
fundiversity: a modular R package to compute functional diversity indices

Matthias Greniéa,b,c,1, Hugo Grusonc,d,2

aGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Puschstraße 4 04103 Leipzig Germany
bLeipzig University Ritterstraße 26 04109 Leipzig Germany

cCEFE Université de Montpellier CNRS EPHE IRD Université Paul Valéry Montpellier 3 Montpellier France
dCentre for Mathematical Modelling of Infectious Diseases London School of Hygiene \& Tropical Medicine London UK

Abstract

(max 350 words)

1. Functional diversity is widely used and widespread. However, the main package used to compute5

functional diversity indices FD is not flexible and not adapted to the volume of data used in modern
ecological analyses.

2. We here present fundiversity, an R package that eases the computation of classical functional
diversity indices. It leverages parallelization and memoization (caching results in memory) to maximize
efficiency with data with thousands of columns and rows.10

3. We also did a performance comparison with packages that provide analog functions. In addition to
being more flexible, fundiversity was always an order of magnitude quicker than alternatives.

4. fundiversity aims to be a lightweight efficient tool to compute functional diversity indices, that can
be used in a variety of contexts. Because it has been designed following clear principles, it is easy to
extend. We hope the wider community will adopt it and we welcome all contributions.15

Keywords: biodiversity, diversity facet, R package, functional biogeography, functional ecology,
community ecology

Running title (max 45 char.): fundiversity: functional diversity in R
Word count (3000-4000 incl. refs & captions): 4224

Acknowledgements20

Both authors thank Shan Kothari, and two anonymous reviewers for their comments that helped improve
the manuscript. MG gratefully acknowledges the support of iDiv funded by the German Research Foundation
(DFG–FZT 118, 202548816).

Authors’ Contributions

Our authors’ statement follows the Contributor Roles Taxonomy (CRediT, https://casrai.org/credit/).25

Matthias Grenié: Conceptualization, Methodology, Software, Resources, Writing - Original Draft, Writ-
ing - Review & Editing, Supervision. Hugo Gruson: Conceptualization, Methodology, Software, Writing
- Review & Editing.

∗Corresponding author
Email addresses: matthias.grenie@idiv.de (Matthias Grenié), hugo.gruson@normalesup.org (Hugo Gruson)

1Corresponding Author
2ORCID-ID <0000-0002-4659-7522>; ORCID-ID <0000-0002-4094-1476>

Preprint submitted to Ecography November 25, 2022

https://casrai.org/credit/

Title

fundiversity: a modular R package to compute functional diversity indices

Introduction

Functional diversity, the diversity of traits across scales, is a major facet of biodiversity (Pavoine &
Bonsall, 2011). It has been widely used across ecological contexts (Cadotte et al., 2011) and has been5

shown to relate to ecosystem functioning (Díaz & Cabido, 2001; Leps et al., 2006). Many indices exist to
characterize it across its three dimensions: richness (how much?), evenness (how regular?), and divergence
(how different?) (Pavoine & Bonsall, 2011). Ecologists rely on computational tools to compute these indices
in a reproducible fashion, mainly in the R programming language (Lai et al., 2019; R Core Team, 2021).
The FD package is the main tool available for functional diversity indices, accumulating now over than10

1200 citations (Laliberté et al., 2014). But FD has been released in 2009 receiving only minor updates that
stopped in 2015. During this time, software development practices have changed dramatically and new,
higher-performance, tools have emerged in the R ecosystem. Additionally, since 2009, the size of ecological
datasets has grown exponentially (Farley et al., 2018; Wüest et al., 2020) and high-performance computing
(HPC) environments have become standard. There is therefore a dire need for a modern alternative using15

state-of-the-art software development techniques and tools.
The main function of the FD package dbFD() lets users compute a dozen functional diversity indices in

a single call from raw trait data (Laliberté et al., 2014). While great for exploratory analyses, this can
increase computation time when only a single index is needed. Furthermore, it does not enforce the good
practice of choosing beforehand the appropriate functional diversity index for the question(s) asked (Legras20

et al., 2018; Mason et al., 2013; Schleuter et al., 2010). It encourages the user to fish the functional diversity
index matching predicted relationships (a form of p-hacking). This can lead users to report all computed
functional diversity indices even when there are no clear expectations on different functional diversity facets
or to report correlated indices (Legras et al., 2018; Mason et al., 2013; McPherson et al., 2018; Schleuter
et al., 2010). Computing all indices in a single function also makes long-term maintenance and addition of25

new indices harder.
The average size of datasets analyzed in ecology increased several folds in the last years (Wüest et al.,

2020), calling for an increase in performance of computational tools. Especially considering that many di-
versity analyses use null models that increase the data size by two or three orders of magnitude (Gotelli &
Graves, 1996). First, any improvement of the algorithmic efficiency to compute functional diversity indices30

could save substantial amounts of time as it is repeated many times. For example, we noted that many R
packages that compute functional diversity indices do not leverage the specifically optimized matrix alge-
bra packages included in R. Their use can cut the number of operations dramatically compared to using a
loop directly in R. Second, functional diversity indices are generally computed over many mathematically
independent sites. With the rise of multicore computers, parallelization, i.e. splitting independent compu-35

tations between different Computing Processor Units (CPUs), is becoming the norm. Very few functional
diversity R packages natively implement parallelization, leaving the burden of doing so to the user. There
have been tremendous new developments in this area in R over the last few years with the release of the
future framework (Bengtsson, 2020) that allows to seamlessly parallelize computations on multiple cores
on a single machine, across several machines, or even on a remote cluster without changing execution code.40

