
1

Title: A test of species’ mobility hypothesis in ecological niche modeling

Running title: Mobility hypothesis in ENM

Author: Xiao Feng1*

1Department of Geography, Florida State University, Tallahassee, Florida, USA

*Correspondence to fengxiao.sci@gmail.com

Abstract

Aim: Ecological niche model (ENM) or species distribution model is a modeling technique

broadly used in ecology and biogeography and is increasingly used in decision-making regarding

land use and biodiversity conservation. The methodology behind ENM applications is critical for

model accuracy. One critical question that every ENM study faces is how to define a model

training area. Theories have suggested designing a training domain based on species’ dispersal

ability for improved model performance (species’ mobility hypothesis). While this idea has been

well perceived, there still lacks direct quantitative evidence that whether this approach leads to

optimal model performance. Here I conducted a modeling experiment to investigate species’

mobility hypothesis.

Location: North and South America

Time period: 1950-present

Major taxa studied: hummingbird
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Methods: The modeling experiment was based on a group of hummingbird species. A series of

spatial buffers (from 5 to 5000km) were created around occurrences, where background data

were sampled and used as input for model calibration. The models calibrated with spatial buffers

were compared with models calibrated with training domains that considered species’ dispersal

abilities (bioM).

Results: The experiment showed that model performance increased when the size of the training

domain was larger, though the model performance reached saturation when size of the training

domain passed a certain threshold. The model performance based on bioM was comparable to

the saturation performance of models when spatial buffers were used.

Main conclusions: This study provided positive evidence that supports the species’ mobility

hypothesis that designing a training domain based on species’ dispersal ability could lead to

optimal or near-optimal model performance. When no information of dispersal is available,

modelers may use a tuning strategy to identify the size of the training domain for optimized

model performance.

Keywords: BAM, GIS, SDM, species’ mobility hypothesis, Maxent
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Introduction

Ecological niche model or species distribution model is a modeling technique broadly used in the

field of ecology and biogeography. Ecological niche model uses the associations between

species’ point observations and environmental conditions of those locations to estimate species’

ecological niche and potential distributions. Typical applications of ecological niche model

include: species’ range shifts under climate change (Blowes et al., 2019), range reductions due to

habitat loss and anthropogenic disturbance (Doughty et al. 2016), biological invasions (Park and

Potter 2015), and the conservation of rare or endangered species (Hannah et al., 2020).

While the ecological niche model has had rapid developments over the past decade and is

increasingly used in decision-making regarding land use and biodiversity conservation (Araújo et

al., 2019), the theory and critical assumptions behind this technique also warrant our attention.

The ecological niche theory forms the basis of the ecological niche model, and the more

commonly adopted concept of ecological niche is the one by Hutchinson -- a set of

environmental conditions permitting the species to live or to exist indefinitely (Hutchinson,

1957). More recently, Soberon and Peterson (2005) conceptualized a BAM framework that

greatly influenced the development and use of ecological niche models. The BAM framework

classifies the various factors that determine species’ distributions as biotic interactions (B),

abiotic conditions (A), and dispersal ability (or mobility; M), and a species is expected to be

present in accessible areas with suitable sets of abiotic conditions and biotic interactions.

https://paperpile.com/c/5kERuU/5cpHz
https://paperpile.com/c/5kERuU/IRnCh
https://paperpile.com/c/5kERuU/H2qfY
https://paperpile.com/c/5kERuU/H2qfY
https://paperpile.com/c/5kERuU/GeeYO
https://paperpile.com/c/5kERuU/ZOLkv
https://paperpile.com/c/5kERuU/ZOLkv
https://paperpile.com/c/5kERuU/sgcV8
https://paperpile.com/c/5kERuU/sgcV8
https://paperpile.com/c/5kERuU/tAeIx/?noauthor=1
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It is critical to use theories to guide the practices of ecological niche modeling to achieve the

fullest potential (Peterson & Soberón, 2012). One important assumption in ecological niche

modeling is the equilibrium status between environmental conditions and species’ occurrences

(Araújo & Pearson, 2005), in other words, a species is present in all suitable locations and absent

from unsuitable locations (Soberon & Peterson, 2005). Considering species’ dispersal ability (or

mobility/M in BAM) has been broadly acknowledged and used in designing the training domain

(or modeling domain) to better fit the equilibrium assumption. When true absence data are

unavailable (Mackenzie, 2005), selecting pseudo-absences or background data from the training

domain has been broadly adopted in applications of ecological niche modeling using a variety of

algorithms, such as Maxent (Phillips et al. 2009) and generalized linear model (Wintle et al.

