
Behavioral flexibility is manipulatable and it improves flexibility1

and problem solving in a new context: post-hoc analyses of the2

components of behavioral flexibility.3

Lukas D1* McCune KB3 Blaisdell AP2 Johnson-Ulrich Z3
4

MacPherson M3 Seitz B2 Sevchik A4 Logan CJ1*5

2022-08-106

Open… access code peer review data7

8

Affiliations: 1) Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 2) University of9

California Los Angeles, USA, 3) University of California Santa Barbara, USA, 4) Arizona State University,10

Tempe, AZ USA. *Corresponding author: dieter_lukas@eva.mpg.de11

12

This is one of three post-study manuscript of the preregistration that was pre-study peer13

reviewed and received an In Principle Recommendation on 26 Mar 2019 by:14

Aurélie Coulon (2019) Can context changes improve behavioral flexibility? Towards a better un-15

derstanding of species adaptability to environmental changes. Peer Community in Ecology, 100019.16

10.24072/pci.ecology.100019. Reviewers: Maxime Dahirel and Andrea Griffin17

Preregistration: html, pdf, rmd18

Post-study manuscript (submitted to PCI Ecology for post-study peer review on 3 Jan 2022): html,19

preprint here20

ABSTRACT21

Behavioral flexibility, adapting behavior to changing situations, is hypothesized to be related to adapting22

to new environments and geographic range expansions. However, flexibility is rarely directly tested in a23

way that allows insight into how flexibility works. Research on great-tailed grackles, a bird species that24

has rapidly expanded their range into North America over the past 140 years, shows that grackle flexibility25

is manipulatable using colored tube reversal learning and that flexibility is generalizable across contexts26

multi-access box). Here, we use these grackle results to conduct a set of posthoc analyses using a model that27

breaks down performance on the reversal learning task into different components. We show that the rate of28

learning to be attracted to an option (phi) is a stronger predictor of reversal performance than the rate of29

deviating from learned attractions that were rewarded (lambda). This result was supported in simulations30

and in the data from the grackles: learning rates in the manipulated grackles doubled by the end of the31

manipulation compared to control grackles, while the rate of deviation slightly decreased. Grackles with32

intermediate rates of deviation in their last reversal, independently of whether they had gone through the33

serial reversal manipulation, solved fewer loci on the plastic and wooden multi-access boxes, and those with34
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intermediate learning rates in their last reversal were faster to attempt a new locus on both multi-access35

boxes. These findings provide additional insights into how grackles changed their behavior when conditions36

changed. Their ability to rapidly change their learned associations validates that the manipulation had an37

effect on the cognitive ability we think of as flexibility.38

INTRODUCTION39

The field of comparative cognition is strongly suspected to be in a replicability crisis, which calls into40

question the validity of the conclusions produced by this research (Brecht et al., 2021; Farrar, Boeckle, et41

al., 2020; Farrar, Altschul, et al., 2020; Farrar et al., 2021; Lambert et al., 2022; Tecwyn, 2021). The lack of42

replicability in experimental design, analyses, and results is, in part, because of the lack of clear theoretical43

frameworks (Frankenhuis et al., 2022), the resulting heavy reliance on measuring operationalized variables44

that are assumed to represent broad concepts, as well as small sample sizes (Farrar, Boeckle, et al., 2020).45

One solution is to start from mechanistic models informed by a theoretical framework that can represent and46

make predictions about how individuals behave in a given task, rather than just relying on statistical models47

that simply describe the observed data (McElreath, 2020). Statistical models cannot infer what leads to the48

differences in behavior, whereas mechanistic models offer the opportunity to infer the underlying processes49

(McElreath, 2020).50

Here, we apply a mechanistic model to a commonly studied trait in animal cognition: behavioral flexibil-51

ity. Recent work provides clearer conceptualizations of behavioral flexibility that allow us to apply such a52

mechanistic model. The theoretical framework argues that the critical element of behavioral flexibility is53

that individuals change their behavior when circumstances change (Mikhalevich et al., 2017), with freedom54

from instinctual constraints (Lea et al., 2020). These theoretical models point out that behavioral flexibility55

appears to contain two internal learning processes: the suppression of a previous behavioral choice and the56

simultaneous adoption of a new behavioral choice. Based on this framework, Blaisdell et al. (2021) showed57

how reversal learning experiments, where individuals have to choose between two options until they learn to58

prefer the rewarded option and then the reward is moved to the other option and they reverse their prefer-59

ence, reflect these learning processes. Blaisdell et al. (2021) built a mechanistic model by adapting Bayesian60

reinforcement learning models to infer the potential cognitive processes underlying behavioral flexibility.61

As their name implies, Bayesian reinforcement learning models (Doya, 2007) assume that individuals will62

gain from learning which of the options leads to the reward. This learning is assumed to occur through rein-63

forcement because individuals repeatedly experience that an option is either rewarded or not. The approach64

is represented as Bayesian because individuals continuously update their knowledge about the reward with65

each choice (Deffner et al., 2020). At their core, these models contain two individual-specific parameters that66

we aim to estimate from reversal performance: how quickly individuals update their attraction to an option67

based on the reward they received during their most recent choice relative to the rewards they received when68

choosing this option previously (their learning rate, termed “phi” 𝜙), and whether individuals already act69

on small differences in their attraction or whether they continue to explore the less attractive option (the70

deviation rate, termed “lambda” 𝜆). Applied to the serial reversal learning setup, where an individual’s71

preferences are reversed multiple times, the model assumes that, at the beginning of the experiment, in-72

dividuals have equally low attractions to both options. Depending on which option they choose first, they73

either experience the reward or not. Experiencing the reward will potentially increase their attraction to this74

option: if 𝜙 is zero, their attraction remains unchanged; if 𝜙 is one, their attraction is completely dominated75

by the reward they just gained. In environments that are predictable for short periods of time, similar to the76

rewarded option during a single reversal in our experiment, individuals are likely to gain more rewards if they77

update their information based on their latest experience. In situations where rewards change frequently or78

novel options become available often, individuals are expected to deviate from their learned attractions to79

continue to explore, while in more stable environments individuals benefit from large 𝜆 values to exploit the80

associations they formed (Cohen et al., 2007). While performance in the reversal learning task has sometimes81

been decomposed between the initial association learning and the reversal learning phase (e.g. Federspiel et82

al., 2017), the reinforcement learning model does not make such a distinction. However, it does predict a83

difference between phases because individuals’ internal states, in particular their attraction toward the differ-84
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ent options, are expected to continuously change throughout the experiment. We also expect individuals to85

