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Abstract

(max 350 words)

1. Functional diversity is widely used and widespread. However, the main packages used to compute5

functional diversity indices are not flexible and not adapted to the volume of data used in modern
ecological analyses.

2. We here present fundiversity, an R package that eases the computation of classical functional
diversity indices. It leverages parallelization and memoization (caching results in memory) to maximize
efficiency with data with thousands of columns and rows.10

3. We also did a performance comparison with packages that provide analog functions. In addition to
being more flexible, fundiversity was always an order of magnitude quicker than alternatives.

4. fundiversity aims to be a lightweight efficient tool to compute functional diversity indices, that can
be used in a variety of contexts. Because it has been designed following clear principles, it is easy to
extend. We hope the wider community will adopt it and we welcome all contributions.15
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Title

fundiversity: a modular R package to compute functional diversity indices

Introduction

Functional diversity, the diversity of traits across scales, is a major facet of biodiversity (Pavoine &
Bonsall, 2011). It has been widely used across ecological contexts (Cadotte et al., 2011) and has been5

shown to relate to ecosystem functioning (Díaz & Cabido, 2001; Leps et al., 2006). Many indices exist to
characterize it across its three dimensions: richness (how much?), evenness (how regular?), and divergence
(how different?) (Pavoine & Bonsall, 2011). Ecologists rely on computational tools to compute these indices
in a reproducible fashion, mainly in the R programming language (Lai et al., 2019; R Core Team, 2021).
The FD package is the main tool available for functional diversity indices, having accumulated now over10

than 1200 citations (Laliberté et al., 2014). But FD was released in 2009 receiving only minor updates that
stopped in 2015. During this time, software development practices have changed dramatically and new,
higher-performance, tools have emerged in the R ecosystem. Additionally, since 2009, the size of ecological
datasets has grown exponentially (Farley et al., 2018; Wüest et al., 2020) and high-performance computing
(HPC) environments have become standard. There is therefore a dire need for a modern alternative using15

state-of-the-art software development techniques and tools.
The main function of the FD package dbFD() lets users compute a dozen functional diversity indices in

a single call from raw trait data (Laliberté et al., 2014). While great for exploratory analyses, this can
increase computation time when only a single index is needed. Furthermore, it does not enforce the good
practice of choosing beforehand the appropriate functional diversity index for the question(s) asked (Legras20

et al., 2018; Mason et al., 2013; Schleuter et al., 2010). It encourages the user to fish for the functional
diversity index matching predicted relationships (a form of p-hacking). This can lead users to report all
computed functional diversity indices even when there are no clear expectations about different functional
diversity facets or to report correlated indices (Legras et al., 2018; Mason et al., 2013; McPherson et al.,
2018; Schleuter et al., 2010). Computing all indices in a single function also makes long-term maintenance25

and addition of new indices harder.
The average size of datasets analyzed in ecology increased several fold in the last years (Wüest et al.,

2020), calling for an increase in performance of computational tools. This increase is particularly urgent
considering that many diversity analyses use null models that increase the data size by two or three orders
of magnitude (Gotelli & Graves, 1996). First, any improvement of the algorithmic efficiency to compute30

functional diversity indices could save substantial amounts of time as it is repeated many times. For example,
we noted that many R packages that compute functional diversity indices do not leverage the specifically
optimized matrix algebra packages included in R. Their use can cut the number of operations dramatically
compared to using a loop directly in R. Second, functional diversity indices are generally computed over
many mathematically independent sites. With the rise of multicore computers, parallelization, i.e. splitting35

independent computations between different Computing Processor Units (CPUs), is becoming the norm.
Very few functional diversity R packages natively implement parallelization, leaving the burden of doing so
to the user. There have been tremendous new developments in this area in R over the last few years with
the release of the future framework (Bengtsson, 2020) that allows to seamlessly parallelize computations
on multiple cores on a single machine, across several machines, or even on a remote cluster without changing40

execution code. Third, computations on the same input can be cached through a process called memoization
(Wickham et al., 2021). This avoids wasting computing power on previously seen inputs. For example,
many functional diversity indices rely on the computation of convex hulls across a multi-dimensional space
(Cornwell et al., 2006; Villéger et al., 2008). Caching the results of this costly computation could save time
and computing power when measuring the diversity across similar sets, such as sites across a given region.45

Increasing discussions are held regarding scientific software robustness and reliability in ecology (Mislan
et al., 2016; Poisot, 2015; White, 2015; Wilson et al., 2017). Mainly because most ecologists are self-trained
in programming (Farrell & Carey, 2018), these virtuous practices are rarely applied in ecology (Barraquand
et al., 2014). For example, unit tests use predefined inputs to compare outputs to expectations (Poisot,
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2015). Unit tests have also become standard in R packages since the release of packages streamlining this50

process, such as testthat and tinytest (der Loo, 2020; Wickham, 2011). Very few R functional diversity
packages provide unit tests to assess that the functions behave expectedly. Automatic tests of one’s code
are crucial when developing a tool for a wider audience, as it may be used across different contexts.