Third, computations on the same input can be cached through a process called memoization (Wickham et
al., 2021). This avoids wasting computing power on previously seen inputs. For example, many functional
diversity indices rely on the computation of convex hulls across a multi-dimensional space (Cornwell et al.,
2006; Villéger et al., 2008). Caching the results of this costly computation could save time and computing
power when measuring the diversity across similar sets, such as sites across a given region.45

Increasing discussions are held regarding scientific software robustness and reliability in ecology (Mislan
et al., 2016; Poisot, 2015; White, 2015; Wilson et al., 2017). Mainly because most ecologists are self-trained
in programming (Farrell & Carey, 2018), these virtuous practices are rarely applied in ecology (Barraquand
et al., 2014). For example, unit tests use predefined inputs to compare outputs to expectations (Poisot,

2

2015). Unit tests have also become standard in R packages since the release of packages streamlining this50

process, such as testthat and tinytest (der Loo, 2020; Wickham, 2011). Very few R functional diversity
packages provide unit tests to assess that the functions behave expectedly. Automatic tests of one’s code
are crucial when developing a tool for a wider audience, as it may be used across different contexts.

Here, we propose a modern alternative to FD called fundiversity that benefits from modern development
practices, necessary features for large-sized datasets (modularity, parallelization, and memoization), and55

greater flexibility. The package can be easily extended to accommodate additional diversity indices not
covered by following a clear design pattern detailed in the next section. We go through a use case to show
how it can be used. We then compare the performance of fundiversity against similar packages.

Main features of fundiversity

To ensure the consistency of its functions and to make it user-friendly, fundiversity follows clear design60

principles. In this section, we expose its distinctive features and principles.
To give maximum flexibility to the users, we tried to build fundiversity as modular as possible. Each

function in fundiversity computes a single functional diversity index, so that it only returns a single index
and nothing more. All functions in fundiversity are prefixed with fd_ to avoid conflict with similarly
named functions in other packages, as it is becoming standard practice in R packages (rOpenSci et al.,65

2021). In line with its modularity, we focused on making the inputs and outputs of functions coherent.
The functions use two main inputs: a species by traits matrix and a site by species matrix, all functions
accept them as first arguments. Across functions, the outputs are always structured similarly: one site
column that contains the name of its sites and one column named as the computed index (such as FRic
when computing functional richness). The shape of the output is predictable and easily combined with other70

data.
We designed fundiversity so it modifies minimally the input data before computing the indices (see

Figure 1). When computing functional diversity indices, upstream choices regarding trait standardization
and trait space construction are fully part of the scientific question (de Bello et al., 2013; Leps et al., 2006;
Maire et al., 2015; Mammola et al., 2021). Several packages provide default options that automatically75

build multivariate spaces, dendrograms, and choose relevant axes of variation. While useful for naive users,
these abstract away part of the scientific process that should be considered when using functional diversity
indices. These choices have been shown to have strong consequences on the values of downstream indices
(de Bello et al., 2013; Leps et al., 2006; Maire et al., 2015; Mammola et al., 2021). fundiversity chooses
to enforce better practices by leaving trait space choices to the user.80

Parallelization can vastly decrease computation speed by leveraging the architecture of modern comput-
ers. Most functions in fundiversity can be parallelized out of the box. fundiversity provides paralleliza-
tion through the future backend (Bengtsson, 2020). Parallelization is toggled through a single function
call using future::plan() before using fundiversity functions. Thanks to the flexibility given by the
future backend, the code to use will not change whether parallelizing across several cores on a single85

computer, across multiple computers, or on a remote high-performance cluster. The user only needs to
update the call to future::plan(). Furthermore, the future backend provides load balancing so that
no cores/units stay idle for too long and the parallelized tasks are split evenly. The package contains a
dedicated vignette to guide the users through transforming unparallelized to parallelized code (accessible
through vignette("fundiversity_1-parallel", package = "fundiversity")).90

The computation of functional diversity indices often involves null models, which require repeated op-
erations across the same data subsets. This results in computing the same indices over the exact same
assemblages over and over. Memoization can leverage the already computed indices and avoid double work.
For example, to compute functional richness (FRic) the convex hull of the input data has first to be identi-
fied, and then the volume of this convex hull is computed. The first step, identifying the convex hull, takes95

the most time and as such, storing the results of each computed convex hull can vastly cut computation time
for a little memory footprint. If the set of input points is encountered a second time, the results will be taken
from memory instead of being recomputed. Memoization trades a little bit of computer memory (keeping

3

the convex hulls stored) for more computation speed. For now, fundiversity leverages memoization only
for computing convex hulls (as used when computing FDiv, FRic, and FRic_intersect). It is activated by100

default. This behavior can be overridden by changing the fundiversity.memoise option before loading the
package.

Packages depend on one another to avoid reinventing the wheel and thus reuse already developed func-
tions. A higher number of dependencies means that a package requires more packages to be installed before
its own installation. While having many dependencies minimizes code replication, it also comes with a105

high price, because if a single dependency breaks then the whole package cannot be installed anymore (Cox,
2019). Inflated dependencies have been identified as a major risk in software and especially scientific software
development (Claes et al., 2014; Cox, 2019). FD has only four dependencies but other functional diversity
packages have many more dependencies (up to 100 dependencies for hypervolume, see Table S3). This
renders them quite brittle for the users after years of not being actively developed. fundiversity has been110

designed to only have minimal external dependencies, it currently depends directly on four, carefully chosen,
external packages (details on the criteria of choice in vignette("fundiversity_4-design-principles",
package = "fundiversity")): future.apply which itself depends on two other packages, Matrix which
is shipped with R, and geometry & vegan on which FD also depends. Considering direct and indirect de-
pendencies, fundiversity depends on a total of 21 packages while similar packages depends on 65 packages115

on average (Table S3).
Because user flexibility is key, fundiversity has minimal assumptions on the input data structure.

