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Abstract3

(max 350 words)4

1. Functional diversity is widely used and widespread. However, the main package used to compute5

functional diversity indices FD is not flexible and not adapted to the volume of data used in modern6

ecological analyses.7

2. We here present fundiversity, an R package that eases the computation of classical functional di-8

versity indices. It leverages parallelization and memoization (caching results in memory) to maximize9

efficiency with data with thousands of columns and rows.10

3. In addition to being more flexible we did a performance comparison with packages that provide analog11

functions. fundiversity was always an order of magnitude quicker than alternative packages.12

4. fundiversity aims to be a lightweight efficient tool to compute functional diversity indices, that can13

be used in a variety of contexts. Because it has been designed following clear principles, it is easy to14

extend. We hope the wider community will adopt it and we welcome all contributions.15
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Introduction20

Functional diversity, the diversity of traits across scales, is a major facet of biodiversity (Pavoine &21

Bonsall, 2011). It has been widely used across ecological contexts (Cadotte et al., 2011) and has been22

shown to relate to ecosystem functioning (Díaz & Cabido, 2001; Leps et al., 2006). Many indices exist to23

characterize it across its three dimensions: richness, evenness, and divergence (Pavoine & Bonsall, 2011).24

To compute these indices in reproducible ways ecologists rely on computational tools able to crunch the25

numbers for thousands of species and thousands of sites. In the last few years, R has been the programming26

language of choice for ecologists (Lai et al., 2019; R Core Team, 2021). The main tool available to compute27

functional diversity indices has been the FD package which has now accumulated more than 1200 citations28

(Laliberté et al., 2014). But FD has been released in 2009 and has since then only received minor updates29

that stopped in 2015. At the same time, best practices in software development have changed dramatically30

and new, higher-performance tools have emerged in the R ecosystem. Additionally, since 2009, the size of31
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ecological datasets has grown exponentially (Farley et al., 2018; Wüest et al., 2020) and high performance32

computing (HPC) environments have become standard. There is therefore a dire need for a modern package33

to compute functional indices using state-of-the-art software development techniques and tools.34

The main function of the FD package dbFD() lets users compute a dozen functional diversity indices in a35

single call from raw trait data (Laliberté et al., 2014). While great for exploratory analyses this can increase36

computation time when only a single index is needed. Furthermore, it does not enforce good practice in37

choosing beforehand the appropriate functional diversity index for the question(s) asked (Legras et al., 2018;38

Mason et al., 2013; Schleuter et al., 2010). It encourages the user to fish the functional diversity index that39

matches their predicted relationships (a form of p-hacking). This can lead the users to report all computed40

functional diversity indices even when there are no clear expectations on different functional diversity facets41

and/or to report correlated indices (Legras et al., 2018; Mason et al., 2013; McPherson et al., 2018; Schleuter42

et al., 2010). Computing all indices in a single function also makes long-term maintenance and addition43

of new indices harder. Finally, it adds an extra performance burden in the case where not all indices are44

needed.45

The average size of datasets analyzed in ecology increased several folds in the last years (Wüest et al.,46

2020). Considering that most analyses on functional diversity rely on null models that increase the data47

size by two or three orders of magnitude (Gotelli & Graves, 1996), the need for efficient computation is48

paramount. First, any improvement of the algorithmic efficiency to compute functional diversity indices49

could save sensible amounts of time as it is repeated many times. For example, we noted that many R50

packages that compute functional diversity indices do not leverage matrix algebra with its libraries available51

that can cut the number of operations by orders of magnitude compared to using a loop directly in R. Second,52

functional diversity indices are generally computed over many mathematically independent sites. With53

the rise of multi-core computers, parallelization, i.e. splitting independent computations between different54

Computing Processor Units (CPUs), is becoming the norm. Very few functional diversity R packages propose55

parallelization which leaves the burden of implementing it to the user. There have been formidable new56

developments in this area in R over the last few years with the release future framework (Bengtsson, 2020)57

that allows the user to seamlessly parallelize computations on multiple cores on a single machine or across58

several machines, or even on a remote cluster without changing execution code. Third, computations on the59

same input can be cached through a process called memoization (Wickham et al., 2021). This avoids wasting60

computing power on previously seen inputs. Several functional diversity indices rely on the computation61

of convex hulls across a multi-dimensional space (Cornwell et al., 2006; Villéger et al., 2008). Caching the62

results of this costly computation could save time and computing power when measuring the diversity across63

similar sets, such as sites across a given region.64

Increasing discussions are held regarding scientific software robustness and reliability in ecology (Mislan65

et al., 2016; Poisot, 2015; White, 2015; Wilson et al., 2017). Mainly because most ecologists are self-trained66

in programming (Farrell & Carey, 2018), these virtuous practices are rarely applied in ecology (Barraquand67

et al., 2014). For example, unit tests use predefined inputs to compare the software’s outputs to expectations68