2005). In particular, when species’ dispersal ability is considered in designing a training domain,

the selected background data are expected to represent the environmental conditions that a

species has explored or been exposed to but did not preferably select compared to the

environmental conditions of occurrences.

The idea of designing a training domain based on species’ dispersal ability has been well

perceived and used in the current literature, but there still lacks direct quantitative evidence that

whether this approach leads to optimal model performance. For example, Anderson and Raza

(2010) compared models using a large training domain and a smaller training domain directly

surrounding the localities of the focal species. They concluded that the smaller training domain

led to more realistic predictions of species’ potential distributions, though this was mainly based

on expert opinions of the species’ natural history and biogeographic knowledge of the region.

https://paperpile.com/c/5kERuU/trunG
https://paperpile.com/c/5kERuU/n4Qhc
https://paperpile.com/c/5kERuU/tAeIx
https://paperpile.com/c/5kERuU/ClbCZ
https://paperpile.com/c/5kERuU/ivTg
https://paperpile.com/c/5kERuU/CchL
https://paperpile.com/c/5kERuU/CchL
https://paperpile.com/c/5kERuU/mEa8g/?noauthor=1
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Barve et al. (2011) conducted simulations of virtual species and training domains of varied sizes,

and demonstrated the positive association between size of training domain and (the potentially

inflated) the area under the receiver operating characteristic curve (ROC AUC). They provided

insightful discussion of the role of considering species’ dispersal ability in model training,

validation, comparison, though there was no direct demonstration of those effects. Saupe et al.

(2012) used virtual species simulations to compare models calibrated with training domains

based on species’ dispersal ability and models calibrated with much broader regions, but the

conclusion that the former provided more reliable model performance than the latter was not

reached. Their interpretation was that the information of species’ dispersal ability did not directly

inform the model fitting process, but only indirectly influenced the model fitting through the

selection of pseudo-absences or background data. Owens et al. (2013) proposed a potential

modification of how to design a training domain based on species’ dispersal ability; that is to

further refine the training domain based on sampling effort, and one simple example is to

exclude areas from the training domain that have not been sampled thus can not produce

occurrence records. Cooper and Soberon (2018) implemented a series of ecological niche models

for hummingbirds based on training domains that reflect topography, ecoregions and known

occurrences, refined by significant abiotic barriers of dispersal (e.g. rivers, deep valleys, crests of

mountains). They concluded that restricting a training domain to a theoretically accessible area

can improve model performance; however, the model assessment was conducted at a stacked

level (i.e. community composition) instead of individual species level, whereas the latter was

more commonly used in assessing the performance of ecological niche models. To summarize,

there is no doubt of the importance of species’ dispersal ability in designing a training domain

https://paperpile.com/c/5kERuU/LFOpx/?noauthor=1
https://paperpile.com/c/5kERuU/CJ5JY/?noauthor=1
https://paperpile.com/c/5kERuU/EU9uJ/?noauthor=1
https://paperpile.com/c/5kERuU/jWEKw/?noauthor=1
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and its implications in model training and validation, but, to my understanding, there is no direct

quantitative evidence supporting the optimal model performance by considering species’

dispersal ability.

The design of the training domain can also be thought from the perspective of modeling

algorithms, which may lead to different expectations of the optimal training domain. As

discussed in Saupe et al. (2012), the information of species’ dispersal is used “indirectly” by

modeling algorithms, and a training domain is used to generate pseudo-absences or background

data, which are used differently as input by different algorithms. Take the popular algorithm of

Maxent as an example, background data can be randomly sampled from the training domain.

Maxent uses the environmental conditions of the background data to characterize the

environmental profile of the training domain. The model prediction of the (relative) probability

of presences depends on the contrast between the environmental profile of the background data

and occurrences (Merow et al., 2013). In this manner, the hypothesized optimal training domain

would be the one that helps the modeling algorithm best distinguish occurrences vs. background

data. If so, the question of whether the training domain based on species’ dispersal ability is

optimal becomes whether this training domain helps the algorithm distinguish occurrences vs.

background data.