All its functions work with data frames, matrices, or sparse matrices alike. Sparse matrices are a different
formalization of matrices that do not store explicitly the cells that contain zero. They offer a reduced memory
footprint and optimized algebra library for computation (Bates & Maechler, 2021). These matrices are thus120

specifically relevant for occurrence/abundance matrices that contain many zeros. If the used data have a
high proportion of zeros, using sparse matrices can vastly decrease computational time in fundiversity.

As we underlined in the introduction, automatic software testing, while not 100% flawless, is needed to
increase the confidence in the behavior of functions. It is widespread in professional software engineering
but much less in scientific software development (Kanewala & Bieman, 2014). This means that software125

behavior is seldom validated against known inputs to make sure that it behaves in expected ways. It does
not mean that the software is of poor quality but rather that some simple errors could introduce unnoticed
changes in the behavior of functions. Most packages that compute functional diversity indices do not include
any form of automatic testing (3 out of 11 following our assessment). We do want to point out that is the
result of the lack of formal training in software development for ecologists hence the lack of tests (Farrell &130

Carey, 2018). We designed fundiversity with many unit tests from the beginning, executing at least every
single line of code once (i.e. achieving code coverage of 100%).

fundiversity mostly computes alpha functional diversity indices, because other recent packages exist to
compute other types of functional diversity indices (Hill numbers, Li, 2018; beta-diversity indices, Baselga &
Orme, 2012). We focused on indices available through the dbFD() function in the FD package and on indices135

that could benefit from faster implementations. The included indices cover the three dimensions of functional
diversity: richness (how much total diversity among set?), evenness (how regular are species situated along
the trait space?), and divergence (how different are species compared to an average position?) (Pavoine &
Bonsall, 2011). fundiversity contains the following alpha functional diversity indices: functional richness
(FRic), functional dispersion (FDis), functional divergence (FDiv), functional evenness (FEve), and Rao’s140

quadratic entropy (Q). We included Q as we identified the potential for important performance improvements
relative to existing packages. fundiversity also contains a beta-diversity index as it can be useful to
compare functional richness between sites (named FRic_intersect). Thanks to its design, fundiversity
can be easily extended to include more indices, the included list here is only a snapshot of the available
indices in the current version of fundiversity.145

4

Table 1: List of functions available in fundiversity to compute
functional diversity indices. The two last columns specify which
functions are parallelizable and memoizable.

Function Name Index Name Source Parallelizable Memoizable
fd_fdis() Functional Dispersion

(FDis)
Laliberté & Legendre
(2010)

Yes No

fd_fdiv() Functional Divergence
(FDiv)

Villéger et al. (2008) Yes Yes

fd_feve() Functional Evenness
(FEve)

Villéger et al. (2008) Yes No

fd_fric() Functional Richness
(FRic)

Villéger et al. (2008) Yes Yes

fd_fric_intersect()Functional β-diversity Villéger et al. (2013) Yes Yes
fd_raoq() Rao’s Quadratic Entropy

(Q)
Rao (1982) No No

We made sure the indices were numerically exact by using the test dataset available in Villéger et al.
(2008). The functions in fundiversity gave identical results than the one found in Figure 2 of Villéger
et al. (2008). We summarize our comparisons in the numerical correctness vignette accessible through
vignette("fundiversity_3-correctness", package = fundiversity). We furthermore compared the
obtained results with functions in other packages and made sure to obtain similar values.150

Case Study

In this section, we are showing how to use fundiversity in practice. As an example dataset, we in-
cluded in fundiversity site-species and trait data from Nowak et al. (2019). It is accessible through
calls to site_sp_birds and traits_birds when fundiversity is loaded with library() or the use of the
data("site_sp_birds", package = "fundiversity") and data("traits_birds", package = "fundiversity")155

functions when fundiversity is not loaded. This dataset describes the presence/absence of bird species in
South America at different elevations and four of their morphological traits.

[Figure 1 about here.]

The trait values show species in rows (species are specified as row names) and traits in columns with
trait names as column names (Figure 1). Similarly, the site-species matrix contains sites as rows (site names160

are row names) and species as columns (species names are column names).

data("traits_birds", package = "fundiversity")
data("site_sp_birds", package = "fundiversity")

head(traits_birds)

Bill.width..mm. Bill.length..mm. Kipp.s.index Bodymass..g.
Aburria_aburri 18.35 35.48 0.18 1407.5
Amazona_farinosa 26.50 38.81 0.29 626.0
Amazona_mercenaria 17.51 26.30 0.33 340.0165

Amazona_ochrocephala 20.17 31.40 0.26 440.0
Ampelioides_tschudii 16.53 24.58 0.24 78.4
Ampelion_rufaxilla 16.97 21.89 0.28 73.9

5

head(site_sp_birds)[, 1:3]

Aburria_aburri Amazona_farinosa Amazona_mercenaria
elev_250 0 1 0170

elev_500 0 1 0
elev_1000 1 1 1
elev_1500 1 0 1
elev_2000 0 0 1
elev_2500 0 0 1175

