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ABSTRACT21

Environments can change suddenly and unpredictably, so animals might benefit from being able to flexibly22

adapt their behavior through learning new associations. Reversal learning experiments, where individuals23

initially learn that a reward is associated with a specific cue before the reward is switched to a different cue,24

thus forcing individuals to reverse their learned associations, have long been used to investigate differences in25

behavioral flexibility among individuals and species. Here, we apply and expand newly developed Bayesian26

reinforcement learning models to gain additional insights into how individuals might dynamically adapt their27

behavioral flexibility if they experience repeated reversals in which cue is associated with a reward. Using28

data from simulations and great tailed grackles (Quiscalus mexicanus), we find that two parameters, the29

association updating rate, which reflects how much individuals weigh the most recent information relative to30

previously learned associations, and the sensitivity to learned associations, which reflects whether individuals31

no longer explore alternative options after having formed associations, are sufficient to explain the different32

strategies individuals display during the experiment. Individuals gain rewards more consistently if they33

have a higher association updating rate, because they learned that cues are reliable and they therefore can34
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gain the reward consistently during one phase. The sensitivities to learned associations plays a role for the35

grackles who experienced a series of reversals, where individuals with lower sensitivities are better able to36

explore the alternative option after a switch. The grackles who experienced the serial reversal adapted their37

behavioral flexibility through two different strategies. Some individuals showed more exploration such that38

they can quickly change to the alternative option after a switch even if they continue to occasionally choose39

the unrewarded option. Others stick to the previously learned associations such that they take longer to40

change after a switch, but, once they have reversed their associations consistently, choose the correct option.41

These strategies the grackles exhibited at the end of the reversal learning experiment also relate to their42

performance on multi-option puzzle boxes where there are different behaviors required to access rewards.43

Grackles with intermediate strategies solved fewer options to access the rewards than grackles with either44

of the extreme strategies, and they took longer to attempt a new option. Our approach offers new insights45

into how individuals react to uncertainty and changes in their environment, in particular showing that they46

can adapt their behavioral flexibility in response to their experiences.47

INTRODUCTION48

Serial reversal learning experiments have long been used to understand how individuals keep track of biolog-49

ically important associations in changing environments (Bitterman, 1975; Dufort et al., 1954; Mackintosh50

et al., 1968). Most animals live in environments that undergo changes that can affect key components of51

their lives, such as where to find food or which areas are safe. Accordingly, individuals are expected to be52

able to react to these changes. One of the ways in which animals react to changes is through behavioral53

flexibility, the ability to change behavior when circumstances change by updating information and making it54

available to other cognitive processes (Mikhalevich et al., 2017). Serial reversal learning experiments aim to55

measure differences in behavioral flexibility across individuals and species (Lea et al., 2020) by first present-56

ing individuals with multiple options associated with cues, such as different colors or locations, that differ57

in their reward. After individuals learn the associations between rewards and cues, the rewards are reversed58

across cues, and individuals are observed to see how quickly they learn the changed associations. However,59

despite their long history, we still know little about how individuals approach these serial reversal learning60

tasks [Bond et al. (2007)) and what cognitive processes might lead to the observed differences in behavioral61

flexibility (Danwitz et al., 2022; Izquierdo et al., 2017).62

A number of theoretical models have been developed to reflect the potential cognitive processes animals might63

rely on to make informed choices in changing environments (for a recent review see for example Frömer &64

Nassar (2023)). These models deconstruct the behavior of individuals making choices into two processes65

(Bartolo & Averbeck, 2020; Camerer & Hua Ho, 1999; P. K. Chow et al., 2015; Izquierdo et al., 2017). The66

first process reflects the learning about the environment, through updating associations between external cues67

and potential rewards (or dangers). Individuals are expected to show different rates of updating associations68

(which we refer to as 𝜙, the greek letter phi, in the following) in different environments (Figure 1). Lower69

rates are expected when changes are rare and associations are not perfect such that a single absence of a70

reward might be an error rather than indicating a new association. Higher rates are expected when changes71

are frequent and associations are reliable such that individuals should update their associations when they72

encounter new information (Breen & Deffner, 2023; Dunlap & Stephens, 2009). The second process reflects73

how individuals, when presented with a set of cues, might decide between these alternative options based on74

their learned associations of the cues. Individuals with larger sensitivity to their learned associations (which75

we refer to as 𝜆, the greek letter lambda, in the following) will quickly prefer the option that previously76

gave them the highest reward (or the lowest danger), while individuals with low sensitivity will continue77

to explore alternative options. Sensitivities are expected to show the opposite pattern to the association-78

updating rate (Figure 1), with larger sensitivities when cues are unreliable but environments are static such79

that individuals start to exploit the rare information they are learning and lower sensitivities when cues are80

reliable and changes are frequent such that individuals explore alternative options when conditions change81

(Breen & Deffner, 2023; Daw et al., 2006).82
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Figure 1 In serial reversal learning experiments, associations are reliable, such that if an option is associated84

with a reward, it is rewarded during every trial (white background). However, the associations between85

options and the rewards change across trials (solid line). In such environments, individuals are expected to86

gain the most rewards if they update their associations quickly (large 𝜙) to switch away from an option if87

it is no longer being rewarded, and if they have small sensitivities to their learned associations to continue88

to explore all options to check if associations have changed again (small 𝜆). In contrast, in unchanging but89

unreliable environments, the probability that an option is rewarded stays constant across trials (dotted lines),90

but is closer to 50% (gray background). In such environments, individuals are expected to gain the most91

rewards if they build their associations as average across many trials (small 𝜙), and have high sensitivities92

to learned associations to exploit the option with the highest association (large 𝜆).93

A recent development to infer the cognitive processes from the choices individuals make during reversal94

learning experiments are Bayesian reinforcement learning models (Bari et al., 2022; Chen et al., 2021; Danwitz95

et al., 2022; Deffner et al., 2020). These Bayesian models estimate the association-updating rate and the96

sensitivity to learned associations by modeling the likelihood of the subsequent choices individuals were97

observed to make based on how the underlying reward associations would predict each choice. The learning98

of information is reflected by the Rescorla-Wagner rule (Rescorla & Wagner, 1972), which includes the99

association-updating rate (the rate’s label differs across authors) which weights the most recent information100

proportionally to the previously accumulated information for that cue (as a proportion, the rate can range101

between 0 and 1, see below for equation). The decision between different options is reflected by relative102

probabilities (Agrawal & Goyal, 2012; Danwitz et al., 2022; Daw et al., 2006), where the sensitivity to103

learned associations (again, the label can differ by author) modifies the relative difference in learned rewards104

to generate the probabilities to choose each option. A value of zero means individuals do not pay attention105

to their learned associations, but choose randomly, whereas increasingly larger values mean that individuals106

show strong biases in choice as soon as there are small differences in their learned associations. These static107

models have, for example, recently been used to indicate sex differences in exploration, with individuals108
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of one sex on average showing lower sensitivities to learned associations (Breen & Deffner, 2023; Chen et109

al., 2021). More generally, they support the prediction that individuals with higher association-updating110

rates are more successful in reversal learning experiments (Bari et al., 2022; Danwitz et al., 2022). However,111

the application of these models has thus far however been static, rather than inferring whether and how112

individuals might adapt their strategies over time (Tello-Ramos et al., 2019). We need an understanding of113

the dynamic changes individuals might undergo in their processes to describe the improvement in performance114

that occurs through the serial reversal learning experiments to gain a full better of behavioral flexibility.115

In serial reversal learning experiments, there are potentially three types of information individuals might pay116

attention to when adjusting their cognitive processes. First, in most reversal learning designs, there are two117

options differentiated by a cue, of which only one has the reward. Accordingly, exploring one option still118

provides information about the presence or absence of a reward in the other option. Second, linked to this,119

the association between a cue and a reward can be perfect such that one option is always rewarded during120

a reversal, but it could also be probabilistic, where both options contain a reward that differs in amount or121

frequency. In most animal experiments, the former is used where only one option contains a reward, so the122

association is perfect. In contrast, experiments in humans often introduce uncertainty in the associations by123

providing rewards only in a certain percentage of trials or by assigning rewards as draws from distributions124

(multi-armed bandit experiments). Third, reversals in the association between a cue and the reward can125

occur more or less frequently depending on the experimental design. At the extreme, when an individuals’126

previous experience suggests that rewards are only at one of the options during any given trial, associations127

are highly reliable, and changes are frequent, they might switch to an abstract rule, where the choice in128

the next trial is completely determined by the most recent experience (win-stay/lose-shift one-shot strategy,129

