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Abstract9

Environments can change suddenly and unpredictably and animals might benefit from being able to flexibly10

adapt their behavior through learning new associations. Serial (repeated) reversal learning experiments have11

long been used to investigate differences in behavioral flexibility among individuals and species. In these12

experiments, individuals initially learn that a reward is associated with a specific cue before the reward is13

reversed back and forth between cues, forcing individuals to reverse their learned associations. Cues are14

reliably associated with a reward, but the association between the reward and the cue frequently changes.15

Here, we apply and expand newly developed Bayesian reinforcement learning models to gain additional16

insights into how individuals might dynamically modulate their behavioral flexibility if they experience serial17

reversals. We derive mathematical predictions that, during serial reversal learning experiments, individuals18

will gain the most rewards if they 1) increase their rate of updating associations between cues and the reward19

to quickly change to a new option after a reversal, and 2) decrease their sensitivity to their learned association20

to explore the alternative option after a reversal. We reanalyzed reversal learning data from 19 wild-caught21

great-tailed grackles (Quiscalus mexicanus), eight of whom participated in serial reversal learning experiment,22

and found that these predictions were supported. Their estimated association-updating rate was more than23

twice as high at the end of the serial reversal learning experiment than at the beginning, and their estimated24

sensitivities to their learned associations declined by about a third. The changes in behavioral flexibility25

that grackles showed in their experience of the serial reversals also influenced their behavior in a subsequent26

experiment, where individuals with more extreme rates or sensitivities solved more options on a multi-option27

puzzle box. Our findings offer new insights into how individuals react to uncertainty and changes in their28

environment, in particular, showing how they can modulate their behavioral flexibility in response to their29

past experiences.30
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Introduction31

Most animals live in environments that undergo changes that can affect key components of their lives, such32

as where to find food or which areas are safe. Accordingly, individuals that cannot react to these changes33

should have reduced survival and/or reproductive success (Boyce et al., 2006; Starrfelt & Kokko, 2012). One34

of the ways animals react to changes is through behavioral flexibility, the ability to change behavior when35

circumstances change (Shettleworth, 2010). The level of behavioral flexibility present in a given species is36

often assumed to have been shaped by selection, with past levels of change in the environment determining37

how well species might be able to cope with more rapidly changing (Sih, 2013) or novel environments (Sol38

et al., 2002). However, in another conception, behavioral flexibility is itself plastic (Wright et al., 2010).39

Behavioral flexibility arises because individuals update their information about the environment through40

personal experience and make that information available to other cognitive processes (Mikhalevich et al.,41

2017). Such modulation of behavioral flexibility is presumably relevant if the rate and extent of environmental42

change is variable and unpredictable (Donaldson-Matasci et al., 2013; Tello-Ramos et al., 2019). We are still43

limited in our understanding of when and how individuals might react to their experiences of environmental44

change.45

Evidence that animals can change their behavioral flexibility based on their recent experience comes from46

serial reversal learning experiments. Serial reversal learning experiments have long been used to understand47

how individuals keep track of biologically important associations in changing environments (Dufort et al.,48

1954; Mackintosh et al., 1968; Bitterman, 1975). In these experiments, individuals are presented with multi-49

ple options associated with cues, such as different colors or locations, that differ in their reward. Individuals50

can repeatedly choose among the options to learn the associations between rewards and cues. After they show51

a clear preference for the most rewarded option, the rewards are reversed across cues, and individuals are52

observed to see how quickly they learn the changed associations. When they have reversed their preference,53

the reward is changed back to the other option, until the individual reverses their preference again, and these54

reversals continue in a process called serial reversals. Their performance during the reversal task is taken as55

a measure of their behavioral flexibility, with the more flexible individuals being those that need fewer trials56

to consistently choose the rewarded option after a reversal (Bond et al., 2007). While the primary focus57

of these serial reversal learning experiments has been to measure differences in behavioral flexibility across58

individuals and species (Lea et al., 2020), several of these experiments show that behavioral flexibility is not59

a fixed trait, but that individuals can improve their performance if they experience repeated reversals (Bond60

et al., 2007; Liu et al., 2016; Cauchoix et al., 2017). Here, we investigate how individuals might change61

their behavioral flexibility during serial reversal learning experiments to better understand what cognitive62

processes could lead to the observed differences and adjustments in behavioral flexibility (Izquierdo et al.,63

2017; Danwitz et al., 2022).64

We recently found that great-tailed grackles (Quiscalus mexicanus; hereafter grackles) can be trained to65

improve how quickly they learn to change associations in a serial reversal learning experiment (Logan et al.,66

2023a). After training birds to search for food in a yellow tube, the reversal learning experiment consisted67

of presenting birds with a light gray and a dark gray tube, only one of which contained a reward. After68

individuals chose one of the tubes, thus experiencing whether this color was rewarded or not, the experiment69

was reset, with the reward being in the same colored tube as before. Once an individual chose the rewarded70

color more than expected by chance (passing criterion of choosing correctly in at least 17 out of the last 2071

trials, which represents a significant association according to the chi-square test), the reward was switched to72

the other color. Again, individuals made choices until they chose the now rewarded tube above the passing73

criterion. For one set of individuals, the trained group, we repeated the reversal of rewards from one color74

to the other until the birds reached the serial reversal passing criterion of forming a preference in 50 trials75

or less in two consecutive reversals. The median number of trials birds in this trained group needed to reach76

the passing criterion during their first reversal was 75, which improved to 40 trials in their final reversal.77

Importantly, we found that, in comparison to a control group who only experienced a single reversal, trained78

grackles who experienced serial reversals also showed increased behavioral flexibility and innovativeness in79

other contexts. In particular, trained grackles performed better on multi-option puzzle boxes than control80

grackles, being faster to switch to a new access option on a box if the previous option was closed, and they81

solved more of the available access options (Logan et al., 2023a). This indicates that individuals did not82
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just learn an abstract rule about the serial reversal learning experiment, but rather changed their overall83

behavioral flexibility in response to their experience. To understand these changes in behavioral flexibility,84

we need approaches that can reflect how individuals might update their cognitive processes based on their85

experience.86

Previous analyses of serial reversal learning experiments were limited in understanding the potential changes87

in behavioral flexibility because they focused on summaries of the choices that individuals make (e.g. Bond88

et al., 2007). These approaches are more descriptive, making it difficult to link flexibility differences to89

specific processes and to predict how variation in behavior might transfer to other tasks. While there have90

been attempts to identify potential rules that individuals might learn during serial reversal learning (Spence,91

1936; Warren, 1965a; Warren, 1965b; Minh Le et al., 2023), these rules were often about abstract switches92

to extreme behaviors (e.g. win-stay / lose-shift) and therefore could not account for the full variation of93

behavior. A number of theoretical models have recently been developed that appear to reflect the potential94

cognitive processes individuals seem to rely on when making choices in reversal learning experiments (for a95

recent review see, for example, Frömer & Nassar, 2023). These theoretical models deconstruct the behavior96

of individuals in a reversal learning task into two primary parameters (Camerer & Hua Ho, 1999; Chow et al.,97

2015; Izquierdo et al., 2017; Bartolo & Averbeck, 2020). Importantly, in the Bayesian reinforcement learning98

models there are now also statistical approaches to infer these underlying parameters from the behavior of99

individuals (Camerer & Hua Ho, 1999; Lloyd & Leslie, 2013). The first process reflects the rate of updating100

associations (which we refer to hereafter as 𝜙, the Greek letter phi), or how quickly individuals learn about101

the associations between the cues and potential rewards (or dangers). In the reinforcement learning models,102

this rate is reflected by the Rescorla-Wagner rule (Rescorla & Wagner, 1972). The rate weights the most103

recent information proportionally to the previously accumulated information for that cue (as a proportion,104

the rate can range between 0 and 1; for details on the calculations see the section on the reinforcement105

learning model in the Methods). Individuals are expected to show different rates in different environments,106

particularly in response to the reliability of the cues (Figure 1). Lower updating rates are expected when107

associations are not perfect such that a single absence of a reward might be an error rather than indicating108

a new association. Higher updating rates are expected when associations are reliable such that individuals109

should update their associations quickly when they encounter new information (Dunlap & Stephens, 2009;110

Breen & Deffner, 2023). The second process, the sensitivity to their learned associations (which we hereafter111

refer to as 𝜆, the Greek letter lambda) reflects how individuals, when presented with a set of cues, might112

decide between these alternative options based on their learned associations of the cues. In the reinforcement113

learning model, the sensitivity to learned associations modifies the relative difference in learned rewards to114

generate the probabilities of choosing either option (Daw et al., 2006; Agrawal & Goyal, 2012; Danwitz et115

al., 2022). A value of zero means individuals do not pay attention to their learned associations, but choose116

randomly, whereas increasingly larger values mean that individuals show biases in choice as soon as there117

are small differences in their learned associations. Individuals with larger sensitivities will quickly prefer118

the option that previously gave them the highest reward (or the lowest danger), while individuals with119

lower sensitivities will continue to explore alternative options. Sensitivities are expected to reflect the rate120

of change in the environment (Figure 1), with larger sensitivities occurring when environments are static121

such that individuals start to exploit any differences they recognise as soon as possible. Lower sensitivities122

are expected when changes are frequent, such that individuals continue to explore alternative options when123

conditions change (Daw et al., 2006; Breen & Deffner, 2023).124
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Figure 1. Individuals are expected to update their associations and make decisions differently depending on126

the environment they experience. In serial reversal learning experiments, associations are reliable, such that127

if an option is associated with a reward, it is rewarded during every trial (white background). However, the128

associations between options and the rewards change across trials (solid line). In these reliable, but changing129

conditions, individuals are expected to gain the most rewards if they update their associations quickly (large130