“learn to learn” over subsequent reversals (Neftci & Averbeck, 2019), changing their learning and deviation86

rate over repeated reversals. The parameters of the serial reversal model can also capture broader concepts87

that have previously been used to describe variation in reversal learning performance, such as “proactive88

interference” (Morand-Ferron et al., 2022) as the tendency to continue to choose the previously rewarded89

option which would occur if individuals do not update their attractions quickly.90

We applied this model to our great-tailed grackle (Quiscalus mexicanus, hereafter grackle) research on be-91

havioral flexibility, which we measured as reversal learning of a color preference using two differently colored92

tubes (one light gray and one dark gray C. Logan et al., 2022). In one population, we conducted a flexibility93

manipulation using serial reversal learning - reversing individuals until their reversal speeds were consistently94

fast (at or less than 50 trials in two consecutive reversals). We randomly assigned individuals to a manipu-95

lated group who received serial reversals, or to a control group who received one reversal and then a similar96

amount of experience in making choices between two yellow tubes that both contained rewards (C. Logan et97

al., 2022). After the manipulation, grackles were given a flexibility and innovativeness test using one or two98

different multi-access boxes to determine whether improving flexibility in reversal learning also improved99

flexibility (the latency to attempt to solve a new locus) and innovativeness (the number of loci solved) in100

a different context (the multi-access boxes). We found that we were able to manipulate reversal learning101

performance (flexibility) and this improved flexibility and problem solving in a new context (multi-access102

boxes) (C. Logan et al., 2022). However, we were left with some lingering questions: what specifically did103

we manipulate about flexibility? And how might the cognitive changes induced by the manipulation transfer104

to influence performance in a new context? These questions are the focus of the current article.105

RESEARCH QUESTIONS106

1) How are the two parameters 𝜙 or 𝜆 linked to individual differences in reversal learning behavior in107

simulations? Can we reliably estimate 𝜙 or 𝜆 based on the performance of individuals in the reversal108

learning task?109

Prediction 1: We predicted that the Bayesian reinforcement learning model can reliably infer these two110

components based on the choices individuals make, which we tested by assigning individuals 𝜙 and 𝜆111

values, simulating their choices based on these, and back-estimating 𝜙 and 𝜆 from the simulated choice112

data.113

Prediction 2: We predicted that both 𝜙 and 𝜆 influence the performance of individuals in a reversal114

learning task, with higher 𝜙 (faster learning rate) and lower 𝜆 (less exploration) values leading to115

individuals more quickly reaching the passing criterion after a reversal in the color of the rewarded116

option.117

2) Which of the two parameters 𝜙 or 𝜆 explain more of the variation in the reversal performance of the118

tested grackles, and which changed more across the serial reversals?119

Prediction 3: We predicted that whichever of the two parameters, 𝜙 or 𝜆, explains more of the variation120

in the first reversal performance is also the parameter that shows more change after the manipulation.121

However, in the serial reversals, birds need to be able to quickly learn the new reward location and also122

be ready to explore the other option. Accordingly, birds might end up with one of two solutions: they123

might adopt a strategy of weighting recent information more heavily while also showing low exploration,124

or they might show high exploration while being slow at updating their attractions.125

3) Are 𝜙 or 𝜆, the two components of flexibility in reversal learning, associated with performance on the126

multi-access boxes across control and manipulated birds?127

Prediction 4: We predicted that birds that are more flexible, presumably those who have a high 𝜙128

(faster learning rate), have shorter latencies to attempt a new locus and solve more loci on the two129

multi-access boxes. Given that birds might use different strategies to be flexible (see prediction 3), we130

also explore whether the relationship between 𝜙 or 𝜆 and the performance on the multi-access boxes131

is non-linear.132
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METHODS133

The Bayesian reinforcement learning model We used the version of the Bayesian model that was134

developed by Blaisdell et al. (2021) and modified by Logan CJ et al. (2020) (see their Analysis Plan135

> “Flexibility analysis” for model specifications and validation). This model uses data from every trial of136

reversal learning (rather than only using the total number of trials to pass criterion) and represents behavioral137

flexibility using two parameters: the learning rate of attraction to either option (𝜙) and the rate of deviating138

from learned attractions (𝜆). The model repeatedly estimates the series of choices each bird made, based on139

two equations140

Equation 1 (attraction and 𝜙): 𝐴𝑗,𝑖,𝑡+1=(1−𝜙𝑗)𝐴𝑗,𝑖,𝑡+𝜙𝑗 𝜋𝑗,𝑖,𝑡141

Equation 1 tells us how attractions A of individual j to the two different options (i=1,2) change from one142

trial to the next (time t+1) as a function of previous attractions 𝐴𝑗,𝑖,𝑡 (how preferable option i is to the143

bird j at time t) and recently experienced payoffs 𝜋 (i.e., 1 when they received a reward in a given trial, 0144

when not). The (bird-specific) parameter 𝜙𝑗 describes the weight of recent experience. The higher the value145

of 𝜙𝑗, the faster the bird updates their attraction. Attraction scores thus reflect the accumulated learning146

history up to this point. At the beginning of the experiment, we assume that individuals have the same low147

attraction to both options (𝐴𝑗,1 = 𝐴𝑗,2 = 0.1).148

Equation 2 (choice and 𝜆): 𝑃(𝑗, 𝑖)𝑡+1=
𝑒𝑥𝑝(𝜆𝑗𝐴𝑗,𝑖,𝑡)

∑2
𝑖=1 𝑒𝑥𝑝(𝜆𝑗𝐴𝑗,𝑖,𝑡)

149

Equation 2 expresses the probability P that an individual j chooses option i in the next trial, t+1, based on150

the attractions. The parameter 𝜆𝑗 represents the rate of deviating from learned attractions of an individual.151

