habitat fragments within and between sites. Habitat 242 

restoration and/or creation should be part of any mitigation translocations undertaken. 243 
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3. When undertaking translocations for mitigation or reinforcement, the quantity and 244 

quality of habitat needs to be assessed to ensure long-term-viability and to ensure 245 

conservation gains are made. 246 

 247 

Disease 248 

All translocations must assess the risk of infectious diseases. For example, diseases present at 249 

the release site may imperil translocated animals, or translocated animals may become a 250 

vector to spread a pathogen to new localities, which may impact existing populations or other 251 

species already present at the release site (Walker et al., 2008). The spread of novel infectious 252 

diseases, including fungal, bacterial, and viral pathogens, has recently caused declines and 253 

even extinctions of numerous amphibian species (Bienentreu & Lesbarrères, 2020; Scheele et 254 

al., 2019). A more complete discussion of specific diseases and their impacts on amphibian 255 

conservation is discussed in Chapter 6. While it is virtually impossible to eliminate all risk 256 

associated with disease in a translocation, by implementing a variety of best practice 257 

measures and performing a thorough disease risk assessment it is possible to greatly reduce 258 

any negative impacts that may occur (Hartley & Sainsbury, 2017). Refining and adapting 259 

protocols via adaptive management experiments can also have the potential to assist 260 

translocations where disease threats are present (Scheele et al., 2021). 261 

 262 

Best practice guidelines for reducing disease risks relating to amphibian translocation are 263 

available (e.g., Linhoff et al., 2021; Murray et al., 2011; Pessier & Mendelson, 2017), but 264 

several core principles should be followed. First, animals that are kept in captivity that will be 265 

reintroduced should be isolated from other species outside their native range that may be 266 

vectors for novel pathogens. Basic biosecurity measures when working with captive 267 

amphibians such as using dedicated footwear, hand washing, and sterilising equipment can 268 
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help prevent the spread of diseases in captivity and the field (Pessier & Mendelson III, 2017). 269 

Second, a formal disease risk assessment should be performed (Hartley & Sainsbury, 2017; 270 

Sainsbury, Armstrong, & Ewen, 2012). Deciding on a translocation programme’s goals and 271 

the acceptable risk thresholds are critical and can help make informed and calculated 272 

decisions. Disease risk analysis has been done for many amphibian translocations and some 273 

helpful herpetofauna examples exist (e.g Bobadilla Suarez et al., 2017; Sainsbury et al., 274 

2017). Third, prior to any translocation a pre-release disease screening should be performed. 275 

Animals can be screened for general health and specific pathogens using methods such as 276 

faecal parasite examinations or using polymerase chain reaction (PCR)-based screening for 277 

the common fungal pathogens Bd and Bsal (Pessier & Mendelson 2017). Translocations of 278 

sick and unhealthy animals should also be avoided. 279 

 280 

Genetics 281 

Our understanding of conservation genetics and their application to reintroductions has 282 

developed considerably since the original ACAP (Jamieson & Lacy, 2012). Even though 283 

rigorous habitat assessment of the release site may maximise the chances of animals 284 

establishing a viable population, there is a risk that the released stock may be maladapted to 285 

some degree. This is particularly the case when the animals for release stem from multiple 286 

generations of captive breeding (see above), particularly if the habitat in the receptor site may 287 

have changed in subtle ways (see Chapter 11). Likewise, animals that have been rescued from 288 

a small, remnant population that is threatened or non-viable, may represent a bottle-necked 289 

founder population with low genetic diversity and low capacity to survive at the release site. 290 

In deciding the optimal genetic constitution of a founder population for a reintroduction, a 291 

balance may need to be struck between ensuring sufficient genetic diversity to allow the 292 
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establishment of a viable population and adaptation to the new conditions and minimising the 293 

risk of outbreeding depression. 294 

 295 

Rigorous pre-release and post-release genetic screening of a population may be desirable, but 296 

may be costly in terms of the overall reintroduction budget. Equally, as many rare and cryptic 297 

amphibian species have unresolved taxonomy and phylogeography, establishing genetic 298 

baselines for informing the reintroduction may involve timescales and funds that are difficult. 299 