𝜙) to switch away from an option if it is no longer being rewarded, but to have small sensitivities to their131

learned associations to continue to explore all options to check if associations have changed again (small132

𝜆). In contrast, in unchanging and unreliable conditions, the probability that an option is rewarded stays133

constant across trials (dotted lines), but is closer to 50% (gray background). In these conditions, individuals134

are expected to gain the most rewards if they build their associations by averaging information across many135

trials (small 𝜙), and have high sensitivities to learned associations to exploit the option with the highest136

association (large 𝜆). Grackle picture credit (CC BY 4.0): Dieter Lukas.137

Here, we applied and modified the Bayesian reinforcement learning models to data from our grackle research138

on behavioral flexibility to assess if and how the cognitive processes might have changed as individuals139

experienced the serial reversal learning experiment. We previously found that the model can predict the140

performance of grackles in a reversal learning task with a single reversal of a color preference (Blaisdell et al.,141

2021). Grackles experiencing the serial reversal learning experiment are expected to infer that associations142

can frequently change but that, before and after a change, cues reliably indicate whether a reward is present143

or not. Based on the theoretical models, we predict that individuals increase their association-updating rate144

because cues are highly reliable, such that they can change their associations as soon as there is a change145

in the reward (Dunlap & Stephens, 2009; Breen & Deffner, 2023). In addition, we predict that individuals146

reduce their sensitivity to the learned associations, because the option that is rewarded reverses frequently,147

requiring individuals to explore alternative options (Neftci & Averbeck, 2019; Leimar et al., 2024). Given148

that reversals in the associations are not very frequent, we also expect some variation in individuals in149

whether they switch to the newly rewarded option because they find the reward quickly through continued150
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exploration (somewhat lower 𝜆 and higher 𝜙) or because they quickly move away from the option that is no151

longer rewarded (somewhat higher 𝜆 and lower 𝜙). To assess these predictions, we addressed the following six152

research questions. With the first research question, we determined the feasibility and validity of our approach153

using simulations. As far as we were aware, Bayesian reinforcement learning models had not been used to154

investigate temporal changes in behavior. We therefore used simulations as a proof-of-concept assessment155

to show their sensitivity and ability to answer our questions. With the second research question, we derive156

mathematically specific predictions about the role of 𝜙 and 𝜆 in the serial reversal learning experiment. With157

the other four questions, we analyzed the grackle data to determine how the association-updating rate and158

the sensitivity to learned associations reflect the variation and changes in behavioral flexibility in grackles.159

1) Are the Bayesian reinforcement learning models sufficiently sensitive to detect changes that160

occur across the limited number of serial reversals that individuals participated in?161

We used agent-based simulations to answer this question, where simulated individuals made choices based162

on assigned 𝜙 and 𝜆 values. We determined how to apply the Bayesian reinforcement learning models to163

recover the assigned values from the choices in each trial. Previous applications of the Bayesian reinforcement164

learning models always combined the full sample of observations, so it is not clear whether these models are165

sufficiently sensitive to detect the changes over time that we are interested in. Two problems arise when166

trying to infer the underlying processes from a limited number of trials. The stochasticity in which option167

an individual chooses based on a given set of associations introduces differences in the set of choices across168

trials even among individuals with the same 𝜙 and 𝜆 values. On the flip-side, because of the probabilistic169

decisions, a given series of specific choices during a short number of trials can occur even if individuals have170

different 𝜙 and 𝜆 values. We varied the number of trials we analyzed to determine how many trials per171

individual are necessary to recover the assigned 𝜙 and 𝜆 values in light of this noise.172

2) Is a high rate of association-updating (𝜙) and a low sensitivity to learned associations (𝜆) best to173

reduce errors in the serial reversal learning experiment?174

We used analytical approaches to systematically vary 𝜙 and 𝜆 to determine how the interaction of the two175

processes shapes the behavior of individuals throughout the serial reversal learning experiment. Previous176

studies made general predictions about the role of 𝜙 and 𝜆 in different environments (Dunlap & Stephens,177

2009; Breen & Deffner, 2023). We assessed here whether, under the specific conditions in the serial reversal178

experiments, where information is reliable and changes occur frequently, the best approach for individuals179

is to show high 𝜙 and low 𝜆.180

3) Which of the two parameters 𝜙 or 𝜆 explains more of the variation in the serial reversal learning181

experiment performance of the tested grackles?182

Across both the trained (experienced serial reversals) and control (experienced a single reversal) grackles,183

we assessed whether variation in the number of trials an individual needed to reach the criterion in a given184

reversal is better explained by their inferred association-updating rate or by their inferred sensitivity to185

learned associations.186

4) Do the grackles who improved their performance through the serial reversal learning ex-187

periment show the predicted changes in 𝜙 and 𝜆?188

If individuals learn the contingencies of the serial reversal experiment, they should reduce their sensitivity to189

learned associations 𝜆 to explore the alternative option when rewards change, and increase their association-190

updating rate 𝜙 to quickly exploit the new reliably rewarded option.191

5) Are some individuals better than others at adapting to the serial reversals?192

In previous work, we found that there are individual differences that persist throughout the experiment,193

with individuals who required fewer trials to solve the initial reversal also requiring fewer trials in the final194

reversal after their training (McCune et al., 2023). We could expect that these individual differences are195

guided by consistency in how individuals solve the reversal learning paradigm, meaning they are reflected196

in individual consistency in 𝜙 and 𝜆 that persist through the serial reversals. In addition, it is not clear197

whether some grackles change their behavior more than others. For example, it could be that individuals198

who have a higher association-updating rate 𝜙 at the beginning of the experiment might also be better able199

to quickly change their behavior to match the particular conditions of the serial reversal learning experiment.200

Therefore, we also analyzed whether the 𝜙 and 𝜆 values of individuals at the beginning predict how much201
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they changed throughout the serial reversal learning experiment.202

6) Can the 𝜙 or 𝜆 from the performance of the grackles during their final reversal predict variation in the203

performance on the multi-option puzzle boxes?204

Grackles would be expected to solve more options on the multi-option puzzle boxes if they quickly update205

their previously learned associations when a previous option becomes unavailable (high 𝜙). Given that,206

in the puzzle box experiment, individuals only receive a reward at any given option a few times, instead207

of repeatedly as in the reversal learning task, we predict that those individuals who are less sensitive to208

previously learned associations and instead continue to explore alternative options (low 𝜆) can also gain209

more rewards.210

Materials and Methods211

Data212

For question 1, we re-analyzed data we previously simulated for power analyses to estimate sample sizes for213

population comparisons (Logan et al., 2023c). In brief, we simulated choices in an initial association learning214

and single reversal experiment for a total of 640 individuals. The 𝜙 and 𝜆 values for each individual were215

drawn from a distribution representing one of 32 populations, with different mean 𝜙 (8 different means) and216

mean 𝜆 (4 different values) values for each population (32 populations is the combination of each 𝜙 and 𝜆).217

We simulated 20 individuals in each of the 32 populations. The range for the 𝜙 and 𝜆 values assigned to218

the artificial individuals in the simulations were based on the previous analysis of single reversal data from219

grackles in a different population (Santa Barbara, California, USA) (Blaisdell et al., 2021) to reflect the220

likely expected behavior. Based on their assigned 𝜙 and 𝜆 values, each individual was simulated to pass first221

through the initial association learning phase and, after they reached criterion (chose the correct option 17222

out of the last 20 times), the rewarded option switched and simulated individuals went through the reversal223

learning phase until they again reached criterion. Each choice that each individual made was simulated224

consecutively. Choices during trials were based on the associations that individuals formed between each225

option and the reward based on their experience. The first choice a simulated individual made in the initial226

association learning was random because we assumed individuals had no information about the rewards and227

therefore set the initial attractions to both options to be equally low. Based on their choices, individuals228

updated their internal associations with the two options based on their individual learning rate. We excluded229

simulated individuals from further analyses if they did not reach criterion either during the initial association230

or the reversal within 300 trials, the maximum that was also set for the experiments with the grackles. For231

each simulated individual, we recorded their assigned 𝜙 and 𝜆 values, as well as the series of choices they232

made during the initial association and the first reversal. For a given 𝜙 and 𝜆, the stochasticity in which233

option a simulated individual chooses based on their attractions, plus the experience of either receiving a234

reward or not during previous choices, can lead to differences in the actual choices individuals make. The235

aim was to see what sample is needed to correctly infer the assigned 𝜙 and 𝜆 given the noise in the choice236

data. We also used the simulated data for question 3, to compare the influence of 𝜙 and 𝜆 on the behavior237

of the simulated individuals with that of the grackles.238

To address question 2, we used an analytical approach and did not analyze any data.239