It controls how sensitive choices are to differences in attraction scores. As 𝜆𝑗 gets larger, choices become more152

deterministic and individuals consistently choose the option with the higher attraction even if attractions153

are very similar, as 𝜆𝑗 gets smaller, choices become more exploratory (random choice independent of the154

attractions if 𝜆𝑗=0).155

We implemented the Bayesian reinforcement learning model in the statistical language Stan (Team et al.,156

2019), calling the model and analyzing its output in R [current version 4.0.3; R Core Team (2017)]. The157

values for 𝜙 and 𝜆 for each individual are estimated as the mean from 2000 samples from the posterior.158

1) Using simulations to check models estimating the role of the potential parameters under-159

lying performance in the reversal experiment We ran the Bayesian model on simulated data to first160

understand whether we could recover the 𝜙 and 𝜆 values assigned to each individual from the choices indi-161

viduals made based on their phis and lambdas in the initial and first reversal learning phases; and second162

to see whether inter-individual variation in 𝜙 or in 𝜆 contributed more to variation in their performance.163

The settings for the simulations were based on the previous analysis of data from grackles in a different164

population (Santa Barbara, Blaisdell et al. (2021)). We re-analyzed data we had simulated for power anal-165

yses to estimate sample sizes for population comparisons (Logan CJ et al., 2020). In brief, we simulated166

20 individuals each from 32 different populations (640 individuals). The 𝜙 and 𝜆 values for each individual167

were drawn from a distribution representing that population, with different mean 𝜙 (8 different means) and168

mean 𝜆 (4 different values) for each population (32 populations as the combination of each 𝜙 and lambda).169

Based on their 𝜙 and 𝜆 value, each individual was simulated to pass first through the initial association170

learning phase and, after they reached criterion, a reversal learning phase. Each choice each individual made171

was simulated consecutively, updating their internal attraction to the two options based on their 𝜙 values172

and setting their next choice based on their 𝜆 weighing of their attractions. We first attempted to recover173

𝜙 and 𝜆 for different subsets of the data (initial association learning and reversal learning separately or174

combined). Next, we determined how the 𝜙 and 𝜆 values that were assigned to the individuals influenced175

their performance in the reversal learning trial, building a regression model to determine which of the two176

parameters had a more direct influence on the number of trials individuals needed to reach criterion:177

number of trials to reverse ~ normal(mu, sigma)178

mu <- a + b * 𝜙 + c * 𝜆179
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The model was also estimated in stan, using functions from the package ‘rethinking’ (McElreath, 2020) to180

build the model.181

2) Estimating 𝜙 and 𝜆 from the observed serial reversal learning performances The collection182

of the great-tailed grackle data, as described in the main article (C. Logan et al., 2022), was based on our183

preregistration that received in principle acceptance at PCI Ecology (PDF version). All of the analyses of184

C. Logan et al. (2022) data reported here were not part of the original preregistration.185

The data are available at the Knowledge Network for Biocomplexity’s data repository: https:186

//knb.ecoinformatics.org/view/doi:10.5063/F1H41PWS.187

Great-tailed grackles were caught in the wild in Tempe, Arizona, USA for individual identification (colored188

leg bands in unique combinations). Some individuals were brought temporarily into aviaries for testing,189

and then released back to the wild. Individuals first participated in the reversal learning tasks. A subset190

of individuals was part of the control group, where they learned the association of reward with one color191

before experiencing one reversal to learn that the other color is rewarded. The other subset of individuals192

was part of the manipulated group. These individuals went through a series of reversals until they reached193

the criterion of having formed an association (17 out of 20 choices correct) in less than 50 trials in two194

consecutive reversals.195

We fit the Bayesian reinforcement learning model to the data of both the control and the manipulated birds.196

For the manipulated birds, we calculated 𝜙 and 𝜆 separately for their performance in the beginning (initial197

association and first reversal) and at the end of the manipulation (final two reversals). Next, as with the198

simulated data, we fit a series of regression models to determine how 𝜙 and 𝜆 link to the number of trials199

birds needed during their reversals.200

3) Linking 𝜙 and 𝜆 from the observed serial reversal learning performances to the performance201

on the multi-access boxes After the individuals had completed the reversal learning tasks, they were202

provided access to two multi-access boxes, one made of wood and one made of plastic. Both boxes had 4203

possible ways (loci) to access food. Initially, individuals could explore all loci. After a preference for a locus204

was formed, this preferred choice became non-functional by closing access to the locus, and then the latency205

of the grackle to switch to a new locus was measured. If they again formed a preference, the second locus206

was also made non-functional, and so on. The outcome measures for each individual with each box were the207

average latency it took to switch to a new locus and the total number of loci they accessed. For details see208

(C. Logan et al., 2022).209

We repeated the models in the original article (C. Logan et al., 2022) that linked performance on the serial210

reversal learning tasks to performance on the multi-access boxes, replacing the previously used independent211

variable of number of trials needed to reach criterion in the last reversal with the estimated 𝜙 and 𝜆 values212

from the last two reversals (manipulated birds) or the initial discrimination and the first reversal (control213

birds). The outcome variables were latency to attempt a locus on either the plastic or the wooden multi-access214

box, and the number of loci solved on the plastic and wooden multi-access boxes. With our observation that215

𝜙 and 𝜆 could be negatively correlated (see results), we realized that birds might be using different strategies216

when facing a situation in which cues change: some birds might quickly discard previous information and217

rely on what they just experienced (high 𝜙 and low lambda), or they might rely on earlier information and218

continue to explore other options (low 𝜙 and high lambda). Accordingly, we assumed that there also might219

be non-linear, U-shaped relationships between 𝜙 and/or 𝜆 and the performance on the multi-access box. The220

regression models were again estimated in stan, using functions from the package ‘rethinking’ to build the221

model. We assumed that 𝜙 and/or 𝜆 were associated with the performance on the multi-access boxes if the222