Here, we propose a modern alternative to FD called fundiversity that benefits from modern development
practices, necessary features for large-sized datasets (modularity, parallelization, and memoization), and55

greater flexibility. The package can be easily extended to accommodate additional diversity indices not
covered by following a clear design pattern detailed in the next section. We go through a use case to show
how it can be used. We then compare the performance of fundiversity against similar packages.

Main features of fundiversity

To ensure the consistency of its functions and to make it user-friendly, fundiversity follows clear design60

principles. In this section, we expose its distinctive features and principles.
To give maximum flexibility to the users, we tried to build fundiversity to be as modular as possible.

Each function in fundiversity computes a single functional diversity index, so that it only returns a
single index and nothing more. All functions in fundiversity are prefixed with fd_ to avoid conflict with
similarly named functions in other packages, as it is becoming standard practice in R packages (rOpenSci et65

al., 2021). In line with its modularity, we focused on making the inputs and outputs of functions coherent.
The functions use two main inputs: a species by traits matrix and a site by species matrix; all functions
accept them as first arguments. Across functions, the outputs are always structured similarly: one site
column that contains the name of its sites and one column named as the computed index (such as FRic
when computing functional richness). The shape of the output is predictable and easily combined with other70

data.
We designed fundiversity so it minimally modifies the input data before computing the indices (see

Figure 1). When computing functional diversity indices, upstream choices regarding trait standardization
and trait space construction are fully part of the scientific question (de Bello et al., 2013; Leps et al., 2006;
Maire et al., 2015; Mammola et al., 2021). Several packages provide default options that automatically75

build multivariate spaces or dendrograms, and choose relevant axes of variation. While useful for naive
users, these abstract away part of the scientific process that should be considered when using functional
diversity indices. These choices have been shown to have strong consequences on the values of downstream
indices (de Bello et al., 2013; Leps et al., 2006; Maire et al., 2015; Mammola et al., 2021). fundiversity
chooses to enforce better practices by leaving trait space choices to the user.80

Parallelization can vastly decrease computation speed by leveraging the architecture of modern comput-
ers. Most functions in fundiversity can be parallelized out of the box. fundiversity provides paralleliza-
tion through the future backend (Bengtsson, 2020). Parallelization is toggled through a single function
call using future::plan() before using fundiversity functions. Thanks to the flexibility given by the
future backend, the code to use will not change whether parallelizing across several cores on a single85

computer, across multiple computers, or on a remote high-performance cluster. The user only needs to
update the call to future::plan(). Furthermore, the future backend provides load balancing so that
no cores/units stay idle for too long and the parallelized tasks are split evenly. The package contains a
dedicated vignette to guide the users through transforming unparallelized to parallelized code (accessible
through vignette("fundiversity_1-parallel", package = "fundiversity")).90

The computation of functional diversity indices often involves null models, which require repeated op-
erations across the same data subsets. This results in computing the same indices over the exact same
assemblages over and over. Memoization can leverage the already computed indices and avoid double work.
For example, to compute functional richness (FRic) the convex hull of the input data has to first be identi-
fied, and then the volume of this convex hull is computed. The first step, identifying the convex hull, takes95

the most time and as such, storing the results of each computed convex hull can vastly cut computation time
for a little memory footprint. If the set of input points is encountered a second time, the results will be taken
from memory instead of being recomputed. Memoization trades a little bit of computer memory (keeping
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the convex hulls stored) for more computation speed. For now, fundiversity leverages memoization only
for computing convex hulls (as used when computing FDiv, FRic, and FRic_intersect). It is activated by100

default. This behavior can be overridden by changing the fundiversity.memoise option before loading the
package.

