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Abstract 

Anthropogenic climate and land use changes are the main drivers of biodiversity loss, promoting a major reorganization 

of the biota in all ecosystems. Biodiversity loss implies not only in the loss of species, but also entails losses in other 

dimensions of biodiversity, such as functional diversity, phylogenetic diversity and the diversity of ecological 

interactions. Yet, each of those facets of biodiversity may respond differently to extinctions. Here, we examine how 

extinction, driven by climate and land-use changes may affect different facets of diversity (functional, phylogenetic, and 

interaction diversity) by combining empirical data on interaction networks between anurans and their prey, species 

distribution modeling and extinction simulations. We used species distribution modeling to forecast the redistribution of 

anurans and create a species vulnerability rank based on expected range changes, then we simulate the extinction of 

anurans based on this rank. Next, we computed the variation in the functional, phylogenetic, and interaction diversities 

resulting from projected extinctions in four different ecoregions in the Neotropics. We found that the anuran 

vulnerability to climate and land-use change varies according to the level of trophic specialization. We also found a 

mismatch in the response of functional, phylogenetic, and interaction diversity to species’ extinction, whereby the effects 

on interaction diversity are stronger than those on phylogenetic and functional diversity. Although it is often assumed that 

interaction patterns are reflected by functional diversity, assessing the interaction patterns is necessary to understand 

how species loss may translate into the loss of ecosystem functions. 

 

Keywords: Anthropocene; Eltonian dimension; functional diversity; interaction diversity, phylogenetic diversity; trophic 

network. 
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Introduction 

 
Human-induced biodiversity loss is one of the most prominent disruptions to the natural environment (Turvey & 

Crees 2019). Biodiversity changes in the Anthropocene are caused mainly by the increasing amount of the land surface 

used for human activities (i.e., land-use changes), but climate change expected to intensify such impacts even further (Jantz 

et al. 2015; Newbold et al. 2019). While land use changes generally reduce the habitat available for species (Foley et al. 

2005; Newbold et al. 2016; Román-Palacios & Wiens 2020), climate change may reduce the climatic suitability within a 

species distribution through incremental changes in mean climate parameters (Coumou & Rahmstorf 2012). In addition, 

climate change enhances extinction risk due to the increase in the frequency and intensity of climate extremes (Coumou & 

Rahmstorf 2012). Therefore, the Anthropocene is expected to result in an unprecedented reorganization of the biota on 

Earth, as a result of local extinctions and climate-related migrations (Newbold et al. 2019; Storch et al. 2021) driven by 

synergic pressures from land use and climate changes [e.g., Guo et al. 2018; Sales et al. 2020].  

The effects of climate change and habitat loss on biodiversity have been largely assessed through projections of 

changes in species distribution, and the resulting changes in species richness patterns (Jantz et al. 2015; Newbold 2018). 

Recently, studies have also attempted to go beyond taxonomic losses and investigate losses in other components of 

biodiversity, such as the phylogenetic and functional diversity of communities [e.g., Lourenço-de-Moraes et al. 2019; 

Brodie et al. 2021]. Functional diversity is traditionally assessed by the variety of biological traits present in a species 

assemblage that presumably influence their performance or ecosystem functioning (Petchey & Gaston 2002; Villéger et al. 

2008). Phylogenetic diversity, on the other hand, encompasses the evolutionary history of species in a community, often 

measured as the cumulative length of the branches on the evolutionary tree (Srivastava et al. 2012; Winter et al. 2013). By 

integrating these other facets of biodiversity, ecologists have been learning about how anthropogenic environmental 

changes may threaten ecosystem functions and services (Alahuhta et al. 2019). 

In spite of those broader analysis of biodiversity in recent years, a missing component of diversity in several 

studies of biodiversity loss is the diversity of ecological interactions (Valiente‐Banuet et al. 2015; Gaüzère et al. 2022; 

Pugh & Field 2022). This Eltonian dimension (i.e., interactions between species and their effects on each other) may be 

crucial for understanding how biodiversity loss translates into the loss of ecological processes (Dehling & Stouffer 2018). 

By promoting a reorganization of ecological networks, biodiversity loss may alter ecosystem functioning (Schleuning et al. 

2020). Earlier studies on the robustness of interaction networks focused on the consequences of random versus non-random 

biodiversity loss in ecological networks by evaluating the change in network structural metrics (Dunne et al. 2002; 

Memmott et al. 2004). Others have also used a similar approach but simulating more realistic extinction scenarios (Donoso 

et al. 2020; Schleuning et al. 2020; Zamora-Gutierrez et al. 2021). Nevertheless, there is a lack of studies on how future 

climate change and land-use change will combine to alter ecological communities in their multiple biodiversity facets, 

including the interaction between species. Anticipating how climate change and habitat loss may influence these multiple 

dimensions of biodiversity is crucial to understand the potential impacts on organism-mediated ecosystem goods and 
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services. 