Now we obtained trait and occurrence data we need to compute the trait dissimilarity between each pair
of species. As all traits are quantitative, we first scale them to zero mean and standard deviation of one
(z-score), then we compute the Euclidean distance between pairs of species.

z_traits = scale(traits_birds, center = TRUE, scale = TRUE)

trait_distance = as.matrix(dist(z_traits))

We want to emphasize here that fundiversity does not assume anything in the upstream of the compu-
tation of functional diversity indices. Trait standardization and computation of a trait dissimilarity are to180

the user’s discretion. They are provided here as a full workflow example. The specific functions used in the
previous chunk can vary depending on the scientific question, the nature of the traits, or the transformation
needed. fundiversity does not provide any functions to deal with these upstream choices as it is the user’s
responsibility to carefully examine them.

Then, we compute the functional richness at each location using the fd_fric() function. It expects185

quantitative trait values as the first argument and a site-species matrix as the second argument.

library("fundiversity")

birds_fric = fd_fric(z_traits, site_sp_birds)

head(birds_fric)

site FRic
1 elev_250 66.048816
2 elev_500 71.465678
3 elev_1000 43.354008190

4 elev_1500 25.466685
5 elev_2000 7.725843
6 elev_2500 7.046431

If the site-species matrix is not provided, fundiversity considers that all species present in the trait
matrix are all present in a single site:195

fd_fric(z_traits)

site FRic
1 s1 88.9286

All other functions in fundiversity use a similar structure, the first input is trait data, the second one
is a site-species matrix (Figure 1). For Rao’s quadratic entropy, computed through fd_raoq(), functional
dissimilarities can be specified as the third argument:200

6

With functional dissimilarity
birds_raoq = fd_raoq(traits = NULL, site_sp_birds, dist_matrix = trait_distance)

With trait values
birds_raoq_2 = fd_raoq(z_traits, site_sp_birds)

Both options give the same results
identical(birds_raoq, birds_raoq_2)

[1] TRUE

If not all traits are quantitative, it is possible to transform them back into independent quantitative
‘traits’ through the use of Gower’s distance (Gower, 1971; and its extensions: Podani, 1999; and Pavoine
et al., 2009) then applying multivariate analysis to obtain orthogonal dimensions (Maire et al., 2015). But
there are many other ways to convert qualitative traits and as such, this is out of the scope of fundiversity.205

We leave it to the user to decide how to proceed to obtain back independent quantitative traits.

Using parallel computation
As specified above, fundiversity allows for parallel computation of functional diversity metrics through

the future framework. We here demonstrate how to use it in practice with the case study. A more detailed
explanation is provided in the “Parallelization” vignette of fundiversity (available through vignette("fundiversity_1-parallel",210

package = "fundiversity")).
We first have to check if the function in fundiversity is parallelizable: all functions except fd_raoq()

are. Then we define the parallel setting using the future::plan() function. This allows to define how the
parallel computation should be split: across cores, across computers, across jobs of a High-Performing Clus-
ter, etc. Here, we split the computation locally across the 4 cores of the computer using the future::multisession()215

function. We specify the number of cores to use with the workers argument in the call to the future::plan()
function.

First: Setup a parallel plan
future::plan(future::multisession, workers = 4)

Second: Perform the computation
bird_fric = fd_fric(traits_birds, site_sp_birds)

head(bird_fric)

site FRic
1 elev_250 171543.73
2 elev_500 185612.55220

3 elev_1000 112600.18
4 elev_1500 66142.75
5 elev_2000 20065.76
6 elev_2500 18301.18

To use a different backend, you can invoke a different argument in the future::plan() function.225

All possible arguments are detailed in the overview vignette of the future package (accessible through
vignette("future-1-overview", package = "future") once future has been installed).

The parallel computations are split across sites, so they may be interesting with large number of sites.
However, given the efficiency of fundiversity functions, and the overhead costs of parallel computation,
we recommend parallelizing only with matrices of at least 10.000 sites, or when hitting a performance limit230

of the default sequential execution.

7

Also, parallelization should never be used in conjunction with memoization because of the risk of cache
corruption if several cores access the memoized cache simultaneously (make sure to use options(fundiversity.memoise
= FALSE) before loading fundiversity when using parallel computations).

Performance Comparison235

To test the performance improvements realized by fundiversity, we compared computation time on
standardized datasets across similar functions in other packages. We only compared packages that provide
original functions not wrappers that depend on other packages to compute functional diversity indices. Six
packages computed similar indices to fundiversity. Most indices are also computed by the FD::dbFD()
function, but the comparison would be unfair as it computes many indices in a single call, while functions240

in fundiversity only compute single indices. We considered functions from: adiv (Pavoine, 2020), BAT
(Cardoso et al., 2015), betapart (Baselga & Orme, 2012), hillR (Li, 2018), mFD (Magneville et al., 2022),
and FD (Laliberté et al., 2014) (see Table 2 for the correspondence between packages). A continuously up-
dated version of this section can be found in the performance comparison vignette within the fundiversity
package with vignette("fundiversity_2-performance", package = "fundiversity").245

Index Name fundiversity Functions Equivalent Functions
Functional Dispersion (FDis) fd_fdis() FD::fdisp()

mFD::alpha.fd.multidim(...,
ind_vect = "fdis")

Functional Divergence (FDiv) fd_fdiv() mFD::alpha.fd.multidim(...,
ind_vect = "fdiv")

Functional Evenness (FEve) fd_feve() mFD::alpha.fd.multidim(...,
ind_vect = "feve")

Functional Richness (FRic) fd_fric() BAT::alpha() (tree)
BAT::hull.alpha() (hull)
mFD::alpha.fd.multidim(...,
ind_vect = "fric")

Rao’s Quadratic Entropy (Q) fd_raoq() adiv::QE()
BAT::rao()
hillR::hill_func()
mFD::alpha.fd.hill(..., q =
2, tau = "max")

Functional β-diversity fd_fric_intersect() betapart::functional.beta.pair()
hillR::hill_func_parti_pairwise()

Table: List of fundiversity functions with corresponding functions in other packages. The name of the
package is indicated before the :: while the name of the functions (including specified arguments) follows.