89% compatibility intervals of the posterior estimate did not cross zero.223

Model: number of loci solved on the multi-access box ~ 𝜙 and 𝜆224

The model takes the form of:225

locisolved ~ Binomial(4, p) [likelihood]226

logit(p) ~ 𝛼[batch] + 𝛽 * 𝜙 + 𝛾 * 𝜆 [model]227
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locisolved is the number of loci solved on the multi-access box, 4 is the total number of loci on the multi-228

access box, p is the probability of solving any one locus across the whole experiment, 𝛼 is the intercept and229

each batch gets its own, 𝛽 is the expected amount of change in locisolved for every one unit change in the230

learning rate 𝜙 in the reversal learning experiments, gamma is the expected amount of change in locisolved231

for every one unit change in the deviation rate 𝜆 in the reversal learning experiments.232

Model: latency to attempt a new locus on the multi-access box ~ 𝜙 and 𝜆233

For the average latency to attempt a new locus on the multi-access box as it relates to trials to reverse (both234

are measures of flexibility), we simulated data and set the model as follows:235

latency ~ gamma-Poisson(𝜇, 𝜎) [likelihood]236

log(𝜇) ~ 𝛼[batch] + 𝛽 * 𝜙 + 𝛾 * 𝜆 [the model]237

latency is the average latency to attempt a new locus on the multi-access box, 𝜇 is the rate (probability of238

attempting a locus in each second) per bird (and we take the log of it to make sure it is always positive; birds239

with a higher rate have a smaller latency), 𝜎 is the dispersion of the rates across birds, 𝛼 is the intercept240

for the rate per batch, 𝛽 is the expected amount of change in the rate of attempting to solve in any given241

second for every one unit change in the learning rate 𝜙 in the reversal learning experiments, 𝛾 is the expected242

amount of change in the rate of attempting to solve in any given second for every one unit change in the243

deviation rate 𝜆 in the reversal learning experiments.244

To represent the potential U-shaped relationship, which assumes that birds with intermediate 𝜙 and 𝜆 values245

perform differently, we first transformed 𝜙 and 𝜆 to calculate for each individual how far their value is from246

the median. Second, we ran the models squaring 𝜙 and lambda. Both approaches gave the same results, and247

we only reported the estimates from the models with the transformed values.248

RESULTS249

1) Using simulations to check the validity of the Bayesian reinforcement learning models to250

estimate performance in the reversal learning task251

We first ran the Bayesian reinforcement learning model on simulated data to better understand how the252

two parameters, /𝑝ℎ𝑖 and /𝑙𝑎𝑚𝑏𝑑𝑎, might lead to differences in performance, and whether we could detect253

meaningful differences between control and manipulated birds. When we used only the choices simulated254

individuals made during their first reversal, the estimated 𝜙 and 𝜆 values did not match those the individuals255

had been assigned. We realized that 𝜙 and 𝜆 values were consistently shifted in a correlated way. When256

estimating these values from only a single reversal, there was equifinality: multiple combinations of the257

two parameters 𝜙 and 𝜆 could potentially explain the performance of birds during this reversal, and the258

estimation adjusted both parameters towards the mean. However, when we combined data from across two259

reversal or from the initial discrimination learning and the first reversal, the model accurately recovered the260

𝜙 and 𝜆 values that the simulated individuals had been assigned (Figure 1).261
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262

Figure 1: The 𝜙 values estimated by the model based on the choices made by 30 simulated individuals263

(x-axis) versus the 𝜙 values assigned to them (y-axis). Individuals were assigned the simulated phi, their264

choices were simulated and these values were used to back-estimate the 𝜙. When 𝜙 was estimated based on265

the choices made only during one reversal, the estimates were consistently lower than the assigned values,266

particularly for large 𝜙 values (blue squares). However, when 𝜙 was estimated based on the choices made267

during the initial association and the first reversal, the estimates were close to the assigned values (yellow268

circles).269

In terms of the influence of the two parameters 𝜙 and 𝜆 on the number of trials birds needed to reverse a270

color preference, the 𝜙 values assigned to simulated individuals had a stronger influence than the 𝜆 values271

(estimated association of number of trials with standardized values of 𝜙: -21, 89% compatibility interval: -22272

to -19; with standardized values of 𝜆: -14, 89% CI: -16 to -13). In particular, low numbers of trials to reverse273

could be observed across the full range of 𝜆 values, though when 𝜆 was smaller than 8, simulated birds might274

need 150 or more trials to reverse a preference (Figure 2). In contrast, there was a more linear relationship275

between 𝜙 and the number of trials to reverse, with birds needing fewer trials the larger their 𝜙.276
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277

Figure 2. In the simulations, the 𝜙 values assigned to individuals (green) had a clearer influence on278

the number of trials these individuals needed to reverse than their 𝜆 values (red). 𝜙 and 𝜆 values were279

standardized for direct comparison. In general, individuals needed fewer trials to reverse if they had larger280

𝜙 and 𝜆 values. However, relatively small 𝜆 values could be found across the range of reversal performances,281

whereas there was a more clear distinction with 𝜙 values.282

2) Observed effects of the manipulation on reversal performance, 𝜙, and 𝜆283

The findings from the simulated data indicated that 𝜆 and 𝜙 can only be estimated accurately when284

calculated across at least one switch, and we therefore estimated these values for the observed birds based on285

their performance in the initial discrimination plus first reversal, and for the manipulated birds additionally286

on their performance in the final two reversals. For the manipulated birds, the estimated 𝜙 more than287

doubled from 0.03 (for reference, control grackles=0.03) in their initial discrimination and first reversal to288

0.07 in their last two reversals (model estimate of expected average change 89% compatibility interval: +0.02289

to +0.05; Table 1: Model 17), while their 𝜆 went slightly down from 4.2 (for reference, control grackles=4.3)290

to 3.2 (model estimate of average change 89% compatibility interval: -1.63 to -0.56; Table 1: Model 18).291