Disturbances have pervasive effects on communities of vertebrates and invertebrates of all ecosystems (Sergio et 

al. 2018). However, climate change and habitat loss may have a particularly significant impact on amphibians, a sensitive 

group affected by changes in both aquatic and terrestrial ecosystems (Blaustein & Kiesecker 2002). Climate change may 

severely affect habitat quality as amphibians depend on water for reproduction, and also reshape interactions in diverse 

trophic levels, once anurans can act both as predators as prey (Ceron et al. 2022). In addition to that, because amphibians 

have limited dispersal ability (Green 2003), habitat loss and fragmentation may limit gene flow and colonization success 

threatening the viability of populations (Cushman 2006; Becker et al. 2007). Once it is well established that climate change 

might impact amphibian communities in the future (Vasconcelos et al. 2018), they are useful models for studying the 

impacts of climate change and habitat loss as a whole, providing valuable insights into the consequences of such 

disturbances to terrestrial and freshwater communities (Hopkins 2007). 

Here, we examine how the different facets of diversity of anuran assemblages (functional, phylogenetic, and 

interaction diversity) would change if increasing sets of species went regionally extinct. We analyze anuran assemblages 

and anuran-prey networks from different ecoregions in the Neotropical region under different scenarios of diversity loss by 

simulating the extinction of anurans according to vulnerability to climate and land use changes. Specifically, we examine 

(1) how anuran vulnerability to climate-only and climate/land-use projections differ, (2) whether functional, phylogenetic, 

and interaction diversity would respond in the same way to extinction, and, (3) how extinction would alter network 

structure. We expected that anuran vulnerability rank to climate/land use projections would differ, once some anurans are 

disproportionately sensitive to land uses changes and others are more tolerant to these modifications (Newbold 2018). We 

also hypothesized that functional, phylogenetic, and interaction diversity might respond similarly to extinctions, since traits 

often carry strong phylogenetic signal and affect the incidence of ecological interactions (Naisbit et al. 2012). Yet, such 

properties should be more sensitive to species loss in assemblages with reduced functional redundancy. Finally, we 

predicted that the opportunistic dietary habits of anurans would provide anuran-prey networks with high structural 

robustness to extinctions (Ceron et al. 2019).  

 

Methods 

 
We sampled anurans and arthropods in 19 ponds distributed in four ecoregions, among which three were in the 

Chaco, five in the Cerrado, five in the Atlantic Forest, and six in the Pantanal of Mato Grosso do Sul, central Brazil. For 

further details on sampling and a map of sampling locations, see Ceron et al. (2020, 2022). These ecoregions differ mainly 

in rainfall, with Cerrado and Chaco being considered a seasonally dry tropical forest, meaning that rainfall is less than c. 

1800mm per year, with a period of at least 5–6 months receiving less than 100mm (Pennington et al. 2009). Thus, in order 

to perform the following analyzes, we consider the set of species and interactions sampled in each region to be 



 

4
 

representative of these types of environments in each ecoregion. 

 

Data collection 

We collected geo-referenced occurrence data for 39 anuran species from the Global Biodiversity Information 

Facility (GBIF; www.gbif.org) and speciesLink (https://specieslink.net/). Records were downloaded using the function 

occ_search() from the R package rgbif (Chamberlain et al. 2021) then we used the R package CoordinateCleaner for data 

cleaning (Zizka et al. 2019). In addition, all records underwent a thorough visual inspection and quality check, according to 

available literature (Haddad et al. 2013; Ávila et al. 2021) and our own experience with anurans. 

 

Species distribution models 

We downloaded 19 bioclimatic variables from the WorldClim database (see http://www.worldclim.org/ for 

variable descriptions) at a resolution of 10 arc-min (Fick & Hijmans 2017), averaged over the 1970–2000 period. To avoid 

overprediction and low specificity, we cropped the environmental layers to span from latitude -90 to -30 and longitude -50 

to 15 (values in decimal degrees).  Duplicates were removed from grid cells (~3 km) using the R package spThin 

(Aiello‐Lammens et al. 2015). To avoid bias related to the multicollinearity of the environmental explanatory variables, we 

calculated the Variance Inflation Factor (VIF) values for variables to each species. All values that were highly correlated 

(VIF > 5) were removed through a stepwise procedure, using usdm R package (Naimi 2013).  

We used species distribution modeling to generate potential distributions for each anuran species. We used nine 

different algorithms implemented in the biomod2 R package (Thuiller et al. 2016) including the following: three regression 

methods (GAM: general additive model (Hastie & Tibshirani 1990), GLM: general linear model (McCullagh & Nelder 

1989), MARS: multivariate adaptive regression splines(Friedman 1991); three machine learning methods (GBM: 

generalized boosting model (Ridgeway 1999), MAXENT: Maximum Entropy (Phillips et al. 2006), RF: random forest 

(Breiman 2001), two classification methods (CTA: classification tree analysis (Breiman 1984), FDA: flexible discriminant 

analysis (Hastie & Tibshirani 1990), and one envelope model (SRE: Surface Range Envelop (Booth et al. 2014). To meet 

the criteria of having absence (or pseudo-absence) data for most of these models (except SRE), we generated two equal-

sized sets of random pseudo-absence (PA) points, with the same size of the sets of true presences, across the model 

background (500 PA points in each set). The models were calibrated using 70% of randomly selected data. The other 30% 

of the data were used for intrinsic model evaluation.  