For testing purposes, we used datasets of increasing size with the number of species being 200, 500, or
1000; the number of traits 2, 4, or 10; and the number of sites 50, 100, or 500. For each set of parameters,
we generated a fictional site-species matrix and species-trait matrix, having only continuous traits. We250

used these simulated data to perform benchmarks across comparable functions (Table d). The benchmark
was run 30 times through the bench package (Hester & Vaughan, 2021). A summary of the results of the
benchmark can be seen in Fig. 2. The full results detailing the timings for each combination of parameters
and functions are available in the Supplementary Material (Fig. S4).

[Figure 2 about here.]255

For all the indices and functions tested, fundiversity is at least one order of magnitude faster than
alternative packages. For functional dispersion (FDis), fundiversity is two orders of magnitude faster

8

compared to BAT and mFD. For functional divergence (FDiv), fundiversity is one order of magnitude
faster than mFD. For functional evenness (FEve), fundiversity is two orders of magnitude faster than mFD
with sequential and parallelized versions having similar performances. For Rao’s quadratic entropy (Q),260

fundiversity is one order of magnitude faster than hillR and mFD, two orders faster than adiv, and
three orders of magnitude faster than BAT. For functional richness (FRic), fundiversity is half an order of
magnitude faster than the hull version of BAT, as well as one and a half order of magnitude faster than its
tree version and mFD. For functional richness intersection (beta functional diversity), fundiversity is two
orders of magnitude faster than betapart and hillR.265

[Figure 3 about here.]

As shown on Fig. 2, the parallelized versions of fundiversity functions executed on average one order
of magnitude faster than the sequential versions. For functional richness we even observed a difference of two
orders of magnitude. However, for functional dispersion, parallelization increased the overall computation
time. This may be due to inherent parallelization issues: there is an overhead cost when splitting tasks270

across multiple cores of a computer. The efficiency of parallelization depends on the difficulty of the tasks
that are split between cores. In the case of functional richness, the main task is computing the convex hull,
which is computationally costly, that is why parallelization increases performance in this case. However,
computing functional dispersion is simpler, and as such, does not benefit from being split across different
cores. Different values for the number of cores, species, traits, or sites produce qualitatively the same results275

(full results in Fig. S5).
One important note regarding parallelization in fundiversity, is that it is important to avoid doing

both memoization and parallelization simultaneously. Memoization creates a cache to avoid recomputing
results, and the cache may be corrupted if several cores access the same results at the same time. We
noticed that toggling memoization while performing parallelization severely increases total computational280

time, compared to sequential performance.
Note that these benchmarks only assess the packages computation speed and in no way any package

intrinsic quality or usefulness. We are comparing fundiversity, a package whose main goal is performance,
with other packages that may have other primary goals and offer other benefits. For example, several
packages offer nice default visualization functions to plot the different diversity indices, while we explicitly285

considered that visualization functions were not part of fundiversity and let the users decide how they
want to plot their indices.

Conclusion

We proposed a modern alternative R package to compute functional diversity indices. This package fol-
lows current best development practices and leverages modern features like parallelization and memoization290

to increase its performance. This is only made possible by recent developments that were, for the most part,
not available at the time when alternative packages came out. fundiversity does not propose to replace
the entire toolkit for the researcher interested in functional diversity (including the upstream selection of the
traits and the building of a functional space), but instead focuses on improving the most computationally
costing step: computing functional diversity indices. We hope it will be a useful contribution to this toolkit.295

To ensure its long-term maintainability, we made the package available on GitHub, it is perennially archived
on Zenodo, sits in an independent GitHub organization, and is written following clear design principles. This
package aims to always be a work in progress, as such we welcome contributions from interested users and
developers.

Data Availability300

fundiversity is available on CRAN through install.packages("fundiversity") as well as on GitHub
at https://github.com/funecology/fundiversity, for archival all releases are available on Zenodo at
https://doi.org/10.5281/zenodo.4761754. The data used in this article are available from the package,
through data(package = "fundiversity") call.

9

https://github.com/funecology/fundiversity
https://doi.org/10.5281/zenodo.4761754

Supplementary Information305

[Figure 4 about here.]

[Figure 5 about here.]