For the empirical questions 3-6, we re-analyzed data on the performance of grackles in serial reversal learning240

and multi-option puzzle box experiments (Logan et al., 2023a). The data collection was based on our241

preregistration that received in principle acceptance at PCI Ecology (Coulon, 2023). All of the analyses242

reported here were not part of the original preregistration. The data we use here were published as part of243

the earlier article and are available at the Knowledge Network for Biocomplexity’s data repository (Logan244

et al., 2023b).245

In brief, grackles were caught in the wild in Tempe, Arizona, USA for individual identification (colored246

leg bands in unique combinations), and brought temporarily into aviaries for testing, before being released247

back to the wild. The first experiment individuals participated in in the aviaries was the reversal learning248

experiment, as described in the introduction. A total of 19 grackles participated in the serial reversal learning249

experiment, where they learned to associate a reward with one color before experiencing one reversal to learn250

6



that the other color was rewarded (initial rewarded option was counterbalanced and randomly assigned as251

either a dark gray or a light gray tube). The rewarded option was switched when grackles passed the252

criterion of choosing the rewarded option in 17 of the most recent 20 trials. This criterion was set based253

on earlier serial reversal learning studies, and is based on the chi-square test, which indicates that 17 out of254

20 represents a significant association. With this criterion, individuals can be assumed to have learned the255

association between the cue and the reward rather than having randomly chosen one option more than the256

other (Logan et al., 2022). A subset of 8 individuals were randomly assigned to the trained group and went257

through a series of reversals until they reached the criterion of having formed an association (17 out of 20258

choices correct) in 50 trials or less in two consecutive reversals. The individuals in the trained group needed259

between 6-8 reversals to consistently reach this threshold, with the number of reversals not being linked to260

their performance at the beginning or at the end of the experiment. A subset of 11 grackles were part of261

the control group, who experienced only a single reversal, before participating in trials with two identically262

colored tubes (yellow) where both contained a reward. The number of yellow tube trials was set to the263

average number of trials it took a bird in the trained group to pass their serial reversals.264

For question 6, we additionally used data from an experiment the grackles participated in after they had265

completed the reversal learning experiment. Both the control and trained individuals were provided access266

to two multi-option puzzle boxes, one made of wood and one made of plastic. The two boxes were designed267

with slight differences to explore how general their performance was. The wooden box was made from a268

natural log, thus was more representative of something the grackles might encounter in the wild. In addition,269

while both boxes had four possible ways (options) to access food, the four options on the wooden box were270

distinct compartments, each containing rewards, while the four options on the plastic box all led to the same271

reward. Grackles were tested sequentially on both boxes, in a counterbalanced order, where individuals could272

initially explore all options. After proficiency at an option was achieved (gaining food from this locus three273

times in a row), this option became non-functional by closing access to the option, and then the latency274

of the grackle to switch to attempting a different option was measured. If they again successfully solved275

another option, this second option was also made non-functional, and so on. The outcome measures for each276

individual on each box were the average latency it took to switch to a new option and the total number of277

options they successfully solved.278

The Bayesian reinforcement learning model279

For both the simulated and the observed grackle data, we used the Bayesian reinforcement learning model to280

estimate for each individual their 𝜙 and 𝜆 values based on the choices they made during the reversal learning281

experiments. The estimated 𝜙 and 𝜆 values were then used as outcome and/or predictor variables in the282

statistical models built to assess questions 3-6. We used the version of the Bayesian model that was developed283

in Blaisdell et al. (2021) and modified in Logan et al. (2023c) (see their Analysis Plan > “Flexibility analysis”284

for model specifications and validation). This model uses data from every trial of reversal learning (rather285

than only using the total number of trials to pass criterion) and represents behavioral flexibility using two286

parameters: the association-updating rate (𝜙) and the sensitivity to learned associations (𝜆). The model287

transforms the series of choices each grackle made based on two equations to estimate the most likely 𝜙 and288

𝜆 that generated the observed behavior.289

Equation 1 (learning and 𝜙): 𝐴𝑏,𝑜,𝑡+1=(1−𝜙𝑏)𝐴𝑏,𝑜,𝑡+𝜙𝑏 𝜋𝑏,𝑜,𝑡.290

Equation 1 estimates how the associations 𝐴, that individual 𝑏 forms between the two different options (𝑜,291

option 1 or 2) and their expected rewards, change from one trial to the next (trial 𝑡+1) as a function of292

their previously formed associations 𝐴𝑏,𝑜,𝑡 (how preferable option 𝑜 is to grackle 𝑏 at trial 𝑡) and recently293

experienced payoff 𝜋 (in our case, 𝜋 = 1 when they chose the correct option and received a reward in a294

given trial, and 0 when they chose the unrewarded option). The parameter 𝜙𝑏 modifies how much individual295

𝑏 updates its associations based on its most recent experience. The higher the value of 𝜙𝑏, the faster the296

individual updates its associations, paying more attention to recent experiences, whereas when 𝜙𝑏 is lower,297

a grackle’s associations reflect averages across many trials. Association scores thus reflect the accumulated298

learning history up to trial 𝑡. The association with the option that is not explored in a given trial remains299

unchanged. At the beginning of the experiment (trial 𝑡 equals 0), we assumed that individuals had the same300

low association between both options and rewards (𝐴𝑏,1,0 = 𝐴𝑏,2,0 = 0.1).301
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Equation 2 (choice and 𝜆): 𝑃𝑏,𝑜,𝑡=
𝑒𝑥𝑝(𝜆𝑏𝐴𝑏,𝑜,𝑡)

∑2
𝑜=1 𝑒𝑥𝑝(𝜆𝑏𝐴𝑏,𝑜,𝑡)

.302

Equation 2 is a normalized exponential (softmax) function to convert the learned associations of the two303

options with rewards into the probability, 𝑃 , that an individual, 𝑏, chooses one of the two options, 𝑜, in304

the current trial, 𝑡. The parameter 𝜆𝑏 represents the sensitivity of a given grackle, 𝑏, to how different its305

associations to the two options are. As 𝜆𝑏 gets larger, choices become more deterministic and individuals306

consistently choose the option with the higher association even if associations are very similar. As 𝜆𝑏 gets307

smaller, choices become more exploratory, with individuals choosing randomly between the two options308

independently of their learned associations if 𝜆𝑏 is 0.309

We implemented the Bayesian reinforcement learning model in the statistical language Stan (Stan Develop-310

ment Team, 2023), calling the model and analyzing its output in R (version 4.3.3) (R Core Team, 2023).311

The model takes the full series of choices individuals make (which of the two options did they choose, which312

option was rewarded, did they make the correct choice) across all their trials to find the 𝜙 and 𝜆 values313

that best fit these choices given the two equations. Which option individuals chose was estimated with a314

categorical distribution with the probability, 𝑃 , as estimated from equation 2 for each of the two options315

(categories), before updating the associations using equation 1. The model was fit across all choices, with316

individual 𝜙 and 𝜆 values estimated as varying effects. In the model, 𝜙 is estimated on the logit-scale to317

reflect that it is a proportion (can only take values between 0 and 1), and 𝜆 is estimated on the log-scale to318

reflect that values have to be positive (there is no upper bound). The limitation that, with an estimation on319

the log-scale 𝜆 can never be equal to 0, is not an issue because we only included individuals in the analyses320

who did not pick options at random. We set the priors for the logit of 𝜙 and the log of 𝜆 to come from a321

normal distribution with a mean of zero and a standard deviation of one. We set the initial associations322

to both options for all individuals at the beginning of the experiment to 0.1 to indicate that they do not323

have an initial preference for either option but are likely to be somewhat curious about exploring the tubes324

because they underwent habituation and training with a differently colored tube (see below). For estimations325

at the end of each reversal, we set the association with the option that was rewarded before the reversal326

to 0.7 and to the option that was previously not rewarded to 0.1. Note that when applying equation 1 in327

the context of the reversal learning experiment, as is most commonly used, where there are only rewards328

(positive association) or no rewards (zero association) but no punishment (negative association), associations329

can never reach zero because they change proportionally.330

For each estimation (simulated and observed grackle data), we ran four chains with 2000 samples each (half331

of which were warm up). We used functions in the package “posterior” (Vehtari et al., 2021) to draw 4000332

samples from the posterior (the default). We report the estimates for 𝜙 and 𝜆 for each individual (simulated or333

observed grackle) as the mean from these samples from the posterior. For the subsequent analyses where the334

estimated 𝜙 and 𝜆 values were response or predictor variables, we ran the analyses both with the single mean335

per individual as well as looping over the full 4000 samples from the posterior to reflect the uncertainty in336

the estimates. The analyses with the samples from the posterior provided the same estimates as the analyses337

with the single mean values, though with larger compatibility intervals because of the increased uncertainty.338

In the results, we report the estimates from the analyses with the mean values. The estimates with the339

samples from the posterior can be found in the code in the rmd file at the repository https://github.com/340

corinalogan/grackles/blob/master/Files/Preregistrations/g_flexmanip2post.Rmd. In analyses where 𝜙 and341