Following previous explorations, here I continue to investigate the role of species’ dispersal

ability in defining a training domain, size of a training domain, and model performance. I

proposed three hypotheses regarding the relationship between training domain and model

https://paperpile.com/c/5kERuU/CJ5JY/?noauthor=1
https://paperpile.com/c/5kERuU/chgmV
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performance (Fig. 1). The unimodal hypothesis predicts that model performance shows a

unimodal relationship with size of the training domain, whereas a medium sized training domain

would lead to an optimal model performance. The linear hypothesis predicts that the model

performance increases with increased size of training domain, whereas a larger domain provides

more useful information thus better model performance. The saturation hypothesis predicts

increased model performance with increased size of training domain, though there is a bottleneck

for the amount of useful information obtained from the training domain, thus model performance

will reach saturation when the training domain reaches a certain size. The species’ mobility

hypothesis predicts that the training domain designed from species’ mobility would lead to

optimal model performance. The species’ mobility hypothesis could be compatible with the

unimodal and saturation hypotheses whereas the model performance based on bioM could be

either at the peak of the unimodal curve or the plateau of the saturation curve. Here I designed a

modeling experiment to test these hypotheses. The experiment used a series of training domains

with different size and training domains delineated based on species’ mobility (Cooper &

Soberón, 2018). Specifically, I aim to investigate two questions: 1) How would different sized

training domains affect model performance? 2) How are the models calibrated with training

domains that considered species’ dispersal abilities (bioM) compared with models calibrated

with different sized training domains?

Methods

Occurrence data

https://paperpile.com/c/5kERuU/jWEKw
https://paperpile.com/c/5kERuU/jWEKw
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The occurrences of hummingbird species were obtained from Cooper & Soberón (2018). Briefly,

this dataset included occurrences of all hummingbird species (Aves: Trochilidae) that were

available from GBIF and eBird in December 2013. This dataset has been filtered and curated by

(Cooper & Soberón, 2018) (2018) based on multiple criteria, including taxonomy, ebird

observation effort, spatial clustering, and spatial outlier. Here I only kept species with adequate

(>100) spatially unique occurrences as a way to guarantee reliable model performance (Proosdij

et al., 2016). Eight species that are mainly distributed in islands were excluded from this study,

as their restricted range conflict with the study design when large spatial buffers were used (see

next section). The final dataset included 87 species.

Training domain

Two approaches were used to design the training domains, where background points were

randomly sampled to reflect the environmental profile of the study area (Fig. 2). In the first

approach, the training domain was designed to reflect each species’ accessible aera (or mobility

in BAM framework; here termed bioM). The bioM for each species was manually delineated by

(Cooper & Soberón, 2018) (2018) to reflect topography, ecoregions and known occurrences,

refined by significant abiotic barriers of dispersal (e.g. rivers, deep valleys, crests of mountains).

The second approach created a series of 26 spatial buffers of each species’ occurrences to

approximate accessible areas with varied dispersal capacities (here termed spatial buffers). The

sizes of the spatial buffers were 5km, 7km, 9km, from 10km to 100km with increment of 10km,

from 100km to 1000km with  increment of 100km, and from 1000 to 5000 with increment of

1000km. The bioM used here represents the hypothesized accessible area, and is expected to lead

https://paperpile.com/c/5kERuU/jWEKw
https://paperpile.com/c/5kERuU/jWEKw/?noauthor=1
https://paperpile.com/c/5kERuU/jWEKw
https://paperpile.com/c/5kERuU/jWEKw/?noauthor=1
https://paperpile.com/c/5kERuU/JSW3M
https://paperpile.com/c/5kERuU/JSW3M
https://paperpile.com/c/5kERuU/jWEKw
https://paperpile.com/c/5kERuU/jWEKw/?noauthor=1
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to optimal model performance based on the species’ mobility hypothesis (Barve et al., 2011;

Saupe et al., 2012; Owens et al., 2013). In contrast, the spatial buffers cover the locations

“around” known occurrences and assume uniform dispersal capacity along all directions.

Model training

Four bioclimatic variables that represent the climatic extremes that often constrain species

distributions were used to train models; the variables were the same as those used in Cooper &

Soberón (2018). The four variables were: bio10 (mean temperature of the warmest quarter),

bio11 (mean temperature of the coldest quarter), bio16 (precipitation of the wettest quarter), and

bio17 (precipitation of the driest quarter). The climatic data at the resolution of 2.5 arc-minutes

were downloaded from Worldclim version 1.4 (Hijmans et al., 2005). From each training

domain, ten thousand pixels were randomly selected as background points used for model

training. All pixels would be used if the training domain has less than ten thousand pixels.

