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Abstract 11 

Social networks are tied to population dynamics; interactions are driven by population density 12 

and demographic structure, while social relationships can be key determinants of survival and 13 

reproductive success. However, difficulties integrating models used in demography and 14 

network analysis have limited research at this interface. We introduce the R package 15 

genNetDem for simulating integrated network-demographic datasets. It can be used to create 16 

longitudinal social network and/or capture-recapture datasets with known properties. It 17 

incorporates the ability to generate populations and their social networks, generate grouping 18 

events using these networks, simulate social network effects on individual survival, and flexibly 19 

sample these longitudinal datasets of social associations. By generating co-capture data with 20 

known statistical relationships it provides functionality for methodological research. We 21 

demonstrate its use with case studies testing how imputation and sampling design influence 22 

the success of adding network traits to conventional Cormack-Jolly-Seber (CJS) models. We 23 

show that incorporating social network effects in CJS models generates qualitatively accurate 24 

results, but with downward-biased parameter estimates when network position influences 25 

survival. Biases are greater when fewer interactions are sampled or fewer individuals observed 26 

in each interaction. While our results indicate the potential of incorporating social effects within 27 

demographic models, they show that imputing missing network measures alone is insufficient 28 

to accurately estimate social effects on survival, pointing to the importance of incorporating 29 

network imputation approaches. genNetDem provides a flexible tool to aid these 30 

methodological advancements and help researchers testing other sampling considerations in 31 

social network studies. 32 

 33 

34 
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Introduction 35 

 Network analysis has revolutionised animal social behaviour research by quantifying 36 

how dyadic social interactions and relationships are nested in wider group- and population-37 

level social structures (J. Krause et al., 2014; Pinter-Wollman et al., 2013). Network studies in 38 

behavioural ecology have often focussed on how the position of an individual within its social 39 

network influences its fitness, either via reproductive success (Formica et al., 2012; Oh & 40 

Badyaev, 2010) or survival (Blumstein et al., 2018; Ellis et al., 2017; Stanton & Mann, 2012).  41 

Quantifying direct links between social network position and fitness can help us 42 

understand how selection acts on social behavioural traits. Further, determining how social 43 

behaviour is linked to survival can identify demographic consequences of interactions and 44 

associations (Clements et al., 2022), which can help develop more realistic models for how 45 

social species respond to population declines or environmental change (Snijders et al., 2017). 46 

However, while there is growing interest in linking animal social networks with demography 47 

(Shizuka & Johnson, 2020), there remain many methodological challenges. 48 

Currently most studies that link network position and fitness use known fate approaches 49 

such as generalised linear models (e.g. (Blumstein et al., 2018)) or Cox proportional-hazards 50 

models (e.g. (Ellis et al., 2017)). However, application of these approaches is limited in many 51 

wild populations where individuals that are alive are not necessarily detected. In these cases 52 

survival is most commonly estimated using hidden Markov models (HMMs; (McClintock et al., 53 

2020)) that can simultaneously estimate survival and probabilities of capture (Gimenez et al., 54 

2012; Pradel, 2005). These models also have potential as tools in animal social network 55 

analysis (Clements et al., 2022; Fisher et al., 2017), especially when not all associations are 56 

detected. However, it is challenging to provide universal guidance on the applicability of these 57 
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approaches given the diversity of animal social systems and sampling designs used to study 58 

them. 59 

Here we introduce the R package genNetDem to simulate co-capture datasets. We 60 

define a co-capture dataset as one in which a capture-recapture data also provides information 61 

on social structure, such as when individuals are caught or observed in groups (see also (Silk 62 

et al., 2021)). The package generates integrated longitudinal social network and capture-63 

recapture datasets with known statistical relationships. This provides functionality for 64 

methodological research, power analyses and sampling design. Here we present an overview 65 

the package, outline effective workflows and describe key functions. We then provide two case 66 

studies to demonstrate its use. Finally, we identify key next steps in merging social network 67 

and demographic analyses, and discuss the role of genNetDem in these. 68 

    69 

genNetDem overview 70 

genNetDem is a set of R (R Core Team, 2021) functions that generate longitudinal 71 

social network and/or capture-recapture datasets with known underlying properties. 72 

Functionality can be split into four broad groups: a) population features; b) survival features; c) 73 

social network features; and d) observation features. The package is modular meaning specific 74 

components can be used in isolation or user-generated code can be integrated to extend 75 

functionality to different ecological or social contexts. Here we provide an idea of potential 76 

workflows when using genNetDem including a detailed example (Fig. 1) and an overview of 77 

key functions (Table 1; with more detail provided in the Supplementary Materials). genNetDem 78 

is available on GitHub (https://github.com/NETDEM-project/genNetDem).  79 

 80 

 81 

https://github.com/NETDEM-project/genNetDem
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genNetDem workflow 82 

While genNetDem is designed to be modular so that individual components can be adjusted to 83 

perform a range of tasks, many of the functions fit well within specific workflows. We illustrate 84 

one such common workflow (Fig. 1), but various other applications are demonstrated in 85 

package vignettes. The workflow illustrated here generates a population with a known, 86 

underlying social structure and then simulates grouping events (or associations) using this 87 

underlying social structure alongside demographic change, sampling from the grouping events 88 

to simulate an observation process. 89 

1. Population generation 90 

genNetDem provides functionality to simulate a population of a given size that can be 91 

subdivided into a prespecified number of (underlying) social groups distributed in 2D 92 

space.  93 

2. Generation of trait data 94 

genNetDem can also be used to simulate trait data for individuals in the population with 95 

considerable flexibility in the types of traits that could be included. It is also be possible 96 

to use existing biological data or external methods of simulating trait data if preferred as 97 

long as the datasets are then formatted in an equivalent manner. 98 

3. Generate social network 99 

A key feature of genNetDem is a generative model of underlying social network 100 

structures using provided information on the presence of social groups, the spatial 101 

structure of the population and traits of individuals within it by adapting a stochastic 102 

block model (Lee & Wilkinson, 2019). We use social group to refer to the assignment of 103 

individuals to prespecified groups when populations are generated, and spatial structure 104 

as any additional effects attributed to the distribution of these groups in 2D space. While 105 
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using this inbuilt functionality is appealing due to the required inputs and outputs being 106 

adapted for other parts of the package, it is equally possible to use other tools to 107 

simulate the underlying social network structure. For example, users may want to 108 

employ standard generative models (e.g. erdos-renyi random graphs, small-world 109 

networks etc.) or to take advantage of the growing availability of more advanced and 110 

highly flexible generative models for networks. One example is the STRAND R package 111 