Packages depend on one another to avoid reinventing the wheel and thus reuse already developed func-
tions. A higher number of dependencies means that a package requires more packages to be installed before
its own installation. While having many dependencies minimizes code replication, it also comes with a105

high price, because if a single dependency breaks then the whole package cannot be installed anymore (Cox,
2019). Inflated dependencies have been identified as a major risk in software and especially scientific software
development (Claes et al., 2014; Cox, 2019). FD has only four dependencies but other functional diversity
packages have many more dependencies (up to 100 dependencies for hypervolume, see Table S3). This
renders them quite brittle for the users after years of not being actively developed. fundiversity has been110

designed to only have minimal external dependencies, it currently depends directly on four, carefully chosen,
external packages (details on the criteria of choice in vignette("fundiversity_4-design-principles",
package = "fundiversity")): future.apply which itself depends on two other packages, Matrix which
is shipped with R, and geometry & vegan on which FD also depends. Considering direct and indirect de-
pendencies, fundiversity depends on a total of 21 packages while similar packages depend on 65 packages115

on average (Table S3).
Because user flexibility is key, fundiversity has minimal assumptions on the input data structure.

All its functions work with data frames, matrices, or sparse matrices alike. Sparse matrices are a different
formalization of matrices that do not store explicitly the cells that contain zero. They offer a reduced memory
footprint and optimized algebra library for computation (Bates & Maechler, 2021). These matrices are thus120

specifically relevant for occurrence/abundance matrices that contain many zeros. If the used data have a
high proportion of zeros, using sparse matrices can vastly decrease computational time in fundiversity.

As we underlined in the introduction, automatic software testing, while not 100% flawless, is needed to
increase the confidence in the behavior of functions. It is widespread in professional software engineering
but much less in scientific software development (Kanewala & Bieman, 2014). This means that software125

behavior is seldom validated against known inputs to make sure that it behaves in expected ways. This
fact does not mean that the software is of poor quality but rather that some simple errors could introduce
unnoticed changes in the behavior of functions. Most packages that compute functional diversity indices do
not include any form of automatic testing (only 3 out of 11 do it following our assessment). We do want to
point out that the lack of tests results from the lack of formal training in software development for ecologists130

(Farrell & Carey, 2018). We designed fundiversity with many unit tests from the beginning, executing at
least every single line of code once (i.e. achieving code coverage of 100%).

fundiversity mostly computes alpha functional diversity indices, because other recent packages exist
to compute other types of functional diversity indices (Hill numbers, Li, 2018; beta-diversity indices, Baselga
& Orme, 2012). We focused on indices available through the dbFD() function in the FD package and on135

indices that could benefit from faster implementations. The included indices cover the three dimensions
of functional diversity: richness (how much total diversity within the set?), evenness (how regularly are
species situated along the trait space?), and divergence (how different are species compared to an average
position?) (Pavoine & Bonsall, 2011). fundiversity contains the following alpha functional diversity
indices: functional richness (FRic), functional dispersion (FDis), functional divergence (FDiv), functional140

evenness (FEve), and Rao’s quadratic entropy (Q). We included Q as we identified the potential for important
performance improvements relative to existing packages. fundiversity also contains a beta-diversity index
(named FRic_intersect) as it can be useful to compare the overlap between convex hulls between sites.
Thanks to its design, fundiversity can be easily extended to include more indices, we include below the
list of available indices in the current version of fundiversity.145
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Table 1: List of functions available in fundiversity to compute
functional diversity indices. The two last columns specify which
functions are parallelizable and memoizable.

Function Name Index Name Source Parallelizable Memoizable
fd_fdis() Functional Dispersion

(FDis)
Laliberté & Legendre
(2010)

Yes No

fd_fdiv() Functional Divergence
(FDiv)

Villéger et al. (2008) Yes Yes

fd_feve() Functional Evenness
(FEve)

Villéger et al. (2008) Yes No

fd_fric() Functional Richness
(FRic)

Villéger et al. (2008) Yes Yes

fd_fric_intersect()Functional β-diversity Villéger et al. (2013) Yes Yes
fd_raoq() Rao’s Quadratic Entropy

(Q)
Rao (1982) No No

We made sure the indices were numerically exact by using the test dataset available in Villéger et al.
(2008). The functions in fundiversity gave identical results to the one found in Figure 2 of Villéger
et al. (2008). We summarize our comparisons in the numerical correctness vignette accessible through
vignette("fundiversity_3-correctness", package = "fundiversity"). We furthermore compared
the obtained results with functions in other packages and made sure to obtain similar values.150

Case Study

In this section, we show how to use fundiversity in practice. As an example dataset, we included
in fundiversity site-species and trait data from Nowak et al. (2019). It is accessible through calls
to site_sp_birds and traits_birds when fundiversity is loaded with library() or the use of the
data("site_sp_birds", package = "fundiversity") and data("traits_birds", package = "fundiversity")155

functions when fundiversity is not loaded. This dataset describes the presence/absence of bird species in
South America at different elevations and four of their morphological traits.