Table 3: Table S1. Number of dependencies for functional diversity
packages

Package Name Number of Hard Dependencies Number of Total Dependencies
vegan 7 19
FD 18 18
fundiversity 21 68
betapart 24 24
TPD 41 75
hillR 54 92
entropart 76 118
adiv 85 85
hypervolume 100 137
BAT 107 107
hilldiv 126 126
mFD 128 136

References

Barraquand, F., Ezard, T. H. G., Jørgensen, P. S., Zimmerman, N., Chamberlain, S., Salguero-Gómez, R.,
Curran, T. J., & Poisot, T. (2014). Lack of quantitative training among early-career ecologists: A survey310

of the problem and potential solutions. PeerJ, 2, e285. https://doi.org/10.7717/peerj.285
Baselga, A., & Orme, C. D. L. (2012). Betapart: An R package for the study of beta diversity. Methods in

Ecology and Evolution, 3(5), 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x
Bates, D., & Maechler, M. (2021). Matrix: Sparse and dense matrix classes and methods [Manual].
Bengtsson, H. (2020). A unifying framework for parallel and distributed processing in r using futures.315

https://arxiv.org/abs/2008.00553
Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and

the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 1079–1087.
https://doi.org/10.1111/j.1365-2664.2011.02048.x

Cardoso, P., Rigal, F., & Carvalho, J. C. (2015). BAT – Biodiversity Assessment Tools, an R package for320

the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods
in Ecology and Evolution, 6(2), 232–236. https://doi.org/10.1111/2041-210X.12310

Claes, M., Mens, T., & Grosjean, P. (2014). On the maintainability of CRAN packages. 2014 Software
Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), 308–312. https://doi.org/10.1109/CSMR-WCRE.2014.6747183325

Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A Trait-Based Test for Habitat Filtering: Convex
Hull Volume. Ecology, 87(6), 1465–1471. https://doi.org/10.1890/0012-9658(2006)87%5B1465:
ATTFHF%5D2.0.CO;2

Cox, R. (2019). Surviving software dependencies. Communications of the ACM, 62(9), 36–43. https:
//doi.org/10.1145/3347446330

de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M.-T., & Lepš, J. (2013). Which trait dissimilarity
for functional diversity: Trait means or trait overlap? Journal of Vegetation Science, 24(5), 807–819.
https://doi.org/10.1111/jvs.12008

10

https://doi.org/10.7717/peerj.285
https://doi.org/10.1111/j.2041-210X.2012.00224.x
https://arxiv.org/abs/2008.00553
https://doi.org/10.1111/j.1365-2664.2011.02048.x
https://doi.org/10.1111/2041-210X.12310
https://doi.org/10.1109/CSMR-WCRE.2014.6747183
https://doi.org/10.1890/0012-9658(2006)87%5B1465:ATTFHF%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2006)87%5B1465:ATTFHF%5D2.0.CO;2
https://doi.org/10.1145/3347446
https://doi.org/10.1145/3347446
https://doi.org/10.1111/jvs.12008

der Loo, M. van. (2020). A method for deriving information from running R code. The R Journal, Accepted
for publication.335

Díaz, S., & Cabido, M. (2001). Vive la différence: Plant functional diversity matters to ecosystem processes.
Trends in Ecology & Evolution, 16(11), 646–655. https://doi.org/10.1016/S0169-5347(01)02283-2

Farley, S. S., Dawson, A., Goring, S. J., & Williams, J. W. (2018). Situating Ecology as a Big-Data Science:
Current Advances, Challenges, and Solutions. BioScience, 68(8), 563–576. https://doi.org/10.1093/
biosci/biy068340

Farrell, K. J., & Carey, C. C. (2018). Power, pitfalls, and potential for integrating computational literacy
into undergraduate ecology courses. Ecology and Evolution, 8(16), 7744–7751. https://doi.org/10.
1002/ece3.4363

Gotelli, N. J., & Graves, G. R. (1996). Null models in ecology. Smithsonian Institution Press.
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 857–871.345

Hester, J., & Vaughan, D. (2021). Bench: High precision timing of r expressions. https://CRAN.R-
project.org/package=bench

Kanewala, U., & Bieman, J. M. (2014). Testing scientific software: A systematic literature review. Informa-
tion and Software Technology, 56(10), 1219–1232. https://doi.org/10.1016/j.infsof.2014.05.006

Lai, J., Lortie, C. J., Muenchen, R. A., Yang, J., & Ma, K. (2019). Evaluating the popularity of R in ecology.350

Ecosphere, 10(1), e02567. http://esajournals-onlinelibrary-wiley-com/doi/abs/10.1002/ecs2.
2567

Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional diversity from
multiple traits. Ecology, 91(1), 299–305. https://doi.org/10.1890/08-2244.1

Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: Measuring functional diversity from multiple traits,355

and other tools for functional ecology.
Legras, G., Loiseau, N., & Gaertner, J. -C. (2018). Functional richness: Overview of indices and underlying

concepts. Acta Oecologica, 87, 34–44. https://doi.org/10.1016/j.actao.2018.02.007
Leps, J., Bello, F., Lavorel, S., & Berman, S. (2006). Quantifying and interpreting functional diversity of

natural communities: Practical considerations matter. Preslia, 78, 481–501.360

Li, D. (2018). hillR: Taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers.
Journal of Open Source Software, 3(31), 1041. https://doi.org/10.21105/joss.01041

Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire, E.,
Mouillot, D., & Villéger, S. (2022). mFD: An R package to compute and illustrate the multiple facets
of functional diversity. Ecography, 2022(1). https://doi.org/10.1111/ecog.05904365

Maire, E., Grenouillet, G., Brosse, S., & Villéger, S. (2015). How many dimensions are needed to accurately
assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global
Ecology and Biogeography, 24(6), 728–740. https://doi.org/10.1111/geb.12299

Mammola, S., Carmona, C. P., Guillerme, T., & Cardoso, P. (2021). Concepts and applications in functional
diversity. Functional Ecology, 35(9), 1869–1885. https://doi.org/10.1111/1365-2435.13882370