(Poisot, 2015). Unit tests have also become standard in R packages since the release of packages streamlining69

this process, such as testthat and tinytest. In part because of the relative recentness of the testing70

frameworks, very few R functional diversity packages provide unit tests to assess that the functions behave71

expectedly. Automatic tests of one’s code are crucial when developing a tool for a wider audience as it may72

be used across different contexts.73

We here propose a modern alternative to FD called fundiversity that benefits from modern development74

practices, necessary features for large-sized datasets (modularity, parallelization, and memoization), and75

greater flexibility. The package can be easily extended to accommodate additional diversity indices not76

covered by following a clear design pattern detailed in the next section. We then go through a use case to77

show how it can be used. We then compare the performance of fundiversity against similar packages.78

Main features of fundiversity79

To ensure the consistency of its functions and to make it user-friendly, fundiversity follows clear design80

principles. In this section, we expose its distinctive features and principles.81
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To give maximum flexibility to the users, we tried to build fundiversity as modular as possible. Each82

function in fundiversity computes a single functional diversity index, as such if the user is interested83

in computing a single index, they only need to use a single function. All functions in fundiversity are84

prefixed with fd_ to avoid conflict with similarly named functions in other packages, as it’s becoming85

standard practice in newer R packages (rOpenSci et al., 2021). In line with its modularity, we focused on86

making the inputs and outputs of functions coherent. The functions compute functional diversity indices87

using two main information: a species by traits matrix and a site by species matrix, all functions accept88

these two objects as first arguments. Because the function outputs one diversity value per site the outputs89

are always structured similarly: one site column that contains the name of its sites and one column named90

as the computed index (such as FRic when computing functional richness). The shape of the output is91

predictable and easy to be combined with other data.92

Parallelization can be an easy way to vastly decrease computation speed why leveraging the architecture of93

modern computers. Almost all functions in fundiversity can be parallelized out of the box. fundiversity94

provides parallelization through the future backend (Bengtsson, 2020). Parallelization is toggled through95

a single function call using future::plan() before using fundiversity functions. Thanks to the flexibility96

given by the future backend, the code to use won’t change whether parallelizing across several cores on a97

single computer, across multiple computers, or on a remote high-performance cluster. The user has only98

to update the call to future::plan() to distribute computations on another infrastructure. Furthermore,99

the future backend provides load balancing so that no cores/units stay idle for too long and the paral-100

lelized tasks are split evenly. The packages contains a dedicated “Parallelization” vignette to guide the101

users through transforming unparallelized to parallelized code (accessible through vignette("parallel",102

package = "fundiversity")).103

Because functional diversity indices can be computed repeatedly on the same data subset, such as in104

null models, we can leverage these repeated computations to reuse already computed indices. For example105

to compute functional richness (FRic) the convex hull of the input data has first to be identified, then the106

program needs to compute the volume of this convex hull. The first step, identifying the convex hull, takes the107

most time and as such, storing the results of each computed convex hull across a subset of data can vastly cut108

computation time for a little memory footprint. Memoization consists in doing exactly that, it trades a little109

of computer memory (keeping the convex hulls stored) for more computation speed. fundiversity leverages110

memoization for all complex computations such as convex hulls. By default, memoization is turned on for111

FRic, the intersection of convex hulls, and FDiv. However, it can sometimes create a memory bottleneck112

which slows down the overall computation. The default behavior can always be overridden through a change113

in the option fundiversity.memoise.114

Packages depend on one another to avoid reinventing the wheel and thus reuse already developed func-115

tions. A higher number of dependencies means that a package requires more packages to be installed before116

its installation. While a high number of dependencies minimizes code replication, it also comes with a117

high price, because if a single dependency breaks then the whole package cannot be installed anymore (Cox,118

2019). Inflated dependencies have been identified as a major risk in software and especially scientific software119

development (Claes et al., 2014; Cox, 2019). FD only has four dependencies but other functional diversity120

packages have many more dependencies. This renders them quite brittle for the users after years of not121

being actively developed. fundiversity has been designed to only have minimal external dependencies, it122

currently depends on only four external packages: future.apply which depends only on two other packages,123