Mackintosh et al. (1968); Jang et al. (2015)). In experiments, such switches in strategy seem to appear130

in individuals living in the highly stable conditions of captivity (Metha et al., 2020; Rayburn-Reeves et131

al., 2013), especially if these individuals have been over-trained (Bartolo & Averbeck, 2020), and for highly132

reliable cues such as the location of a tree (Liu et al., 2016). However, most associations that animals have133

to learn however often have a probabilistic association between the cue and the outcome, the relationship134

between options is not necessarily straightforward, and the initial learning phase introduces a period of135

stability. Accordingly, most animals tested on serial reversal learning experiments do not show switches to136

abstract strategies, but rather improvements in their flexibility (Bitterman, 1975; Bond et al., 2007). In the137

classic two-choice serial reversal learning experiments given to animals, these improvements likely reflect how138

individuals adjust their association-updating rate and their sensitivity to learned associations depending on139

their experience of the frequency of the change and of the reliability of the association between the cue and140

the reward (Leimar et al., 2024; Neftci & Averbeck, 2019). Based on the static theoretical models, we would141

predict that individuals increase their association-updating rate because cues are highly reliable, and reduce142

their sensitivity to the learned associations because the option that is rewarded switches frequently.143

Here, we applied and modified the Bayesian reinforcement learning models to data from our great-tailed144

grackle (Quiscalus mexicanus, hereafter grackle) research on behavioral flexibility to assess how the two145

parameters of the model interact and dynamically change to shape the behavior of individuals. We previously146

found that the model can predict the performance of grackles in a static reversal learning task with a single147

switch of a color preference using two differently colored tubes (one light gray and one dark gray Blaisdell148

et al., 2021). Here, we build on this work with additional data from another population (Logan et al.,149

2023a), where we conducted a flexibility manipulation using serial reversal learning. The serial reversal150

manipulation consisted of switching the rewarded color whenever individuals chose the rewarded option151

more than expected by chance (passing criterion of choosing correctly in 17 out of the last 20 trials), until152

their reversal speeds were consistently fast (reaching criterion in 50 trials or less in two consecutive reversals).153

We randomly assigned individuals to a manipulated group who received serial reversals, or to a control group154

who received one reversal and then a similar amount of experience in making choices between two yellow155

tubes that both contained the same reward (Logan et al., 2023a). After the reversal learning experiment,156

both the manipulated and the control grackles were given a different flexibility test using multi-option puzzle157

boxes. Grackles who experienced the serial reversal learning experiment subsequently also appeared to show158

improved behavioral flexibility in this different context because they required less time to switch to a new159

option to access a food reward when the previously learned option was blocked. They also solved a larger160

number of the four options presented in the multi-option puzzle boxes (Logan et al., 2023a).161
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RESEARCH QUESTIONS162

1) Are the Bayesian reinforcement learning models sufficiently sensitive to detect changes that163

occur across the limited number of serial reversals that individuals participated in?164

The models infer two parameters, the association updating rate 𝜙 and the sensitivity to learned associations165

𝜆, from the behavior of individuals, from across the traditional single outcome of the number of trials needed166

to reach the criterion. In theory, multiple combinations of the two parameters could lead to the same number167

of trials during a given reversal. Whether information from a single or few reversals is sufficient to infer these168

values for individuals at different time points throughout a serial reversal experiment has not been systemat-169

ically addressed before. Therefore we used simulations to assess whether these models work on the samples170

that people usually work with. Determining the minimum number of choices per individual necessary to171

correctly infer their underlying parameters is necessary to reveal the dynamic changes in these parameters as172

individuals adjust their expectation of change throughout the serial reversal learning experiments and react173

accordingly.174

Prediction 1: We predicted that the Bayesian reinforcement learning model can reliably infer the two param-175

eters based on the choices individuals make during reversal learning, and that it can detect changes in these176

parameters that might occur during the series of reversals that individuals usually experience (4-6 reversals).177

2) Is a strategy of high association-updating (𝜙) and low sensitivity to learned associations (𝜆)178

best to reduce errors in the serial reversal learning experiment?179

Previous modeling work predicts that in situations in which changes are abrupt, but information is reliable,180

individuals learning in accordance with a Bayesian reinforcement model should show a high association-181

updating rate and a low sensitivity to learned associations (Breen & Deffner, 2023; Dunlap & Stephens,182

2009). However, the modeled situations were abstract and the inferred optimal association updating rates183

and sensitivities were higher than what is usually observed in reversal learning experiments. Therefore, we184

perform simulations of the specific behavior exhibited in serial reversal learning experiments to assess how185

changes in the choices individuals make link to their 𝜙 and 𝜆 values. In addition, previous studies were only186

focused on the optimal values for the two parameters in different situations rather than looking at how 𝜙187

and 𝜆 interact to explain variation among individuals. Therefore, we also use the simulations to determine188

whether one of the two parameters, 𝜙 or 𝜆, might explain more of the variation in the number of trials189

individuals need to reach the criterion of choosing the correct option 17 out of 20 times during a reversal.190

Prediction 2: We predicted that both 𝜙 and 𝜆 influence the performance of individuals in a reversal learning191

task, with higher 𝜙 values (faster learning with a higher association-updating rate) and lower 𝜆 values (more192

exploration with less sensitivity to learned associations) leading to individuals more quickly reaching the193

passing criterion after a reversal in the color of the rewarded option.194

3) Which of the two parameters 𝜙 or 𝜆 explains more of the variation in the reversal learning195

experiment performance of the tested grackles?196

Across both the manipulated and control grackles, we assessed whether variation in the number of trials an197

individual needs to reach the criterion in a given reversal is better explained by their inferred association198

updating rate or by their sensitivity to learned associations.199

Prediction 3: We predicted that both 𝜙 and 𝜆 explain variation in the reversal performance of the grackles.200

4) Which of the two parameters 𝜙 or 𝜆 changes more for the grackles that improved their201

performance through the serial reversal experiment?202

If individuals learn the contingencies of the serial reversal experiment, they should be reducing their sensi-203

tivity to learned associations 𝜆 to explore the alternative option when rewards change, and increase their204

association-updating rate 𝜙 to quickly exploit the new reliably rewarded option.205

Prediction 4: We predicted that individuals have higher 𝜙 and lower 𝜆 values during their last reversal of206

the serial reversal experiment than during their first reversal.207

5) Are some individuals better than others at adapting to the serial reversals?208

In previous work, we found that there are individual differences that persist throughout the experiment, with209

individuals who required fewer trials to solve the initial reversal also requiring fewer trials in the final reversal210

after their manipulation [mccune2023flexmanippeerj]. We could expect that these individual differences are211

guided by consistency in how individuals solve the reversal learning paradigm, meaning they are reflected in212
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individual consistency in 𝜙 and 𝜆 that persist through the serial reversal manipulation. In addition, it is not213

clear whether some grackles change their behavior more than others: for example, it could be that individuals214

who have a higher association-updating rate 𝜙 at the beginning of the experiment might also be better able215

to quickly change their behavior to match the particular conditions of the serial reversal learning experiment.216

Therefore, we also analyze whether the 𝜙 and 𝜆 values of individuals at the beginning predict how much217

they changed throughout the serial reversal learning experiment. Alternatively, given that the prediction218

for which sensitivity to learned association is best during a reversal (high sensitivity to stick to the learned219

associations) is different from the prediction for what is best right after a reversal (low sensitivity to explore220

the alternative option), the individuals who improved the most might end up with different strategies.221

Prediction 5: We predicted that differences in 𝜙 and 𝜆 among individuals persist through the serial reversal222

learning experiment, or that they might even increase as some individuals change their learning more than223

others.224

6) Can the 𝜙 or 𝜆 from the performance of the grackles during their final reversal predict225

variation in the performance on the multi-option puzzle boxes?226

We previously found that grackles who needed fewer trials to reach the criterion in their last reversal on227

the color tube test were also better at performing on the two (plastic and wooden) multi-access boxes.228

This association could potentially be explained by either of the parameters underlying flexibility, or by an229

interaction between the parameters. With the multi-option puzzle boxes, grackles would be expected to gain230

more rewards if they quickly update their previously learned associations with the options (high 𝜙) and/or if231

they are less sensitive to previously learned associations and instead continue to explore alternative options232

(low 𝜆).233

Prediction 6: We predicted that grackles that are more flexible, those who have a high 𝜙 and/or a low 𝜆,234

have shorter latencies to attempt a new option and solve more options on the two multi-option puzzle boxes.235

Given that grackles are expected to change both their 𝜙 and their 𝜆 through the serial reversal (see prediction236

2), we also explore whether the relationship between 𝜙 or 𝜆 and the performance on the multi-access boxes237

is non-linear.238
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METHODS239

The Bayesian reinforcement learning model240

We used the version of the Bayesian model that was developed in Blaisdell et al. (2021) and modified241

in Logan CJ et al. (2023) (see their Analysis Plan > “Flexibility analysis” for model specifications and242

validation). This model uses data from every trial of reversal learning (rather than only using the total243

number of trials to pass criterion) and represents behavioral flexibility using two parameters: the association-244

updating rate (𝜙) and the sensitivity to learned associations (𝜆). The model transforms the series of choices245

each grackle made based on two equations to estimate the most likely 𝜙 and 𝜆 that generated the observed246

behavior.247

Equation 1 (attraction and 𝜙): 𝐴𝑗,𝑖,𝑡+1=(1−𝜙𝑗)𝐴𝑗,𝑖,𝑡+𝜙𝑗 𝜋𝑗,𝑖,𝑡248

Equation 1 estimates how the associations A that individual j forms between the two different options (i � {1,249