𝜆 are predictor variables, we standardized the values that went into each analysis (either the means, or342

the respective samples from the posterior) by subtracting the average from each value and dividing by the343

standard deviation. We did this to define the priors for the relationships on a more standard scale and to344

be able to more directly compare the respective influence of 𝜙 and 𝜆 on the outcome variable.345

1) Using simulations to determine whether the Bayesian serial reinforcement346

learning models have sufficient power to detect changes through the serial re-347

versal learning experiment348

We ran the Bayesian reinforcement learning model on the simulated data to understand the minimum number349

of choices per individual that would be necessary to recover the association-updating rate 𝜙 and the sensitivity350
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to the learned associations 𝜆 assigned to each individual.351

To determine whether the Bayesian reinforcement learning model can accurately recover the simulated 𝜙352

and 𝜆 values from limited data, we applied the model first to only the choices from the initial association353

learning phase, next to only the choices from the first reversal learning phase, and finally from both phases354

combined. To estimate whether the Bayesian reinforcement learning model can recover the simulated 𝜙 and355

𝜆 values without bias from either the single or the combined phases, we correlated the estimated values with356

the values individuals were initially assigned:357

𝜙𝑏,1 or 𝜆𝑏,1 ~ Normal(𝜇𝑏, 𝜎),358

𝜇𝑏 = 𝛼 + 𝛽 × 𝜙𝑏,0 or 𝜆𝑏,0,359

𝛼 ~ Normal(0,0.1),360

𝛽 ~ Normal(1,1),361

𝜎 ~ Exponential(1),362

where 𝜙𝑏,1 or 𝜆𝑏,1, the values estimated for each bird, indexed by 𝑏, from the simulated behavior are assumed363

to come from a normal distribution with a mean that can vary for each bird, 𝜇𝑏, and overall variance, 𝜎.364

The mean for each bird is constructed from an overall intercept, 𝛼, and the change in expectation, the365

slope, 𝛽, depending on the values assigned to each bird at the beginning of the simulation (𝜙𝑏,0 or 𝜆𝑏,0).366

The combination of 𝛼 close to 0 and of 𝛽 close to 1 would indicate that the estimated values matched the367

assigned values.368

This, and all following statistical models, were implemented using functions of the package ‘rethinking’369

(McElreath, 2020) in R to call Stan and estimate the relationships. Following the social convention set in370

(McElreath, 2020), we report the mean estimates and the 89% compatibility intervals from the posterior371

estimates from these models. For each model, we ran four chains with 10,000 iterations each (half of which372

were warm up). We checked that the number of effective samples was sufficiently high and evenly distributed373

across all estimated variables such that autocorrelation did not influence the estimates. We also confirmed374

that in all cases the Gelman-Rubin convergence diagnostic, �̂�, was 1.01 or smaller, indicating that the375

chains had converged on the final estimates (Gelman & Rubin, 1995). In all cases, we also plotted the376

model inferences onto the distribution of the raw data to confirm that the estimated predictions matched377

the observed patterns.378

2) Using mathematical derivations to determine whether variation in 𝜙 or 𝜆 has379

a stronger influence on the number of trials individuals might need to reach380

criterion in serial reversal learning experiments381

We mathematically derived predictions about the choice behavior of individuals using equations 1-3. We382

determined the values for 𝜙 and 𝜆 that individuals would need to reach the passing criterion in 50 trials or383

fewer in the serial reversal learning experiment. To derive the learning curves for individuals with different384

𝜙 and 𝜆, we incorporated the dynamic aspect of change over time by inserting the probabilities of choosing385

either the rewarded or the non-rewarded option from trial 𝑡 as the likelihood for the changes in associations386

at trial 𝑡+1.387

Equation 3a (dynamic association for the rewarded option):388

𝐴𝑟,𝑡+1 = ((1-𝜙) × 𝐴𝑟,𝑡 + 𝜙 × 𝜋) × 𝑃𝑡 + (1-𝑃𝑡) × 𝐴𝑟,𝑡.389

Equation 3b (dynamic association for the non-rewarded option):390

𝐴𝑛,𝑡+1 = (1-𝑃𝑡) × (1-𝜙) × 𝐴𝑛,𝑡 + 𝑃𝑡 + (1-𝑃𝑡) × 𝐴𝑛,𝑡.391

In equations 3a and 3b, the association with both the rewarded, 𝐴𝑟, and the non-rewarded, 𝐴𝑛, options392

change from trial 𝑡 to trial 𝑡+1 depending on the association updating rate 𝜙 and the probability, 𝑃 , that393

the association was chosen during trial 𝑡. The probability, 𝑃 , is calculated using equation 2. The reward 𝜋394

is set to 1. We used these equations to explore which combinations of 𝜙 and 𝜆 would lead to an individual395

choosing the rewarded option above the passing criterion in 50 trials or less after a reversal in the rewarded396

option. We assumed serial reversals, and therefore set the initial associations after the reversal to 0.1 for the397
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now rewarded option (previously unrewarded, so low association) and to 0.7 for the now unrewarded option398

(previously rewarded, so high association). We obtained these associations from the end of the reversal399

learning simulation in question 1. For a given combination of 𝜙 and 𝜆, we first used equation 2 to calculate400

the probability that an individual would choose the rewarded option during this first trial after the reversal401

(where the remaining probability reflects the individual choosing the non-rewarded option). We then used402

equations 3a and 3b to update the associations. We repeated the calculations of the probabilities and the403

updates of the associations 50 times to determine whether individuals with a given combination of 𝜙 and404

𝜆 would reach the passing criterion within either 50 (the serial reversal passing criterion) or 40 trials (the405

average observed among the trained grackles). For 𝜙 ranging between 0.02 and 0.10, we manually explored406

which 𝜆 would be needed such that an individual would choose the rewarded option with more than 50%407

probability at trial 31 (or 21) and with more than 85% probability at trial 50 (or 40), to match the passing408

criterion of 17 correct out of the last 20 trials (17/20=0.85).409

3) Estimating 𝜙 and 𝜆 from the observed reversal learning performances of grack-410

les to determine which has more influence on variation in how many trials indi-411

viduals needed to reach the passing criterion412

We fit the Bayesian reinforcement learning model to the data of both the control and the trained grackles.413

Based on the simulation results indicating that the minimum sample per individual required for accurate414

estimation are two learning phases across one reversal (see below), we fit the model first to only the choices415

from the initial association learning phase and the first reversal learning phase for both control and trained416

individuals. For the control grackles, these estimated 𝜙 and 𝜆 values also reflected their behavioral flexibility417

at the end of the reversal learning experiment. For the trained grackles, we additionally calculated 𝜙 and 𝜆418

separately for their final two reversals at the end of the serial reversal to infer the potential changes in the419

parameters.420

We determined how the 𝜙 and 𝜆 values influenced the number of trials individuals needed during a reversal421

by building a regression model to determine which of the two parameters had a more direct influence on422

the number of trials individuals needed to reach the passing criterion. We fit this model to the data from423

the simulated individuals, as well as to the data from the grackles. We assumed that the number of trials424

followed a Poisson distribution because the number of trials to reach criterion is a count that is bounded at425

smaller numbers (individuals need at least 20 trials to reach the criterion) with a log-linear link because we426

expect there are diminishing influences of further increases in 𝜙 or 𝜆. The model is as follows:427

𝑣𝑏 ~ Poisson(𝜇),428

log 𝜇 = 𝛼 + 𝛽1 × 𝜙𝑏 + 𝛽2 × 𝜆𝑏,429

𝛼 ~ Normal(4.5,1),430

𝛽1 ~ Normal(0,1),431

𝛽2 ~ Normal(0,1),432

where the number of trials each individual needed during their reversal, 𝑣𝑏, was linked with separate slopes,433

𝛽1 and 𝛽2, to both the 𝜙 and 𝜆 of each individual. The mean of the prior distribution for the intercept, 𝛼,434

was based on the average number of trials (90) grackles in Santa Barbara were observed to need to reach the435

criterion during their one reversal (mean of 4.5 is equal to logarithm of 90, standard deviation set to 1 to436

constrain the estimate to the range observed across individuals). The priors for the relationships 𝛽1 and 𝛽2437

with 𝜙 and 𝜆 were centered on zero, indicating that, a priori, we did not bias these toward a relationship.438

4) Comparing 𝜙 and 𝜆 from the beginning and end of the observed serial reversal439

learning experiment to assess which changes more as grackles improve their440

performance441

For the subset of grackles that were part of the serial reversal group, we calculated how much their 𝜙 and 𝜆442

changed from their first to their last reversal. The model is as follows:443

𝜙𝑏,𝑟 or 𝜆𝑏,𝑟 ~ Normal( 𝜇𝑏 , 𝜎 ),444

𝜇𝑏 = 𝛼𝑏 + 𝛽𝑏 × 𝑟,445
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[𝛼𝑏
𝛽𝑏

] ∼ MVNormal([𝛼
𝛽] , 𝑆) ,

446

𝑆 = (𝜎𝛼 0
0 𝜎𝛽

) 𝑍 (𝜎𝛼 0
0 𝜎𝛽

) ,

𝑍 ~ LKJcorr(2),447

𝛼 ~ Normal(5,2),448

𝛽 ~ Normal(-1,0.5),449

𝛿𝑏 ~ Exponential(1),450

𝜎 ~ Exponential(1),451

where each grackle, 𝑏, has two 𝜙 and 𝜆 values, one from the beginning (𝑟 = 0) and one from the end of452

the serial reversal experiment (𝑟 = 1). We assume that there are individual differences that persist through453

the experiment (intercept 𝛼𝑏), and that how much individuals change from the first to the last reversal,454