Matrix which is shipped with R, geometry and vegan on which FD also depends.124

Because user flexibility is key, fundiversity has minimal assumptions on the input data structure.125

All its functions work with data frames, matrices, or sparse matrices alike. Sparse matrices are a different126

formalization of matrices that do not store explicitly the cells that contain zero. They offer a reduced memory127

footprint and optimized algebra library for computation (Bates & Maechler, 2021). These matrices are thus128

specifically relevant for occurrence/abundance matrices that contain many zeros. If the used data have a129

high proportion of zeros, using sparse matrices can vastly decrease computational time in fundiversity.130

As we underlined in the introduction, automatic software testing, while not 100% foolproof, is needed131

to increase the confidence in the behavior of functions. It is widespread in computer science but less in132

scientific software development. This means that software behavior is never assessed against known inputs133
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to make sure it behaves in expected ways. It does not mean that the software is of poor quality, but rather134

that some simple errors could introduce unnoticed changes in the behavior of functions. Most packages that135

compute functional diversity indices do not include any form of automatic testing. We do want to point out136

that most ecologists never received formal training in software development hence the lack of tests (Farrell137

& Carey, 2018). We designed fundiversity with many unit tests from the beginning, executing at least138

every single line of code once (i.e. achieving coverage of 100%).139

fundiversity only computes alpha functional diversity indices, because other recent packages exist140

to compute other types of functional diversity indices [Hill numbers, Li (2018); beta-diversity indices,141

Baselga_betapart_2012]. We focused on indices available through the dbFD() function in the FD pack-142

age and on indices that could benefit from faster implementation. fundiversity contains the following alpha143

functional diversity indices: functional richness (FRic), functional dispersion (FDis), functional divergence144

(FDiv), functional evenness (FEve), and Rao’s quadratic entropy (Q). fundiversity also contains a beta-145

diversity index as it can be useful to compare functional richness between sites.146

Table 1: List of functions available in fundiversity to compute
functional diversity indices. The two last columns specify which
functions are parallelizable and memoizable.

Function Name Index Name Source Parallelizable Memoizable
fd_fdis() Functional Dispersion

(FDis)
Laliberté & Legendre
(2010)

Yes No

fd_fdiv() Functional Divergence
(FDiv)

Villéger et al. (2008) Yes Yes

fd_feve() Functional Evenness
(FEve)

Villéger et al. (2008) Yes No

fd_fric() Functional Richness
(FRic)

Villéger et al. (2008) Yes Yes

fd_fric_intersect()Functional β-diversity Villéger et al. (2013) Yes Yes
fd_raoq() Rao’s Quadratic Entropy

(Q)
Rao (1982) No No

We made sure the indices were numerically exact by using the test dataset available in Villéger et al.147

(2008). The functions in fundiversity gave identical results than the one found in Figure 2 of Villéger148

et al. (2008). We summarize our comparisons in the numerical correctness vignette accessible through149

vignette("correctness", package = fundiversity).150

Case Study151

Now that we described the main features of fundiversity, we are going to show how to use it in practice152

when computing functional diversity indices. As an example dataset, we included in fundiversity site-153

species and trait data from Nowak et al. (2019). It is accessible through the use of the data(..., package154

= "fundiversity") function. This dataset describes the presence of bird species in South America at155

different elevations and four morphological traits.156

knitr::include_graphics(
here::here("inst", "manuscript", "figures", "fundiversity_conceptual_diagram.svg")

)

[Figure 1 about here.]157
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The trait values show species in rows (species are specified as row names) and traits in columns with158

trait names as column names. Similarly, the site-species matrix contains sites as rows (site names are row159

names) and species as columns (species names are column names).160

data("traits_birds", package = "fundiversity")
data("site_sp_birds", package = "fundiversity")

head(traits_birds)

## Bill.width..mm. Bill.length..mm. Kipp.s.index Bodymass..g.161

## Aburria_aburri 18.35 35.48 0.18 1407.5162

## Amazona_farinosa 26.50 38.81 0.29 626.0163

## Amazona_mercenaria 17.51 26.30 0.33 340.0164

## Amazona_ochrocephala 20.17 31.40 0.26 440.0165

## Ampelioides_tschudii 16.53 24.58 0.24 78.4166

## Ampelion_rufaxilla 16.97 21.89 0.28 73.9167

head(site_sp_birds)[, 1:3]