2} and their expected rewards change from one trial to the next (time t+1) as a function of their previously250

formed associations 𝐴𝑗,𝑖,𝑡 (how preferable option i is to grackle j at time t) and recently experienced payoff 𝜋251

(in our case, 𝜋 = 1 when they chose the correct option and received a reward in a given trial, and 0 when they252

chose the unrewarded option). The parameter 𝜙𝑗 modifies how much individual j updates its associations253

based on its most recent experience. The higher the value of 𝜙𝑗, the faster the individual updates its254

associations, paying more attention to recent experiences, whereas when 𝜙𝑗 is lower, a grackle’s associations255

reflect averages across many trials. Association scores thus reflect the accumulated learning history up to256

this point. The association with the option that is not explored in a given trial remains unchanged. At257

the beginning of the experiment, we assume that individuals have the same low association between both258

options and rewards (𝐴𝑗,1 = 𝐴𝑗,2 = 0.1).259

Equation 2 (choice and 𝜆): 𝑃(𝑗, 𝑖)𝑡+1=
𝑒𝑥𝑝(𝜆𝑗𝐴𝑗,𝑖,𝑡)

∑2
𝑖=1 𝑒𝑥𝑝(𝜆𝑗𝐴𝑗,𝑖,𝑡)

260

Equation 2 expresses the probability P that an individual j chooses option i in the next trial, t+1, based on261

their learned associations of the two options with rewards. The parameter 𝜆𝑗 represents the sensitivity of a262

given grackle j to how different its associations to the two options are. As 𝜆𝑗 gets larger, choices become more263

deterministic and individuals consistently choose the option with the higher association even if associations264

are very similar. As 𝜆𝑗 gets smaller, choices become more exploratory, with individuals choosing randomly265

between the two options independently of their learned associations if 𝜆𝑗 is 0.266

Equation 2 expresses the probability *P that an individual j chooses option i in the next trial, t+1, based on267

the attractions. The parameter 𝜆𝑗 represents the rate of deviating from learned attractions of an individual.268

It controls how sensitive choices are to differences in attraction scores. As 𝜆𝑗 gets larger, choices become more269

deterministic and individuals consistently choose the option with the higher attraction even if attractions270

are very similar, as 𝜆𝑗 gets smaller, choices become more exploratory (random choice independent of the271

attractions if 𝜆𝑗=0).272

We implemented the Bayesian reinforcement learning model in the statistical language Stan (Stan Develop-273

ment Team, 2023), calling the model and analyzing its output in R (version 4.2.2) (R Core Team, 2023).274

The model takes the full series of choices individuals make (which of the two options did they choose, which275

option was rewarded, did they make the correct choice) across all their trials to find the 𝜙 and 𝜆 values276

that best fit these choices given the two equations: whether or not individuals chose the rewarded option277

was reflected as a categorical likelihood (yes or no) with probability P as estimated from equation 2, before278

updating the associations using equation 1. The model was fit across all choices, with individual 𝜙 and 𝜆279

values estimated as varying effects. In the model, 𝜙 is estimated on the logit-scale to force the values to280

be positive before being converted back for equation 1 to update the associations, and 𝜆 is estimated on281

the log-scale to account for the exponentiation that occurs in equation 2. We set the priors for 𝜙 and 𝜆 to282

come from a normal distribution with a mean of zero and a standard deviation of one. We set the initial283

associations with both options for all individuals at the beginning of the experiment to 0.1 to indicate that284

they do not have an initial preference for either option but are likely to be somewhat curious about exploring285

the tubes because they underwent habituation with a differently colored tube (see below). For estimations at286

the end of the serial reversal learning experiment, we set the association with the option that was rewarded287
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before the switch to 0.7 and to the option that was previously not rewarded to 0.1. Note that when applying288

equation 1 in the context of the reversal learning experiment as most commonly used, where there are only289

rewards (positive association) or no rewards (zero association) but no punishment (negative association),290

associations can never reach zero because they change proportionally.291

We used functions in the package “posterior” (Vehtari et al., 2021) to draw 4000 samples from the posterior292

(the default in the functions). We report the estimates for 𝜙 and 𝜆 for each individual (simulated or grackle)293

as the mean from these samples from the posterior. For the subsequent analyses where the estimated 𝜙 and294

𝜆 values were response or predictor variables, we ran the analyses both with the single mean per individual295

as well as looping over the full 4000 samples from the posterior to reflect the uncertainty in the estimates.296

The analyses with the samples from the posterior provided the same estimates as the analyses with the297

single mean values, though with larger confidence estimates because of the increased uncertainty. In the298

results, we report the estimates from the analyses with the mean values. The estimates with the samples299

from the posterior can be found in the code in the rmd file at the repository. In analyses where 𝜙 and 𝜆300

are predictor variables, we standardized the values that went into each analysis (either the means, or the301

respective samples from the posterior) by subtracting the average from each value and then dividing by the302

standard deviation. We did this to define the priors for the relationship on a more standard scale and to be303

able to more directly compare their respective influence on the outcome variable.304

We also used the two equations analytically to more directly make predictions about how a specific 𝜙 and 𝜆305

would influence the choices individuals make during the reversal learning. To derive the learning curves for306

individuals with different 𝜙 and 𝜆, we incorporated the dynamic aspect of change over time by inserting the307

probabilities of choosing either the rewarded or the non-rewarded option from time t-1 as the likelihood for308

the changes in associations at time t:309

Equation 3a (dynamic association): 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡+1 = ((1-𝜙) * 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡 + 𝜙 *310

Reward) * 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡 + (1-𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡) * 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡311

Equation 3b (dynamic association): 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡+1 = (1-𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡) * (1-𝜙) *312

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡 + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡 + (1-𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡) * 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡313

1) Using simulations to determine whether the Bayesian serial reinforcement learning models314

have sufficient power to detect changes through the serial reversal learning experiment315

We re-analyzed data we previously simulated for power analyses to estimate sample sizes for population316

comparisons (Logan CJ et al., 2023). In brief, we simulated 20 individuals each from 32 different populations317

(640 individuals). The 𝜙 and 𝜆 values for each individual were drawn from a distribution representing that318

population, with different mean 𝜙 (8 different means) and mean 𝜆 (4 different values) for each population319

(32 populations as the combination of each 𝜙 and 𝜆). The range for 𝜙 and 𝜆 values assigned to the artificial320

individuals in the simulations were based on the previous analysis of the single reversal data from grackles in321

a different population (Santa Barbara, California, USA, Blaisdell et al. (2021)) to reflect the likely expected322

behavior. Based on their assigned 𝜙 and 𝜆 values, each individual was simulated to pass first through the323

initial association learning phase and, after they reached criterion (chose the correct option 17 out of the324

last 20 times), the rewarded option switched and simulated individuals went through the reversal learning325

phase until they again reached criterion. Each choice that each individual made was simulated consecutively,326

updating their internal associations with the two options based on their 𝜙 values and setting the probability327

of their next choice based on how their 𝜆 value weighted their associations to the two options. We excluded328

simulated individuals from the further analyses if they did not reach criterion either during the initial329

association or the reversal within 300 trials, the maximum that was also set for the experiments with the330

grackles.331

We ran the Bayesian reinforcement learning model on these simulated data to understand the minimum332

number of choices per individual that would be necessary to recover the association-updating rate 𝜙 and the333

sensitivity to learned association 𝜆 values assigned to each individual.334

To determine whether the Bayesian reinforcement learning model can accurately recover the simulated 𝜙335

and 𝜆 values from limited data, we applied the model first to only the choices from the initial association336

learning phase, next to only the choices from the first reversal learning phase, and finally from both phases337
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combined. To estimate whether the Bayesian reinforcement learning model can recover the simulated 𝜙 and338

𝜆 values without bias from either of the single or from the combined datasets, we correlated the estimated339

values with the values individuals were initially assigned:340

Assigned value of 𝜙 or 𝜆 ~ Normal(𝜇, 𝜎)341

𝜇 = a + b * Estimated value of 𝜙 or 𝜆342

a ~ Normal(0,0.1)343

b ~ Normal(1,1)344

𝜎 ~ Exponential(1)345

A slope b between the assigned and estimated values close to 1 would indicate that the estimated values346

matched the assigned values.347

This, and all following statistical models, were implemented using functions of the package ‘rethinking’348

(McElreath, 2020) in R to estimate the association with stan. Following the social convention set in (McEl-349

reath, 2020), we report the mean estimate and the 89% confidence interval from the posterior estimate from350

these models. For each model, we ran four chains with 10,000 iterations each (half of which were burn-in,351

and half samples for the posterior). We checked that the number of effective samples was sufficiently high352

and evenly distributed across parameters such that auto-correlation did not influence the estimates. We also353

confirmed that in all cases the Gelman-Rubin convergence diagnostic, Ȓ, was 1.01 or smaller indicating that354

the chains had converged on the final estimates (Gelman & Rubin, 1995). In all cases, we also linked the355

model inferences back to the distribution of the raw data to confirm that the estimated predictions matched356

the observed patterns.357

2) Using simulations to determine whether variation in 𝜙 or in 𝜆 has a stronger influence on358

the number of trials individuals might need to reach criterion in reversal learning experiments359