𝑟, estimated by 𝛽𝑏, might also depend on their values at the beginning. Each bird has an intercept and455

slope with a prior distribution defined by the two dimensional Gaussian distribution (𝑀𝑉 𝑁𝑜𝑟𝑚𝑎𝑙) with456

means, 𝜎𝛼 and 𝜎𝛽, and covariance matrix, 𝑆. The covariance matrix, 𝑆, is factored into separate standard457

deviations, 𝛿𝑏, and a correlation matrix, 𝑍. The prior for the correlation matrix is set to come from the458

Lewandowski-Kurowicka-Joe (𝐿𝐾𝐽𝑐𝑜𝑟𝑟) distribution, and is set to be weakly informative and skeptical of459

extreme correlations near -1 or 1.460

We also fit a model to assess whether individual improvement in the number of trials from their first to their461

last reversal was linked more to their change in 𝜙 or to their change in 𝜆. The model is as follows:462

Δ𝑣𝑏 ~ Normal(𝜇𝑏, 𝜎),463

𝜇𝑏 = 𝛼 + 𝛽1 × Δ𝜙𝑏 + 𝛽2 × Δ𝜆𝑏,464

𝛼𝑏 ~ Normal(40, 10),465

𝛽1 ~ Normal(0, 10),466

𝛽2 ~ Normal(0, 10),467

𝜎 ~ Exponential(1),468

where Δ𝑣𝑏, the improvement in the number of trials, is the difference in the number of trials between the469

first and the last reversal, and Δ𝜙𝑏 and Δ𝜆𝑏 are the respective differences in these parameters between the470

beginning and the end of the serial reversal experiment. The remaining parameters in the model are as471

defined above.472

5) Calculating whether individual differences in 𝜙 and 𝜆 persist throughout the473

serial reversal learning experiment and whether grackles differ in how much they474

change throughout the experiment475

We checked whether the 𝜙 and 𝜆 values of grackles at the beginning were associated with how much they476

changed (difference in values between beginning and end):477

Δ𝜙𝑏 or Δ𝜆𝑏 ~ Normal(𝜇𝑏 , 𝜎),478

𝜇𝑏 = 𝛼 + 𝛽 × 𝜙𝑏,0 or 𝜆𝑏,0,479

𝛼 ~ Normal(0,1),480

𝛽 ~ Normal(0,1),481

𝜎 ~ Exponential(1),482

where Δ𝜙𝑏 and Δ𝜆𝑏 are the changes in these values, and 𝜙𝑏,0 and 𝜆𝑏,0 are the bird’s values from their first483

reversal. The remaining parameters are as defined above.484

We also checked whether the 𝜙 or 𝜆 values of grackles at the beginning were associated with the values they485

had at the end:486
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𝜙𝑏,1 or 𝜆𝑏,1 ~ Normal(𝜇𝑏 , 𝜎),487

𝜇𝑏 = 𝛼 + 𝛽 × 𝜙𝑏,0 or 𝜆𝑏,0,488

𝛼 ~ Normal(0,1),489

𝛽 ~ Normal(0,1),490

𝜎 ~ Exponential(1),491

where 𝜙𝑏,1 and 𝜆𝑏,1 are from the last reversal. The remaining parameters are as defined above.492

In addition, we assessed whether grackles at the end of the serial reversal experiment focused more on one493

of the processes, 𝜙 or 𝜆, than the other. The model is as follows:494

𝜙𝑏,1 ~ Normal(𝜇𝑏 , 𝜎),495

𝜇𝑏 = 𝛼 + 𝛽 × 𝜆𝑏,1,496

𝛼 ~ Normal(0,1),497

𝛽 ~ Normal(0,1),498

𝜎 ~ Exponential(1),499

where the values estimated for birds from their last reversal are assessed for an association. All parameters500

as defined above.501

We used the 𝜙 and 𝜆 values estimated from individuals after they completed the serial reversal learning502

experiment to better understand how individuals behave after a reversal in which option is rewarded. We503

chose two combinations of 𝜙 and 𝜆 from the end of the range of values observed among the individuals who504

completed the serial reversal learning experiment. The first combines a slightly higher 𝜙 (0.09) with a slightly505

lower 𝜆 (3), and the second combines a slightly lower 𝜙 (0.06) with a slightly higher 𝜆 (4). We entered these506

values in equations 2, 3a, and 3b. We plotted the change in the probability that an individual will choose507

the rewarded option across the first 40 trials after a switch. As above, we set the initial associations to the508

now rewarded option to 0.1 and to the now non-rewarded option to 0.7.509

6) Linking 𝜙 and 𝜆 from the observed serial reversal learning performances to510

the performance on the multi-option puzzle boxes511

We modified the statistical models in the original article (Logan et al., 2023a) that linked performance on512

the serial reversal learning tasks to performance on the multi-option puzzle boxes, replacing the previously513

used independent variable of the number of trials needed to reach criterion in the last reversal with the514

estimated 𝜙 and 𝜆 values from the last two reversals (trained grackles) or the initial discrimination and the515

first reversal (control grackles). We assumed that there also might be non-linear, U-shaped relationships516

between 𝜙 and/or 𝜆 and the performance on the multi-option puzzle box. For the number of options solved,517

we fit a binomial model with a logit link:518

𝑜𝑏 ~ Binomial(4, 𝑝),519

logit(𝑝) ~ 𝛼 + 𝛽1 × 𝜙 + 𝛽2 × 𝜙2 + 𝛽3 × 𝜆 + 𝛽4 × 𝜆2,520

𝛼 ~ Normal(1, 1),521

𝛽1 ~ Normal(0, 1),522

𝛽2 ~ Normal(0, 1),523

𝛽3 ~ Normal(0, 1),524

𝛽4 ~ Normal(0, 1),525

where 𝑜𝑏 is the number of options solved on the multi-option puzzle box, 4 is the total number of options526

on the multi-option puzzle box, 𝑝 is the probability of solving any one option across the whole experiment,527

𝛼 is the intercept, 𝛽1 is the expected linear amount of change in 𝑝 for every one unit change in 𝜙 in the528

reversal learning experiments, 𝛽2 is the expected non-linear amount of change in 𝑝 for every one unit change529

in 𝜙2, 𝛽3 the expected linear amount of change for changes in 𝜆, and 𝛽4 is the expected non-linear amount530

of change for changes in 𝜆2.531

For the average latency to attempt a new option on the multi-option puzzle box as it relates to 𝜙 and 𝜆, we532

fit a Gamma-Poisson model with a log-link:533
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𝑛𝑏 ~ Gamma-Poisson(𝑚𝑏, 𝑠),534

log(𝑚𝑏) ~ 𝛼 + 𝛽1 × 𝜙 + 𝛽2 × 𝜙2 + 𝛽3 × 𝜆 + 𝛽4 × 𝜆2,535

𝛼 ~ Normal(1, 1),536

𝛽1 ~ Normal(0, 1),537

𝛽2 ~ Normal(0, 1),538

𝛽3 ~ Normal(0, 1),539

𝛽4 ~ Normal(0, 1),540

𝑠 ~ Exponential(1),541

where 𝑛𝑏 is the average latency, counted as the number of seconds, to attempt a new option on the multi-542

option puzzle box, 𝑚𝑏 reflects the tendency of each grackle to wait (if they have a higher tendency to wait,543

they have a longer latency), 𝑠 controls the variance (larger values mean the overall distribution is more like544

a pure Poisson process in which all grackles have the same tendency to wait), 𝛼 is the intercept, 𝛽1 is the545

expected linear amount of change in latency for every one unit change in 𝜙, 𝛽2 is the expected non-linear546

amount of change in latency for every one unit change in 𝜙2, 𝛽3 the expected linear amount of change for547

changes in 𝜆, and 𝛽4 is the expected non-linear amount of change for changes in 𝜆2.548

Results549

1) Power of the Bayesian reinforcement learning model to detect short-term550

changes in the association-updating rate, 𝜙, and the sensitivity to learned asso-551

ciations, 𝜆552

Applying the Bayesian reinforcement learning model to simulated data from only a single phase (initial553

association or first reversal) revealed that, while the model recovered the differences among individuals, the554

estimated 𝜙 and 𝜆 values did not match those the individuals had been assigned (Figure 2). The estimated555

𝜙 and 𝜆 values were consistently shifted away from the values assigned to the simulated individuals. The556

estimated 𝜙 values were consistently smaller than those assigned to the simulated individuals (here and557

hereafter, we report the posterior mean slope of the association, the 𝛽 factor in the statistical models, with558

the 89% compatibility interval; +0.15, +0.06 to +0.23, n=626 simulated individuals), while the estimated559