The values we observed after the manipulation in the last reversal for the number of trials to reverse, as292

well as the 𝜙 and 𝜆 values estimated from the last reversal, all fall within the range of variation we observed293

among the control birds in their first and only reversal (Figure 3). This means that the manipulation did not294

push birds to new levels, but changed them within the boundaries of their natural environment. Some birds295

in the control group already had similar flexibility measures to the manipulated birds after going through296

serial reversal learning, presumably because some birds have had experiences in their natural environments297

that made them more flexible. Accordingly, birds in the manipulated group were not initially all better298

performers than all of the birds in the control group.299

For 𝜙, the increase during the manipulation fits with the observations in the simulations: larger 𝜙 values300

were associated with fewer trials to reverse. However, while in the simulations individuals needed fewer trials301
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to reverse when we increased 𝜆 (less deviation from the learned association), the birds in the manipulation302

showed a decreased 𝜆 in their last reversal when they needed fewer trials to reverse. This suggests that 𝜆 is303

a constraint, rather than having a direct linear influence on the number of trials to reverse: birds with low 𝜆304

still can reach the criterion in a small number of trials as long as they have a sufficiently high value of 𝜙 (see305

Figure 2). In line with this, across both manipulated and control birds, 𝜙 was more consistently associated306

with the number of trials individuals needed to reverse, and 𝜙 changed more than 𝜆 across reversals for the307

manipulated birds (Figure 3). The birds might have changed their learning rate 𝜙 because they repeatedly308

experienced an associative learning task, while the change in /𝑙𝑎𝑚𝑏𝑑𝑎 might reflect that birds adapt to309

the serial reversal where the rewarded option changes every time they reach criterion so that their learned310

attractions are not completely reliable and it is beneficial to deviate from time to time.311

For the 𝜙 values, we also observed a correlation between the 𝜙 estimated from an individual’s performance in312

the first reversal and how much their 𝜙 changed toward the value for their performance in the last reversal (-313

0.4;Table 1: Model 17), while there is no such obvious relationship for 𝜆 (-0.15; Table 1: Model 18). For both314

𝜙 and 𝜆, unlike for the number of trials to reverse, we did not see that the individuals who had the largest315

values during the first reversal also always had the largest values during the last reversal. The manipulation316

changed both 𝜙 and 𝜆, such that, across all birds, there was a negative correlation between 𝜙 and 𝜆 (mean317

estimate -0.39, 89% compatibility interval: -0.72 to -0.06).318
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319

Figure 3. Comparisons of the different measures of performance in the reversal task for each of the 19 birds.320

The figure shows a) the number of trials to pass criterion for the first reversal (orange; all birds) and the last321

reversal (blue; only manipulated birds); b) the 𝜙 values reflecting the learning rate of attraction to the two322

options from the initial discrimination and first reversal (orange; all birds) and from the last two reversals323

(blue; manipulated birds); and c) the 𝜆 values reflecting the rate of deviating from the learned attractions324

to the two options from the initial discrimination and first reversal (orange; all birds) and from the last two325

reversals (blue; manipulated birds). Individual birds have the same position along the x-axis in all three326

panels. Birds that needed fewer trials to reverse their preference generally had higher 𝜙 values, whereas 𝜆327

appeared to reflect whether any choices of the unrewarded color occurred throughout the trials or only at328

the beginning of a reversal. For the manipulated birds, their 𝜙 values changed more consistently than their329

𝜆 values, and the 𝜙 values of the manipulated individuals were generally higher than those observed in the330

control individuals, while their 𝜆 values remained within the range observed in the control group.331
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The pairwise analyses above indicated that the number of trials in the last reversal was correlated with the332

number of trials in the first reversal, with 𝜙, and with 𝜆. The number of trials in the first reversal, 𝜙, and 𝜆333

were also correlated with each other (Figure 4). With the Bayesian approach, we used one model to estimate334

all potential links simultaneously to identify the pathways through which the variables interacted with each335

other (e.g., some variables might be correlated because both are influenced by a third variable). We therefore336

simultaneously estimated support for the following pathways:337

• trials last reversal ~ trials first reversal + 𝜙 last reversal + 𝜆 last reversal338

• trials first reversal ~ 𝜙 first reversal + 𝜆 first reversal339

• 𝜙 last reversal ~ 𝜙 first reversal340

• 𝜆 last reversal ~ 𝜆 first reversal341

Results from this simultaneous estimation of the potential pathways show that our data best support that342

the 𝜙 from the initial learning and first reversal link to the number of trials to pass the first reversal, which,343

in turn, appear associated with how many trials they needed to pass their last reversal. The 𝜙 for the last344

reversal did not appear to provide any additional information about the number of trials in the last reversal,345

and 𝜆 was not directly associated with the number of trials birds needed to reverse (Table 1: Model 20)346

(Figure 4).347
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348

Figure 4. Graph showing the pathways between the number of trials to pass a reversal, 𝜙, 𝜆, and the349

flexibility manipulation (serial reversals). In the pairwise assessments (dotted lines), most of the variables350

were indicated as being associated with each other. The combined model identified which of these associations351

were likely to be direct (solid lines with arrows). The results from the combined model indicate that a) the352

manipulation worked, b) 𝜙 had a more direct influence on performance in the reversals than 𝜆 did, and c)353

individuals had some consistency both in their abilities and in their performance.354
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Table 1. Model outputs for the pairwise comparisons (models 1-5) and for the combined model (model 6) explaining the changes during the manip-355

ulation. SD=standard deviation, the 89% compatibility intervals are shown, n_eff=effective sample size, Rhat4=an indicator of model convergence356