We determined how the 𝜙 and 𝜆 values that were assigned to the simulated individuals influenced their360

performance in the reversal learning trials, building a regression model to determine which of the two361

parameters had a more direct influence on the number of trials individuals needed to reach criterion. We362

assumed that the number of trials followed a Poisson distribution because the number of trials to reach363

criterion is a count that is bounded at smaller numbers (individuals need at least 20 trials to reach the364

criterion), with a log-linear link, because we expect there are diminishing influences of further increases in 𝜙365

or 𝜆.366

Number of trials to reverse ~ Poisson(𝜇)367

log 𝜇 = a + b * 𝜙 + c * 𝜆368

a ~ Normal(4.5,1)369

b ~ Normal(0,1)370

c ~ Normal(0,1)371

372

The prior for the intercept a was based on the average number of trials (90) grackles in Santa Barbara were373

observed to need to reach the criterion during the reversal (mean of 4.5 is equal to logarithm of 90, standard374

deviation set to 1 to constrain the estimate to the range observed across individuals). The priors for the375

relationships b and c with 𝜙 and 𝜆 were centered on zero, indicating that, a-priori, we do not bias it toward376

a relationship.377

3) Estimating 𝜙 and 𝜆 from the observed reversal learning performances of great-tailed grackles378

to determine which has more influence on variation in how many trials individuals needed to379

reach the passing criterion380

The collection of the great-tailed grackle data is described in detail in (Logan et al., 2023a). The data381

collection was based on our preregistration that received in principle acceptance at PCI Ecology (Coulon,382

2023). All of the analyses reported here were not part of the original preregistration.383

The research on the great-tailed grackles followed established ethical guidelines for the involvement and treat-384

ment of animals in experiments and received institutional approval prior to conducting the study (US Fish385
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and Wildlife Service scientific collecting permit number MB76700A-0,1,2; US Geological Survey Bird Band-386

ing Laboratory federal bird banding permit number 23872; Arizona Game and Fish Department scientific387

collecting license number SP594338 [2017], SP606267 [2018], and SP639866 [2019]; California Department388

of Fish and Wildlife scientific collecting permit number S‐192100001‐19210‐001; Institutional Animal Care389

and Use Committee at Arizona State University protocol number 17-1594R; Institutional Animal Care and390

Use Committee at the University of California Santa Barbara protocol number 958; University of Cambridge391

ethical review process non-regulated use of animals in scientific procedures: zoo4/17 [2017]).392

The data we use here were published as part of an earlier article (Logan et al., 2023b) and are available at393

the Knowledge Network for Biocomplexity’s data repository: https://knb.ecoinformatics.org/view/corina_394

logan.84.42.395

396

Great-tailed grackles were caught in the wild in Tempe, Arizona, USA for individual identification (colored leg397

bands in unique combinations), and brought temporarily into aviaries for testing, before being released back398

to the wild. After training individuals to gain food from a yellow-colored tube, individuals then participated399

in the reversal learning tasks. A subset of individuals was part of the control group, where they learned400

the association of the reward with one color before experiencing one reversal to learn that the other color401

is rewarded (initial reward option was randomly assigned to either a dark-gray or a light-gray tube). The402

rewarded option was switched when grackles passed the criterion of choosing the rewarded option during 17403

of the most recent 20 trials. This criterion was set based on earlier serial reversal learning studies, and is404

based on the chi-square test which indicates that 17 out of 20 represents a significant association. With this405

criterion, individuals can be assumed to have learned the association between the cue and the reward (Logan406

et al., 2022). After their single reversal, the 11 control grackles participated in a number of trials with two407

identically colored tubes (yellow) which both contained a reward. This matched their general experiment408

participation to that of the manipulated group. The other subset of 8 individuals in the manipulated group409

went through a series of reversals until they reached the criterion of having formed an association (17 out410

of 20 choices correct) in less than 50 trials in two consecutive reversals. The individuals in the manipulated411

group needed between 6-8 reversals to consistently reach this threshold, with the number of reversals not412

being linked to their performance at the beginning or at the end of the experiment.413

We fit the Bayesian reinforcement learning model to the data of both the control and the manipulated grackles.414

Based on the simulation results indicating that the minimum sample required for accurate estimation are415

two learning phases across one switch (see below), we fit the model first to only the choices from the initial416

association learning phase and the first reversal learning phase for both control and manipulated individuals.417

For the control grackles, these estimated 𝜙 and 𝜆 values also reflect their behavioral flexibility at the end of418

the reversal learning experiment. For the manipulated grackles, we additionally calculated 𝜙 and 𝜆 separately419

for their final two reversals at the end of the manipulation to infer the potential changes in the parameters .420

We fit the same regression model as with the simulated data to determine how 𝜙 and 𝜆 link to the number421

of trials grackles needed during their reversals.422

4) Comparing 𝜙 and 𝜆 from the beginning and the end of the observed serial reversal learning423

performances to assess which changes more as grackles improve their performance424

For the subset of grackles that were part of the manipulated group, we calculated how much their 𝜙 and425

𝜆 changed from their first to their last reversal.426

𝜙 or 𝜆 ~ Normal( 𝜇 , 𝜎 )427

𝜇 = 𝑎𝑏𝑖𝑟𝑑 + 𝑏𝑏𝑖𝑟𝑑 * reversal [𝑎𝑏𝑖𝑟𝑑,𝑏𝑏𝑖𝑟𝑑] ~ MVNormal([a,b],S)428

S = (𝛿𝑏𝑖𝑟𝑑 ,0) Rho (𝛿𝑏𝑖𝑟𝑑 ,0)429

Rho ~ LKJcorr(2)430

a ~ Normal(5,2)431

b ~ Normal(-1,0.5)432

𝛿𝑏𝑖𝑟𝑑 ~ Exponential(1)433

𝜎 ~ Exponential(1)434

435
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where each grackle has two 𝜙 or 𝜆 values, one from the beginning (‘reversal’ equals 1) and one from the end436

of the serial reversal experiment (‘reversal’ equals 2). We assume that there are individual differences that437

persist through the experiment (intercept 𝑎𝑏𝑖𝑟𝑑) and that how much individuals change might also depend438

on their values at the beginning (multi-normal matrix correlation between the bird specific intercepts a and439

the bird specific changes between the reversals b).440

We also fit a model to assess whether how much individuals improved in the number of trials from their first441

to their last reversal was linked more to their change in 𝜙 or to their change in 𝜆.442

Improvement in number of trials ~ Normal(𝜇, 𝜎)443

𝜇 = a + b * change in 𝜙 + c * change in 𝜆 a ~ Normal(40, 10)444

b ~ Normal(0, 10)445

c ~ Normal(0, 10)446

𝜎 ~ Exponential(1)447

448

where Improvement in the number of trials is the difference in the number of trials between the first and the449

last reversal and change in 𝜙 and change in 𝜆 are the respective differences in these parameters between the450

beginning and the end of the serial reversal experiment.451

5) Calculating whether individual differences in 𝜙 and 𝜆 persist throughout the serial reversal452

learning experiment and whether individuals differ in how much they change throughout the453

experiment454

We checked whether the 𝜙 or 𝜆 values of individuals at the beginning (first) was associated with how much455

they changed (change, difference in values between beginning or end) or with the values they had at the end456

(last).457

𝜙 change or 𝜆 change ~ Normal(𝜇 , 𝜎)458

𝜇 = a + b * 𝜙 first or 𝜆 first459

a ~ Normal(0,1)460

b ~ Normal(0,1)461

𝜎 ~ Exponential(1)462

463

𝜙 last or 𝜆 last ~ Normal(𝜇 , 𝜎) 𝜇 = a + b * 𝜙 first or 𝜆 first464

a ~ Normal(0,1)465

b ~ Normal(0,1)466

𝜎 ~ Exponential(1)467

In addition, we assessed whether grackles at the end show the potential trade-off between 𝜙 and 𝜆 that could468

be expected in the serial reversal experiment.469

𝜙 last ~ Normal(𝜇 , 𝜎)470

𝜇 = a + b * 𝜆 last471

a ~ Normal(0,1)472

b ~ Normal(0,1)473

𝜎 ~ Exponential(1)474

6) Linking 𝜙 and 𝜆 from the observed serial reversal learning performances to the performance475

on the multi-access boxes476

After the individuals had completed the reversal learning experiment, they were provided access to two477

multi-access puzzle boxes, one made of wood and one made of plastic. The two boxes were designed with478

slight differences to explore how general the performance of the grackles was. The wooden box was made479

from a natural log, so was more representative of something the grackles might encounter in the wild. In480

addition, while both boxes had 4 possible ways (options) to access food, the four options on the wooden box481

were distinct compartments, each containing rewards, while the four options on the plastic box all led to the482
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same reward. Grackles were tested sequentially on both boxes, where individuals could initially explore all483

options. After proficiency at an option was achieved (gaining food from this locus three times in a row), this484

option became non-functional by closing access to the option, and then the latency of the grackle to switch485

to attempting a different option was measured. If they again successfully solved another option, this second486

options was also made non-functional, and so on. The outcome measures for each individual with each box487

were the average latency it took to switch to a new option and the total number of options they successfully488

solved. For details see (Logan et al., 2023a).489

We modified the models in the original article (Logan et al., 2023a) that linked performance on the serial490

reversal learning tasks to performance on the multi-access boxes, replacing the previously used independent491

variable of number of trials needed to reach criterion in the last reversal with the estimated 𝜙 and 𝜆 values492

from the last two reversals (manipulated grackles) or the initial discrimination and the first reversal (control493

grackles) (see below for explanation of these choices). With our expectation that 𝜙 and 𝜆 could be negatively494

correlated , we realized that grackles might be using different strategies when facing a situation in which cues495

change: some grackles might quickly discard previous information and rely on what they recently experienced496