Individual model performance was evaluated using two metrics—true skill statistic (TSS) and the area under the 

curve of receiver operating characteristics (ROC) implemented in the biomod2 R package. TSS is calculated as “sensitivity 

+ specificity -1” and ranges from -1 to +1, where +1 indicates perfect agreement, a value of 0 implies agreement expected 

by chance, and a value of less than 0 indicates agreement lower than expected by chance. Only those models with high 

predictive accuracy (TSS > 0.8) were used for the projection of anuran distribution; poorer models were discarded. We 

constructed ensemble maps based on the median of two runs of all the selected models in which individual accuracy had 

http://www.gbif.org/
https://specieslink.net/
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TSS value equal to or greater than 0.8. Continuous predictions of ensemble models were transformed into a predicted 

bivariate map of potential presence versus absence of the species. Variable importance in the ensemble prediction was 

evaluated with a permutation procedure [see Thuiller et al. (2016) for details]. 

 

Distribution forecasts 

We forecast the future redistribution of the anurans and projected their realized niches onto scenarios of climate 

change. Ensembles of ecological niche models were calibrated and evaluated using present-day occurrence records of 

species and were projected into the future up to the years 2030s (2021-2040) and 2050s (2041-2060), based on gridded 

cell-based information on climate at a resolution of 10 arc-min (Fick & Hijmans 2017). We obtained information on future 

climate from the Coupled Model Intercomparison Project 6 (CMIP6) for two ‘Shared Socioeconomic Pathways’ (O’Neill 

et al. 2017): the SSP2-4.5 (“optimistic”) and SSP5-8.5 (“pessimistic”). Shared Socioeconomic Pathways (SSPs) are 

scenarios of projected socioeconomic global changes used to infer greenhouse gas emissions according to various climate 

policies. The scenarios SSP2-4.5 and SSP5-8.5 represent a relatively optimistic and a more pessimistic projection, 

respectively, in terms of international policy towards environmental sustainability and greenhouse gas emission reduction 

(Meinshausen et al. 2020). For each SSP, the IPCC makes available climate models with distinct parameter inputs 

produced from different methods. To encompass the uncertainty in future climate projections, we selected three of these 

climate models, namely BCC-CSM2-MR, CanESM5, and MIROC6 (Sales et al. 2021). Regions of high habitat suitability 

through GCMs were identified by stacking and selecting only overlapping areas among the three GCMs to build a 

consensus map.  

 

Habitat loss 

To estimate the effects of habitat loss on species distributions we used projections of changes in land use (Li et al. 

2017) and created species-specific land use masks, based on the IUCN habitat classification scheme, the most 

comprehensive effort available to characterize species habitat affiliations (https://www.iucnredlist.org/resources/habitat-

classification-scheme). The major habitat types according to this scheme are forest, savanna, shrubland, grassland, 

wetlands (inland), rocky areas (e.g., inland cliffs, mountain peaks), caves and subterranean (non-aquatic), arid or semi-arid 

(desert), artificial-terrestrial (e.g., Pastureland, Plantations, Urban areas, and heavily degraded forest). We considered as 

habitat specialist species all those species whose occurrence was restricted to a single major land cover type (e.g., forest), 

regardless of the specific category of land cover. Species were, assumed to be unable to occupy major habitat types where 

they had not been recorded before. As these habitat types can be matched with terrestrial land use, known as the area of 

habitat (Brooks et al. 2019), we grouped the habitat data into six major land cover classes (water, forest, grassland, 

farmland, urban, and barren). By doing so, we were able to reconcile the information on species-habitat associations to a 

global model that projects changes in land-use and land-cover (LULC) [Li et al. 2017, described in Appendix S1 land-use 
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and land-cover section]. 

 

Simulating extinctions 

To test how climate and land use change may individually affect species distribution we estimated range changes 

for two scenarios: a) considering only the species climatic niches, and b) considering both the climatic niche and land use. 

To calculate the changes in the distributions in the future scenarios we used the function BIOMOD_RangeSize of R 

package biomod2 (Thuiller et al. 2016) to estimate the proportion and the relative number of pixels (or habitat) lost and 

gained under future scenarios. Based on the estimated range loss we created an anuran vulnerability rank, from the most to 

the least vulnerable (the expected “losers” and “winners” from climate change), according to the two scenarios mentioned 

above. Finally, we simulated the effect of the extinction of anurans in trophic networks according to their vulnerability to 

climate and land use changes. In this sense, we assume that anurans that lost a greater proportion of their range are those 

species more likely to become extinct in local assemblages within each ecoregion. 