[Figure 1 about here.]

The trait values show species in rows (species are specified as row names) and traits in columns with
trait names as column names (Figure 1). Similarly, the site-species matrix contains sites as rows (site names160

are row names) and species as columns (species names are column names).

data("traits_birds", package = "fundiversity")
data("site_sp_birds", package = "fundiversity")

head(traits_birds)

## Bill.width..mm. Bill.length..mm. Kipp.s.index Bodymass..g.
## Aburria_aburri 18.35 35.48 0.18 1407.5
## Amazona_farinosa 26.50 38.81 0.29 626.0
## Amazona_mercenaria 17.51 26.30 0.33 340.0165

## Amazona_ochrocephala 20.17 31.40 0.26 440.0
## Ampelioides_tschudii 16.53 24.58 0.24 78.4
## Ampelion_rufaxilla 16.97 21.89 0.28 73.9
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head(site_sp_birds)[, 1:3]

## Aburria_aburri Amazona_farinosa Amazona_mercenaria
## elev_250 0 1 0170

## elev_500 0 1 0
## elev_1000 1 1 1
## elev_1500 1 0 1
## elev_2000 0 0 1
## elev_2500 0 0 1175

Now that we have obtained trait and occurrence data we need to compute the trait dissimilarity between
each pair of species. As all traits are quantitative, we first scale them to zero mean and standard deviation
of one (z-score), then we compute the Euclidean distance between pairs of species.

z_traits = scale(traits_birds, center = TRUE, scale = TRUE)

trait_distance = as.matrix(dist(z_traits))

We want to emphasize here that fundiversity does not assume anything in the upstream of the com-
putation of functional diversity indices. Trait standardization and computation of a trait dissimilarity are180

left to the user’s discretion. They are provided here as a full workflow example. The specific functions
used in the previous chunk can vary depending on the scientific question, the nature of the traits, or the
transformation needed. fundiversity does not provide any functions to deal with these upstream choices
as it is the user’s responsibility to carefully examine them.

Then, we compute the functional richness at each location using the fd_fric() function. It expects185

quantitative trait values as the first argument and a site-species matrix as the second argument.

library("fundiversity")

birds_fric = fd_fric(z_traits, site_sp_birds)

head(birds_fric)

## site FRic
## 1 elev_250 66.048816
## 2 elev_500 71.465678
## 3 elev_1000 43.354008190

## 4 elev_1500 25.466685
## 5 elev_2000 7.725843
## 6 elev_2500 7.046431

If the site-species matrix is not provided, fundiversity considers that all species present in the trait
matrix are all present in a single site:195

fd_fric(z_traits)

## site FRic
## 1 s1 88.9286

All other functions in fundiversity use a similar structure: the first input is trait data, the second one
is a site-species matrix (Figure 1). For Rao’s quadratic entropy, computed through fd_raoq(), functional
dissimilarities can be specified as the third argument:200
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# With functional dissimilarity
birds_raoq = fd_raoq(traits = NULL, site_sp_birds, dist_matrix = trait_distance)

# With trait values
birds_raoq_2 = fd_raoq(z_traits, site_sp_birds)

# Both options give the same results
identical(birds_raoq, birds_raoq_2)

## [1] TRUE

If not all traits are quantitative, it is possible to transform them back into independent quantitative
‘traits’ through the use of Gower’s distance (Gower, 1971; and its extensions: Podani, 1999; and Pavoine
et al., 2009) then applying multivariate analysis to obtain orthogonal dimensions (Maire et al., 2015). But
there are many other ways to convert qualitative traits and as such, this is out of the scope of fundiversity.205

We leave it to the user to decide how to proceed to obtain independent quantitative traits.

Using parallel computation
As specified above, fundiversity allows for parallel computation of functional diversity metrics through

the future framework. We here demonstrate how to use it in practice with the case study. A more detailed
explanation is provided in the “Parallelization” vignette of fundiversity (available through vignette("fundiversity_1-parallel",210

package = "fundiversity")).
We first have to check if the function in fundiversity is parallelizable: all functions except fd_raoq()

are. Then we define the parallel setting using the future::plan() function. This allows users to de-
fine how the parallel computation should be split: across cores, across computers, across jobs of a High-
Performing Cluster, etc. Here, we split the computation locally across the 4 cores of the computer using the215

future::multisession() function. We specify the number of cores to use with the workers argument in
the call to the future::plan() function.