(Ross et al., 2022) which combines features from the social relations model alongside 112 

the stochastic block model. 113 

4. Simulate interactions 114 

It is then possible to use genNetDem to simulate social interactions using this 115 

underlying social structure. These interactions/events can incorporate dyadic or non-116 

dyadic interactions, hence our use of grouping events to describe these (higher-order) 117 

interactions generated from an underlying dyadic network of social relationships. 118 

5. Simulate population processes 119 

genNetDem additionally provides functionality to simulate survival and recruitment to 120 

incorporate population dynamics. Survival can be simulated as a function of an 121 

individual’s social interactions and non-social traits enabling genNetDem to provide a 122 

powerful tool to better understand links between social behaviour and population 123 

processes. Currently recruitment is strongly density-dependent as a tool to maintain an 124 

(approximately) constant population size.  125 

6. Simulate an observation process 126 

Finally, genNetDem also provides tools to simulate a capture and observation process 127 

based on the simulated grouping events (interactions) such that it is inherently 128 

influenced by the underlying social structure. These samples can be used to generate 129 
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co-capture datasets to test the power to detect social network effects on demographic 130 

rates (as illustrated in the case studies) or other research questions of interest. 131 

In a typical worflow these stages can be linked together to generate longitudinal datasets. For 132 

example, in Figure 1, we repeat steps 4, 5 and 6 to generate a co-capture dataset that 133 

provides a window into how social network structure and demographic rates are linked in our 134 

simulated population. Adapted versions of this workflow are used for the case studies below. 135 

 136 

  137 

Figure 1. An example workflow for using genNetDem to simulate integrated network-138 

demographic datasets. This is a simplified version of the approach used in the case studies 139 

with the grey box capturing a demographic timestep and step 4 involving one or more 140 

behavioural timesteps. Note that while in the case studies we fix a relationship between social 141 
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network position and survival prior to the repeated steps, this relationship could vary if desired 142 

hence its inclusion within the repeated steps box. Note also that multiple set of interactions can 143 

be generated prior to the simulation of population processes if desired. The modular nature of 144 

the functions in the package mean that different parts of this workflow can also be used 145 

independently. Further usage examples are provided in the package vignettes. 146 

 147 

genNetDem functions 148 

We provide a description of key functions here and summary in Table 1, with more technical 149 

details on functions provided in the Supplementary Materials 2. 150 

 151 

Population features 152 

The population features provide capability to simulate a population and generate data 153 

about individuals in it. There is then functionality that simulates population dynamics based on 154 

individual survival probabilities (see survival features) and stochastic recruitment that 155 

maintains an approximately stable population size when employed. 156 

The population_generation_basic() function generates data for a group-structured 157 

population distributed uniformly in 2D space. The function takes two arguments: n defines the 158 

population size and ng the number of groups in the population. When n=ng individuals are 159 

distributed uniformly at random across the defined coordinates. When n>ng groups are 160 

distributed uniformly at random across the same coordinates with individuals in the same 161 

group sharing the same spatial location. Currently, simulated population size is independent of 162 

the extent of the area it occupies. Therefore, population density will increase with population 163 

size and impact spatial effects on social network structure. This does not represent a problem 164 

except when users want to compare the social structures of populations of different sizes. 165 
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Group membership is currently fixed once an individual is recruited into the population 166 

(although future versions are likely to allow more flexibility in group membership). The 167 

indiv_info_gen() and indiv_info_add() functions provide flexibility in generating and updating 168 

individual-level trait data. Variables can be specified as covariates (e.g. size) or categorical 169 

factors (e.g. sex), with further arguments specifying additional features of the variable (e.g. the 170 

distribution of a covariate or the number of levels and level names of a factor). Trait values are 171 

assigned stochastically using the indiv_info_gen() function, but it is also possible to use 172 

researcher-defined trait values if they are formatted in an appropriate manner for the package.  173 

The timestep_demographics() function controls survival and recruitment in the 174 

simulated population. Survival is stochastic based on each individual’s survival probability (see 175 

survival features). The number of recruits is Poisson distributed (𝜆 = 𝑃𝑟(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1 − 1, 176 

where 𝑃𝑟(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean survival probability in the population) to be approximately 177 

density-dependent. When the population is group-structured individuals can only be recruited 178 

into existing groups. When there is no underlying group structure then individuals are recruited 179 

into existing locations if they are available and new locations otherwise. 180 

 181 

Survival features 182 

The covariates_survival() function allows survival probabilities to be calculated for 183 

each individual based on individual traits and the position of an individual within a population 184 

social network (this could be any network provided to the function; the underlying social 185 

networks, simulated interaction network or a separate user-specified network). Individual traits 186 

specified in the dataframe generated by indiv_info_gen() can be used as covariates. There is 187 

also considerable flexibility in which measures of network position can be included as 188 

covariates; both the function and R package used can be specified within the function, with 189 
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functionality for most common packages (e.g. sna: (Butts, 2014); igraph: (Csardi & Nepusz, 190 

2006); tnet: (Opsahl, 2009)) incorporated. It is also possible to simulate network covariance in 191 

survival whereby closely connected individuals have either more or less similar survival 192 

probabilities than expected by chance (this uses an approximation of the underlying network 193 

that is positive definite as a covariance matrix). Note that it may also be possible for some 194 

network covariance in survival probabilities to arise without this being encoded directly, for 195 

example if survival is positively associated with centrality and more central individuals tend to 196 

be more connected with each other.  Currently, covariates_survival() simulates independent 197 

(additive) effects of traits, meaning that, while the effects of multiple traits can be incorporated 198 

together, there is no functionality to capture interactions among variables (e.g. network position 199 

having different effects in males than females). The simpler basic_survival() function 200 

generates population-level survival probabilities in the absence of covariates. 201 

 202 

Network features 203 

There are two core functionalities of the network features: to generate underlying social 204 

networks for the population; and to generate grouping events (interactions/associations) based 205 

on these networks. There are also two network_checker() functions that quantify and 206 

visualise how well social networks derived from grouping events match the underlying network 207 

used to generate them. 208 

The network_generation_covariates() function generates an underlying network 209 

structure based on social group membership (as defined when generating the population), 210 

spatial locations and individual traits. Figure 2 shows examples of networks generated. Current 211 

functionality is focussed on how these traits impact the probability of forming social 212 

connections within and between groups separately, thus employing a stochastic block model 213 