 

Interaction networks 

For each ecoregion, we built weighted matrices of interactions containing predator species as columns and the 

abundance of prey categories (OTU) as rows. We calculated six network metrics commonly used to describe distinct 

aspects of the network structure. These metrics were calculated separately for networks representing each ecoregion. 

Connectance describes the ratio between the total number of observed links in a network and the theoretical maximum 

number of possible links. It can be viewed as a measure of specificity of interactions in the network, being an estimate of 

how interactions are constrained within the community (Jordano 1987). Average weighted degree is the mean of the 

number of prey connected to each anuran, weighted by the intensity of each edge. The weighted degree was calculated with 

the R package tnet with the parameter alpha = 0.5, treating the number and weights of interactions equally (Opsahl 2009; 

Opsahl et al. 2010).  

Modularity is a network property that emerges when groups of species are densely connected and have sparser 

connections to other groups of interacting species. We analyzed modularity using the recently implemented 

“DIRTLPAwb+” algorithm, which outperforms other algorithms in detecting subsets of species interacting 

disproportionally among them than with other members of a bipartite weighted matrix (Beckett 2016). We set this 

algorithm to 100 steps to search for the highest modularity (Dormann & Strauss 2014). The modularity ranges from zero 

(minimum modularity) to 1 (maximum possible modularity). Weighted nestedness, based on the index Nestedness Metric 

Based on Overlap and Decreasing Fill (NODF), describes the extent to which the interaction partners of one specialist 

species correspond to a subset of the interaction partners of generalist species (Bascompte et al. 2003). Nestedness values 

range from 0 (non-nested network) to 100 (perfect nestedness).  

Complementary specialization (H2’) is derived from two-dimensional Shannon entropy and quantifies the niche 
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partitioning among species considering partner availability (Blüthgen et al. 2006). Thus, it is interpreted as a measure of 

interaction exclusiveness. The biological assumption is that if species have preferences for specific interaction partners, 

these preferences would be captured as a deviation from random encounters given by partner availability (Blüthgen et al. 

2006). Values of H2’ range from 0 to 1 indicating the extremes of generalization and specialization, respectively. 

Functional complementarity is a measure of community-level niche complementarity, in this case, the with which anurans 

vary in their interaction patterns (Devoto et al. 2012). We used a null model (i.e., sampling.web) to control for variation of 

functional complementarity from empirical networks (i.e., relative functional complementarity).  

To assess the significance of the network patterns, we compared the observed values of wNODF, modularity, and 

H2’ to those generated by null models. We used the vaznull null model, which keeps the marginal totals and the 

connectance in the network (Dormann et al. 2008). To quantify the departure of the observed network values from the null 

expectation, we calculated null-model standardized values, z, for each metric, x, as 𝑧 = 𝑥 − �̅�𝑛𝑢𝑙𝑙/𝑠𝑑(𝑥)(z – 

transformation). We considered z values higher than two indicate that the difference between the observed and null 

networks for that specific structural property is statistically significant. All network metrics and null models were 

calculated using the bipartite (Dormann et al. 2008) package in the R environment (R Core Team 2021).  

 

Interaction, functional and phylogenetic diversity 

In order to calculate the functional diversity of each ecoregion, we used data on multiple species traits: size (snout-

vent length, SVL, mm), mass (g), clutch size (number of oocytes), habitat use (fossorial terrestrial, aquatic or arboreal), and 

reproductive modes (number of reproductive modes, see (Crump 2015)). Trait data was obtained from collected specimens 

or the literature (Haddad et al. 2013; Oliveira et al. 2017; Ávila et al. 2021). We computed the pairwise functional 

distances between all functional entities using the mixed-variables coefficient of distance (i.e., a generalization of Gower's 

distance), which quantifies the functional dissimilarity between all species pairs based on the suite of assessed traits 

(Pavoine et al. 2009). A functional distance matrix was obtained using ktab.list.df and dist.ktab functions of ade4 R 

package (Dray & Dufour 2007).  

To compute phylogenetic diversity, we first built a community phylogenetic tree, using sequences from (Koroiva 

et al. 2020), which are samples of individuals from our study localities. Additionally, five sequences from molecular 

samples were used from literature data (Table S1). The resulting sequences were edited and aligned using Geneious v. 