The models were trained using Maxent, a broadly used modeling algorithm in the field of

ENM/SDM, using maxnet package version 0.1.4. Linear, quadratic, and hinge features were

selected to allow adequate model complexity. Default regularization parameters were used. Fine

tuning of model performance was not implemented, as the training domain was the objective of

investigation. Clamping was turned off, as its effect could depend on the point where clamping

begins (Qiao et al., 2018).

https://paperpile.com/c/5kERuU/LFOpx+EU9uJ+CJ5JY
https://paperpile.com/c/5kERuU/LFOpx+EU9uJ+CJ5JY
https://paperpile.com/c/5kERuU/jWEKw
https://paperpile.com/c/5kERuU/jWEKw
https://paperpile.com/c/5kERuU/jWEKw/?noauthor=1
https://paperpile.com/c/5kERuU/4PXdx
https://paperpile.com/c/5kERuU/AnAGQ
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The occurrences of each species were separated into four sets to perform cross-validations with

three sets for training and one set for testing. The separation was performed with random

separation and environmental blocking, to mimic the scenario of with or without model

extrapolation. The four sets of occurrences generated by random separation generally had similar

spatial extent and environmental conditions, thus no or very little extrapolation would be

involved in model prediction. The environmental blocking grouped occurrences into clusters

based on their Euclidean distance in the environmental space (Valavi et al., 2019), thus strict or

combinational extrapolation could be involved during model prediction (Qiao et al., 2018).

Environmental blocking was performed using the blockCV package (version 2.1.4) (Valavi et al.,

2019). Two methods were used to generate background data for model evaluation: random

background data from the largest buffer (5000km), reflecting a scenario when a calibrated model

is projected to a large spatial extent (e.g. a continent), and random background data from bioM,

reflecting a scenario when the model is projected to an area that species is known to occur.

Model performance was measured by sensitivity, specificity, and true skill statistics (TSS) at the

threshold of 5% training omission rate.

Regression analyses

Stepwise regression was performed to analyze the relationship between buffer size (independent

variable) and model performance (dependent variable) using segmented package 1.6-0 (Muggeo,

2003). Preliminary analysis of the relationship showed an increase of model performance with

buffer size, though the pattern was commonly accompanied with performance saturation when

the buffer size passed a certain threshold. Logistic regression was not used here, because the

https://paperpile.com/c/5kERuU/kxG9L
https://paperpile.com/c/5kERuU/AnAGQ
https://paperpile.com/c/5kERuU/kxG9L
https://paperpile.com/c/5kERuU/kxG9L
https://paperpile.com/c/5kERuU/g8ItC
https://paperpile.com/c/5kERuU/g8ItC
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logistic curve is monotonic (continuously increasing or decreasing) that would not allow the

fitting of a unimodal trend. Instead, two segments stepwise regression was used, as it allows the

fitted curve to have two segments with different slopes. The buffer size was log10 transformed

so that the independent variable could be more evenly sampled. The model performance based

on bioM was compared with model performance based on a spatial buffer that was similar to

bioM in size (area) using t test; model performance based on bioM was also compared with

model performance based on a spatial buffer that had the highest evaluation score among all

buffers using t test. These analyses were implemented respectively for each species and the mean

of all species, different data separation methods, and different model performance indices. The

analyses were performed in R (version 4.1.2).

Results

The model evaluations were based on background data from the largest buffer or bioM, and the

two methods showed slightly different but similar patterns. When background points generated

from the largest buffer were used for model evaluation, the buffer size used to define the

modeling domain was positively associated with model performance (sensitivity, specificity, and

TSS). The model performance increased more rapidly during the initial increase of buffer size

(e.g from 5km to 50km), after which the model performance gradually reached saturation (Fig.

3a). The same trend was found in random separation and environmental block separation, though

environmental block separation generally showed lower sensitivity and TSS but higher

specificity compared with random separation. The turning point of the stepwise regression was

estimated to be 42-154 km based on mean model performance of all species, or between 42 and
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130km based on the median of model estimations of individual species (Table 1). The model

sensitivity based on bioM was comparable to that of the saturation stage when using spatial

buffers (Fig. 3a). There was no significant difference in sensitivity between models based on

bioM and models based on spatial buffers with similar size as bioM (Table 2), or between

models based on bioM and models based on spatial buffers that had highest sensitivity (Table 3).