11 
 

(Lee & Wilkinson, 2019). Block membership is defined based on the assignment of individuals 214 

to prespecified social groups, with it possible for between block edge probabilities to be 215 

additionally modified by the spatial distance between groups (Fig. S12; the spatial structure; 216 

implemented by multiplying baseline values for between-block edge probabilities and weights 217 

by  
1

𝑑_𝑒𝑓𝑓

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
). Therefore, genNetDem is not directly designed to incorporate some known 218 

social processes such as triadic closure or assortativity, for example females being more 219 

closely connected to other females, although it could be possible to use group membership 220 

and no spatial structure to approximate these effects (and it is also important to note that 221 

assortativity or triadic closure can also arise [indirectly] as an emergent property of the 222 

selected generative model). It is also currently not possible for interaction effects to be coded 223 

directly (e.g. if size effects on connectivity were different for males and females). Edge 224 

probabilities and edge weights are modelled independently to allow variables to explain 225 

variation in one or both of them. Edge weights are parameterised by fitting a beta distribution 226 

to a provided mean and variance, generating edge weights between 0 and 1 in the underlying 227 

network. There is also a simpler network_generation_basic() function that uses the same 228 

generative model without covariates. 229 

 230 
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 231 

Figure 2. Examples of the diverse underlying social network structures it is possible to simulate 232 

with genNetdem. Here we explore the impact of spatial and social structure on otherwise 233 

similar sets of rules for the generation of social relationships. Code to replicate this figure and 234 

further explore network possibilities is provided in the Supplementary Materials. 235 

 236 

When modelling longitudinal network data, the individual social network positions could 237 

vary from relatively stable to highly dynamic (Pinter-Wollman et al., 2013). The 238 

network_rewire_covariates() function adds newly recruited and removes dead individuals 239 

from the network but also provides functionality to select probabilities that a) an individual 240 

changes some social relationships and b) each social relationship for selected individuals 241 

changes. Rewiring of edges uses the same generative model as the initial generation of 242 

networks. Thus, it is possible to parameterise network_rewire_covariates() such that new 243 

social connections follow the same rules as others in the network or to simulate different 244 

network structures (e.g. reducing the important of social group membership or spatial 245 

structure). This allows flexibility in how dynamic simulated networks are. 246 
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There are two functions that generate grouping events based on underlying network 247 

structure: interaction_generation_simul() and interaction_generation_seq(). The difference 248 

between them is that the former divides all individuals in the population into groups (or 249 

isolates) at each time point, while the latter independently samples one group of a defined size 250 

from the population at a time. The former is more widely useful. It uses data on individual IDs, 251 

their underlying social network and a mean group size to divide the populations into groups, 252 

with group membership being stored in a group-by-individual matrix (GBI; see (Farine, 2013)). 253 

The n_ts argument defines the number of times this process is repeated (i.e. number of 254 

“behavioural timesteps”). Assigning individuals into groups based on the underlying network 255 

can create computational challenges if unconstrained. We use a similar approach to (Evans et 256 

al., 2020), with individuals being added to groups sequentially and the probability of joining 257 

being proportional to the strength of its social relationships with existing members calculated 258 

using (𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 +  
𝑠𝑢𝑚 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑝𝑚
+ 𝑓𝑙𝑜𝑎𝑡)𝑝𝑜𝑤 (see Supplementary 259 

Materials 2). Including a non-zero float argument means it is never impossible to add an 260 

individual to an existing group even in the absence of any social connections. While it may be 261 

tempting to reduce the float to zero this can result in it being impossible (or computationally 262 

challenging) to successfully sample all individuals into groups. However, care should be taken 263 

with particular combinations of group size distributions and underlying network structures that 264 

these relaxations do not dominate grouping event generation. This can be checked with the 265 

network_checker_simul() function. The network_checker_simul() makes it possible to 266 

compare network measures calculated from the network generated from grouping event data 267 

compare with those calculated from the underlying network, and uses the netlm function from 268 

sna (Butts, 2014) to conduct a matrix regression between the two networks to test the 269 

association between edge weights in each (see Supplementary Materials 2 for more detail). 270 
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 271 

Observation features 272 

 The observation features sample the simulated grouping events and generate data for 273 

subsequent analyses. Data is generated in a variety of formats including GBI matrices for 274 

social network analysis and classic capture-recapture formats. There are two cap_and_obs() 275 

functions that generate an observed network dataset based on the sampling strategy and 276 

design. Of the two cap_and_obs2() has greater flexibility (see Supplementary Materials). 277 

Inputs include: a) data on true grouping events (the GBI and a vector indicating which 278 

behavioural timestep each group occurred in); b) vectors indicating behavioural timesteps to 279 

be sampled, indicated separately for captures and observations; c) the success of sampling 280 

including both the proportion of groups detected and the proportion of individuals in each 281 

sampled group detected; and d) a vector indicating which (if any) individuals had been 282 

captured previously. The function then samples grouping events from each behavioural 283 

timestep indicated for captures and observations using a pre-defined probability (pcg and pmg 284 

respectively), and then individuals within these grouping events with a second pre-defined 285 

probability (pci and pmi respectively). Captures take precedence over observations in 286 

behavioural timesteps where both are indicated. Individuals can only be observed if they have 287 

previously been captured (although it is possible to provide additional information on previous 288 

captures using the argument pre_cap). The function returns GBIs for captured and observed 289 

groups and other related information. The cap_dat_gen() function transforms these network 290 

datasets into capture histories for both behavioural timesteps and demographic timesteps and 291 

the obs_net_checker() function provides comparisons between sampled networks and both 292 

the network derived from grouping event data and the underlying population network.293 
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Function Purpose Main inputs Main outputs 

population_generation_basic() Generates initial population 
Number of individuals 

Number of groups 

Population dataframe 

Distance matrix 

indiv_info_gen() Generates individual trait data 
Population dataframe 

Trait information 
Trait dataframe 

indiv_info_add() Adds individual trait data for recruited individuals 
Population dataframe 

Trait dataframe 
Updated trait dataframe 

timestep_demographics() 
Controls survival and recruitment at the end of 

each demographic timestep 
Population dataframe 

Updated population dataframe 

Updated distance matrix 

covariates_survival() 
Simulates survival probabilities for each individual 

based on its network position and individual traits 

Population dataframe 

Trait dataframe 

Network 

Effect sizes 

Updated population dataframe 

network_generation_covariates() 
Simulates the (underlying) social network structure 

of the population 

Population dataframe 

Trait dataframe 

Distance matrix 

Generative model parameters 

Social network as an adjacency matrix 

and igraph object 

network_rewire_covariates() 