9.1.2 with the MUSCLE algorithm using default parameters (Edgar 2004). The final aligned dataset used in all analyzes 

comprised 477 base pairs (bp) (Table S1). We used the Bayesian Information Criterion in jModelTest (Darriba et al. 2012) 

to determine that HKY+I+G was the best model of nucleotide substitution. We performed a Bayesian phylogenetic 

analysis of COI using BEAST v.2.6.6 (Bouckaert et al. 2019) for 50 million generations, sampling every 5,000 steps using 

a Yule Process tree prior. We checked for stationarity by visually inspecting trace plots and ensuring that all values for 

effective sample size were above 200 in Tracer v1.7.1 (Rambaut et al. 2018). The first 10% of sampled genealogies were 
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discarded as burn-in, and the maximum clade credibility tree with median node ages was calculated with TreeAnnotator 

v.2.6.3 (Bouckaert et al. 2019). Then we calculated pairwise phylogenetic distances among all pairs of anurans of each 

locality using the cophenetic distance (PDist) based on branch lengths (Sneath & Sokal 1973) using cophenetic function of 

stats R package (R Core Team 2021).  

To compute the interaction diversity, we used the weighted matrices of anuran-prey interactions containing 

predator species as rows and prey categories (OTU) as columns. Each entry of the matrix represents the frequency of use of 

that prey category by each anuran species in a given ecoregion (Ceron et al. 2022). We calculated pairwise distances 

between all anurans using Morisita–Horn distance, which takes into account the relative weights of pairwise interactions 

and is reported to be robust to under-sampling and unequal sampling sizes (Horn 1966). To remove the influence of 

overabundant species, we transformed the data of Formicidae and Isoptera (most abundant interactions) using log(x+1) in 

all communities (Magurran 2013). The interaction distance matrix was obtained using vegdist function of vegan R package 

(Oksanen et al. 2017).  

We performed Principal coordinates analysis (PCoA) using the functional distance, phylogenetic distance, and 

interaction distance matrix separately for each ecoregion. Entities coordinates on the first three principal axes (PC) of each 

PCoA were kept to build a multidimensional functional, phylogenetic, and interaction space (Villéger et al. 2011; Mouillot 

et al. 2014). Next, we calculated the volume of each space using the convhulln function of the R package geometry (Habel 

et al. 2015). We then computed variation in the functional, phylogenetic, and interaction spaces resulting from projected 

extinctions and compared how these trajectories differ from those obtained from random extinctions. To do this, we used 

the function extinction of the R package bipartite (Dormann et al. 2008) under 1,000 replicas. We used the function 

funct.space.plot of mFD R package to visualize and plot interaction, functional, and phylogenetic diversities and the 

function traits.faxes.cor to test for correlations between preys and anuran traits to PCoA axes (Magneville et al. 2022). The 

R script to reproduce the analyses is available in https://github.com/karolceron/facets. 

 
Results 

We used species distribution models (SDMs) to calculate the proportion of species ranges projected to be lost under 

future scenarios. The accuracy of models, expressed by TSS, ranged from 0.82 to 0.99. The three most frequent cli- 

matic variables with the highest importance for the distribution of anurans were precipitation of warmest quarter 

(bio18), annual precipitation (bio12), and isothermality (bio3). Under both the SSP 4.5 and SSP 8.5 scenarios of climate 

and land use change, the majority of species are predicted to experience a decrease in the proportion of climatically 

suitable environments by 2061 (from 79% to 100% of decrease) (Table 1). These losses are consistent across ecoregions 

with distribution reducing on average 65% in the most optimistic climate change scenario (SSP4.5), and 74% when land 

use is also considered (Figure 1, Table 1). 

Based on the projected changes in distribution, we generated a vulnerability rank for anurans, in which species with 
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a greater proportional reduction in the range are more vulnerable. This rank order varied between climate-only and 

climate/land use projections (Table 1, Table S2), but was generally associated with the connectivity patterns of each 

species in the interaction networks representing different ecoregions. Species vulnerability was negatively related to the 

weighted degree of species (Figure S1, F = 16.3, df = 76, r2 = 0.17, p < 0.01) such that highly connected species in the 

trophic networks tended to be less vulnerable (Figure 1). 

 

 

Figure 1: Anuran range shift in the percent change in their distribution range (%) in each ecoregion by 2061 under the SSP 8.5 

scenario: a) Atlantic Forest, b) Cerrado, c) Chaco and d) Pantanal. Color gradient represents the number of interactions (weighted 

degree) of each species in anuran-prey networks. For species abbreviations see Table S1. 

 

 

Table 1: Number of species predicted to experience an increase (winners) or decrease (losers) in the proportion of their distribution 

range (mean of decrease/increase), and number predicted to become extinct (zero projected occupancy) per ecoregion by 2061 under 

the two climate scenarios of mitigated (SSP 4.5) and upsurge (SSP 8.5) and according to climate-only and climate/land-use 

projections. 