(1.00 is ideal).357

Mean SD 5.5% 94.5% n_eff Rhat4
model 1 trials
improvement
intercept per bird -30.30 3.51 -35.65 -24.65 109 1.00
b * reversal 2.13 2.93 0.17 9.77 9 1.00
variance 6.54 2.42 0.23 9.41 10 1.00
model 2 trials
improvement
correlation intercept slope 0.34 0.39 -0.40 0.85 2452 1.00
model 3 phi improvement
intercept per bird 0.00 0.02 -0.02 0.03 620 1.00
b * reversal 0.03 0.01 0.02 0.05 207 1.01
correlation intercept slope -0.29 0.46 -0.93 0.52 1492 1.00
variance 0.02 0.01 0.01 0.03 184 1.01
model 4 lambda
improvement
intercept per bird 5.36 0.35 4.57 6.18 255 1.01
b * reversal -1.10 0.30 -1.57 -0.64 260 1.01
correlation intercept slope -0.08 0.44 -0.77 0.64 566 1.01
variance 0.85 0.20 0.58 1.19 648 1.00
model 5
performanceimprovement
intercept 32.74 2.52 28.76 36.79 1362 1.00
b * phi improvement 10.63 3.09 5.68 15.31 1155 1.00
c * lambda improvement 5.58 3.03 0.73 10.20 1223 1.00
sigma 7.22 1.36 5.31 9.56 1322 1.00
MODEL 6 (combined)
trials last ~ trials first 0.62 0.36 0.04 1.17 1166 1.00
trials last ~ phi last -0.28 0.51 -1.07 0.54 1095 1.00
trials last ~ lambda last -0.22 0.48 -0.98 0.55 1278 1.00
trials first ~ phi first -1.04 0.15 -1.26 -0.80 1059 1.00
trials first ~ lambda first 0.18 0.16 -0.41 0.06 890 1.00
phi last ~ phi first 0.29 0.37 -0.31 0.86 1696 1.00
lambda last ~ lambda first 0.19 0.38 -0.41 0.79 1806 1.00

358

359
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3) Association between 𝜙 and 𝜆 with performance on the multi-access boxes360

We first modified the analyses from the preregistered analyses in the original article that assessed potential361

linear links between reversal learning and performance on the multi-access boxes by replacing the number of362

trials it took individuals to reverse with 𝜙 (learning rate of attraction to either option) and 𝜆 (rate of deviating363

from learned attractions) estimated from the reversal performances. These modified analyses did not find364

matches with any of the three previously detected correlations between reversal learning and performance365

on the two multi-access boxes (latency to attempt a locus on the plastic multi-access box, number of loci366

solved on the plastic and wooden multi-access boxes) (Table 2,3). We detected a different correlation: the367

latency to attempt a new locus on the wooden multi-access box was positively correlated with 𝜙 in the last368

reversal (Table 2: Model 28). This correlation appears to arise not because of a linear increase of the latency369

with increasing 𝜙 values, but because there were several individuals who had both a long latency and a large370

𝜙. However, there were also some individuals who had a long latency with a low 𝜙 (see below for additional371

analyses). This indicates that individuals who were faster to update their associations in reversal learning372

(higher 𝜙, therefore needed fewer trials in their last reversal) took more time to attempt a new locus. Even373

though 𝜙 was closely associated with the number of trials a bird needed to reach the reversal criterion, we374

presumably could not recover the previous correlations because of our small sample sizes. In addition, we375

estimated 𝜙 and 𝜆 across at least one reversal (initial discrimination plus first reversal, or last two reversals376

for manipulated birds), whereas the previous analyses using the number of trials to reverse were based on a377

single reversal (first or last reversal).378

Next, we additionally assessed whether 𝜙 and 𝜆 were associated with performance on the multi-access boxes379

in a non-linear way. For the manipulated birds, we found that during their last reversal there was a negative380

correlation between 𝜙 and 𝜆, with individuals with higher 𝜙 values showing lower 𝜆 values. This negative381

correlation could lead to worse performance on the multi-access boxes for birds with intermediate values.382

Exploration of our data shows that, for the number of loci solved on both the plastic and the wooden383

multi-access boxes, there was a U-shaped association, particularly with 𝜆 values in the last reversal (Table 3:384

models 39 & 46) (Figure 5), with birds with intermediate values of 𝜆 solving fewer loci on both multi-access385

boxes. For the latency to attempt a new locus, there was also a U-shaped association, particularly with 𝜙,386

with birds with intermediate values of 𝜙 showing shorter latencies to attempt a new locus (Table 2: models387

25 & 32). Given that there was also a positive correlation between number of loci solved and the latency to388

attempt a new locus, there might be a trade off, where birds with extreme 𝜙 and 𝜆 values solve more loci,389

but need more time, whereas birds with intermediate values have shorter latencies, but solve fewer loci.390
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391

Figure 5. Relationships between 𝜙 and 𝜆 from the last reversal and performance on the wooden (black dots)392

and plastic (red dots) multi-access boxes. Birds with intermediate 𝜆 values in their last reversal (a) were393

less likely to solve all four loci on the multi-access boxes than birds with either high or low 𝜆 values. Birds394

who solved two or fewer loci on either box all fall within the central third of the 𝜆 values observed for the395

last reversal, while 12 of the 14 birds who solved all four loci fall outside this central range. An individual’s396

𝜙 and 𝜆 values change slightly between the top and bottom rows because values were standardized for each397

plot and not all individuals were tested on both boxes, therefore values changed relative to the mean of the398

points included in each plot. There are no clear relationships between (b) 𝜙 and the number of loci solved,399

(c) 𝜆 and the latency to attempt a locus, or (d) 𝜙 and the latency to attempt a new locus.400
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Table 2. Model outputs for the latency to switch loci after passing criterion on a different locus on the401

plastic (models 7-13) and wooden (models 14-20) multi-access boxes in relation to 𝜙 and 𝜆. SD=standard402

deviation, the 89% compatibility intervals are shown, n_eff=effective sample size, Rhat4=an indicator of403

model convergence (1.00 is ideal), b=the slope of the relationship between loci solved or average switch404