Generates social network for newly recruited 

individuals and allows rewiring of social 

connections for existing individuals 

Population dataframe 

Previous population dataframe 

Trait dataframe 

Distance matrix 

Generative model parameters 

Updated social network (as an 

adjacency matrix and igraph object) 

interaction_generation_simul() 
Generates association data (grouping events) 

based on the population social network 

Population dataframe 

Social network 

Mean group size 

Group-by-individual matrix (incidence 

matrix) linking individuals to particular 

grouping events 

network_checker_simul() 
Compares properties of the network generated 

from grouping events to underlying social network  

Group-by-individual matrix 

Social network 
Results of the comparisons carried out 

cap_and_obs2() 
Simulates observation process in each behavioural 

timestep by imperfect sampling of grouping events 

Group-by-individual matrix 

Sampling parameters 

Group-by-individual matrices for 

captured and observed groups 

cap_dat_gen() 
Converts captures and observations into 

conventional capture-recapture datasets 

Overall population dataframe 

Information on sampling 

Capture-recapture data for demographic 

and behavioural timesteps 

Table 1. An overview of the main functions provided by genNetDem alongside information on their main inputs and outputs. Note 294 

that where multiple similar functions exist we include an example in the table, but alternatives are detailed in the main text and 295 

supplementary materials. 296 
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Case Studies 297 

We use two complementary case studies to illustrate the use of genNetDem. In the first we test 298 

how our ability to estimate the relationship between network position and survival depends on 299 

sampling effort; whether local or global centrality affects survival; and network dynamics. We 300 

compare the performance of cross-sectional versus longitudinal imputation of the network 301 

position of non-detected individuals and explore the importance of network covariance in 302 

survival probabilities. In the second we demonstrate how a researcher could use genNetDem 303 

to compare sampling designs. We test how the power to estimate relationship between 304 

network position and survival depends on how sampling effort is distributed through time. Our 305 

simulation asks the question as to whether it is better to concentrate resources into intensively 306 

monitoring more groups in fewer sampling windows or fewer groups in more sampling 307 

windows. We examine whether any differences are impacted by the proportion of individuals 308 

detected in each sampled group and the structure of the underlying social network. 309 

 310 

Methods common to both case studies 311 

In both case studies we use genNetDem to simulate survival and social interactions and then 312 

sample from them to generate capture histories. Illustrations of the workflows used a provided 313 

in Figures S1-2. We fit hidden Markov Models to estimate survival and capture probabilities 314 

using nimble (de Valpine et al., 2017, 2022).  315 

 316 

Data recorded from simulation runs 317 

We recorded a) the capture-recapture dataset for each demographic timestep; b) the 318 

sampled social network generated from all observed interactions within each demographic 319 

timestep; c) individual survival probabilities for each demographic timestep; and d) information 320 
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on true population size and the number of individuals recorded at each demographic timestep. 321 

We estimated the network measure of interest from the sampled social network and scaled it 322 

(mean-centred and scaled to have unit variance) within each demographic timestep to use as 323 

an explanatory variable.  324 

 325 

Modelling approach 326 

We fitted Cormack-Jolly-Seber models estimating both capture and survival probabilities 327 

(Lebreton et al., 1992) and used Bayesian inference for parameter estimation. We included 328 

explanatory variables of sex and social network measure (either strength or betweenness). In 329 

each model we used weakly informative priors for all parameters (Gaussian distribution with 330 

µ=10 and σ=10 for survival-related variables, uniform distribution between 0 and 1 for capture 331 

probability). We used a single Markov chain of 3000 iterations with a burn-in of 500 and a 332 

thinning interval of 5. We confirmed that this number of iterations was typically sufficient for 333 

model convergence and an adequate effective sample size in a subset of simulations.  334 

 335 

Analysis of simulation results 336 

From each simulation run we calculated the posterior median and standard deviation, the 337 

proportion of the posterior greater than zero, and the 89% HDI. We also calculated a binary 338 

variable indicating whether or not 0 was contained within the 89% HDI. We could then 339 

compare model performance visually and by calculating statistical clarity for positive social 340 

effects on survival as the proportion of simulation runs where 0 fell outside the 89% HDI. 341 

 342 
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Case study 1: Performance of basic imputation to estimate social effects 343 

on survival  344 

Specific Methods 345 

Overview of Data generation 346 

We simulated a population of 200 individuals with no underlying social group structure. 347 

Individual variation was restricted to a single two-level categorical variable – sex (allocated 348 

stochastically; each individual had a 50% chance of being either male or female). The 349 

underlying social network had moderate spatial structure.  350 

We simulated the behaviour and survival of individuals over 10 demographic timesteps 351 

(over which survival was simulated), each containing five behavioural timesteps (at which 352 

individuals were organised into grouping events). Grouping events had a mean size of two 353 

individuals (many events were dyadic and individuals were frequently alone) to capture a 354 

situation where a species rarely occurs in large aggregations. Survival probability depended on 355 

sex (moderate effect of 0.5 on a logit scale) and position in the social network calculated from 356 

grouping events (see below) with a baseline survival probability of 0.8 in females. We assumed 357 

no recruitment into the population (i.e. the population declined over the simulation). 358 

We assumed that all individuals in the population were marked or individually-359 

identifiable prior to the start of the study. Captures and/or observations (which were 360 

functionally equivalent as all individuals were marked) took place in all behavioural timesteps 361 

(50 in total). Each group had either a 25%, 50% or 75% percent chance of being detected 362 

(parameter varied between simulation runs) with the detection probability of an individual in a 363 

detected group fixed at 0.9. 364 

 365 
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Simulation structure 366 

In total we generated 3240 simulated datasets, varying five parameters that influenced network 367 

dynamics (one parameter), network effects on survival (three parameters) and sampling (one 368 

parameter). 369 

• Network dynamics: we varied the probability that an individual’s existing connections in 370 

the underlying social network were rewired after each demographic timestep with values 371 

set at 0 (no rewiring), 0.1 and 0.5. If it did rewire its connections then the per-edge 372 

probability that an individual changed its connections was 0.5. Edges were rewired 373 

using the same generative model used to create the initial network.  374 

• Network effects on survival: a) we varied the network measure that influenced survival 375 

to be either strength (local measure; sum of weighted connections) or betweenness 376 

(global measure; number of shortest paths passing through an individual); b) we varied 377 

the effect size to be 0 (no effect), 0.4 (moderate effect) or 0.8 (strong effect); c) we 378 

altered covariance of individual survival within the network to be negative (individuals 379 

strongly connected with each other have more dissimilar survival probabilities), neutral 380 

or positive (strongly connected individuals have more similar survival probabilities).  381 