Ecoregion Projection 
SSP 4.5 SSP 8.5 

Winners Losers Extinct Winners Losers Extinct 

Atlantic Forest 
Climate 0 18 (-61%) 0 0 18 (-71%) 0 

Land use 0 18 (-75%) 0 0 17 (-79%) 1 

Cerrado 
Climate 1 (+44%) 18 (-74%) 0 1 (+80%) 18 (-83%) 0 

Land use 0 19 (-82%) 0 0 18 (-86%) 1 

Chaco 
Climate 4 (+23%) 15 (-62%) 0 3 (+44%) 16 (-65%) 0 

Land use 0 18 (-65%) 1 1 (+27%) 16 (-69%) 2 

Pantanal 
Climate 2 (+5%) 19 (-63%) 0 1 (+8%) 20 (-72%) 0 

Land use 0 20 (-74%) 1 0 17 (-74%) 4 
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In general, there was little variation among ecoregions in functional, phylogenetic, and interaction diversity (Table 

2). Interaction diversity was larger in the Chaco (0.23) and lower in the Pantanal (0.18), indicating anurans in the Chaco 

had lower overlap in prey use. Functional diversity was higher in Atlantic Forest and the Pantanal (0.063), indicating 

greater variation among anurans traits (i.e., size, mass, clutch size, habitat, and reproductive modes) compared to other 

regions, whereas phylogenetic diversity was higher in Pantanal (0.006). 

 
Table 2: Overall volume of functional, phylogenetic, and interaction diversity by ecoregion 

Ecoregion 
Diversity  

Interaction Functional Phylogenetic 

Atlantic Forest 0.2000 0.0639 0.0056 

Chaco 0.2344 0.0493 0.0047 

Cerrado 0.2016 0.0483 0.0049 

Pantanal 0.1835 0.0637 0.0065 

 

Functional, phylogenetic, and interaction diversity showed different responses to extinctions (Figure 2, Figure S2). 

Phylogenetic diversity changed little with extinction simulations, with a slight increase for higher levels of extinctions 

(Figure 2). Functional diversity was robust to low levels of extinctions, only changing after about 50% of species were 

extinct, when it started decreasing steeply for all ecoregions (Figure 2). The Cerrado ecoregion showed a higher loss of 

functional diversity since the beginning of the extinction sequence, both in climate and land use extinction schemes. There 

is a notable difference in the loss of diversity according to extinction projections (Figure 3), with land use projections 

impacting more the functional diversity of anurans, mainly in Atlantic Forest. Conversely, interaction diversity decreased 

faster and almost linearly in response to extinctions. indicating a high sensitivity to the loss of species, especially in the 

Pantanal (Figure 2). Moreover, when contrasting the effects of projected extinctions based on the vulnerability rank and 

random extinction sequences, we found similar patterns for functional and phylogenetic diversity, but the impact on 

interaction diversity was generally greater than that estimated for same levels of random extinctions (Figures S3, S4, and 

S5). 
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Figure 2: Variation in functional, phylogenetic and interaction diversity of anuran-prey networks under varying levels of species 

extinctions in each ecoregion. Extinction sequence was determined according to species vulnerability estimated under climate scenario 

SSP 8.5. In A, C, E) vulnerability was estimated based on range loss according to climate changes only; in B, D, F) vulnerability was 

estimated based on range loss according to climate and land use change. 

 

A more in-depth analysis of the functional space shows that functional diversity, and its reduction with extinction, 

were determined by different traits in different ecoregions. The volume of the functional diversity of anuran assemblages 

was determined by the variation of size/body mass and reproductive mode in the Atlantic Forest (r²size/mass = 0.77, r²mode = 

0.79, p < 0.05) and the Pantanal (r²size/mass = 0.87, r²mode = 0.8, p < 0.05) (Figure 3). Functional diversity of Cerrado and 

Chaco were determined by the variation of reproductive modes (r²Cerrado = 0.73, r²Chaco = 0.74, p < 0.05), together with 

habitat and size/clutch size, respectively (r²Cerrado = 0.39, r²Chaco = 0.48, p < 0.05). Thus, while the reduction in functional 

diversity after species extinction in the Atlantic Forest and Pantanal are driven mainly by the loss of large-bodied species, 

in the Chaco and the Cerrado reduction is associated with reproductive traits or habitat preferences, respectively. 
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Figure 3: Change in the functional diversity of anuran-prey networks in response to extinctions in each ecoregion. Extinction sequence 

was determined according to species vulnerability estimated under the climate and land use scenario SSP 8.5, dots represent anuran 

species, blue shape the convex hull from climatic projection, red shape the convex hull from climate /land use projection. The white 

polygon represents the initial space before extinction and purple shape is the overlap between the two projections (PC1 + PC2 > 50% of 

explanation). 