Nevertheless, informed decisions based on existing knowledge of distribution and habitat 300 

requirements can be made concerning the number of individuals, stage structure and sources 301 

of donor populations. Integration of genetic and demographic modelling may be important in 302 

reintroduction decision models (Converse, Moore, & Armstrong, 2013), but in practice 303 

reliable data may be difficult to obtain for many amphibian species requiring conservation 304 

interventions. 305 

 306 

Monitoring 307 

Determining whether reintroduction goals have been met requires post-release monitoring at 308 

an appropriate scale, appropriate level, and appropriate timeframe. ‘Scale’ will vary 309 

geographically from a single site to a whole geographical region. ‘Level’ ranges from basic 310 

presence/absence, through simple population counts and population densities, through to 311 

estimates of population size. There may well be a trade-off between ‘scale’ and ‘level’, in 312 

that obtaining population estimates at a large geographical scale may be logistically difficult 313 

(as well as unnecessary); whereas establishing just presence or absence at a single release site 314 

may be convenient but uninformative. An appropriate timeframe for monitoring will reflect 315 

both ‘scale’ and ‘level’, as well as the milestones that have been set by the project to measure 316 

‘success’. Different success milestones can be established at different places within the 317 
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timeframe. These are usually related to (1) establishing that released animals survive; (2) 318 

establishing that released animals are breeding; and (3) establishing that released animals 319 

have founded a self-sustaining, viable population or metapopulation (Griffiths & Pavajeau, 320 

2008; Miller et al., 2014; Seddon, 1999). Milestone (3) will clearly take much longer to 321 

establish than either (1) or (2). Regardless, the timeframe set needs to be measured in terms 322 

of generation times rather than months or years, as different amphibians have different life 323 

histories that run at different speeds (Linhoff et al., 2021). Although there is no set timeframe 324 

for monitoring, a study of amphibian translocations found that on average, programmes 325 

showed higher levels of success after 15 years (Harding, 2014). 326 

 327 

Whatever scale, level and timeframe are used, amphibians present some challenges for 328 

population assessment because many species are cryptic, with highly seasonal reproductive 329 

cycles. This means that any monitoring programme must account for issues associated with 330 

imperfect detection of populations or individuals (Schmidt, 2003). Fortunately, statistical 331 

models are now available that can account for such imperfect detection, and are 332 

recommended to be incorporated into the design of monitoring programmes at an early stage 333 

(Griffiths, Foster, Wilkinson, & Sewell, 2015). Monitoring may comprise direct observations 334 

of all stages of amphibians or the calls that they produce. Additionally, indirect observations 335 

may be informative. Environmental DNA (or eDNA) is proving to be an increasingly 336 

powerful tool for detecting species that are otherwise difficult to observe directly. Although 337 

extrapolating eDNA concentrations in the field to levels of abundance is currently difficult, 338 

metabarcoding approaches have the advantage of assessing a range of other taxa that may be 339 

relevant to conservation status (e.g., presence of disease, competitors or predators). eDNA 340 

methods are advancing rapidly and are likely to become a valuable part of the toolkit for 341 

assessing the status of cryptic species at large geographical scales (Harper et al., 2019). 342 
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 343 

Release methodology 344 

The incredible diversity of amphibian species means that a programme’s release 345 

methodology will likely be highly species-specific. Without previous experience with a 346 

species, a period of experimentation or adaptive management may occur during releases. It is 347 

important to continually re-assess translocation release methodologies, learn from prior 348 

mistakes, maintain flexibility, and not be afraid to apply creative solutions to solve difficult 349 

problems. There are a variety of release techniques that are worth testing, which have 350 

successfully been used for amphibians or other taxa groups (Tetzlaff, Sperry, & DeGregorio, 351 

2019). There are generally two types of releases: hard-releases are where the animals are 352 

simply released, and soft-releases are where animals are released at the release site with some 353 

type of support. For example, soft-released animals may receive supplemental feeding, 354 

become acclimated to the release site in predator-proof enclosures (known as a delayed-355 

release), or receive a combination of multiple supports (Parker, Dickens, Clarke, & 356 