## Aburria_aburri Amazona_farinosa Amazona_mercenaria168

## elev_250 0 1 0169

## elev_500 0 1 0170

## elev_1000 1 1 1171

## elev_1500 1 0 1172

## elev_2000 0 0 1173

## elev_2500 0 0 1174

Now we obtained trait and occurrence data we need to compute the trait dissimilarity between each pair175

of species. As all traits are quantitative we first Z-score them, then we compute the Euclidean distance176

between pairs of species.177

z_traits = scale(traits_birds, center = TRUE, scale = TRUE)

trait_distance = as.matrix(dist(z_traits))

We can then compute the functional richness of each index at each location. To do so we are using the178

fd_fric() function. It expects quantitative trait values as the first argument and a site-species matrix as179

the second argument.180

library("fundiversity")

birds_fric = fd_fric(z_traits, site_sp_birds)

head(birds_fric)

## site FRic181

## 1 elev_250 66.048816182

## 2 elev_500 71.465678183

## 3 elev_1000 43.354008184

## 4 elev_1500 25.466685185

## 5 elev_2000 7.725843186

## 6 elev_2500 7.046431187
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All other functions in fundiversity use a similar structure, the first input is trait data the second one188

is a site-species matrix. For Rao’s quadratic entropy computed through fd_raoq() functional dissimilarities189

can be specified as the third argument:190

# With functional dissimilarity
birds_raoq = fd_raoq(traits = NULL, site_sp_birds, dist_matrix = trait_distance)

# With trait values
birds_raoq_2 = fd_raoq(z_traits, site_sp_birds)

# Both options give the same results
identical(birds_raoq, birds_raoq_2)

## [1] TRUE191

If all traits are not quantitative it is possible to transform them back into independent traits through192

the use of Gower’s distance [Gower (1971); and its extensions: Podani (1999), Pavoine et al. (2009);] then193

applying multivariate analysis to obtain orthogonal dimensions (Maire et al., 2015).194

Performance Comparison195

To test the actual performance improvements realized by fundiversity, we compared computation time196

on standardized datasets across similar functions in other packages. We only compared “original” packages197

that provide actual functions and not wrappers that depend on other packages to compute functional198

diversity indices. We identified 6 packages that computed similar indices to fundiversity. Most indices are199

computed by the FD::dbFD() function but the comparison would be unfair as the function computes many200

indices in a single call while functions in fundiversity only compute single indices. We considered functions201

from: adiv (Pavoine, 2020), BAT (Cardoso et al., 2015), betapart (Baselga & Orme, 2012), hillR (Li, 2018),202

mFD (Magneville et al., 2022), and FD (Laliberté et al., 2014) (see Table 2 for the correspondence between203

packages). A continuously updated version of this section can be found in the performance comparison204

vignette within the fundiversity package with vignette("performance", package = "fundiversity").205

Table 2: List of functions available in fundiversity to compute
functional diversity indices and corresponding functions in other
packages. The name of the package is indicated before the :: while
the name of the functions (including specified arguments) follows.

Index Name fundiversity Functions Functions in other packages
Functional Dispersion (FDis) fd_fdis() BAT::dispersion()

FD::fdisp()
mFD::alpha.fd.multidim(...,
ind_vect = "fdis")

Functional Divergence (FDiv) fd_fdiv() mFD::alpha.fd.multidim(...,
ind_vect = "fdiv")

Functional Evenness (FEve) fd_feve() mFD::alpha.fd.multidim(...,
ind_vect = "feve")

Functional Richness (FRic) fd_fric() BAT::alpha() (tree)
BAT::hull.alpha() (hull)
mFD::alpha.fd.multidim(...,
ind_vect = "fric")
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Index Name fundiversity Functions Functions in other packages
Rao’s Quadratic Entropy (Q) fd_raoq() adiv::QE()

BAT::rao()
hillR::hill_func()
mFD::alpha.fd.hill(..., q =
2, tau = "max")

Functional β-diversity fd_fric_intersect() betapart::functional.beta.pair()
hillR::hill_func_parti_pairwise()

For testing purposes, we used datasets of increasing size with the number of species being 200, 500, or206

1000; the number of traits 2, 4, or 10; the number of sites 50, 100, or 500. For each set of parameters, we207

generated a fictional site-species matrix and site-trait matrix, comprised only of continuous trait data. We208

used these simulated data to perform benchmarks across comparable functions among the selected packages.209