𝜆 values were consistently estimated to be larger than the assigned 𝜆 values (+6.04, +5.86 to +6.22, n=626560

simulated individuals)(Figure 2). The model assumed that, during the initial association learning, individuals561

only needed to experience each option once to learn which of the two options to choose. This would lead to562

a difference in the associations between the two options. The model assumed that the simulated individuals563

would not require a large 𝜙 because a small difference in the associations would already be informative.564

Individuals would then be expected to consistently choose the option that was just rewarded, and they would565

because of their large 𝜆. In addition, these shifts mean that 𝜙 and 𝜆 are no longer estimated independently.566

The model estimated that, if an individual had a particularly low 𝜙 value, it would require a particularly567

high 𝜆 value. This dependency (which was due to inaccurate estimation) between 𝜙 and 𝜆 led to a strong568

positive correlation in the estimated values of 𝜙 and 𝜆 (+505, +435 to +570, n=626 simulated individuals).569

This correlation is erroneous because individuals were assigned their 𝜆 values independent of their 𝜙 values,570

with the different combinations across the populations meaning that high and low values of 𝜆 were assigned571

to individuals with both high and with low 𝜙 values.572

In contrast, when we combined data from across the initial discrimination learning and the first reversal,573

the model recovered the 𝜙 and 𝜆 values that the simulated individuals had been assigned (𝜙: intercept574

0.00, -0.01 to +0.01, slope +0.96, +0.70 to +1.21, n=626 simulated individuals; 𝜆: intercept +0.01, -0.15 to575

+0.16, slope +0.98, +0.92 to +1.05, n=626 simulated individuals) (Figure 2). While different combinations576

of 𝜙 and 𝜆 could potentially explain the series of choices during a single phase (initial discrimination and577

single reversal), these different combinations lead to different assumptions about how an individual would578

behave right after a reversal when the reward is switched. In combination, the choices before and after a579

reversal make it possible to infer the assigned values (initial learning plus first reversal, or two subsequent580

reversals). Given that the choices individuals make during any given trial are probabilistic, the estimation581

can show slight deviations from the assigned values. However, this was also reflected in the uncertainties of582
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the estimated values, and the compatibility intervals of the estimated values included the value assigned to583

the simulated individuals (Figure 2).584

585

Figure 2. Both the 𝜙 (a) and the 𝜆 (b) values are only estimated correctly by the Bayesian reinforcement586

model when the choices from the simulated reversal learning are combined with the previous initial association587

learning (green circles). When 𝜙 was estimated based on the choices made only during the first reversal, the588

estimates were consistently lower than the assigned values, particularly for large 𝜙 values (a, blue diamonds).589

The model assumed that the simulated individuals chose the rewarded option consistently not because they590

updated their associations, but because they consistently chose the rewarded option as soon as they had591

learned which option was rewarded. Accordingly, the model wrongly assigned individuals very high 𝜆 values592

(b, blue diamonds). Lines around the points indicate the 89% compatibility intervals of the estimated values593

and are only shown for the estimation from the combined choices from the initial and reversal learning - the594

approach we ended up using for the remaining analyses.595

2) Role of 𝜙 and 𝜆 on performance in the serial reversal learning task based on596

analytical predictions597

To determine how 𝜙 and 𝜆 influence behavior during the serial reversals, we performed a mathematical598

derivation using equations 2, 3a, and 3b. We identified the range of values for 𝜙 and for 𝜆 that we would expect599

in individuals who quickly change their behavior after a reversal in the serial reversal learning experiment.600

We found that 𝜙 needs to be 0.04 or larger for individuals to be able to reach the passing criterion in 40 or601

50 trials after a reversal (Figure 3). With smaller 𝜙 values, individuals are expected to take longer before602

switching to the newly rewarded option because they would not update their associations fast enough. We603

also found that, as 𝜙 values increased beyond 0.04, individuals could have a larger range of 𝜆 values and still604

reach the passing criterion in 40 or 50 trials. However, the 𝜆 values are expected to be less than 10 and as605

low as 2.4.606
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607

Figure 3. Individuals are more likely to reach the criterion of choosing the correct option 17 out of 20 times608

during the serial reversal trials if they update their associations quickly (high 𝜙). Using the equations, we609

found the space of values individuals are predicted to need to reach the passing criterion in 40 trials or less610

(dark gray shading) or 50 trials or less (light gray shading). Individuals are predicted to need a large 𝜙 to611

completely reverse their associations with the two options presented in the serial reversal learning experiment.612

The predicted 𝜆 values are expected to be relatively small given that there is no upper limit. The figure also613

shows the median 𝜙 and 𝜆 values estimated for the trained grackles during their first reversal (yellow), when614

they needed on average 70 trials to reach criterion, and during their last reversal (purple) when they needed615

on average 40 trials to reach criterion. During the training, grackles increased their 𝜙 to become efficient at616

gaining the reward and reaching the criterion. They also showed a slight decline in their 𝜆, allowing them617

to explore the alternative option after a reversal.618

3) Observed role of 𝜙 and 𝜆 on performance of grackles in the reversal learning619

task620

We estimated 𝜙 and 𝜆 after the first reversal for all grackles, and additionally after the final reversal for the621

individuals who experienced the serial reversal learning experiment. The findings from the simulated data622
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indicated that 𝜆 and 𝜙 can only be estimated accurately when calculated across at least one reversal. In623

the simulation, we could combine the performance of individuals during the initial learning with the first624

reversal to estimate the parameters because the behavior during those two phases in the simulations was625

determined in the same way by the 𝜙 and 𝜆 values that individuals were assigned. We determined that626

we can also combine the first two phases for the observed grackle data because we found that the number627

of trials grackles needed to reach criterion during the initial learning and the first reversal learning were628

correlated (+1.61, +1.53 to +1.69, n=19 grackles), where grackles needed about 28 trials more to reach629

criterion during the first reversal than they needed during the initial association learning. Therefore, we630

estimated 𝜙 and 𝜆 for the grackles based on their performance in the initial discrimination plus first reversal,631

and for the trained grackles additionally based on their performance in their final two reversals. The inferred632

𝜙 values for the grackles in Arizona ranged between 0.01 and 0.10, and the 𝜆 values between 2.1 and 6.5633

(Figure 4).634

635

Figure 4. Comparisons of the parameters estimated from the behavior of 19 grackles in the serial reversal636

task. The figure shows a) the number of trials to pass criterion for the first reversal (yellow; all grackles) and637

the last reversal (purple; only trained grackles); b) the 𝜙 values reflecting the rate of updating associations638

with the two options inferred from the initial discrimination and first reversal (yellow; all grackles) and from639

the last two reversals (purple; trained grackles); and c) the 𝜆 values reflecting the sensitivity to the learned640

associations inferred from the initial discrimination and first reversal (yellow; all grackles) and from the last641

two reversals (purple; trained grackles). Individual grackles have the same position along the x-axis in all642
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three panels. Grackles that needed fewer trials to reverse their preference generally had higher 𝜙 values,643

whereas 𝜆 appeared unrelated to the number of trials grackles needed during the first reversal. For the644

trained grackles, their 𝜙 values changed more consistently than their 𝜆 values: their 𝜙 values were generally645

higher than those observed in the control individuals, while their 𝜆 values remained within the range observed646

for the control group.647

For the 19 grackles that finished the initial learning and the first reversal, only their 𝜙 (-20.69, -26.17 to648

-15.13; n=19 grackles), but not their 𝜆 (-0.22, -5.66 to +5.26, n=19 grackles), predicted the number of trials649

they needed to reach criterion during their first reversal (Figure 4, increase left to right in panel a), decrease650

in panel b), no pattern in panel c)). A grackle with a 𝜙 of 0.01 higher than another individual needed about651

10 fewer trials to reach the criterion. The slope between 𝜙 and the number of trials for the grackles was652

essentially the same as the slope from the simulations (-20.69 vs -20.48, Figure 5). The number of trials653

grackles needed to reach the criterion given their 𝜙 values fell right into the range for the relationship between654

𝜙 and the number of trials for simulated individuals (Figure 5). Even though the 8 trained grackles also655

appeared to need slightly fewer trials to reach criterion in their final two reversals if they had a higher 𝜙,656

the limited variation in the number of trials and in 𝜙 and 𝜆 values among individuals means that there is657

no clear association between the number of trials and either parameter in the last reversals (𝜙: -7.38, -15.97658

to +1.28; 𝜆: -4.00, -12.53 to +4.61, n=8 grackles).659

660

Figure 5. Relationship between 𝜙 and the number of trials needed to reach criterion observed among grackles661

during their first reversal (yellow points; all grackles) and last reversal (purple points; trained grackles), as662
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well as for the first reversal for the simulated individuals (green stars). The observed grackle data falls within663

the range of the number of trials individuals with a given 𝜙 value are expected to need. Grackles show the664

same negative correlation between their 𝜙 and the number of trials needed to reach criterion as the simulated665

individuals (the shaded lines display the 89% compatibility interval of the estimated relationships between666