# First: Setup a parallel plan
future::plan(future::multisession, workers = 4)

# Second: Perform the computation
bird_fric = fd_fric(traits_birds, site_sp_birds)

head(bird_fric)

## site FRic
## 1 elev_250 171543.73
## 2 elev_500 185612.55220

## 3 elev_1000 112600.18
## 4 elev_1500 66142.75
## 5 elev_2000 20065.76
## 6 elev_2500 18301.18

To use a different backend, you can invoke a different argument in the future::plan() function.225

All possible arguments are detailed in the overview vignette of the future package (accessible through
vignette("future-1-overview", package = "future") once future has been installed).

The parallel computations are split across sites, so parallelization can drastically improve performance
when having a large number of sites. However, given the efficiency of fundiversity functions, and the
overhead costs of parallel computation, we recommend parallelizing only with matrices of at least 10.000230

sites, or when hitting a performance limit of the default sequential execution.
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Also, parallelization should never be used in conjunction with memoization because of the risk of cache
corruption if several cores access the memoized cache simultaneously (make sure to use options(fundiversity.memoise
= FALSE) before loading fundiversity when using parallel computations).

Performance Comparison235

To test the performance improvements realized by fundiversity, we compared computation time on
standardized datasets across similar functions in other packages. We only compared packages that provide
original functions, not wrappers that depend on other packages to compute functional diversity indices. Six
packages computed similar indices to fundiversity. Most indices are also computed by the FD::dbFD()
function, but the comparison would be unfair as it computes many indices in a single call, while functions240

in fundiversity only compute single indices. We considered functions from: adiv (Pavoine, 2020), BAT
(Cardoso et al., 2015), betapart (Baselga & Orme, 2012), hillR (Li, 2018), mFD (Magneville et al., 2022),
and FD (Laliberté et al., 2014) (see Table 2 for the correspondence between packages). A continuously up-
dated version of this section can be found in the performance comparison vignette within the fundiversity
package with vignette("fundiversity_2-performance", package = "fundiversity").245

Index Name fundiversity Functions Equivalent Functions
Functional Dispersion (FDis) fd_fdis() FD::fdisp()

mFD::alpha.fd.multidim(...,
ind_vect = "fdis")

Functional Divergence (FDiv) fd_fdiv() mFD::alpha.fd.multidim(...,
ind_vect = "fdiv")

Functional Evenness (FEve) fd_feve() mFD::alpha.fd.multidim(...,
ind_vect = "feve")

Functional Richness (FRic) fd_fric() BAT::alpha() (tree)
BAT::hull.alpha() (hull)
mFD::alpha.fd.multidim(...,
ind_vect = "fric")

Rao’s Quadratic Entropy (Q) fd_raoq() adiv::QE()
BAT::rao()
hillR::hill_func()
mFD::alpha.fd.hill(..., q =
2, tau = "max")

Functional β-diversity fd_fric_intersect() betapart::functional.beta.pair()
hillR::hill_func_parti_pairwise()

Table: List of fundiversity functions with corresponding functions in other packages. The name of the
package is indicated before the :: while the name of the functions (including specified arguments) follows.

For testing purposes, we used datasets of increasing size with the number of species being 200, 500, or
1000; the number of traits 2, 4, or 10; and the number of sites 50, 100, or 500. For each set of parameters,
we generated a fictional site-species matrix and species-trait matrix containing only continuous traits. We250

used these simulated data to perform benchmarks across comparable functions (Table d). The benchmark
was run 30 times through the bench package (Hester & Vaughan, 2021). A summary of the results of the
benchmark can be seen in Fig. 2. The full results detailing the timings for each combination of parameters
and functions are available in the Supplementary Material (Fig. S4).

[Figure 2 about here.]255

For all the indices and functions tested, fundiversity is at least one order of magnitude faster than
alternative packages. For functional dispersion (FDis), fundiversity is two orders of magnitude faster
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compared to BAT and mFD. For functional divergence (FDiv), fundiversity is one order of magnitude
faster than mFD. For functional evenness (FEve), fundiversity is two orders of magnitude faster than mFD
with sequential and parallelized versions having similar performances. For Rao’s quadratic entropy (Q),260

fundiversity is one order of magnitude faster than hillR and mFD, two orders faster than adiv, and
three orders of magnitude faster than BAT. For functional richness (FRic), fundiversity is half an order of
magnitude faster than the hull version of BAT, as well as one and a half orders of magnitude faster than its
tree version and mFD. For functional richness intersection (beta functional diversity), fundiversity is two
orders of magnitude faster than betapart and hillR.265

[Figure 3 about here.]