For a small number of cases, there were significant difference in specificity and TSS between

between models based on bioM and models based on spatial buffers with similar size as bioM

(Table 2); the number of cases were doubled when comparing models based on bioM to models

based on spatial buffers that had highest sensitivity (Table 3). Similar pattern was found for

different occurrence separation methods (Fig. 3a).

The patterns were the same for sensitivity when background points generated from the bioM

were used for model evaluation, but specificity showed slightly different patterns (Fig. 3b).

Specificity showed a decreasing trend with buffer size when buffer size reached the turning point

(Fig. 3b). The combined effect of sensitivity and specificity led to a more stable saturation status

for TSS after buffer size reached the turning point (Fig. 3b). Also, when using background points

generated from the bioM for model evaluation (instead of the largest buffer), most of the

significant differences in specificity and TSS (between models based on bioM and spatial buffer)

disappeared (Tables 2 & 3).

Discussion

Which hypothesis is supported?
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This study conducted an experiment to investigate the relationship between size of training

domain and model performance, as well as whether defining training domain based on species

mobility leads to optimal model performance. Overall, I concluded that the saturation hypothesis

was supported (Fig. 1); i.e. model performance (here, sensitivity and TSS) showed a rapid

increase when buffer size, and stabilized at a certain level after buffer size reached the turning

point (Fig. 3). The results of specificity showed a trend of increase and decrease when bioM was

used in model evaluation, seemingly support the unimodal hypothesis, but together with the

results of specificity when largest buffer was in model evaluation, it can be interpreted as that the

background data used in model training would have the highest specificity in recognizing itself;

in other words, highest specificity occurs when the same background data are used in training

and testing. Interestingly, the model performance based on species’ mobility (bioM) was almost

always similar to the saturation performance obtained from spatial buffers, suggesting bioM

provided reasonably good training domains, thus providing positive evidence to support the

species’ mobility hypothesis.

Is it reasonable to use spatial buffers as training domain?

In view of considering species’ mobility in the application of ENM/SDM, multiple approaches of

designing the training domain have been used in literature, such as using ecoregions, convex hull

of species’ occurrences, or expert range maps. Building spatial buffers around known

occurrences is another approach that is commonly used in literature. It provides a relatively

simple way to delineate an area around known occurrences as the training domain. The size of

the spatial buffer (or radius) can be set to reflect the dispersal ability of a species, thus better
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meet the theoretical consideration of species’ mobility. The spatial buffer could lead to relatively

smoothed boundaries (e.g. a circle) that assume uniform dispersal ability along all directions and

do not capture fine scale dispersal barriers, compared with fine tuned area based on dispersal

simulations (Machado-Stredel et al., 2021).

The spatial buffer appcoach is a relatively simple method, but is it a reasonable approach for

defining the training domain? The experiment showed models built with small spatial buffers

had lowest sensitivity, suggesting using background points immediately next to known

occurrences does not provide enough useful information for the model to recognize the

difference between the environmental conditions a species preferred vs. background conditions.

On the other hand, models with intermediate and extremely large buffers had similar sensitivity,

suggesting a larger buffer can provide more useful information for model calibration, but this

improvement saturates at a certain point. Therefore, the buffer method can be considered as a

reasonable way to construct a training domain when an appropriate size is used.

A caveat to note is that, when using a spatial buffer to generate background data, an extremely

large buffer could potentially lead to inflated model specificity, and may mislead model

evaluation or model comparison. There are several reasons for this caveat. First, when specificity

is calculated from background (pseudo-absence) data, its interpretation becomes the proportion

of areas predicted as absence, thus it should be given less weight compared with sensitivity,

which is calculated from presence data (Peterson et al., 2008). Second, the value of specificity

can depend on the selection of background data used in evaluation. Background data from a

https://paperpile.com/c/5kERuU/wbgew
https://paperpile.com/c/5kERuU/vLIFy
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larger area can yield higher specificity, and subsequently inflated TSS or AUC values, compared

with that of a smaller area for the same model.

Does species’ mobility provide the optimal training domain?