Lovegrove, 2012). 357 

 358 

Integrating experimental research into a translocation’s release method can also be used to 359 

test explicit hypotheses (Kemp et al., 2015). For example, splitting release animals into 360 

separate treatments and releasing them under different conditions can provide direct 361 

comparisons of protocols if combined with post-release monitoring. Variations in release 362 

treatment location, season, life-stage, age, or tests of hard- and soft-release methods can be 363 

done. For example, in a study of Wyoming toads, a treatment of soft-released toads held in 364 

enclosures designed to acclimate animals to the release site reduced dispersal movements 365 

away from the release site compared to a treatment of hard-released toads. Soft-released 366 

animal’s behaviour was also more similar to wild-conspecifics (Linhoff & Donnelly, In 367 
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press). Experimental releases may help inform management decisions and answer 368 

foundational questions for any translocation. While some of these release methods have been 369 

trialled in amphibians, techniques to improve release success have been implemented in other 370 

taxonomic groups and may be useful for amphibians. Techniques such as delayed-releases 371 

(Linhoff & Donnelly, In press; Salehi, Akmali, & Sharifi, 2019), acoustic anchoring 372 

(Bradley, Ninnes, Valderrama, & Waas, 2011), supplemental feeding (Chauvenet et al., 373 

2012), release with familiar individuals (Goldenberg et al., 2019), and predator control at the 374 

release site (Calvete & Estrada, 2004) may all be useful for some amphibian species. 375 

 376 

Animal welfare 377 

Every effort should be made to reduce stress or suffering during conservation translocations 378 

and programmes should adhere to internationally accepted standards for animal welfare 379 

(IUCN/SSC, 2013), such as the OIE Terrestrial and Aquatic Animal Health Codes. However, 380 

Harrington et al., (2013) determined that despite efforts to reduce stress and suffering, 67% of 381 

reintroduction projects reported animal welfare concerns for a variety of taxa. To address 382 

these concerns, they developed a useful decision tree for all stages of release (Harrington et 383 

al., 2013). There are many aspects of translocations that can negatively affect animal welfare 384 

(e.g., improper capture and handling, lengthy travel to release sites, and exposure to disease). 385 

Animal welfare can also be compromised if a release site lacks suitable quality, quantity, or 386 

connectivity of habitat to meet the needs of all life stages (Germano & Bishop, 2009). 387 

 388 

Stress experienced during translocation or captivity can reduce the fitness of translocated 389 

individuals by interfering with reproduction and increasing disease susceptibility, predation 390 

risk, and likelihood of dispersing from the release site to unsuitable habitat (Dickens, 391 

Delehanty, & Romero, 2010; Griffin et al., 2000; Teixeira et al., 2007). Non-invasive 392 
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methods of detecting stress have been developed by quantifying levels of corticosterone from 393 

skin or buccal swabs, urine, or water-borne hormone monitoring methods (reviewed in 394 

Narayan, Forsburg, Davis, & Gabor, 2019). However, stressors may not be equal for captive 395 

and wild translocated animals. Soft-releases may be beneficial for captive bred animals but 396 

may actually increase stress for wild-caught animals by prolonging their captivity 397 

(IUCN/SSC, 2013). Furthermore, because many amphibian translocations include a captive 398 

breeding component, animal welfare should be an important consideration for these 399 

programmes. Recent advancements in husbandry techniques have the potential to improve the 400 

welfare of captive individuals (See Chapter 11). Additionally, a better understanding of the 401 

sensory ecology of the species as it pertains to animal welfare can help improve management 402 

strategies for reintroduction (Swaisgood, 2010). 403 

 404 

Discussion 405 

Challenges for reintroductions 406 

Translocations are not a risk-free management tool. It is often more cost-effective and 407 

biologically productive to protect a species in situ. In some circumstances, however, 408 

translocations have become a useful and/or necessary tool for the conservation management 409 

of amphibian species. There have been increases in success rates of herpetofaunal 410 

translocations in the past (Dodd & Seigel, 1991; Germano & Bishop, 2009), but success rates 411 

of roughly 40% leave significant room for the reintroduction community to strive for further 412 

improvements. One of the greatest challenges therefore is to ensure that translocations are 413 

done well and in a way that knowledge is gained and improvements, both species-specific 414 