(high 𝜙 and low 𝜆), or they might rely on earlier information and continue to explore other options (low 𝜙497

and high 𝜆). Accordingly, we assumed that there also might be non-linear, U-shaped relationships between498

𝜙 and/or 𝜆 and the performance on the multi-access box. For the number of options solved, we fit a binomial499

model with a logit link:500

options solved ~ Binomial(4, p)501

logit(p) ~ a + b * 𝜙 + c * 𝜙^2 + d * 𝜆 + e * 𝜆^2502

a ~ dnorm(1, 1)503

b ~ dnorm(0, 1)504

c ~ dnorm(0, 1)505

d ~ dnorm(0, 1)506

e ~ dnorm(0, 1)507

where options solved is the number of options solved on the multi-access puzzle box, 4 is the total number508

of options, p is the probability of solving any one option across the whole experiment, a is the intercept, b is509

the expected linear amount of change in options solved for every one unit change in 𝜙 in the reversal learning510

experiments, c is the expected non-linear amount of change in options solved for every one unit change in 𝜙511

squared, d the expected linear amount of change for changes in 𝜆, and e the expected non-linear amount of512

change for changes in 𝜆 squared.513

For the average latency to attempt a new option on the multi-access puzzle box as it relates to trials to514

reverse (both are measures of flexibility), we fit a Gamma-Poisson model with a log-link:515

latency ~ Gamma-Poisson(𝜇𝑖, 𝜎)516

log(𝜇𝑖) ~ a + b * 𝜙 + c * 𝜙^2 + d * 𝜆 + e * 𝜆^2517

a ~ dnorm(1, 1)518

b ~ dnorm(0, 1)519

c ~ dnorm(0, 1)520

d ~ dnorm(0, 1)521

e ~ dnorm(0, 1)522

𝜎 ~ Exponential(1)523

latency is the average latency to attempt a new option on the multi-access box, 𝜇𝑖 is the rate (probability524

of attempting an option in each second) per grackles (and we take the log of it to make sure it is always525

positive; grackles with a higher rate have a smaller latency), 𝜎 is the dispersion of the rates across grackles,526

a is the intercept, b is the expected linear amount of change in latency for every one unit change in 𝜙 , c is527

the expected non-linear amount of change in latency for every one unit change in 𝜙 squared, d the expected528

linear amount of change for changes in 𝜆, and e the expected non-linear amount of change for changes in 𝜆529

squared.530

12



RESULTS531

1) Power of the Bayesian reinforcement learning model to detect short-term changes in the532

association-updating rate 𝜙 and the sensitivity to learned associations 𝜆533

Applying the Bayesian reinforcement learning model to simulated data from only a single phase (initial534

association or first reversal) revealed that, while the model recovered the differences among individuals,535

the estimated 𝜙 and 𝜆 values did not match those the individuals had been assigned (Figure 2 shows the536

relationship between the assigned and estimated 𝜙 values when estimated from only the first reversal as537

an illustration). We realized that 𝜙 and 𝜆 values were consistently shifted,with the Bayesian estimation538

adjusting both parameters towards the mean and away from extreme values. Simulated individuals who539

were assigned large 𝜆 values were estimated to have a smaller 𝜆 values but in turn estimated to have 𝜙540

values such that they would reach criterion in a similar number of trials because while the model assumed541

that they were more exploratory the model also assumed that they updated their associations more quickly.542

Similarly, individuals with large assigned 𝜙 values were estimated to have smaller 𝜙 values, but in turn were543

estimated to have larger 𝜆 values than those 𝜆 they were assigned. Because the estimation from a single544

reversal did not accurately recover large values for either parameter, both the estimated 𝜙 values (slope of545

the correlation between the estimated and the assigned 𝜙 +0.15, confidence interval +0.06 to +0.23, n=626546

simulated individuals) and the estimated 𝜆 values (slope of the correlation between the estimated and the547

assigned 𝜆 +0.58, confidence interval +0.48 to +0.68, n=626 simulated individuals) were underestimates of548

the assigned values. In addition, this shift means that, even though simulated individuals were assigned 𝜙549

and 𝜆 values randomly from across all possible combinations, the estimated values showed a strong positive550

correlation as the model had to make up the shifts in estimates of one parameter through shifting the551

estimate of the other parameter (slope of the correlation between the estimated 𝜆 and estimated 𝜙 values552

+505, confidence interval +435 to +570, n=626 simulated individuals).553

In contrast, when we combined data from across the initial discrimination learning and the first reversal, the554

model accurately recovered the 𝜙 and 𝜆 values that the simulated individuals had been assigned (slope of555

the correlation between the estimated and the assigned 𝜙 +0.96, confidence interval +0.70 to +1.21, n=626556

simulated individuals; slope of the correlation between the estimated and the assigned 𝜆 +0.98, confidence557

interval +0.92 to +1.05, n=626 simulated individuals) (Figure 2). While different combinations of 𝜙 and 𝜆558

could potentially explain the series of choices during a single phase (initial discrimination and single reversal),559

these different combinations lead to different assumptions about how an individual would behave right after560

a reversal when the reward is switched to the alternative option, making it possible to infer the assigned value561

when combining behavioral choices from two phases (initial learning plus first reversal, or two subsequent562

reversals).563
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564

Figure 2: The 𝜙 values estimated by the model based on the choices made by 30 of the simulated individuals565

(y-axis) versus the 𝜙 values assigned to them (x-axis). Individuals were assigned a range of 𝜙 values, their566

choices were simulated and these values were used to back-estimate the 𝜙. When 𝜙 was estimated based567

on the choices made only during the first reversal, the estimates were consistently lower than the assigned568

values, particularly for large 𝜙 values (lightblue squares). However, when 𝜙 was estimated based on the569

choices made during the initial association and the first reversal, the estimates were close to the assigned570

values (darkgreen circles). Patterns are similar for the relationship between the estimated and assigned 𝜆571

values, and when 𝜙 and 𝜆 are estimated only from the trials during the initial association learning. Lines572

around the points indicate the confidence intervals of the estimated values.573

2) Predicted role of 𝜙 and 𝜆 on performance in the serial reversal learning task based on574

simulations575

In terms of the influence of the two parameters 𝜙 and 𝜆 on the number of trials grackles needed to reverse576

a color preference, the 𝜙 values assigned to simulated individuals had a stronger influence than the 𝜆 values577

(estimated association of number of trials with standardized values of 𝜙: -0.23, confidence interval: -0.24 to578

-0.23; with standardized values of 𝜆: -0.17, confidence interval: -0.18 to -0.16, n = 626 simulated individuals).579
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In line with the prediction, there was a linear negative relationship between 𝜙 and the number of trials to580

reverse, with simulated individuals needing fewer trials the more they updated their association based on581

their most recent experience. There also was, as predicted, an overall negative relationship between 𝜆 and582

the number of trials to reverse. Individuals generally needed few trials to reach the criterion if they were583

assigned a high 𝜆 value because they acted even on small differences in their learned associations. However,584

while individuals with small 𝜆 values can show large numbers of 150 or more trials to reach criterion because585

they are not sensitive to the differences in their learned associations, individuals with small 𝜆 values can also586

reach the criterion in small numbers of trials if they simultaneously quickly update their association because587

of their high 𝜙 values (Figure 3).588

589

Figure 3. In the simulations, the 𝜙 values assigned to individuals (green) had a larger influence on the590

number of trials these individuals needed to reverse than their 𝜆 values (red). In general, individuals needed591

fewer trials to reverse if they had larger 𝜙 and 𝜆 values. However, relatively small 𝜆 values could be found592

across the range of reversal performances, whereas there was a more clear distinction with 𝜙 values (shaded593

lines represent confidence intervals of the estimated relationship for these data). 𝜙 and The to reach criterion594

are grouped into discrete blocks for easier illustration, but the analyses were performed on the raw values595

for each individual.596

We performed an analytical assessment of this likely trade-off between the association updating rate 𝜙 and597

the sensitivity to the learned associations 𝜆 to identify the range of values we could expect in the serial598

reversal learning experiment. We assigned an hypothetical individual one of nine potential 𝜙 values in the599

range of 0.02 to 0.10 (steps differ by 0.01), assumed that this individual initially had the same association600

of the reward with both of the options (associations of 0.10 for light gray and 0.10 for dark gray), and601

assumed that this individual would choose each options 10 times during its first 20 trials. We calculated602

the associations to both options after the first 20 trials given the respective 𝜙 (e.g. with a 𝜙 of 0.10, the603