𝜙 and the number of trials for both the simulated individuals, green line, and for the grackles during their667

first reversal, yellow line). We did not simulate individuals with 𝜙 values larger than 0.05 because we did668

not observe larger values among grackles in the Santa Barbara population, which we used to parameterize669

the simulations.670

4) Changes in 𝜙 and 𝜆 through the serial reversal learning task671

Grackles who experienced the serial reversal learning reduced the number of trials they needed to reach the672

criterion from an average of 75 to an average of 40 by the end of their experiment (-30.02, -36.05 to -24.16,673

n=8 grackles). For the trained grackles, the estimated 𝜙 values more than doubled from 0.03 in their initial674

discrimination and first reversal (which is identical to the average observed among the control grackles who675

did not experience the serial reversals) to 0.07 in their last two reversals (+0.03, +0.02 to +0.05, n=8). The676

𝜆 values of the trained grackles went slightly down from 4.2 (again, similar to control grackles) to 3.2 (-1.07,677

-1.63 to -0.56, n=8 grackles) (Figure 4). The number of trials to reverse that we observed in the last reversal,678

as well as the 𝜙 and 𝜆 values estimated from the last reversal, all fall within the range of variation we observed679

among the control grackles in their first and only reversal (Figure 5). This means that the training did not680

push grackles to new levels, but changed them within the boundaries of their natural abilities observed in681

the population.682

As predicted, the increase in 𝜙 during the training fits with the outcome from the mathematical predictions:683

larger 𝜙 values were associated with fewer trials to reverse. The improvement the grackles showed in the684

number of trials they needed to reach the criterion from the first to the last reversal matched the increase685

in their 𝜙 values (+7.59,l +1.54 to +14.22, n=8 grackles). The improvement did not match the change in686

their 𝜆 values (+2.17, -4.66 to +9.46, n=8 grackles) because, as predicted, the trained grackles showed a687

decreased 𝜆 in their last reversal. This decrease in 𝜆 meant that grackles quickly found the rewarded option688

after a reversal in which option was rewarded. Across all grackles, in their first reversal, grackles chose the689

newly rewarded option in 25% of the first 20 trials, while the trained grackles in their final reversal chose690

correctly in 35% of the first 20 trials. Despite their low 𝜆 values, trained grackles still chose the rewarded691

option consistently because the increase in 𝜙 compensated for this reduced sensitivity (Figure 3; also see692

below).693

5) Individual consistency in the serial reversal learning task694

We found a negative correlation between the 𝜙 estimated from an individual’s performance in the first695

reversal and how much their 𝜙 changed through the serial reversals (-0.84, -1.14 to -0.52, n=8 grackles). The696

larger increases in 𝜙 for individuals who had smaller 𝜙 values at the beginning made it so that individuals697

ended up with similar 𝜙 values at the end of the serial reversals. We did not find consistent individual698

variation among grackles in 𝜙: their beginning and end 𝜙 values were not correlated (-0.21, -1.55 to +1.35,699

n=8 grackles). Similarly, individuals who started with a high 𝜆 changed more than individuals who already700

had a lower 𝜆 during the first reversal (-0.44, -0.76 to -0.10, n=8 grackles). Individuals changed to different701

degrees, such that those with higher 𝜆 values in the beginning did not necessarily have higher 𝜆 values than702

other individuals at the end of the serial reversal learning: their values at the beginning and end were not703

associated (+0.17, -0.67 to +0.97, n=8 grackles).704

Individuals appeared to adjust their behavior differently to improve their performance through the serial705

reversals. There was a negative correlation between an individual’s 𝜙 and 𝜆 after their last reversal (-0.39,706

-0.72 to -0.06, n=8 grackles). While, as predicted, essentially all grackles who experienced the serial reversal707

learning experiments increased their 𝜙 and decreased their 𝜆 (Figure 5), individuals ended up with different708

combinations of the two parameters and all combinations allowed them to switch to the newly rewarded709

option in 50 trials or less. Individuals ended up along the lower (on the y-axis) side of the space of values710

that are needed to reach criterion in the serial reversal learning experiment (the lower edge of the light gray711
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shading in Figure 3).712

We illustrate how these differences in 𝜙 and 𝜆 lead to slightly different ways of reaching the passing criterion713

during the final reversal. We used the values from the two individuals at the ends of the spectrum, the one714

with the highest 𝜙 and lowest 𝜆, and the one with the lowest 𝜙 and highest 𝜆, to explore how individuals715

switched from the previous option to the option that is now being rewarded. Based on equations 1-3,716

individuals with a slightly higher 𝜙 and slightly lower 𝜆 are expected to learn the new reward associations717

after a reversal more quickly. However, they continue to explore the alternative option even after they718

learned the new association and therefore do not exclusively choose the rewarded option (red line in Figure719

6). Individuals with a slightly lower 𝜙 and a slightly higher 𝜆 are expected to take slightly longer to learn720

that the reward has switched, but once they reversed their association, they rarely choose the unrewarded721

option (purple line in Figure 6). Together, this suggests that all individuals improved by the same extent722

through the training such that the differences in their performances persisted, but they utilized slightly723

different behaviors to quickly reach criterion after a reversal.724

725

Figure 6. Predicted and observed performance curves of individuals with different 𝜙 and 𝜆 values in their726

last reversal in the serial reversal learning experiment. The dotted lines present the behavior of the grackles727
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Burrito (red on the top, 𝜙 = 0.08, 𝜆 = 2.1) and Habanero (purple on the bottom, 𝜙 = 0.06, 𝜆 = 4.8) during728

their last reversal. The dotted lines show the probability with which they chose the rewarded option during729

their last 20 trials. We used their 𝜙 and 𝜆 values in the analytical equations 2, 3a, and 3b to derive the730

predicted curves (solid lines) of the probability that an individual will choose the option that is currently731

rewarded for each trial number. Individuals with a higher 𝜙 and lower 𝜆 (red lines on the top) are expected732

and observed to quickly learn the new association, but continue to explore the unrewarded option even after733

they learned the association, leading to a curve with a more gradual increase through the trials. Individuals734

with a lower 𝜙 and higher 𝜆 (purple lines on the bottom) are expected and observed to take longer to switch735

their association, but, once they do, they rarely choose the non-rewarded option, leading to a more S-shaped736

curve where the initial increase in probability is lower and more rapid later.737

6) Association between 𝜙 and 𝜆 with performance on the multi-option puzzle738

boxes739

We found that the number of options solved for both the wooden and the plastic multi-option puzzle boxes as740

well as the latency to solve a new option on both boxes correlated with the underlying flexibility parameters741

𝜙 and 𝜆. In particular, the 𝜆 values individuals had after their last reversal had a U-shaped relationship with742

the number of options solved on both the plastic (𝜆 +0.17, -0.27 to +0.61; 𝜆2 +0.59, +0.18 to +1.02; n=15743

grackles) and the wooden multi-option puzzle boxes (𝜆 +0.03, -0.50 to +0.59; 𝜆2 +0.63, +0.12 to +1.19;744

n=12 grackles). There was no association between the number of options solved on either box and 𝜙 (plastic745

box: 𝜙 +0.03, -0.38 to +0.43; 𝜙2 -0.16, -0.59 to +0.28, n=15 grackles; wooden box: 𝜙 -0.08, -0.62 to +0.47,746

𝜙2 +0.43, -0.08 to +0.97, n=12 grackles). Grackles who had either particularly low or particularly high747

sensitivities to their previously learned associations were more likely to solve all four options than grackles748

with intermediate values of 𝜆 (Figure 7).749

For the latency to attempt a new option on the plastic box, there was also a U-shaped association, but750

only with 𝜙 (𝜙 -0.66, -1.30 to +0.0.06; 𝜙2 +0.58, -0.06 to +1.30; 𝜆 +0.14, -0.45 to +0.70; 𝜆2 +1.09, +0.28751

to +1.87; n=11 grackles). Grackles with either particularly high or particularly low rates of updating their752

associations took longer to attempt a new option than grackles with intermediate values of 𝜙 (Figure 8).753

There was no association between the latency to attempt a new option on the wooden box with either 𝜙754

(-0.62, -1.46 to +0.14; 𝜙2 +0.39, -0.47 to +1.26; 11 grackles) or 𝜆 (+0.13, -0.66 to +0.86; 𝜆2 +0.32, -0.62 to755

+1.35; n=11 grackles).756
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757

Figure 7. Relationships between 𝜙 and 𝜆 from the last reversal and performance on the wooden (black758

dots) and plastic (magenta triangles) multi-option puzzle boxes. Grackles with intermediate 𝜆 values in their759

last reversal (a) were less likely to solve all four options on both multi-option puzzle boxes than grackles760

with either high or low 𝜆 values. Grackles with intermediate 𝜙 values had a shorter latency to attempt a761

new option on the plastic box (d). There were no clear relationships between 𝜙 and the number of options762

solved on either box (b), 𝜆 and the latency to attempt an option on either box (c), or 𝜙 and the latency to763

attempt a new option on the wooden box (d). An individual’s 𝜙 and 𝜆 values changed slightly between the764

top and bottom rows because values were standardized for each plot and not all individuals were tested on765

both boxes, therefore values changed relative to the mean of the points included in each plot. The shaded766

areas (black for the data for the wooden box, magenta for the data from the plastic box) show the 89%767

compatibility intervals for the detected relationships between 𝜙 / 𝜆 and the respective outcome variable.768

Lines around each point indicate the 89% compatibility intervals for the estimated 𝜙 and 𝜆 values.769