Mason, N. W. H., de Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional
diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation
Science, 24(5), 794–806. https://doi.org/10.1111/jvs.12013

McPherson, J. M., Yeager, L. A., & Baum, J. K. (2018). A simulation tool to scrutinise the behaviour of
functional diversity metrics. Methods in Ecology and Evolution, 9(1), 200–206. https://doi.org/10.375

1111/2041-210X.12855
Mislan, K. A. S., Heer, J. M., & White, E. P. (2016). Elevating The Status of Code in Ecology. Trends in

Ecology & Evolution, 31(1), 4–7. https://doi.org/10.1016/j.tree.2015.11.006
Nowak, L., Kissling, W. D., Bender, I. M. A., Dehling, D. M., Töpfer, T., Böhning-Gaese, K., & Schleun-

ing, M. (2019). Data from: Projecting consequences of global warming for the functional diversity of380

fleshy-fruited plants and frugivorous birds along a tropical elevational gradient. In Data Dryad Digital
Repository (pp. 264849 bytes). https://doi.org/10.5061/DRYAD.C0N737B

Pavoine, S. (2020). Adiv: An r package to analyse biodiversity in ecology. Methods in Ecology and Evolution,
11(9), 1106–1112. https://doi.org/10.1111/2041-210X.13430

Pavoine, S., & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: A unified385

11

https://doi.org/10.1016/S0169-5347(01)02283-2
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.1002/ece3.4363
https://doi.org/10.1002/ece3.4363
https://CRAN.R-project.org/package=bench
https://CRAN.R-project.org/package=bench
https://doi.org/10.1016/j.infsof.2014.05.006
http://esajournals-onlinelibrary-wiley-com/doi/abs/10.1002/ecs2.2567
http://esajournals-onlinelibrary-wiley-com/doi/abs/10.1002/ecs2.2567
https://doi.org/10.1890/08-2244.1
https://doi.org/10.1016/j.actao.2018.02.007
https://doi.org/10.21105/joss.01041
https://doi.org/10.1111/ecog.05904
https://doi.org/10.1111/geb.12299
https://doi.org/10.1111/1365-2435.13882
https://doi.org/10.1111/jvs.12013
https://doi.org/10.1111/2041-210X.12855
https://doi.org/10.1111/2041-210X.12855
https://doi.org/10.1111/2041-210X.12855
https://doi.org/10.1016/j.tree.2015.11.006
https://doi.org/10.5061/DRYAD.C0N737B
https://doi.org/10.1111/2041-210X.13430

approach. Biological Reviews, 86(4), 792–812. https://doi.org/10.1111/j.1469-185X.2010.00171.
x

Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S., & Daniel, H. (2009). On the challenge of treating various
types of variables: Application for improving the measurement of functional diversity. Oikos, 118(3),
391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x390

Podani, J. (1999). Extending Gower’s general coefficient of similarity to ordinal characters. Taxon, 331–340.
Poisot, T. (2015). Best publishing practices to improve user confidence in scientific software. Ideas in

Ecology and Evolution, 8. https://doi.org/10.4033/iee.2015.8.8.f
R Core Team. (2021). R: A language and environment for statistical computing [Manual]. R Foundation

for Statistical Computing. https://www.R-project.org/395

Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population
Biology, 21(1), 24–43. https://doi.org/10.1016/0040-5809(82)90004-1

rOpenSci, Anderson, B., Chamberlain, S., DeCicco, L., Gustavsen, J., Krystalli, A., Lepore, M., Mullen, L.,
Ram, K., Ross, N., Salmon, M., & Vidoni, M. (2021). rOpenSci packages: Development, maintenance,
and peer review (Version 0.6.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.400

4554776
Schleuter, D., Daufresne, M., Massol, F., & Argillier, C. (2010). A user’s guide to functional diversity

indices. Ecological Monographs, 80(3), 469–484. https://doi.org/10.1890/08-2225.1
Villéger, S., Grenouillet, G., & Brosse, S. (2013). Decomposing functional β-diversity reveals that low

functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology405

and Biogeography, 22(6), 671–681. https://doi.org/10.1111/geb.12021
Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New Multidimensional Functional Diversity Indices

for a Multifaceted Framework in Functional Ecology. Ecology, 89(8), 2290–2301. https://doi.org/10.
1890/07-1206.1

White, E. (2015). Some thoughts on best publishing practices for scientific software. Ideas in Ecology and410

Evolution, 8. https://doi.org/10.4033/iee.2015.8.9.c
Wickham, H. (2011). Testthat: Get started with testing. The R Journal, 3, 5–10.
Wickham, H., Hester, J., Chang, W., Müller, K., & Cook, D. (2021). Memoise: Memoisation of functions

[Manual]. https://CRAN.R-project.org/package=memoise
Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. (2017). Good enough practices415

in scientific computing. PLOS Computational Biology, 13(6), e1005510. https://doi.org/10.1371/
journal.pcbi.1005510

Wüest, R. O., Zimmermann, N. E., Zurell, D., Alexander, J. M., Fritz, S. A., Hof, C., Kreft, H., Normand,
S., Cabral, J. S., Szekely, E., Thuiller, W., Wikelski, M., & Karger, D. N. (2020). Macroecology in the
age of Big Data – Where to go from here? Journal of Biogeography, 47(1), 1–12. https://doi.org/10.420