The benchmark ran 30 times through the bench package (Hester & Vaughan, 2021). A summary of the210

results of the benchmark can be seen in Fig. 2. Full results detailing the timings for each combination of211

parameters and functions are available in the Supplementary Material (Fig. S4).212

[Figure 2 about here.]213

We see that for all the indices and functions tested, fundiversity is at least an order of magnitude214

faster than alternative packages. For functional dispersion, fundiversity is two orders of magnitude faster215

compared to BAT and mFD. For functional divergence, fundiversity is one order of magnitude faster than216

mFD. For functional evenness, fundiversity is two orders of magnitude faster than mFD with sequential and217

parallelized versions having similar performances. For Rao’s quadratic entropy, fundiversity is one order218

of magnitude faster than hillR and mFD, two orders faster than adiv, and three orders of magnitude faster219

than BAT. For functional richness, fundiversity is half an order of magnitude faster than the hull version of220

BAT, as well as one and a half order of magnitude faster than its tree version and mFD. For functional richness221

intersection (beta functional diversity), fundiversity is two orders of magnitude faster than betapart and222

hillR.223

[Figure 3 about here.]224

As shown on Fig. 2, on average the parallelized versions of fundiversity functions executed an order225

of magnitude faster than the sequential versions. For functional richness we even observed a difference of226

two orders of magnitude. However, for functional dispersion, parallelization increased overall computation227

time. This may be due to inherent parallelization issues: there is an overhead cost when splitting tasks228

across multiple cores of a computer. The efficiency of parallelization depends on the difficulty of the tasks229

that are split between cores. In the case of functional richness, the main task is computing the convex230

hull, which is computationally costly, that is why parallelization increase performance in this case. While231

computing functional dispersion is simpler, and as such, does not benefit from being split across different232

cores. Different values for the number of cores, species, traits or sites produce qualitatively the same results233

(full results in Fig. S5).234

One important note regarding parallelization in fundiversity, is that it is important to avoid doing235

both memoization and parallelization simultaneously. Memoization creates a cache to avoid recomputing236

results, and the cache may be corrupted if several cores access the same results at the same time. We237

noticed that toggling memoization while performing parallelization severely increase total computational238

time, compared to sequential performance.239

Note that these benchmarks only assess the packages computation speed and in no way any package240

intrinsic quality or usefulness. We’re comparing fundiversity, a package whose one of the main goals241

is performance, with other packages that may have other primary goals and offer other benefits. Most242

other packages offer more features than simply computing functional diversity indices. For example, several243

packages offer nice default visualization functions to plot the different diversity indices, while we explicitly244
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considered that visualization functions were not part of fundiversity and let the users decide how they245

want to plot their indices.246

Conclusion247

We proposed a modern alternative R package to compute functional diversity indices. This package fol-248

lows current best development practices and leverages modern features like parallelization and memoization249

to increase its performance. This is only made possible by recent developments which were for the most part250

not available at the time when alternative packages came out. fundiversity does not propose to replace251

the entire toolkit for the researcher interested in functional diversity (including the upstream selection of252

the traits and building of a functional space) but instead focuses on improving the most computationally253

costing step: computing functional diversity indices. We hope it will be a useful contribution to this toolkit.254

This package aims to always be a work in progress and we welcome contributions from interested users and255

developers.256
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Figure 1: Conceptual diagram showing the input and typical ouput data from ‘fundiversity‘ functions. Input data are generally
a site-species table and a species-traits table, and the output gives back a table of functional diversity index per site.
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Figure 2: Timing comparison across functional diversity indices between packages. Each point represents the execution time of
one run using a simulated dataset, the points are transparent and jittered to avoid overplotting. We here show the performance
results considering only a single set of parameters with 4 traits, 500 species, and 100 sites, repeated 30 times.
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Figure 3: Timing comparison between parallel and sequential version of fundiversity functions across functional diversity indices.
Each point represents the execution time of one run using simulated datasets with fixed properties (4 traits, 100 sites, 500
species), the points are transparent and jittered to avoid overplotting. The parallel version ran across 6 cores.
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Figure 4: Performance comparison across functions of different packages over a range of parameters (number of traits, species,
and sites). Note that each combination of parameters ran 30 iterations. The lines show trends of execution time in function of
number of sites of the input dataset.
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Figure 5: Performance comparison across internal functions over a range of parameters (number of traits, species, and sites)
and different parallelization parameters. Note that each combination of parameters ran 20 iterations. The lines show trends of
execution time in function of number of sites of the input dataset.
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