 

Interaction diversity of anurans-prey networks was determined mainly by the variation in the use of Formicidae (r² 

= 0.40, p < 0.05) and Hemiptera/Odonata (r² = 0.22, p < 0.05) in Atlantic Forest, Formicidae (r² = 0.19, p < 0.05) and 

Diptera (r² = 0.24, p < 0.05) in Chaco and, Formicidae (r² = 0.32, p < 0.05) and Araneae/Diptera (r² = 0.25, p < 0.05) in 

Pantanal (Figure 4). Within the Cerrado, Hemiptera (r² = 0.3, p < 0.05) defined the volume of interaction diversity, with no 

other prey group significantly correlated with the second axis (p > 0.05). The loss in interaction diversity was greater from 

the start in the Pantanal, which is related to the loss of species with unique interaction patterns. 
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Figure 4: Change in the interaction diversity of anuran-prey networks in response to extinctions in each ecoregion. Extinction sequence 

was determined according to species vulnerability estimated under the climate and land use scenario SSP 8.5, dots represent anuran 

species, blue shape the convex hull from climatic projection, red shape the convex hull from climate /land use projection. The white 

polygon represents the initial space before extinction and purple shape is the overlap between the two projections (PC1 + PC2 > 50% of 

explanation). 

 

The interaction networks between anurans and their prey are structurally similar across ecoregions, showing 

significant modularity and specialization (Table 3). The main difference between networks representing different 

ecoregions is that in the Pantanal, anurans consume on average more prey per species and the Cerrado network has greater 

specialization and lower variation in the number of interactions per species. Extinction simulations, from the most to the 

least vulnerable species according to the vulnerability rank, show that, even though interaction diversity drops quickly with 

extinction, networks present high structural robustness, with significant changes to their structure only after about 50% of 

species had been sequentially removed (Figure 5 and Figure S6, respectively). Overall, species removal resulted in 

networks that are progressively more connected, yet with greater mean specialization for high extinction levels (Figure 5). 

Modularity and functional complementarity had little variation. The results were qualitatively similar for the extinctions 
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following the vulnerability ranks based on different climate change scenarios (both SSP 4.5 and 8.5) (Figure 5 and Figure 

S6, respectively). The two different extinction projections, i.e., climate and climate plus land use, produced meaningful 

differences only for the Atlantic Forest. 

 

Table 3: Structure of weighted anuran-prey networks by ecoregion. The variation coefficient is indicated in parenthesis. *Significant 

values 

Ecoregion Connectance Nestedness Modularity Specialization 
Relative functional 

complementarity 

Weighted 

degree 

Atlantic Forest 0.21 37.08 0.31* 0.29* -0.49 3.62 (1.16) 

Chaco 0.21 42.78 0.28* 0.25* -1.82 4 (1.28) 

Cerrado 0.22 20.95 0.30* 0.33* -0.14 4.04 (0.84) 

Pantanal 0.21 37.46 0.29* 0.26* -0.21 4.28 (1.31) 

 

 

Figure 5: Variation in the structure of anuran-prey networks under varying levels species extinctions in each ecoregion. Extinction 

sequence was determined according to species vulnerability estimated under the climate and land use scenario SSP 8.5. 

 

 

Discussion 

 
Changes in climate/land use are expected to reduce anuran distribution by promoting local extinctions, directly 

affecting functional, phylogenetic, and interaction diversity in ecological communities. We found that the anuran 
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vulnerability according to projected changes in distribution was generally associated with the level of trophic 

specialization, signaled by the species number of interactions in anuran-prey networks. We also found that there is a 

mismatch between the response of functional, phylogenetic, and interaction diversity to extinction, with interaction 

diversity decreasing faster than phylogenetic and functional diversity, despite the overall network structure being 

seemingly robust to low levels of extinction. 

The reduction of suitable environment driven by climate change and land use threat anurans around the world 

(Newbold 2018). Distribution contractions have been projected for anurans in the Neotropics as a whole (Menéndez-

Guerrero et al. 2020) and within certain Brazilian ecoregions such as the Atlantic Forest (Lourenço-de-Moraes et al. 2019) 

and the Cerrado (Vasconcelos et al. 2018; Alves-Ferreira et al. 2022). Because anurans are disproportionately sensitive to 

land use changes, the synergetic effects of climate/land use projections have a high impact on their distributions (Newbold 

2018). Such high vulnerability of anurans to land use change is also associated with the limited dispersal ability of anurans, 

which reduces their ability to reach suitable areas. That is why fragmentation, degradation, and habitat split are among the 

main causes of amphibian declines (Becker et al. 2007; Lion et al. 2014). 

The three facets of biodiversity showed little variation among ecoregions. The functional diversity was higher in 

the Atlantic Forest and the Pantanal, showing greater variation in traits like size/mass and reproductive mode. These 

regions do not have severe droughts like the Chaco and the Cerrado, which may act by filtering species traits and 

homogenizing communities (Pennington et al. 2009). Instead, their water supply is more abundant and distributed 

throughout the year, allowing anurans to explore unique microhabitats to breed, varying reproductive modes, and 

increasing functional diversity. Nevertheless, once abiotic variables affect the relationship between species diversity and 

functional diversity, reductions in precipitation or temperature in Chaco and Cerrado may restrict the pool of viable growth 

habits, lowering species richness and thus functional diversity (Cadotte et al. 2011). Conversely, interaction diversity was 

higher in Chaco, indicating that anurans in this region had more unique diets. Among the studied regions, Chaco 

experiences the most prolonged and severe drought period, which reduces the availability of food throughout the year 

(Adamoli et al. 1990). When food is scarce, anurans may shift their diets by including less-preferred items. In fact, the 

Chaco presented higher levels of specialization, with certain species feeding mainly on one or a few prey categories (e.g., 

Formicidade, Acari). On contrary, in more stable environments, when resources are abundant, optimal feeding might favor 

selectivity (Emlen 1966; Robinson & Wilson 1998). Thus, the combination of different levels of diet specialization leads to 

diverse interaction patterns, which results in more unique diets in this region. 