• Sampling: we varied the probability of sampling (either capturing or observing) a group 382 

at each behavioural timestep to be 0.25, 0.5 or 0.75. 383 

An illustration of the workflow used is in Figure S1. For each combination of parameters (162) 384 

we ran 20 replicates. 385 

 386 

Data recorded 387 

In addition to the four types of data described in the combined methods, we also 388 

recorded the full social network generated from all interactions within each demographic 389 
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timestep (including those not observed). We estimated the network measure of interest from 390 

these full networks and scaled them within each demographic timestep as for measures from 391 

partial networks. 392 

 393 

Model-fitting 394 

From each simulation run we fitted four model versions (see combined methods for 395 

details on model-fitting). The four versions differed in: a) using the measure from the sampled 396 

network and a longitudinal approach for imputing non-observed individuals; b) using the 397 

measure from the sampled network and cross-sectional imputation; c) using the measure from 398 

the full (unobserved) network and longitudinal imputation; and d) using the measure from the 399 

full network and cross-sectional imputation. For cross-sectional imputation missing values 400 

were estimated using the mean and variance of the (scaled) focal network measure for all 401 

individuals from a given demographic timestep. For longitudinal imputation missing values 402 

were estimated using the mean and variance of the focal network measure for each individual 403 

across all timesteps in which it was captured or observed where possible and the overall mean 404 

and variance when not (i.e. when an individual was only captured once). 405 

 406 

Analysis of simulation results 407 

Prior to the general analysis outlined above, we assessed whether the model had converged 408 

using the posterior median and standard deviation of its estimate for the social effect on 409 

survival. We used k means clustering to identify groups of simulation runs where the model 410 

was unlikely to have converged. We used k=6 clusters and retained 3 out of 6 of these clusters 411 

based on the elbow method and visual inspection of the output (Fig. S2). This method 412 

identified ~2.5% of models had likely not converged.  413 
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To compare the success of models that used network measures calculated from the 414 

partial versus full network we calculated the earth mover’s distance (EMD) of the posterior 415 

distributions (Touzalin et al., 2022) for the parameter of interest from relevant pairs of models. 416 

(i.e. we calculated the EMD for model versions using the full and partial network together with 417 

longitudinal imputation and also the EMD for the model versions using the full and partial 418 

network together with cross-sectional imputation). EMDs provide a measure of overlap of the 419 

posterior distributions. 420 

 421 

Results and Discussion 422 

Overall, we show it is possible to estimate social effects survival from partial networks, albeit 423 

with substantial limitations in power (Fig. 3, Table 2, Table S1). Estimates of social effects on 424 

survival were downward biased meaning that statistical power was limited and only stronger 425 

social effects on survival are likely to be detected. Sampling effort was particularly important 426 

and interacted with how imputation was conducted in determining how well models converged 427 

and biases in parameter estimates when they did. Estimates of other parameters were 428 

unaffected. 429 

Previous research has demonstrated that network measures from sampled, partial 430 

networks are correlated with those in the full, unobserved network but that these correlations 431 

vary depending on the proportion sampled and network measure calculated (Silk et al., 2015; 432 

Smith & Moody, 2013). Further, the regression slope is rarely 1:1 indicating values for 433 

measures estimated are not perfectly accurate (Silk et al., 2015). This likely explains many of 434 

our results showing the difficulty of detecting social effects on survival in the absence of 435 

network imputation or the use of measures from independently (and better) sampled social 436 

networks).  437 
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 438 

Network variable and covariance structure 439 

When we compared models that used network measures from the full and partial networks we 440 

found downward-biased parameter estimates and reduced statistical clarity of results when 441 

partial network measures were used (Table 2, Fig. 3). These patterns were more striking when 442 

survival was related to a global measure of centrality (betweenness) than a local measure of 443 

centrality (strength). We found that including positive or negative covariance in survival 444 

probabilities related to social network structure had little effect on estimation or power in the 445 

contexts simulated (Fig. S4, Tables S5-6). 446 

These results fit well within the literature on how missing individuals impact the 447 

conclusions of social network analysis, with previous studies showing that global estimates of 448 

social centrality (such as betweenness) from partial networks are less well correlated than 449 

measures of local centrality (such as strength) with equivalent measures from the full network 450 

(Silk et al., 2015). While for strength in particular downward-biased parameter estimates in 451 

combination with maintained statistical power could also be related to measures of strength 452 

being lower in the smaller, sampled network (Silk et al., 2015), this should be controlled for by 453 

scaling network measures before using them in the model. The lack of a clear effect of network 454 

covariance is somewhat surprising. These results are promising in suggesting that this may 455 

present a more limited issue in this context than often considered (e.g. (Croft et al., 2011; 456 

Farine & Carter, 2020; Silk et al., 2017)). However, the importance of covariance likely 457 

depends substantially on network structure and density, so it would be unwise to generalise 458 

these patterns without further work focussed specifically on this question. 459 

 460 
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Sampling effort, imputation approach and network dynamics 461 

Lower sampling effort was typically associated with both a) reduced likelihood of model 462 

convergence (Table 3, Table S2), and b) downward-biased parameter estimates (Fig. 3). 463 

However, the nature of these relationships depended on the imputation approach selected 464 

(Table 2, Fig. 3), with the performance of different imputation approaches largely independent 465 

of network dynamics (Tables S3-4, Fig. S3). 466 

 Models were much less likely to converge when sampling effort was low (25% group 467 

capture probability), betweenness centrality from partial networks was used as an explanatory 468 

variable and cross-sectional imputation was used to infer missing values (Table 3, Table S2). 469 

Even when 50% of groups were sampled in these situations there was still a reduction in 470 

convergence rate. Note that this was apparent regardless of whether betweenness centrality 471 

had a positive or no effect on survival probability. Any other changes in the likelihood of model 472 

convergence were of much smaller magnitude, but generally occurred when sampling effort 473 

was low (and measures from partial networks were used).  474 

With cross-sectional imputation and use of measures from the full network, estimation of 475 

social effects on survival were largely independent of sampling effort in the contexts examined. 476 

With longitudinal imputation there was some reduction in estimates of the social effect on 477 

survival with low levels of sampling (25% groups sampled). However, both cross-sectional and 478 

longitudinal imputation demonstrated similar relationships between sampling effort and 479 

statistical power (Table 2, Table S1), indicating that posterior distributions had higher variance 480 

when cross-sectional imputation was used. 481 

When measures from the partial network were used instead, there was a much more 482 

substantial reduction in both parameter estimates and statistical power apparent even for 483 

higher sampling efforts (Fig. 3, Table 2). Reductions in parameter estimates were more 484 
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substantial and remained linear when longitudinal imputation was used, instead flattening out 485 

for cross-sectional imputation so that the difference between 25% and 50% of groups being 486 

sampled was less than the difference between 50% and 75% (Fig. 3). However, similarly to the 487 

pattern for full network measures, this was not reflected in changes to statistical power which 488 

were broadly equivalent for both, indicating a less precise posterior distribution for cross-489 

sectional imputation. These differences between cross-sectional and longitudinal imputation 490 

changed how EMDs calculated for the differences between posteriors from the full network and 491 

partial network model fits depended on sampling effort (Fig. 4). For cross-sectional imputation 492 