and generally, can continue to be made and shared. 415 

 416 
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Perhaps one of the greatest threats to the use of translocations for amphibian conservation 417 

comes in the development space where they are being used as a tool to mitigate the impact of 418 

habitat destruction and human development. Thorough guidance on translocations has been 419 

provided by the IUCN (IUCN/SSC, 2013; Linhoff et al., 2021) but this guidance is rarely 420 

followed in these types of releases. Additionally, the initial threat to a species must be 421 

mitigated for a translocation to succeed and to have a net gain for conservation (e.g., 422 

destruction of habitat and translocation of animals to a small portion of remaining habitat 423 

equates to a net loss overall). For releases that cannot meet these standards, government 424 

agencies that regulate such releases, and the practitioners and managers who perform them, 425 

need to assess and use other tools that may deliver the desired conservation outcomes. The 426 

dilemma of reconciling the needs of burgeoning human populations with habitat destruction 427 

worldwide is one of the greatest threats facing amphibians. This is also an area where 428 

compensation and management dollars spent on translocations may not be delivering 429 

intended benefits to the species or mitigating damage to species and their habitat. 430 

 431 

In addition, another challenge on the translocation horizon is how the reintroduction biology 432 

community can use this tool in the face of climate change. Whilst translocations linked to 433 

assisted colonisation are rare there is little doubt that they can play a role in this work, but it 434 

comes with other complexities that will need to be dealt with (Butt et al., 2021; Chauvenet, 435 

Ewen, Armstrong, Blackburn, & Pettorelli, 2013). 436 

 437 

Recommendations 438 

Both the amphibian conservation and reintroduction biology communities need to continue to 439 

build the capacity for practitioners and managers to work successfully in the translocation 440 

space. This includes education around the complexities and planning for translocations as 441 
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outlined in some of the main detailed guideline documents (see Box 14.2). Government 442 

agencies and consultants also need to be educated about the success rates and dangers of 443 

using this tool for mitigation. 444 

 445 

To continue to improve techniques, the results and challenges of releases must be shared 446 

amongst the amphibian and translocation communities. While scientific publications may be 447 

the gold standard of analysis and communication, publications such as the Global Re-448 

introduction Perspective Series and databases of translocations are also key. Translocation 449 

databases are maintained by some government agencies and for some species (e.g., Lincoln 450 

Park Zoo maintains an avian translocation database), there is great potential for this to be 451 

developed on a wider scale as an accessible and evolving resource for practitioners 452 

worldwide. 453 

 454 

Conclusions 455 

Translocations are a tool that has grown in use throughout the world and across numerous 456 

taxonomic groups. Amphibian translocations have been a part of this growth. With a 457 

concerted effort for practitioners and managers to follow best practice guidelines provided by 458 

organizations such as the IUCN and others and the continued research into improving 459 

methodology, it is hoped that the success rates of these releases will continue to improve. 460 
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Box 14.3: Useful guidelines and reference documents for amphibian reintroductions 

1. IUCN Amphibian reintroduction guidelines (https://www.iucn-amphibians.org/wp-

content/uploads/2021/05/Ampb-Guidelines_170521_Final.pdf) 

2. IUCN Guidelines for reintroductions and other conservation translocations 

(https://www.iucn.org/content/guidelines-reintroductions-and-other-conservation-

translocations)  

3. Department for Environment Food & Rural Affairs, 2021. Reintroductions and other 

conservation translocations: code and guidance for England 

https://www.gov.uk/government/publications/reintroductions-and-conservation-

translocations-in-england-code-guidance-and-forms 

4. Guidelines for conservation-related translocations of New Zealand lizards 

https://www.doc.govt.nz/globalassets/documents/getting-

involved/translocation/translocation-best-practice-lizards-1.pdf 

5. Great crested newt mitigation guidelines 

http://mokrady.wbs.cz/literatura_ke_stazeni/great_crested_newt_mitigation_guidelines.

pdf -  

6. Best management practices for amphibian and reptile salvages in British Columbia 

http://a100.gov.bc.ca/pub/eirs/finishDownloadDocument.do?subdocumentId=10351 

7. Guidelines for mitigation translocations of amphibians: Applications for Canada's 

prairie provinces 
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