association with the rewarded option increases to 0.69 while the association with the unrewarded option604
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declines to 0.03). Based on the differences in the two associations, we estimated the 𝜆 value necessary for605

individuals to choose the rewarded option 85% in the next 20 trials (to reach the criterion of choosing the606

rewarded option in 17 out of 20 trials). We detected a clear negative, and exponential, trade-off between607

the necessary 𝜙 and 𝜆 values to reach the criterion (Figure 4): individuals with the highest 𝜙 value of 0.10608

only need a 𝜆 of 2.7 to reach the criterion, whereas individuals with a 𝜙 value of 0.02 need a 𝜆 of 9.5. This609

trade-off, where individuals can reach criterion during a reversal in few trials by either quickly updating their610

associations or by being highly sensitive to even small differences in their learned associations, means that in611

the serial reversal learning experiment individuals are expected to choose a strategy from across this range,612

and that doing so means they can also react to the sudden reversals in the reward location. In the serial613

reversal learning experiments, individuals will be able to reach the criterion more quickly during subsequent614

trials if they have, as predicted, a high 𝜙 and a low 𝜆 value. First, even if individuals were to choose randomly615

during the first trials after a reversal, individuals with a low 𝜙 need exponentially more trials to reverse their616

bias in associations between the two options. If an individual after one reversal has an association to the617

no longer rewarded option of 0.70 and to the now rewarded option of 0.10, with a 𝜙 of 0.02 it will take 48618

random trials until their association to the now rewarded options is higher than their association to the no619

longer rewarded option. In contrast, with a 𝜙 of 0.08 it will only take them 10 trials. Second, individuals620

with a high 𝜆 value will keep on choosing the previously rewarded option in almost all of their trials until621

this switch in associations occurs, further delaying the learning of the new associations. Individuals that622

have an association of 0.70 with the no longer rewarded option and 0.10 with the now rewarded option will623

choose the now rewarded option in 14% of cases if their 𝜆 is only 3, but only in 0.8% of cases if their 𝜆 is 8.624
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625

Figure 4. Individuals are more likely to reach the criterion of choosing the correct option 17 out of 20 times626

during the reversal trials if they update their associations quickly (high 𝜙) and/or are sensitive to even small627

differences in their learned associations (high 𝜆), because, during a reversal, recent information accurately628

predicts where the reward can be found. The figure shows this trade-off of individuals needing either high629

𝜙 or high 𝜆 values to reach the criterion in a hypothetical situation where all individuals reach the criterion630

in 40 trials. This also means that if an individual has, for example, a high 𝜙, their 𝜆 value becomes less631

important for reaching the criterion quickly. In this example, individuals with a 𝜙 of 0.10 will reach the632

criterion in 40 trials if their 𝜆 is at least 3.3. The figure also shows the median 𝜙 and 𝜆 values estimated for633

the grackles during their first reversal (yellow) when they needed about 70 trials to reach criterion and for634

the manipulated individuals during their last reversal (blue) when they did needed about 40 trials to reach635

criterion. During the manipulation, grackles increased their 𝜙 to become efficient at gaining the reward and636

reaching the criterion, despite the concordant decline in 𝜆.637

3) Observed role of 𝜙 and 𝜆 on performance of grackles in the reversal learning task638

For the grackles, we estimated 𝜙 and 𝜆 after the first reversal for all individuals, and additionally after639

the final reversal for the individuals who experienced the serial reversal learning experiment. The findings640

from the simulated data indicated that 𝜆 and 𝜙 can only be estimated accurately when calculated across641

at least one switch. In the simulation, we could combine the performance of individuals during the initial642
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learning with the first reversal to estimate the parameters because the behavior during those two phases643

in the simulations was determined in the same way by the 𝜙 and 𝜆 values that individuals were assigned.644

We determined that we can also combine the first two phases for the grackles, because we found that the645

performance of the great-tailed grackles during the initial learning and the first reversal learning is correlated,646

with grackles needing about 28 trials more to reach criterion during the first reversal than they needed during647

the initial association learning (estimate of the association between number of trials in initial learning and648

first reversal +1.61, confidence interval +1.53 to +1.69, n=19 grackles). Therefore, we estimated 𝜙 and 𝜆 for649

the great-tailed grackles based on their performance in the initial discrimination plus first reversal, and for650

the manipulated grackles additionally based on their performance in the final two reversals. The inferred 𝜙651

values for the grackles in Arizona range between 0.01 and 0.10, and the 𝜆 values between 2.1 and 6.5 (Figure652

5).653
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654

Figure 5. Comparisons of the different measures of ability in the reversal task for each of the 19 great-tailed655

grackles. The figure shows a) the number of trials to pass criterion for the first reversal (orange; all grackles)656

and the last reversal (blue; only manipulated grackles); b) the 𝜙 values reflecting the rate of updating657

associations with the two options inferred from the initial discrimination and first reversal (orange; all658

grackles) and from the last two reversals (blue; manipulated grackles); and c) the 𝜆 values reflecting the659

sensitivity to the learned associations inferred from the initial discrimination and first reversal (orange; all660

grackles) and from the last two reversals (blue; manipulated grackles). Individual grackles have the same661

position along the x-axis in all three panels. Grackles that needed fewer trials to reverse their preference662

generally had higher 𝜙 values, whereas 𝜆 appeared unrelated to the number of trials grackles needed during663

the first reversal. For the manipulated grackles, their 𝜙 values changed more consistently than their 𝜆664

values, and the 𝜙 values of the manipulated individuals were generally higher than those observed in the665

control individuals, while their 𝜆 values remained within the range observed in the control group.666

For the 19 grackles that finished the initial learning and the first reversal, only their 𝜙, but not their 𝜆,667

predicted the number of trials they needed to reach criterion during their first reversal (mean estimate668

of correlation between number of trials and: standardized 𝜙: -20.69, confidence interval -26.17 to -15.13;669

standardized 𝜆: -0.22, confidence interval -5.66 to 5.26, n=19 grackles)(Figure 6). A grackle with a 0.01670

higher 𝜙 than another individual needed about 10 fewer trials to reach the criterion. The slope between 𝜙671

and the number of trials for the grackles was essentially identical to that observed in the simulations (-21.21672
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vs -20.48, Figure 6). The number of trials grackles needed to reach the criterion given their 𝜙 values fell673

right into the range observed in the relationship between the 𝜙 and the number of trials observed among674

the simulated individuals (Figure 6) Even though the 8 manipulated grackles also appeared to need slightly675

fewer trials to reach criterion in their final two reversals if they had a higher 𝜙, the limited variation in the676

number of trials and in 𝜙 and 𝜆 values among individuals means that there is no clear association (mean677

estimate of correlation between number of trials and: standardized 𝜙: -7.38, confidence interval -15.97 to678

1.28; standardized 𝜆: -4.00, 89% confidence interval 12.53 to 4.61, n=8 grackles).679

680

Figure 6. Relationship between 𝜙 and the number of trials grackles (yellow points) and simulated individuals681

(green circles) needed to reach criterion in their first trial. The observed grackle data falls within the range682

of the number of trials individuals with a given 𝜙 value are expected to need, and shows the same negative683

correlation between their 𝜙 and the number of trials as the simulated individuals (lines display the confidence684

interval of the estimated relationships).685
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4) Changes in 𝜙 and 𝜆 through the serial reversal learning task686

Great-tailed grackles who experienced the serial reversal learning manipulation reduced the number of trials687

they needed to reach the criterion from an average of 75 to an average of 40 (estimate of change in number of688

trials -30.02, confidence interval -36.05 to -24.16, n=8 grackles). For the manipulated grackles, the estimated689

𝜙 values more than doubled from 0.03 in their initial discrimination and first reversal (which is identical to690

the average observed among the control grackles who did not experience the manipulation) to 0.07 in their691

last two reversals (estimate of expected average change: +0.03, confidence interval +0.02 to +0.05, n=8).692

The 𝜆 values of the manipulated grackles went slightly down from 4.2 (again, identical to control grackles)693

to 3.2 ( estimate of average change: -1.07, confidence interval -1.63 to -0.56, n=8 grackles) (Figure 5). The694

values we observed after the manipulation in the last reversal for the number of trials to reverse, as well as695

the 𝜙 and 𝜆 values estimated from the last reversal, all fall within the range of variation we observed among696

the control grackles in their first and only reversal (Figure 5). This means that the manipulation did not697

push grackles to new levels, but changed them within the boundaries of their natural abilities observed in698

the population.699

As predicted, the increase in 𝜙 during the manipulation fits with the outcome from the simulations: larger700

𝜙 values were associated with fewer trials to reverse. The improvement the grackles showed in the number701

of trials they needed to reach the criterion from the first to the last reversal matched the changes in their702