EMDs were highest for low sampling effort (p=0.25) while for longitudinal imputation they 493 

peaked at intermediate sampling effort (p=0.5). However, in general EMDs were higher for 494 

cross-sectional than longitudinal imputation. 495 

Our results show that when social networks are constructed based on the same co-496 

capture data used to estimate survival, even relatively small drops in sampling effort can lead 497 

to downward biases in parameter estimates and statistical power. While this pattern was 498 

especially strong when global measures of centrality such as betweenness explain variation in 499 

survival probability as expected from previous literature (Silk et al., 2015; Smith & Moody, 500 

2013), it was also apparent when strength was associated with survival instead. However, in 501 

this latter case underestimated social effects on survival only caused substantial reductions in 502 

statistical power with very low sampling effort. Consequently, our results fit broadly within the 503 

existing literature where low sampling effort has a greater impact on global measures of 504 

centrality but suggest that missing a high proportion of interaction events leads to wider 505 

problems with subsequent statistical analyses. This was particularly apparent when cross-506 

sectional imputation was used to estimate missing values for betweenness centrality when 507 

there was a substantial drop-off in how likely models were to converge. Combined with cross-508 
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sectional imputation generating less precise posteriors, this suggests that longitudinal 509 

imputation is a more stable option of the two, although it does lead to greater downward bias in 510 

estimates of social effects on survival. However, neither imputation approach performed well, 511 

highlighting the value of extending network imputation approaches (R. W. Krause et al., 2018, 512 

2020; Young et al., 2020) within capture-recapture models. A good example is provided by 513 

(Clements et al., 2022), who estimate not only the network itself but also the underlying 514 

behaviours that generate the network structure within a Cormack-Jolly-Seber model. While this 515 

was done in the context of a simulation study, and so involved fitting the data-generating 516 

model, it does show the potential of network imputation to improve the accuracy of estimates 517 

of social effects on survival.  518 

 519 

Estimates of other parameters 520 

Estimates for other parameter values were unaffected by social effects on survival, use of 521 

measures from full or partial networks or imputation strategy (Figs. S5-7). 522 

  523 
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Table 2. Proportion of simulation runs where 0 falls outside the 89% HDI for different 524 

parameter combinations. M1: partial network - cross-sectional imputation; M2: partial network 525 

– longitudinal imputation; M3: full network – cross-sectional imputation; M4: full network – 526 

longitudinal imputation. 527 

Network measure True effect Model Group capture probability Detection rate 

Strength 0.4 M1 0.50 0.75 

Strength 0.4 M2 0.50 0.72 

Strength 0.4 M3 0.50 0.98 

Strength 0.4 M4 0.50 0.98 

Betweenness 0.4 M1 0.50 0.26 

Betweenness 0.4 M2 0.50 0.25 

Betweenness 0.4 M3 0.50 0.94 

Betweenness 0.4 M4 0.50 0.94 

Strength 0.8 M1 0.50 0.99 

Strength 0.8 M2 0.50 0.99 

Strength 0.8 M3 0.50 1.00 

Strength 0.8 M4 0.50 1.00 

Betweenness 0.8 M1 0.50 0.70 

Betweenness 0.8 M2 0.50 0.68 

Betweenness 0.8 M3 0.50 1.00 

Betweenness 0.8 M4 0.50 1.00 

 528 

  529 
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Table 3. Convergence rates of models using different imputation approaches for various 530 

parameter combinations. M1: partial network - cross-sectional imputation; M2: partial network 531 

– longitudinal imputation; M3: full network – cross-sectional imputation; M4: full network – 532 

longitudinal imputation. 533 

Network measure Model Group capture probability Convergence rate 

Strength M1 0.25 0.98 

Strength M1 0.50 0.99 

Strength M1 0.75 1.00 

Strength M2 0.25 1.00 

Strength M2 0.50 1.00 

Strength M2 0.75 1.00 

Strength M3 0.25 1.00 

Strength M3 0.50 1.00 

Strength M3 0.75 1.00 

Strength M4 0.25 1.00 

Strength M4 0.50 1.00 

Strength M4 0.75 1.00 

Betweenness M1 0.25 0.65 

Betweenness M1 0.50 0.94 

Betweenness M1 0.75 0.98 

Betweenness M2 0.25 0.96 

Betweenness M2 0.50 1.00 

Betweenness M2 0.75 1.00 

Betweenness M3 0.25 0.96 

Betweenness M3 0.50 0.97 

Betweenness M3 0.75 0.99 

Betweenness M4 0.25 1.00 

Betweenness M4 0.50 1.00 

Betweenness M4 0.75 1.00 

 534 

  535 



28 
 

 536 

Figure 3. Distribution of posterior medians for the social effect of survival for different 537 

combinations of model (shaded polygons; M1: partial network - cross-sectional imputation; M2: 538 

partial network – longitudinal imputation; M3: full network – cross-sectional imputation; M4: full 539 

network – longitudinal imputation), network measure (S=Strength; B=Betweenness) and true 540 

effect size (box colour) when a) 25% of groups are sampled, b) 50% of groups are sampled 541 

and c) 75% of groups are sampled. The solid central line represents the median, boxes the 542 

interquartile range and whiskers the full range of values.  543 
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 544 

Figure 4. Earth mover’s distances demonstrating the similarity of the posterior distributions for 545 

model estimates of the social effect on survival between the model using full and partial 546 

network measures for a) cross-sectional and b) longitudinal imputation. The solid central line 547 

represents the median, boxes the interquartile range and whiskers extend to 1.5x the 548 

interquartile range. We show the distributions for different combinations of group capture 549 

probability (0.25, 0.5 or 0.75), true simulated effect size (grey for 0, blue for 0.4 and red for 0.8) 550 

and the network measure influencing survival probability (strength vs betweenness). To aid 551 

visualisation we have excluded 19 outlying points with EMD>2 for panel a).  552 
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Case study 2: Effective sampling strategies to estimate social effects on 553 

survival 554 

Specific Methods 555 

Overview of Data generation 556 

We simulated a population of 200 individuals with either a) no underlying social group 557 

structure; or b) divided into 20 social groups. Individual variation in the population was 558 

restricted to a single two-level categorical variable – sex. Underlying network structure 559 

depended on parameter choice (see below).  560 

We simulated the behaviour and survival of individuals over 10 demographic timesteps, 561 

each of which contained 20 behavioural timesteps. As previously, grouping events had a mean 562 

size of two individuals. The survival probability of each individual depended on its sex (fixed 563 

effect of 0.5 on a logit scale) and position in the social network calculated from grouping events 564 