Discussion770

Our analyses show that grackles change their behavioral flexibility to match the reliability and stability771

of the environment they experience. The application of the Bayesian reinforcement learning model to the772

grackle serial reversal learning data revealed that the association-updating rate, 𝜙, explained more of the773

interindividual variation in how many trials individuals needed to reach criterion during a reversal than the774

sensitivity to learned associations, 𝜆. We found that, as predicted given the reliability of cues and frequent775

switches in the serial reversal learning experiment, 𝜙 more than doubled between the first and last reversals,776

whereas 𝜆 slightly declined. Even though all grackles changed their behavior in the expected direction by777

the end of the serial reversal learning experiment, we found that these trained individuals used slightly778
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different approaches from across the range of possible behaviors. Finally, these changes in how the trained779

individuals explored alternative options and switched preferences in light of recent information subsequently780

also influenced their behavior in a different experimental test of behavioral flexibility and innovativeness.781

Grackles with intermediate sensitivities to learned associations solved fewer options on both multi-option782

puzzle boxes than grackles with either low or high sensitivities. Accordingly, the trained grackles not only783

changed their behavior within the specific serial reversal learning task, they also more generally changed784

their behavior across contexts in response to their training. Our findings show that grackles modulate their785

behavioral flexibility in response to the high reliability of cues and frequent changes in associations they786

experienced in the serial reversal learning experiment.787

Applying the Bayesian reinforcement learning model to serial reversal data shows that participating in the788

serial reversal learning experiment made grackles change how much they value new information over old789

to update their associations, and how much they continue to explore alternative options or whether they790

are sensitive to the reward they are receiving at their current choice. Grackles coming into the experiment791

already had different rates of updating their associations and different sensitivities to learned associations,792

suggesting they had different experiences of how predictable cues are and how frequently their environment793

changes. In the urban environment they live in, changes are presumably frequent, so they would be expected794

to change their associations frequently (Lee & Thornton, 2021; Breen & Deffner, 2023). In line with this,795

the association-updating rate, 𝜙, appeared to explain more of the variation in how many trials individuals796

needed to reach the criterion of consistently choosing the rewarded option during a single phase as early797

as in their first reversal. Other recent applications of the Bayesian reinforcement learning model to serial798

reversal learning experiments also found that the association-updating rate explains more of the variation in799

the number of trials to pass criterion (squirrel monkeys Bari et al., 2022; mice Metha et al., 2020; Woo et al.,800

2023). In response to learning that the cues are highly reliable and the reversals are relatively frequent, the801

grackles increased their association-updating rate, 𝜙, which on average doubled across individuals, changing802

more for individuals who started off with lower 𝜙 values. Grackles also changed their sensitivity to the803

learned associations, 𝜆, during the serial reversals in line with the prediction that they benefit from being804

open to exploring the alternative option when the associations between cues and rewards switch frequently.805

Individuals changed their 𝜙 and 𝜆 more if their initial values were further from those necessary to reach806

the passing criterion quickly. Individuals who passed their first reversal in 50 trials or less, changed 𝜙 and807

𝜆 only slightly by the end of the serial reversal learning experiment. Among the trained grackles, who all808

required very few trials to consistently reach the criterion by the end of the experiment, we observed different809

approaches (see also Chen et al., 2021). Some individuals seemed more focused on the frequent changes, such810

that they kept exploring the alternative options and changed their associations as soon as they encountered811

new information. These individuals reached the passing criterion quickly because they switched to the newly812

rewarded option soon after a reversal. However, their continued exploration of the alternative option meant813

that they still needed several trials to reach the criterion. Other individuals seemed to place more emphasis814

on the reliability of the cues, focusing on the rewarded option after they learned that the cues had reversed.815

These individuals reached the passing criterion quickly because they consistently chose the rewarded option.816

However, these grackles needed a few more trials after a reversal began to switch to the new option. At the817

beginning of the experiment, the grackles showed a diversity of 𝜙 and 𝜆 values and, because they had no818

prior experience, they did not show specific approaches to quickly reach the criterion. With the variables we819

measured at the beginning of the serial reversal learning experiment, we could not predict which approach820

grackles ended up with after the serial reversals.821

The changes in behavioral flexibility that the grackles showed during the serial reversal learning experiment822

influenced their subsequent behavior in other tasks. The analyses linking 𝜙 and 𝜆 to the performance on the823

multi-option puzzle boxes show that the different approaches grackles utilized to improve their performance824

during the serial reversal learning experiment subsequently appeared to influence how they solved the multi-825

option puzzle box. Grackles with intermediate 𝜙 values showed shorter latencies to attempt a new option.826

This could reflect that grackles with high 𝜙 values take longer because they formed very strong associations827

with the previously rewarded option, while grackles with small 𝜙 values take longer because they either do828

not update their associations even though the first option is no longer rewarded or they do not explore as829

much due to their small 𝜆. We also found that grackles with intermediate values of 𝜆 solved fewer puzzle830

box options. This could indicate that grackles with a small 𝜆 are more likely to explore new options, while831
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grackles with a large 𝜆 and low 𝜙 are less likely to return to an option that is no longer rewarded. We are832

limited in our interpretation by the small sample sizes for the multi-option puzzle boxes. We have some833

indication that experiencing the serial reversal learning experiment continued to shape the behavior of the834

grackles after releasing them back to the wild. Individuals who changed their 𝜙 and 𝜆 more during the serial835

reversal learning experiment appeared to switch more frequently between food types and foraging techniques836

(Logan et al., 2024). It took a grackle on average one month to pass the serial reversal learning experiment837

(Logan et al., 2023a), and the observations of the foraging behavior in the wild continued for up to 8 months838

after individuals were released (Logan et al., 2024). This indicates that the effects of enhancing flexibility are839

durable and generalize to other contexts. In grackles, behavioral flexibility does not change within days or840

only during certain critical periods. Our results suggest that individuals change their behavioral flexibility841

to match their environment if they experience the same conditions repeatedly across weeks.842

Most individuals that have been tested in serial reversal learning experiments thus far show improvements843

throughout the reversals, suggesting that most species can modulate their behavioral flexibility in response844

to the predictability and stability of their environments (e.g. Warren & Warren, 1962; Komischke et al., 2002;845

Bond et al., 2007; Strang & Sherry, 2014; Chow et al., 2015; Cauchoix et al., 2017; Degrande et al., 2022;846

Erdsack et al., 2022). Previous studies used summary statistics to describe how the behavior of individuals847

changes during the serial reversal learning experiment (e.g. Federspiel et al., 2017) or show changes in learning848

curves (e.g. Gallistel et al., 2004). As shown in Figure 6, we can recreate these learning curves from the849

inferred association-updating rates and sensitivities to learned associations. The advantage of the Bayesian850

reinforcement learning model with its two parameters of the association-updating rate and the sensitivity to851

learned associations is that it has a clear theoretical foundation of what aspects of the experimental setting852

should lead to changes in the behavior (Gershman, 2018; Metha et al., 2020; Danwitz et al., 2022; Woo et853

al., 2023). Based on our application here, the model appears to be sufficient to accurately represent the854

behavior of grackles in the serial reversal experiment. This suggests that the stability and reliability of the855

environment has a large influence on how individuals learn about rewards. The importance of experiencing856

stable and predictable environments potentially explains the difference between lab-raised and wild-caught857

animals in how they change their behavior during the serial reversal learning experiment. Many lab-raised858

animals were observed to switch to a “win-stay versus lose-shift” strategy, where only their most recent859

experience guided their behavior and they no longer explored alternative options (Mackintosh et al., 1968;860

Rayburn-Reeves et al., 2013). These animals generally experience very stable conditions during their lives,861

and often participate in large numbers of trials in an experiment. Accordingly, cues are reliable and changes862

are rare, so individuals would be expected to show the high association-updating rates and high sensitivities863

to learned associations that would lead to the “win stay versus lose shift” strategy. In contrast, wild-864

caught animals, including grackles, only slowly move away when an option is no longer rewarded and they865

continue to explore alternative options (Chow et al., 2015; Cauchoix et al., 2017). These individuals probably866

experience environments in which associations are not perfectly reliable and changes occur more gradually.867

These individuals are expected to show smaller sensitivities to their associations and therefore continue to868

explore their environment. This focus on the key pieces of information that individuals likely pay attention869

to when adjusting their behavior also provides ways to link their performances and inferred cognitive abilities870

to their natural behavior. We found that, for the grackles, the behavioral flexibility they exhibited at the871

end of the serial reversal learning experiment linked to their foraging behavior in the wild (Logan et al.,872

2024). The existing literature on foraging behavior, investigating trade-offs between the exploration versus873

exploitation of different options, has a similar focus on gaining information (exploration) versus decision874

making (exploitation) (Kramer & Weary, 1991; Berger-Tal et al., 2014; Addicott et al., 2017). Linking this875

framework to the concepts of reinforcement learning and decision making could provide further insights into876

the cognitive processes that are involved and the information that individuals might pay attention to. The877

approach we established here to study behavioral flexibility, linking the theoretical framework of the Bayesian878

reinforcement learning model to the specific experimental task of the serial reversal learning experiment and879

the natural behavior of individuals, offers opportunities to better understand cognition in the wild (Rosati880

et al., 2022).881
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