1111/jbi.13633

12

https://doi.org/10.1111/j.1469-185X.2010.00171.x
https://doi.org/10.1111/j.1469-185X.2010.00171.x
https://doi.org/10.1111/j.1600-0706.2008.16668.x
https://doi.org/10.4033/iee.2015.8.8.f
https://www.R-project.org/
https://doi.org/10.1016/0040-5809(82)90004-1
https://doi.org/10.5281/zenodo.4554776
https://doi.org/10.5281/zenodo.4554776
https://doi.org/10.5281/zenodo.4554776
https://doi.org/10.1890/08-2225.1
https://doi.org/10.1111/geb.12021
https://doi.org/10.1890/07-1206.1
https://doi.org/10.1890/07-1206.1
https://doi.org/10.4033/iee.2015.8.9.c
https://CRAN.R-project.org/package=memoise
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1111/jbi.13633
https://doi.org/10.1111/jbi.13633
https://doi.org/10.1111/jbi.13633

List of Figures

1 Conceptual diagram showing the input and typical ouput data from ‘fundiversity‘ functions.
Input data are generally a site-species table and a species-traits table, and the output gives
back a table of functional diversity index per site. 14425

2 Timing comparison across functional diversity indices between packages. Each point repre-
sents the execution time of one run using a simulated dataset, the points are transparent and
jittered to avoid overplotting. We here show the performance results considering only a single
set of parameters with 4 traits, 500 species, and 100 sites, repeated 30 times. 15

3 Timing comparison between parallel and sequential version of fundiversity functions across430

functional diversity indices. Each point represents the execution time of one run using simu-
lated datasets with fixed properties (4 traits, 100 sites, 500 species), the points are transparent
and jittered to avoid overplotting. The parallel version ran across 6 cores. 16

4 Performance comparison across functions of different packages over a range of parameters
(number of traits, species, and sites). Note that each combination of parameters ran 30435

iterations. The lines show trends of execution time in function of number of sites of the input
dataset. 17

5 Performance comparison across internal functions over a range of parameters (number of
traits, species, and sites) and different parallelization parameters. Note that each combination
of parameters ran 20 iterations. The lines show trends of execution time in function of number440

of sites of the input dataset. 18

13

Figure 1: Conceptual diagram showing the input and typical ouput data from ‘fundiversity‘ functions. Input data are generally
a site-species table and a species-traits table, and the output gives back a table of functional diversity index per site.

14

Figure 2: Timing comparison across functional diversity indices between packages. Each point represents the execution time of
one run using a simulated dataset, the points are transparent and jittered to avoid overplotting. We here show the performance
results considering only a single set of parameters with 4 traits, 500 species, and 100 sites, repeated 30 times.

15

Figure 3: Timing comparison between parallel and sequential version of fundiversity functions across functional diversity indices.
Each point represents the execution time of one run using simulated datasets with fixed properties (4 traits, 100 sites, 500
species), the points are transparent and jittered to avoid overplotting. The parallel version ran across 6 cores.

16

100ms

1.67m

1.16d
E

xe
cu

tio
n

T
im

e

BAT
dispersion()

FD
fdisp()

fundiversity
fd_fdis()

mFD
alpha.fd.multidim(
ind_vect = 'fdis')

50 100 30050050 100 30050050 100 30050050 100 300500
Number of sites

Functional Dispersion

100ms

1.67m

1.16d

E
xe

cu
tio

n
T

im
e

fundiversity
fd_fdiv()

mFD
alpha.fd.multidim(
ind_vect = 'fdiv')

50 100 30050050 100 300500
Number of sites

Functional Divergence

100ms

1.67m

1.16d

E
xe

cu
tio

n
T

im
e

fundiversity
fd_feve()

mFD
alpha.fd.multidim(
ind_vect = 'feve')

50 100 30050050 100 300500
Number of sites

Functional Evenness

100ms

1.67m

1.16d

E
xe

cu
tio

n
T

im
e

adiv
QE()

BAT
rao()

fundiversity
fd_raoq()

hillR
hill_func(

fdis = FALSE)

mFD
alpha.fd.hill(

q = 2, tau = 'max')

50 100 30050050 100 30050050 100 30050050 100 30050050 100 300500
Number of sites

Rao's Quadratic Entropy

100ms

1.67m

1.16d

E
xe

cu
tio

n
T

im
e

BAT
alpha()

BAT
hull.alpha()

fundiversity
fd_fric()

mFD
alpha.fd.multidim(
ind_vect = 'fric')

50 100 30050050 100 30050050 100 30050050 100 300500
Number of sites

Functional Richness

100ms

1.67m

1.16d

E
xe

cu
tio

n
T

im
e

betapart
functional.beta.pair()

fundiversity
fd_fric_intersect()

hillR
hill_func_parti_

pairwise()

50 100 30050050 100 30050050 100 300500
Number of sites

Functional Richness intersect

Number of traits

2

3

4

10

Number of species

200

500

1000

Figure 4: Performance comparison across functions of different packages over a range of parameters (number of traits, species,
and sites). Note that each combination of parameters ran 30 iterations. The lines show trends of execution time in function of
number of sites of the input dataset.

17

Figure 5: Performance comparison across internal functions over a range of parameters (number of traits, species, and sites)
and different parallelization parameters. Note that each combination of parameters ran 20 iterations. The lines show trends of
execution time in function of number of sites of the input dataset.

18

	Acknowledgements
	Authors' Contributions
	Title
	Introduction
	Main features of fundiversity
	Case Study
	Using parallel computation

	Performance Comparison
	Conclusion
	Data Availability
	Supplementary Information
	References