(see below) with a baseline survival probability of 0.8 in females. In this case study, there was 565 

recruitment into the population over time (i.e. the population stayed roughly constant over each 566 

simulation). There was a 10% chance that a surviving individual rewired its underlying social 567 

connections after each demographic timestep, and if it did each connection had a 50% chance 568 

of changing. Edges were rewired using the same generative model used to create the initial 569 

network. 570 

The population was initially unmarked. Captures only occurred in the first behavioural 571 

timestep of each demographic timestep with 90% of groups sampled and a 0.9 probability of 572 

individuals in a sampled group being detected. Sampling design and effort for subsequent 573 

observations depended on parameter choice (see below). 574 

 575 
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Simulation structure 576 

In total we generated 2880 simulated datasets, varying five parameters that influenced network 577 

structure (one parameter), network effects on survival (two parameters) and sampling 578 

effort/design (two parameters). 579 

• Network structure: we varied underlying network structure so that either a) there was no 580 

group structure and moderate spatial structure driving the probability and weight of 581 

edges; or b) the population was divided into 20 groups with the probability of a within-582 

group connection of 0.5 and within-group connection weights having a mean of 0.5 583 

(versus a baseline of 0.2 and 0.25 respectively for between-group connections prior to 584 

adjusting for distance effects).  585 

• Network effects on survival: a) we varied the network measure that influenced survival 586 

to be either strength or betweenness; and b) we varied the effect size to be 0 (no 587 

effect), 0.4 (moderate effect) or 0.8 (strong effect). 588 

• Sampling: a) we varied sampling design so that the probability of observing a group 589 

within a sampled behavioural timestep covaried with the number of behavioural 590 

timesteps sampled in each demographic timestep resulting in (approximately) 591 

equivalent sampling effort being divided over the full demographic timestep. The 592 

probability of observing a group was either 0.1, 0.2, 0.4 or 1, with the number of 593 

behavioural timesteps observed being 19, 10, 5 or 2; b) we varied the probability of an 594 

individual being observed in a sampled group to be either 0.5, 0.75 or 1.    595 

An illustration of the workflow used is in Figure S2. For each combination of parameters (144) 596 

we ran 20 replicates. 597 

 598 



32 
 

Model-fitting 599 

Unlike Case study 1 each Cormack-Jolly-Seber model was conditioned on first capture 600 

(as individuals were not assumed to have been captured previously).  601 

 602 

Results and Discussion 603 

Overall, survival models performed adequately in detecting social effects on survival (Table 4, 604 

Fig. 5, Tables S7-9, Fig. S8). When we simulated positive effects of network centrality on 605 

survival probabilities model estimates reflected this, although were substantial underestimates, 606 

especially with only moderate social effects on survival. These results support those from Case 607 

Study 1 indicating that it is possible to estimate social effects on survival, but that statistical 608 

power is limited with the presence of non-detected individuals and/or when many interaction 609 

events are unobserved. More encouragingly we show that for two very different social network 610 

structures there is little evidence for strong bias or elevated false positive rates when there is 611 

no social effect on survival. 612 

 613 

Network variable 614 

Our statistical models were better able to detect the effect of strength (local centrality measure) 615 

than betweenness (global centrality measure) on survival probabilities. While, the effect size 616 

was underestimated for both measures, this bias was much greater for betweenness centrality 617 

(Fig. 5), and results were more frequently statistically unclear (Table 4). The results here 618 

support those from Case Study 1 and the existing literature (Silk et al., 2015; Smith & Moody, 619 

2013) in highlighting that global measures of network position are more susceptible to 620 

sampling effects than local measures.  621 

 622 
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Sampling design 623 

There was no clear effect of how groups were sampled within each demographic timestep on 624 

estimates of social effects on survival (Fig. 5). Unsurprisingly, probability of observing 625 

individuals within groups did have some effect, with less downward-biased parameter 626 

estimates and more statistical power when sampling within groups was more complete (Fig. 627 

S8, Tables S7-8), as would be expected. 628 

 Lower observation success within sampled groups leading to reduced model 629 

performance is unsurprising as it leads to missing edges in the sampled network, reducing its 630 

correlation with the true (unobserved) network. This finding supports related work focussed on 631 

calculating network measures (e.g. (Franks et al., 2010)). (Franks et al., 2010) also tentatively 632 

recommended that more censuses (behavioural timesteps sampled in our case) were 633 

preferable than ensuring a high proportion of interaction events sampled in each census for 634 

calculating weighted measures of centrality. However, we found no clear evidence that this 635 

extended to our survival analysis, where there were only small differences in model 636 

performance and no clear overall trend. It should be noted, however, that the simulation 637 

architecture differed between the two papers.  638 

 639 

Social structure 640 

Social structure had a small effect on the ability to detect social effect on survival, with some 641 

differences in statistical power between the two structures investigated. While there were 642 

minimal differences in posterior medians (Fig. 5), results tended to be statistically clearer when 643 

there was no underlying group structure than when the population was divided into 20 groups 644 

(Table 4). Previous studies of sampling in social networks have rarely considered the types of 645 

modular social structures common for group-living animal populations (Silk, 2018). The slight 646 
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negative impact of this group-structure on our ability to detect social effects on survival 647 

perhaps suggests that the correlation between network measures calculated in the sampled 648 

and full networks is weaker in these types of networks. 649 

 650 

Estimates of other parameters 651 

Estimates of other parameters were largely unaffected by social effects or sampling design. 652 

Strong social effects on survival were associated with slightly lower estimates of mean survival 653 

probability, but these differences were caused by differences in simulated survival probabilities 654 

rather than model performance (Figs. S9-11). While limited in scope these results provide 655 

evidence that including social effects on survival in demographic models is unlikely to impact 656 

other parameter estimates substantially (see also (Clements et al., 2022)). 657 

  658 
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Table 4. Proportion of simulation runs where 0 falls outside the 89% HDI for different 659 

parameter combinations with the probability of within-group detection fixed at 1. 660 