As shown in Fig. 2, the parallelized versions of fundiversity functions executed on average one order of
magnitude faster than the sequential versions. For functional richness we even observed a difference of two
orders of magnitude. However, for functional dispersion, parallelization increased the overall computation
time. This may be due to inherent parallelization issues: there is an overhead cost when splitting tasks270

across multiple cores of a computer. The efficiency of parallelization depends on the difficulty of the tasks
that are split between cores. In the case of functional richness, the main task is computing the convex hull,
which is computationally costly, which is why parallelization increases performance in this case. However,
computing functional dispersion is simpler, and as such, does not benefit from being split across different
cores. Different values for the number of cores, species, traits, or sites produce qualitatively the same results275

(full results in Fig. S5).
One important note regarding parallelization in fundiversity is that it is important to avoid doing both

memoization and parallelization simultaneously. Memoization creates a cache to avoid recomputing results
and the cache may be corrupted if several cores access the same results at the same time. We noticed that
toggling memoization while performing parallelization severely increases total computational time compared280

to sequential performance.
Note that these benchmarks only assess the packages’ computation speed and in no way any package’s

intrinsic quality or usefulness. We are comparing fundiversity, a package whose main goal is performance,
with other packages that may have other primary goals and offer other benefits. For example, several
packages offer nice default visualization functions to plot the different diversity indices, while we explicitly285

considered that visualization functions were not part of fundiversity and let the users decide how they
want to plot their indices.

Conclusion

We proposed a modern alternative R package to compute functional diversity indices. This package fol-
lows current best development practices and leverages modern features like parallelization and memoization290

to increase its performance. This is only made possible by recent developments that were, for the most part,
not available at the time when alternative packages came out. fundiversity does not propose to replace
the entire toolkit for the researcher interested in functional diversity (including the upstream selection of the
traits and the building of a functional space), but instead focuses on improving the most computationally
costing step: computing functional diversity indices. We hope it will be a useful contribution to this toolkit.295

To ensure its long-term maintainability, we made the package available on GitHub, it is perennially archived
on Zenodo, sits in an independent GitHub organization, and is written following clear design principles. This
package aims to always be a work in progress, as such we welcome contributions from interested users and
developers.

Data Availability300

fundiversity is available on CRAN through install.packages("fundiversity") as well as on GitHub
at https://github.com/funecology/fundiversity, for archival all releases are available on Zenodo at
https://doi.org/10.5281/zenodo.4761754. The data used in this article are available from the package,
through data(package = "fundiversity") call.
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Supplementary Information305

[Figure 4 about here.]

[Figure 5 about here.]

Table 3: Table S1. Number of dependencies for functional diversity
packages

Package Name Number of Hard Dependencies Number of Total Dependencies
vegan 7 19
FD 18 18
fundiversity 21 68
betapart 24 24
TPD 41 75
hillR 54 92
entropart 76 118
adiv 85 85
hypervolume 100 137
BAT 107 107
hilldiv 126 126
mFD 128 136
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Figure 1: Conceptual diagram showing the input and typical ouput data from ‘fundiversity‘ functions. Input data are generally
a site-species table and a species-traits table, and the output gives back a table of functional diversity index per site.
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Figure 2: Timing comparison across functional diversity indices between packages. Each point represents the execution time of
one run using a simulated dataset, the points are transparent and jittered to avoid overplotting. We here show the performance
results considering only a single set of parameters with 4 traits, 500 species, and 100 sites, repeated 30 times.

15



Figure 3: Timing comparison between parallel and sequential version of fundiversity functions across functional diversity indices.
Each point represents the execution time of one run using simulated datasets with fixed properties (4 traits, 100 sites, 500
species), the points are transparent and jittered to avoid overplotting. The parallel version ran across 6 cores.
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Figure 4: Performance comparison across functions of different packages over a range of parameters (number of traits, species,
and sites). Note that each combination of parameters ran 30 iterations. The lines show trends of execution time in function of
number of sites of the input dataset.
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Figure 5: Performance comparison across internal functions over a range of parameters (number of traits, species, and sites)
and different parallelization parameters. Note that each combination of parameters ran 20 iterations. The lines show trends of
execution time in function of number of sites of the input dataset.
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