𝜙 values (confidence interval +1.54 to +14.22, n=8 grackles). The improvement did not match the change703

in their 𝜆 values (confidence interval -4.66 to 9.46, n=8 grackles), because, as predicted, the grackles in the704

manipulation showed a decreased 𝜆 in their last reversal. This decrease in 𝜆 meant that grackles quickly705

found the rewarded option after a switch in which option was rewarded. In their first reversal grackles706

chose the newly rewarded option in 25% of the first 20 trials, in their final reversal the manipulated grackles707

chose correctly in 35% of the first 20 trials. Despite their low 𝜆 values, manipulated grackles still chose the708

rewarded option consistently because the increase in 𝜙 compensated for this reduced sensitivity (Figure 4;709

also see below).710

5) Individual consistency in the serial reversal learning task711

While we had previously found that differences among grackles in whether they needed many or few trials712

persisted through the manipulation, we did not find similar consistency in either 𝜙 or 𝜆. We found a negative713

correlation between the 𝜙 estimated from an individual’s performance in the first reversal and how much714

their 𝜙 changed toward the value for their performance in the last reversal (-0.84, confidence interval -1.14715

to -0.52, n=8 grackles) such that individuals ended up with similar 𝜙 values to each other at the end of the716

manipulation and their beginning and end 𝜙 values were not correlated (-0.21, confidence interval -1.55 to717

1.35, n=8 grackles). Similarly, individuals who started with a high 𝜆 changed more than individuals who718

already had lower a 𝜆 during the first reversal (-0.44, confidence interval -0.76 to -0.10, n=8 grackles) and719

these changes were not consistent such that individual differences in 𝜆 did not remain through the serial720

reversal learning task (+0.17confidence interval -0.67 to +0.97, n=8 grackles). Individuals appeared to use721

different adjustments to their strategies to improve their performance through the manipulation. There was722

a negative correlation between an individual’s 𝜙 and 𝜆 after their last reversal (-0.39, 89% confidence interval:723

-0.72 to -0.06, n=8 grackles), indicating that they ended up with different strategies from along the range of724

potential solutions. Some individuals quickly learn the new reward structure after a switch, but continue to725

explore the alternative option even after they have learned the new associations (high association-updating726

rate and low sensitivity to learned associations). Other individuals take longer to learn that the reward has727

switched but once they have reversed their associations they rarely choose the unrewarded option (Figure 7).728

Together, this suggests that all individuals improved by the same extent through the manipulation such that729

the differences in their performances persisted, but they ended up with different strategies for how to quickly730

reach the criterion after a reversal by either having a high association updating rate or a low sensitivity to731

their learned associations.732
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733

Figure 7. Predicted performance curves of individuals with different 𝜙 and 𝜆 values at the end of the serial734

reversal learning experiment based on the analytical formulas. We observed that, among the grackles who735

completed the serial reversal learning experiment, there was a negative correlation between their 𝜙 and 𝜆,736

indicating that individuals used slightly different strategies to reach the criterion (choosing the rewarded737

option in 85% or more of trials) at equally few number of trials after the reward switched (when they had738

chosen the now rewarded option in 15% or less of trials). Individuals with a higher 𝜙 and lower 𝜆 (light blue739

line) quickly learn the new associations, but continue to explore the unrewarded option even after they have740

learned the association, leading to a curve with a more gradual increase throughout the trials. Individuals741

with a lower 𝜙 and higher 𝜆 (dark blue line) take longer to switch their associations, but once they do, they742

only rarely choose the non-rewarded option, leading to a more S-shaped curve where the initial increase in743

probability is lower and a more rapid rise later.744

6) Association between 𝜙 and 𝜆 with performance on the multi-access boxes745

We previously found that three measures of performance in the two multi-access puzzle boxes (number of746

options solved for both the wooden and the plastic multi-access puzzle box, latency to solve a new option on747

the plastic multi-access puzzle box) were correlated with the number of trials grackles needed to reach the748

criterion in the color tube reversal. We find that these measures also correlate with the underlying flexibility749

parameters 𝜙 and 𝜆. In particular, the number of options solved on both the plastic and the wooden multi-750
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access puzzle boxes had a U-shaped association with the 𝜆 values individuals had at the end in their last751

reversal (estimate of association between number of options solved on plastic box and: 𝜙 = +0.03, confidence752

interval -0.38 to +0.43; squared 𝜙 = -0.16, confidence interval -0.59 to +0.28; $lambda = +0.17, confidence753

interval -0.27 to +0.61; squared 𝜆 = +0.59, confidence interval +0.18 to +1.02; n=15 grackles; estimate of754

association between number of options solved on wooden box and: 𝜙 = -0.08, confidence interval -0.62 to755

+0.47; 𝜙 squared = +0.43, confidence interval -0.08 to +0.97; 𝜆 = +0.03, confidence interval -0.50 to +0.59;756

squared 𝜆 = +0.63, confidence interval +0.12 to +1.19; n=12 grackles). Grackles who had either particularly757

low or particularly high sensitivities to their previously learned associations were more likely to solve all four758

options than grackles with intermediate values of 𝜆 (Figure 8). For the latency to attempt a new option on759

the plastic box there was also a U-shaped association, but with 𝜙 (estimate of association between latency to760

attempt new option on plastic box and: 𝜙 = -0.66, confidence interval -1.30 to +0.0.06; squared 𝜙 = +0.58,761

confidence interval -0.06 to +1.30; $lambda = +0.14, confidence interval -0.45 to +0.70; squared 𝜆 = +1.09,762

confidence interval +0.28 to +1.87; n=11 grackles; estimate of association between latency to attempt new763

option on wooden box and: 𝜙 = -0.62, confidence interval -1.46 to +0.14; 𝜙 squared = +0.39, confidence764

interval -0.47 to +1.26; 𝜆 = +0.13, confidence interval -0.66 to +0.86; squared 𝜆 = +0.32, confidence interval765

-0.62 to +1.35; n=11 grackles). Grackles with either particularly high or particularly low rates of updating766

their associations took longer to attempt a new option than grackles with intermediate values of 𝜙 (Figure767

8).768

769

Figure 8. Relationships between 𝜙 and 𝜆 from the last reversal and performance on the wooden (black770

dots) and plastic (red dots) multi-access puzzle boxes. Grackles with intermediate 𝜆 values in their last771

reversal (a) were less likely to solve all four options on both boxes than grackles with either high or low 𝜆772

values. Grackles with intermediate 𝜙 values have a shorter latency to attempt a new option on the plastic773

box (d). There are no clear relationships between 𝜙 and the number of options solved on either box (b), 𝜆774

and the latency to attempt an option on either box (c), or (d) 𝜙 and the latency to attempt a new option on775

the wooden box. The 𝜙 and 𝜆 values change slightly between the top and bottom rows because the sample776

differs between boxes, and values were standardized for each plot.777
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DISCUSSION778

Our analyses indicate that applying a more mechanistic model to understand the behavior of great-tailed779

grackles in a serial reversal learning experiment can provide additional insights into the potential components780

of behavioral flexibility and their dynamic changes. First, the simulations showed that the Bayesian rein-781

forcement learning model accurately captures variation in the behavior of individuals in the serial reversal782

learning experiment and that the two key parameters 𝜙, the association-updating rate, and 𝜆, the sensitivity783

to learned associations, can be reliably inferred if we combine at least two association learning periods across784

a switch in the rewarded options. This provides the opportunity to also infer whether and how individuals785

who experience the serial reversal learning experiment dynamically change their behavioral flexibility. Sec-786

ond, in line with our prediction, the simulations indicate that higher 𝜙 and lower 𝜆 mean that individuals787

should reach the reversal learning criterion in fewer trials. However, we observe that for a single reversal 𝜙 is788

more important and that 𝜆 simply sets a threshold on the number of trials individuals need to consistently789

choose the rewarded option. Third, post-hoc analyses of grackle serial reversal learning data revealed that,790

contrary to our prediction but in line with the simulation results, 𝜙 but not 𝜆 explained more of the interindi-791

vidual variation in how many trials individuals needed to reach criterion during a reversal. Fourth, matching792

these observations, we found that the primary component of flexibility that was manipulated during the793

serial reversal experiments was 𝜙, which more than doubled between the first and last reversals, whereas 𝜆794

slightly declined, as expected based on the simulations. Fifth, while individual differences in performance795

persist across the manipulation, the underlying changes in 𝜙 and 𝜆 are not predictable based on their initial796

values. Grackles appear to use different strategies to improve their performance during the serial reversal797

experiment, with some individuals showing more changes in their association-updating rate but less in their798

sensitivity to learned associations, while others show the opposite, leading to a negative correlation between799

the inferred 𝜙 and 𝜆 values among the individuals at the end of the serial reversal learning experiment..800

Finally, these different strategies to improve their behavioral flexibility that individuals revealed in the se-801

rial reversal learning experiment subsequently also influenced their behavior in a different experimental test802

of behavioral flexibility. Grackles with intermediate values of 𝜆 (and 𝑝ℎ𝑖) solved fewer options on both803

multi-access puzzle boxes than grackles with either high or low 𝜆 (and low or high 𝜙), and grackles with804

intermediate values of 𝜙 have shorter latencies to attempt a new option. Accordingly, the grackles appeared805

to react to the predictability of the associations and the frequent switches of the reward location that they806

experienced during the serial reversal learning experiment to adjust their behavioral flexibility.807

Previous analyses of reversal learning performance in wild-caught animals have often focused on summaries808

of the choices individuals make (e.g. Bond et al., 2007), setting criteria to define success and how much809

individuals sample or explore the different options versus acquire or exploit the reward (e.g. Federspiel et al.,810