Network measure True effect Social structure Sampling design Detection rate 

Strength 0.4 Communities 0.1 0.45 

Strength 0.4 No communities 0.1 0.50 

Strength 0.4 Communities 0.2 0.40 

Strength 0.4 No communities 0.2 0.70 

Strength 0.4 Communities 0.4 0.55 

Strength 0.4 No communities 0.4 0.70 

Strength 0.4 Communities 1.0 0.50 

Strength 0.4 No communities 1.0 0.60 

Betweenness 0.4 Communities 0.1 0.20 

Betweenness 0.4 No communities 0.1 0.10 

Betweenness 0.4 Communities 0.2 0.00 

Betweenness 0.4 No communities 0.2 0.10 

Betweenness 0.4 Communities 0.4 0.00 

Betweenness 0.4 No communities 0.4 0.15 

Betweenness 0.4 Communities 1.0 0.10 

Betweenness 0.4 No communities 1.0 0.15 

Strength 0.8 Communities 0.1 0.95 

Strength 0.8 No communities 0.1 1.00 

Strength 0.8 Communities 0.2 1.00 

Strength 0.8 No communities 0.2 1.00 

Strength 0.8 Communities 0.4 0.95 

Strength 0.8 No communities 0.4 1.00 

Strength 0.8 Communities 1.0 1.00 

Strength 0.8 No communities 1.0 1.00 

Betweenness 0.8 Communities 0.1 0.15 

Betweenness 0.8 No communities 0.1 0.35 

Betweenness 0.8 Communities 0.2 0.45 

Betweenness 0.8 No communities 0.2 0.45 

Betweenness 0.8 Communities 0.4 0.25 

Betweenness 0.8 No communities 0.4 0.40 

Betweenness 0.8 Communities 1.0 0.40 

Betweenness 0.8 No communities 1.0 0.50 

  661 
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 662 

Figure 5. The impacts of sampling design (within-plot: sets of boxes of the same colour), 663 

within-group detection probability (columns) and social structure (rows) on Cormack-Jolly-664 

Seber estimates of social effects on survival probability for a range of simulated effect sizes 665 

(colours of boxes). Boxplots show the distribution of posterior medians from multiple simulation 666 

runs with the solid line the median, boxes the interquartile range and whiskers the full range of 667 

values. We illustrate contexts in which a local measure of centrality (strength) and global 668 

measure of centrality (betweenness) are used as explanatory variables. The blue-dotted line 669 

indicates the accurate parameter estimate when the true effect size is 0.4 (the equivalent line 670 

for 0.8 is not illustrated). 671 

 672 

 673 

  674 
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Future steps 675 

With the two case studies presented we can only scratch the surface of the potential of 676 

genNetDem as a methodological tool for animal social network analyses. Below we highlight 677 

some logical next steps for methodological studies on this topic, focussing on the integration of 678 

social networks and demography. 679 

 First, while we demonstrated the capacity for genNetDem to generate diverse social 680 

structures (Fig. 2), this was only a partial focus of our results. Animal social systems vary 681 

widely, and while optimal sampling strategies are likely to vary with social structure (Clements 682 

et al., 2022; Silk, 2018; Sunga et al., 2021), this has remained understudied. Similarly, while 683 

we varied network dynamics in our simulations, individual variation in edge probabilities was 684 

limited. Incorporating greater trait-based or individual variation in network position would likely 685 

influence conclusions drawn about imputation approaches, for example. The modular design of 686 

genNetDem allows it to be integrated with other tools to simulate social network structure (e.g. 687 

(Ross et al., 2022)), which will help tackle these types of challenges more comprehensively in 688 

future. 689 

 Second, it is clear that simple approaches to imputing missing network measures are 690 

only partially successful; while they successfully generate qualitatively correct results, 691 

parameter estimates for social effects on survival are underestimated. Although developing 692 

more sophisticated approaches to impute values for network measures may help, exploiting 693 

recent developments in network imputation (R. W. Krause et al., 2018, 2020; Young et al., 694 

2020) is likely to have the greatest success. The adaptation of these novel approaches for 695 

behavioural ecology, and specifically within this capture-recapture modelling framework is a 696 

key challenge. (Gimenez et al., 2019) applied basic network imputation to study the social 697 

structure of Commerson’s dolphin Cephalorhynchus commersonii. Similarly, (Clements et al., 698 
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2022) et al. included estimation of network structure within a Cormack-Jolly-Seber model to 699 

improve estimation of social effects on survival. However, the latter approach used a rather 700 

basic generative model for the latent network structure that could be improved on or adjusted 701 

for researchers working in different contexts. Consequently, extending these approaches to 702 

incorporate more sophisticated social network models as well as to open populations is a key 703 

priority. 704 

 Third, to keep our case studies accessible we examined social effects only in Cormack-705 

Jolly-Seber models to estimate survival probability. (Clements et al., 2022) highlighted the 706 

potential value of incorporating social networks within integrated population models (IPMs), 707 

where different data sources could also be used to inform network structure itself. However, 708 

especially with improvements to imputation of latent network structures, there is also great 709 

potential to incorporate network effects within multi-state models more generally. Given the 710 

central role of social behaviour in mediating interactions between infectious disease dynamics 711 

and demographic processes (Silk et al., 2019; Silk & Fefferman, 2021), extending multistate 712 

models to incorporate social network structure in this way could provide important new insights 713 

into wildlife disease ecology, to provide just one example. genNetDem can provide an ideal 714 

sandbox to refine these models for application to wild systems. 715 

 Finally, we focus here on dyadic social networks, however many of the social 716 

interactions studied are non-dyadic and may include higher-order interactions (Battiston et al., 717 

2021; Greening  Jr et al., 2015). While there has been limited focus on higher-order 718 

interactions in animal societies (Musciotto et al., 2022), theory suggests they will impact 719 

infectious disease transmission and social contagions (Battiston et al., 2021; Iacopini et al., 720 

2022; Noonan & Lambiotte, 2021) among other ecological and evolutionary processes. 721 

Therefore, expanding some of the developments here beyond dyadic networks to consider 722 



39 
 

higher-order effects on survival and imputation of hyperedges (social connections between 723 

more than two individuals) will likely represent valuable developments. Because it generates 724 

GBIs that incorporate interactions/associations between more than two individuals genNetDem 725 

is an ideal starting point for methodological research testing higher-order methods in animal 726 

societies.  727 

 728 

Conclusions 729 

We introduce the R package genNetDem as a flexible tool for simulating combined social and 730 

demographic datasets. While we focus on the integration of social network and demographic 731 

models, the modular design of the package allows it to be an equally powerful tool for 732 

generating social network or capture-recapture datasets in their own right. It therefore provides 733 

a general tool for researchers interested in testing key methodological considerations in animal 734 

social network studies, especially as the field moves towards longitudinal analysis. It also helps 735 

researchers wishing to test the power of specific analyses or sampling designs in their own 736 

study systems. 737 
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