The experiment provided positive evidence to support the hypothesized role of species’ mobility

in defining the training domain of ENM. The model sensitivity based on species’ mobility

(bioM) generally fell in the saturation sensitivity obtained from spatial buffers. In most cases, the

model based on bioM was not significantly different from that based on similar sized buffers or

buffers with the highest evaluation index. This suggested that bioM can help define a training

domain that leads to optimal or near-optimal performance (especially sensitivity), though not

necessarily superior to spatial buffers.

Implications for future studies

Ecological niche modelers always face the question of how to define the training domain. The

ecological theory suggests the training domain shall consider species’ dispersal ability, though

the information and knowledge of dispersal are largely inadequate (Driscoll et al., 2014), thus

limiting the implementation of this idea in ecological niche model applications. Two findings of

this study (i.e. the stratution relationship of spatial buffers and model performance, and the

similarity between bioM and the stratution performance of spatial buffers) suggests that, when

there is no information of species’ dispersal, modelers may explore model performance across a

series of training domains based on different sized spatial buffers. This method may help identify

the buffer size that leads to the stratution performance among many different sized buffers. This

https://paperpile.com/c/5kERuU/JVXQt
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strategy is conceptually similar to other model tuning strategies, such as feature and

regularization selection in Maxent (Muscarella et al., 2014; Cobos et al., 2019) and stepwise

variable selection in multiple regression (Efroymson). If a rough estimate of dispersal distance

across the time of interest is known, this information may also be used as the radius of the spatial

buffer and to be further compared with buffers with different sizes. The conclusions here were

based on cross-validations of the occurrence and dispersal data of a group of hummingbird

species, and future studies can further investigate the role of dispersal ability in ecological niche

modeling with other taxons that have adequate knowledge of dispersal as well as independent

testing data.
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Figure 1. The hypothesized relationship between training domain and model performance. The
black curve in each panel represents the unimodal, linear, or saturation relationship between
increased size of training domain and model performance. The red dashed line represents the
expected model performance based on a training domain that is delineated based on species’
mobility (bioM).
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Figure 2. Comparison of training domains based on species’ accessible aera (bioM; green
polygon) and spatial buffers of occurrences (gray polygons). The green points are occurrences of
Eutoxeres aquila. A total of 26 sized buffers are used in this study, and this figure only shows
examples of 100, 500, 1000, 2000, 3000, 4000, 5000km buffers.
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Figure 3. Model performance averaged across all species. Panel a) shows the sensitivity,
specificity, and TSS based on background data from the largest spatial buffer, while those indices
in panel b) are based on background data from bioM. Occurrence separation method is
represented by different colors: red for environmental block and blue for random. The solid lines
represent the fitted stepwise regressions of buffer size and model performance. The horizontal
dashed lines represent model performance based on bioM.
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Table 1. Turning point of model performance along buffer size estimated from the two-segment
stepwise regression. The turning point is estimated from the stepwise regression of mean model
performances of all species. It is also shown as the median of the turning points estimated from
model performances of individual species.

Estimated turning point,
when background data from the largest
buffer is used

Estimated turning point,
when background data from bioM is
used

random environmental block random environmental block

Sensitivity mean: 65km
median: 58km

mean: 154km
median: 124km

mean: 65km
median: 59km

mean: 154km
median: 130km

Specificity mean: 44km
median: 47km

mean: 42km
median: 42km

mean: 45km
median: 50km

mean: 42km
median: 42km

TSS mean: 46km
median: 46km

mean: 108km
median: 85km

mean: 46km
median: 50km

mean: 108km
median: 87km
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Table 2. Number of cases (species) when a model calibrated with bioM is significantly different
from the model based on a spatial buffer of similar size.

Evaluation based on background
data from the largest buffer

Evaluation based on background
data from bioM

random environmental
block

random environmental
block

Sensitivity 0/87 0/87 0/87 0/87

Specificity 21/87 7/87 8/87 0/87

TSS 12/87 0/87 8/87 0/87

Table 3. Number of cases (species) when a model calibrated with bioM is significantly different
from the model based on a spatial buffer that leads to the highest evaluation index.

Evaluation based on background
data from the largest buffer

Evaluation based on background
data from bioM

random environmental
block

random environmental
block

Sensitivity 0/87 0/87 0/87 0/87

Specificity 61/87 16/87 10/87 0/87

TSS 40/87 1/87 10/87 12/87