2017). These approaches are more descriptive, making it difficult to link the differences to specific processes811

and to predict how variation in behavior might transfer to other tasks. While there have been attempts812

to identify potential rules that individuals might learn during serial reversal learning (Minh Le et al., 2023;813

Spence, 1936; J. Warren, 1965; J. M. Warren, 1965), these rules were often about abstract switches to extreme814

strategies (e.g. win-stay / lose-shift) and therefore could not account for the full variation in the behavior.815

In contrast, the Bayesian reinforcement learning model with its two parameters of the association-updating816

rate and the sensitivity to learned associations has a clear theoretical foundation and appears to be sufficient817

to accurately represent the behavior of grackles in the serial reversal experiment. The previously described818

rules, including dramatic shifts in strategies, can be recovered with the dynamic Bayesian reinforcement819

learning model, including the different ‘learning curves’ that we observe among individuals (e.g. Gallistel820

et al. (2004)). Applying the Bayesian reinforcement model to (serial) reversal learning experiments can821

provide several benefits to our understanding of behavioral flexibility. First, it highlights the key pieces822

of information that individuals likely pay attention to when adjusting their behavior. This provides ways823

to also link their performances and inferred cognitive abilities to how they experience and react to their824

natural environments. In particular, literature on foraging behavior that focuses on the likely trade-offs825

between the exploration versus exploitation of different options has a similar focus on gaining information826

(exploration) versus decision making (exploitation) (Addicott et al., 2017; Berger-Tal et al., 2014; Kramer827

& Weary, 1991). Having a mechanistic model for the behavioral choices can also help to design better828

and alternative experiments. Simulating the likely behavioral choices of individuals can help to decide829
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how to track the progress of individuals and when to switch rewards (Logan et al., 2023a). Deciding on830

which external conditions might matter most to a given group of individuals can help to determine which831

parameters to vary and can help to adapt the model further. For example, it has been extended to allow for832

unpredictability in the association between the cue and the reward (Danwitz et al., 2022; Gershman, 2018)833

or to assume that experiencing a reward will update the association more than not experiencing a reward834

(Metha et al., 2020). Our advance here was to make the model dynamic to determine how individuals adjust835

their behavior during the serial reversal learning experiment.836

The dynamic model shows that behavioral flexibility in the grackles is not a fixed trait, but individuals837

can change their flexibility in response to their experiences. Grackles coming into the experiment already838

had different strategies, suggesting that they had different experiences of how predictable cues are and how839

frequently their environment changes. In general, the association-updating rate 𝜙 appears to explain more840

of the variation in how many trials individuals need to reach the criterion of consistently choosing the841

rewarded option during a single phase. The importance of the association-updating rate for the performance842

of the grackles in the reversal learning experiment matches what has been reported for squirrel monkeys843

(Bari et al., 2022). In contrast, the sensitivity to learned associations 𝜆 appears to set a threshold on the844

performance during a single phase, but appears more important as the rewards switch more frequently. In845

the serial reversal learning experiments, we observed an initial decline in performance, with most grackles846

needing more trials in the second and third reversal compared to the first, before improving and reaching the847

criterion in 50 trials or less (Logan et al., 2023a). This initial increase likely reflects that grackles need to848

distinguish between the absence of a reward at the previously rewarded location reflects stochastic variation849

in the association between the cue and the reward or an actual switch in reward structure. In a stochastic850

environment, individuals can gain more reward if they do not update their associations quickly, but stick with851

an option that previously gave them high rewards (Woo et al., 2023). In their natural environment, most852

cues are presumably not perfect such that their initial expectation might be that the particular tube just did853

not have a reward that time, but should still provide rewards frequently, thus explaining their initial decline854

in performance. Only after several switches is there sufficient information for the grackles to infer that the855

cues are highly reliable and the switches are relatively frequent. This is when they show the increase in their856

association-updating rate 𝜙, which on average doubled across individuals, changing more for individuals who857

started off with lower 𝜙 values. IGrackles also changed their sensitivity to the learned associations during858

the manipulation, in line with the prediction that they benefit from being open to exploring the alternative859

option when the reward structure frequently switches.860

Most animals that have been tested in serial reversal learning experiments thus far show improvements861

throughout the consecutive reversals, suggesting that most species can adapt their behavioral flexibility in862

response to the predictability and stability of their environments (e.g. J. Warren &Warren (1962); Komischke863

et al. (2002); Bond et al. (2007); Strang & Sherry (2014); P. K. Chow et al. (2015); Cauchoix et al. (2017);864

Erdsack et al. (2022); Degrande et al. (2022)]. For the grackles, the manipulation pushed individuals to levels865

that were already observed in some individuals at the beginning of the experiment, meaning that the change866

within the experiment is within the natural range of abilities also observed in the wild. While there were867

individual differences in how individuals performed (McCune et al., 2023), all individuals changed depending868

on their experiences. Among the manipulated grackles, who all quickly switched to consistently gain the869

reward, we observed different strategies. On the one side, there are grackles who change gradually throughout870

an association phase, already choosing the newly rewarded option at the beginning but continuing to explore871

the alternative non-rewarded option throughout. These are the individuals with a high association-updating872

rate and low sensitivity to learned associations. On the other side are grackles who take longer to choose the873

newly rewarded option after a switch, but once they discover which option is rewarded, quickly reverse their874

preference. These are the individuals with low association-updating rates and high sensitivities to learned875

associations. With the variables we measured here, we could not predict which strategies ended up with876

after the manipulation. We observed additional strategies with different combinations of 𝜙 and 𝜆 across the877

grackles during their first reversal, but these are not efficient in the serial reversal learning experiment and878

instead are more suited to unpredictable and less frequently changing environments. How frequently and how879

quickly individuals change their behavioral flexibility in their natural environments is unclear. Individual880

differences might persist if their different behavioral flexibility leads them to continue to experience their881

environment differently. For the grackles, we have some indication that after releasing them back to their882
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original environments, differences in behavioral flexibility between the manipulated and control individuals883

persisted for at least several months, with individuals who had changed their 𝜙 and 𝜆 appearing to switch884

more frequently between food types and foraging techniques (Logan CJ et al., 2019, results are in prep.).885

The analyses linking 𝜙 and 𝜆 to the performance on the multi-access boxes show that the different strategies886

grackles ended up with to improve their performance during the serial reversal learning experiment subse-887

quently appeared to influence how they solved the multi-access box. The negative correlation between 𝜙888

and 𝜆 prompted us to explore whether the relationship between these two variables and the performance on889

the multi-access boxes could be non-linear. We detected U-shaped relationships between 𝜙 and 𝜆 and how890

individuals performed on the multi-access puzzle boxes. First, grackles with intermediate 𝜙 values showed891

shorter latencies to attempt a new option. This could reflect that grackles with high 𝜙 values take longer892

because they formed very strong associations with the previously rewarded option, while grackles with small893

𝜙 values take longer because they do not update their associations even though the first option is no longer894

rewarded or because they do not explore as much because of their small 𝜆. Second, we found that grackles895

with intermediate values of 𝜆 solved fewer options. This could indicate that grackles with a small 𝜆 are more896

likely to explore new options while grackles with a large 𝜆, and low 𝜙 are less likely to return to an option897

that is no longer rewarded. Given that there was also a positive correlation between the number of options898

solved and the latency to attempt a new options, there might be a trade-off, where grackles with extreme899

𝜙 and 𝜆 values solve more options, but need more time, whereas grackles with intermediate values have900

shorter latencies, but solve fewer options. We are limited though in our interpretation by the small sample901

sizes. More detailed studies would be needed in order to fully understand how the association-updating rate902

and the sensitivity to learned associations might shape performance on the multi-access puzzle boxes. In903

addition, it is also possible that performance on the multi-access boxes relies on other cognitive abilities in904

which individuals may differ. For example, we previously found that grackles who are faster to complete an905

inhibition task, where they had to learn to not react to a cue in order to wait for a trial in which a different906

cue could result in gaining a a reward, were slower to switch options on the boxes (Logan et al., 2021).907

As such, variation in self control may affect performance on flexibility and innovation tasks by decreasing908

exploratory behaviors. However, all these analyses are exploratory and based on a small sample, so these909

interpretations are speculative and further investigation is needed to understand how potential cognitive910

abilities shape performance on such tasks.911

Overall, these findings indicate the potential benefits of applying more mechanistic models to psychological912

experiments. Inferring the cognitive processes potentially underlying behavior can allow us to make clearer913

predictions about how the performance in one experiment might translate to other paradigms and to behavior914

in the wild. For the serial reversal learning paradigm, we could expect that the previously observed differences915

in whether performance links with performance in other experiments like innovation or inhibition Logan916

(2016) could be linked to differences in whether the association-updating rate or the sensitivity to learned917

associations plays a larger role in the reversal performance in a given species and in particular for the other918

trait. The advanced capabilities of reflecting behavioral choices directly in a Bayesian framework offers an919

opportunity for the field of comparative cognition to implement more informed assessments of cognitive920

abilities and the factors shaping them.921
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