latency and 𝜙 or 𝜆.405

Mean SD 5.5% 94.5% n_eff Rhat4
model 7 plastic
intercept 4.99 0.31 4.51 5.48 1354 1
b * phi -0.07 0.24 -0.45 0.31 1769 1
variance 0.80 0.31 0.39 1.34 1527 1
model 8 plastic
intercept 4.97 0.30 4.50 5.46 1547 1
b * lambda 0.32 0.27 -0.10 0.74 1260 1
variance 0.87 0.34 0.40 1.46 1425 1
model 9 plastic
intercept 4.99 0.31 4.52 5.46 1183 1
b * phi 0.33 0.27 -0.09 0.76 1736 1
c * lambda -0.01 0.25 -0.41 0.42 1556 1
variance 0.83 0.32 0.39 1.42 1321 1
model 10 plastic
intercept 5.02 0.31 4.51 5.49 886 1
b * phi * lambda 0.07 0.21 -0.25 0.42 1256 1
variance 0.80 0.30 0.39 1.33 1493
model 11 plastic
intercept 3.07 0.52 2.29 3.91 1210 1
b * abs(phi) 0.82 0.53 -0.02 1.68 1353 1
c * abs(lambda) 1.49 0.47 0.76 2.27 1226 1
variance 1.27 0.48 0.61 2.12 1456 1
model 12 plastic
intercept 4.97 0.30 4.49 5.44 1105 1
b * phi first 0.16 0.26 -0.24 0.60 1376 1
variance 0.80 0.30 0.39 1.32 1218 1
model 13 plastic
intercept 4.95 0.34 4.40 5.47 1284 1
b * lambda first 0.20 0.27 -0.53 0.88 1334 1
variance 0.80 0.34 0.36 1.41 1614 1
model 14
wooden
intercept 5.73 0.28 5.27 6.15 1064 1
b * phi 0.47 0.30 0.00 0.94 1144 1
variance 1.06 0.44 0.48 1.86 1364 1
model 15
wooden
intercept 5.76 0.30 5.28 6.21 1373 1
b * lambda -0.25 0.25 -0.63 0.15 1415 1
variance 0.96 0.37 0.35 1.62 1532 1
model 16
wooden
intercept 5.72 0.31 4.52 5.46 1183 1
b * phi -0.29 0.27 -0.09 0.76 1736 1
c * lambda 0.47 0.25 -0.41 0.42 1556 1
variance 1.07 0.32 0.39 1.42 1321 1
model 17
wooden
intercept 5.80 0.30 5.31 6.23 1259 1
b * phi * lambda 0.15 0.24 -0.22 0.56 1448 1
variance 0.92 0.35 0.44 1.54 1342 1
model 18
wooden
intercept 5.07 0.53 4.20 5.90 739 1
b * abs(phi) 0.68 0.59 -0.23 1.68 867 1
c * abs(lambda) 0.39 0.77 -0.81 1.62 931 1
variance 0.78 0.34 0.34 1.42 932 1
model 19
wooden
intercept 5.75 0.30 5.27 6.22 1172 1
b * phi first 0.30 0.33 -0.22 0.82 1467 1
variance 0.95 0.40 0.43 1.65 1216 1
model 20
wooden
intercept 5.76 0.30 5.28 6.21 1250 1
b * lambda first -0.21 0.25 -0.60 0.21 1233 1
variance 0.94 0.37 0.45 1.59 1537 1

406
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Table 3. Model outputs for the number of loci solved on the plastic (models 21-27) and wooden (models408

28-34) multi-access boxes in relation to 𝜙 and 𝜆. SD=standard deviation, the 89% compatibility intervals are409

shown, n_eff=effective sample size, Rhat4=an indicator of model convergence (1.00 is ideal), b=the slope410

of the relationship between loci solved or average switch latency and 𝜙 or 𝜆.411

Mean SD 5.5% 94.5% n_eff Rhat4
model 21 plastic
intercept 0.02 0.30 -0.45 0.50 1153 1
b * phi 0.24 0.26 -0.16 0.65 1463 1
model 22 plastic
intercept 0.00 0.25 -0.40 0.41 1369 1
b * lambda 0.14 0.22 -0.21 0.49 1200 1
model 23 plastic
intercept 4.99 0.31 4.52 5.46 1183 1
b * phi 0.33 0.27 -0.09 0.76 1736 1
c * lambda -0.01 0.25 -0.41 0.42 1556 1
model 24 plastic
intercept 5.02 0.31 4.51 5.49 886 1
b * phi * lambda 0.07 0.21 -0.25 0.42 1256 1
model 25 plastic
intercept -0.66 0.50 -1.45 0.15 947 1
b * abs(phi) 1.51 0.60 0.61 2.48 845 1
c * abs(lambda) -0.55 0.58 -1.45 0.37 861 1
model 26 plastic
intercept 0.02 0.26 -0.41 0.42 1313 1
b * phi first 0.20 0.22 -0.17 0.54 1624 1
model 27 plastic
intercept 0.01 0.26 -0.41 0.42 1346 1
b * lambda first 0.29 0.23 -0.08 0.66 1536 1
model 28
wooden
intercept 1.35 0.34 0.83 1.90 1329 1
b * phi -0.08 0.27 -0.52 0.37 1268 1
model 29
wooden
intercept 1.34 0.33 0.83 1.87 1566 1
b * lambda 0.20 0.27 -0.24 0.63 1444 1
model 30
wooden
intercept 0.75 0.42 0.07 1.43 1186 1
b * phi 0.37 0.34 -0.18 0.92 1354 1
c * lambda 0.56 0.36 -0.01 1.14 1131 1
model 31
wooden
intercept 0.92 0.38 0.34 1.53 966 1
b * phi * lambda 0.67 0.32 0.17 1.19 952 1
model 32
wooden
intercept 0.40 0.50 -0.43 1.20 902 1
b * abs(phi) 1.52 0.75 0.33 2.70 827 1
c * abs(lambda) 0.43 0.67 -0.60 1.52 1002 1
model 33
wooden
intercept 1.34 0.34 0.82 1.19 1259 1
b * phi first 0.05 0.28 -0.37 0.48 1434 1
model 34
wooden
intercept 1.34 0.33 0.82 1.88 1283 1
b * lambda first -0.11 0.27 -0.52 0.32 1111 1

412

413
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DISCUSSION414

Our post-hoc analyses indicate that applying a more mechanistic model to understand the behavior of great-415

tailed grackles in a serial reversal learning experiment can provide additional insights into the potential416

components of behavioral flexibility. The simulations showed that the Bayesian reinforcement learning model417

captures variation in the behavior and that the two key components phi, the learning rate, and lambda, the418

deviation rate, can be reliably estimated from the choices individuals make. The post-hoc Bayesian analyses419

of the grackle data revealed that the primary component of flexibility that was manipulated was the learning420

rate (𝜙), which more than doubled between the first and last reversals. The learning rate also explained more421

of the interindividual variation in how many trials individuals needed to reach criterion during a reversal.422