Contrary to our hypothesis, the functional, phylogenetic, and interaction diversities did not respond in the same 

way to the loss of species. Functional diversity was nearly invariant up to 50% of species extinction when it started 

decreasing steeply for all regions. Functional diversity was determined mainly by reproductive mode and anuran size/mass, 

and in less extent by clutch size, and habitat. These traits are related to the capacity of anuran to breed, grow and reach 

suitable environments, which is often correlated with anuran extinction risk [e.g., Ripple et al. 2017; Anjos et al. 2020; 
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Fontana et al. 2021]. Yet, we found no relationship between specific trait combinations and vulnerability to climate and 

land use. This lack of trait-selectivity combined with the high functional redundancy among the anurans explains the 

robustness of functional diversity. This result highlights that functional redundancy safeguards functional diversity even at 

moderate levels of species loss (Sura et al. 2021). Likewise, phylogenetic diversity did not vary significantly with the 

extinctions because the vulnerability rank shows no phylogenetic-selective patterns of extinction. The low phylogenetic 

diversity in studied assemblages may occur because the majority of species are concentrated in a few families, such as 

Hylidae (harboring 45% of species), and Leptodactylidae (harboring 34% of species), a pattern in many Neotropical anuran 

assemblages (Segalla et al. 2021) that may be a result of large radiations of few lineages generated by in situ diversification 

after few initial immigration events (Fritz & Rahbek 2012).  

Different from the other facets of diversity, interaction diversity was highly impacted by extinctions (both in 

climate-only and climate/land-use projections), decreasing almost linearly in response to the loss of species. Interaction 

diversity was mostly determined by the variation in the consumption of certain prey such as Formicidae and Hemiptera. 

The high contribution of Formicidae to interaction diversity in Atlantic Forest, Chaco, and Pantanal is related to the 

presence of ant-specialists in these regions (e.g., E. matogrosso, E. bicolor, R. bergi, R. major) (Ceron et al. 2020). 

Because extinction vulnerability was associated with a low number of interactions, such species with unique dietary 

patterns were lost earlier in the extinction sequence impacting interaction diversity but with little effect on network 

structure.  

This relationship between anuran vulnerability and species degree, explains why interaction diversity was 

sensitive to extinction, while networks presented high structural robustness, with networks changing their structure only 

after more than 50% of species had been removed. Species that are less connected in interaction networks tend to be more 

vulnerable to climate change because they are more sensitive to resource shortages and are less likely to switch to alternate 

resources (Reed & Tosh 2019). The loss of specialists thus leads to the extirpation of unique interaction patterns, but the 

structural consequences and the potential cascading effects of such losses, are smaller than the loss of generalists (Dunne et 

al. 2002; Pires et al. 2020). The loss of generalists leads to a greater restructuring of the network, besides impacting the 

whole network, because the more trophic links a species has to other species in a food web, the greater is its potential to 

affect other species (Dunne et al. 2002). Also, the elevated structural robustness of networks to extinction is related to the 

presence of generalists (high connectance, Dunne & Williams 2009), and to the high level of redundancy among generalist 

species (Allesina et al. 2009). Yet, any extinction may affect prey dynamics, releasing prey populations or favoring the 

rewiring of interactions, altering the ecosystem functioning and its associated services.  

Functional diversity is often viewed as a proxy for interaction diversity and key to understand the ecosystem 

functioning (Song et al. 2014). Here we show that functional diversity and interaction diversity can be decoupled and 

respond in different ways to biodiversity loss. In this study system, focusing exclusively on functional diversity would lead 

us to underestimate the effects of climate and land use change on the ecological diversity of anurans. This is extremely 
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important if we consider that ecological functions are not strictly associated with life-history or morphological traits but are 

mostly dependent on species interactions. The loss of unique interactions can result in the decay of ecosystem functions, 

and ultimately the collapse of derived services (Valiente‐Banuet et al. 2015; Schleuning et al. 2020). For example, the 

dynamics of biological control of pests and vector disease by anurans may be highly affected as interaction diversity 

reduces, even if the overall network structure is maintained up to high levels of species loss. When interaction diversity is 

not reflected in the functional diversity, assessing the interaction patterns is necessary to understand the unique roles of 

species in ecological networks and how species loss may translate into the loss of ecosystem functions.  
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