Finally, linking these two components of behavioral flexibility to the performance on the multi-access boxes423

suggests that birds with intermediate values of 𝜆 solve fewer loci on both multi-access boxes, and birds with424

intermediate values of 𝜙 have shorter latencies to attempt a new locus. The two key components of the425

Bayesian reinforcement learning model, the learning rate 𝜙 and the deviation rate lambda, appear to reflect426

differences and changes in behavioral flexibility: individuals with a higher learning rate are more likely to427

update their previously learned associations and individuals with a higher deviation rate are more likely to428

explore new options.429

The Bayesian reinforcement learning model we applied in these post-hoc analyses appears to be an accurate430

representation of the behavior of grackles in the serial reversal experiment. In the previous application431

of this model to reversal learning data from a different population, Blaisdell et al. (2021) found that the432

choices of grackles were consistent with what this model predicts. Here, we add to this by showing that the433

model can identify variation in performance, and in particular reveal how individuals change their behavior434

through the manipulation series of multiple reversals. Previous analyses of reversal learning performance of435

wild-caught animals have often focused on summaries of the choices individuals make (Bond et al., 2007),436

setting criteria to define success and how much individuals sample/explore versus acquire/exploit (Federspiel437

et al., 2017). These approaches are more descriptive, making it difficult to predict how variation in behavior438

might transfer to other tasks. While there have been attempts to identify potential rules that individuals439

might learn during serial reversal learning (Spence, 1936; Warren, 1965), it is unclear how to use these440

rule-based approaches for cases like the grackles, who, while apparently shifting toward a win-stay/lose-shift441

rule, did not fully land on this rule (C. Logan et al., 2022). More recent analyses of serial reversal learning442

experiments of laboratory animals have specifically focused on determining when individuals might switch to443

more specialized rules (Jang et al., 2015). In such analyses, some individuals were found to learn more specific444

rules about the serial reversal because such specialized reversal rule models seemed to fit the behavior better445

than the reinforcement learning models because individuals appeared to switch toward the win-stay/lose-shift446

strategy rather than continuously updating their attractions Metha et al. (2020). However, these specialized447

strategies only seem to emerge in over-trained animals who have experienced a very large number of trials448

(Bartolo & Averbeck, 2020), whereas individuals such as the grackles in our experiment are more likely to449

use the more general learning strategies that are reflected in the reinforcement learning models. Accordingly,450

the changes in behavior that can be observed in the serial reversal experiments we analyzed are likely better451

captured by the changes in the learning rate and the deviation rate than by switches in rules.452

The increase in the learning rate during the manipulation might reflect that birds recognize that this is an453

environment where new information should be prioritized over previously learned associations. This change454

in the learning rate over the serial reversal experiment in the grackles matches what has been reported for455

squirrel monkeys (Bari et al., 2022). In contrast, the rate of deviating from learned preferences (𝜆) did not456

correlate with the number of trials to reverse. The change in the rate of deviation during the manipulation457

might indicate that individuals learned about the serial nature of the reversal experiment, that they should458

deviate from their previous attractions as soon as the reward changes. While there were individual differences459

in learning and deviation rates (McCune et al., 2022), all individuals appeared to change depending on their460

experiences. The manipulation pushed individuals to levels that were already observed in some individuals461

at the beginning of the experiment, suggesting that individuals might also change their behavioral flexibility462

in response to their experiences in their natural habitats.463

The analyses linking 𝜙 and 𝜆 to the performance on the multi-access boxes suggest that birds might use464

different strategies to solve a larger number of loci on the multi-access box. The negative correlation between465
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𝜙 and 𝜆 prompted us to explore whether the relationship between these two variables and the performance466

on the multi-access boxes could be non-linear. We did detect U-shaped relationships between 𝜙 and 𝜆 and467

how individuals performed on the multi-access boxes. First, birds with intermediate 𝜙 values showed shorter468

latencies to attempt a new locus. This could reflect that birds with high 𝜙 values take longer because they469

formed very strong attractions to the previously rewarded locus, while birds with small 𝜙 values take longer470

because they do not update their attraction even though the first locus is no longer rewarded. Second, we471

found that birds with intermediate values of 𝜆 solved fewer loci. This could indicate that birds with a small472

𝜆 are more likely to explore new loci while birds with a large 𝜆 are more likely to stop returning to an473

option that is no longer rewarded. We also found further interactions in that birds who solved more loci had474

longer latencies to attempt a locus. An alternative interpretation could therefore be that birds with high475

𝜙 and small 𝜆 solve fewer loci because they do not switch attractions quickly but need less time because476

they explore more, while birds with small 𝜙 and high 𝜆 solve fewer loci because they do not learn but need477

less time because they already act on small differences in attractions. In addition, it is also possible that478

performance on the multi-access boxes relies on other cognitive abilities in which individuals may differ. For479

example, we previously found that grackles who are faster to complete go no-go, an inhibition task, were480

slower to switch loci on the multi-access boxes (Logan et al., 2021). As such, variation in self control may481

affect performance on flexibility and innovation tasks by decreasing exploratory behaviors. However, all482

these analyses are exploratory and based on a small sample, so these interpretations are speculative and483

further investigation is needed to understand how potential cognitive abilities shape performance on these484

different tasks.485

Overall, these post-hoc analyses indicate the potential benefits of applying a more mechanistic model to the486

serial reversal learning paradigm. Inferring the potential underlying cognitive processes can allow us to make487

clearer predictions about how the experiments link to behavioral flexibility. In particular, we could expect488

that the previously observed differences in whether reversal learning performance links with performance in489

other traits like innovation or inhibition Logan (2016) could be linked to differences in whether the learning490

rate or the deviation plays a larger role in the reversal performance in a given species and in particular for491

the other trait. The mechanistic model can also help with setting criteria to better design the serial reversal492

experiments because the changes in attraction can be used to reflect whether individuals have formed a493

sufficient association to reverse the rewarded option (Logan et al., 2022). We believe that considering such494

mechanistic models more generally can offer an opportunity for the field of comparative cognition to better495

fulfill its potential.496
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