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Significance statement: We synthesize a broad literature on the use of randomization tests in niche modeling, highlighting the similarities and differences between tests.  We also highlight areas that are still undeveloped, and argue that randomization tests will be a critical part of the field going forward.

Abstract
	In the field of niche modeling, data are often subject to multiple interacting sources of uncertainty, bias, and autocorrelation that make them difficult to analyze using traditional statistical approaches.  Randomization is often used in statistical tests in order to estimate distributions that are difficult to specify analytically.  Decades of development in the niche modeling literature have resulted in randomization tests that allow us to study phenomena as disparate as variable importance, methodological bias, and patterns of niche evolution.  Here we present a novel conceptual framework that allows us to both take a synthetic view of existing tests and highlight potentially fruitful avenues for future methodological exploration.  We argue that further development of randomization tests and rigorous exploration of their performance will be essential to the development of the field going forward. 
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Introduction
Ecological niche models and species distribution models (hereafter collectively referred to as “ENMs” for simplicity) are a class of methods that attempt to estimate species’ environmental tolerances and potential geographic distributions based on relationships between known occurrences of the species and a set of environmental gradients.  ENMs are used widely across a number of fields, and are a core component of modern biogeography.  Recent years have seen a proliferation of new methods for building, evaluating, and using ENMs, but there are still many unsettled issues about their biological interpretation, their reliability, and how good models should be distinguished from bad.  ENM studies are characterized by multiple interacting sources of uncertainty, spatial autocorrelation, and bias, and as a result model outputs are often difficult to analyze using traditional parametric statistics.
Randomization analyses are a class of statistical methods that use randomization in order to estimate statistical distributions, and are often applied in cases where distributions are difficult to specify analytically. When implemented correctly, randomization analyses have the potential to compensate for many of the aspects of ENM outputs that render them unsuitable for analysis using classical statistical approaches. A number of randomization analyses have been developed for various stages of ENM construction and for downstream analyses over the past two decades.  However, these methods are often developed in an ad hoc fashion and presented with little reference to the broader context of other randomization analyses in the ENM literature, leaving the field with a collection of disparate approaches and a lack of clarity regarding how they relate to each other.  Here we will attempt to develop a unified conceptual framework for randomization analyses in ENM studies, synthesize the existing literature within this framework, and illustrate how this framework highlights areas that are very promising for future development.

Conceptual framework
	Here we use the term “randomization analyses” as an umbrella term to include nonparametric approaches such as (1) Monte Carlo analyses, which construct replicates by randomly altering the empirical data, (2) permutation analyses, which resample data without replacement and evaluate every possible permutation of the data that can thus be obtained, and (3) parametric approaches in which distributions are constructed by simulating data from a specified set of parameters, which are usually derived from empirical data.  It may be argued that permutation analyses are not strictly randomization analyses since they sample all subsets of the data, but for the purposes of the present discussion this distinction is not often relevant; the underlying logic of the analyses and their applications are largely the same.  As such we will use the term “randomization analyses” to include them, effectively treating permutation analyses as Monte Carlo analyses with loaded dice.  
Randomization tests are used for two primary purposes in ENM: to estimate uncertainty in model predictions and to generate null distributions for hypothesis testing.  The use of randomization to estimate uncertainty is common across many fields and its application to ENMs is fairly straightforward (e.g., bootstrapping occurrence points to estimate uncertainty in model predictions).  The use of randomization tests to construct null distributions is where many ENM-specific innovations have occurred, including tests for measuring similarity in ENM predictions between taxonomic groups or populations (Broennimann et al., 2012; Glor & Warren, 2011; Heibl & Calenge, 2013; Warren et al., 2008), methods for variable selection (Greenwell et al., 2019) and methods for comparing model fit to a null hypothesis (Beale et al., 2008; Bohl et al., 2019; Chapman, 2010; Osborne et al., 2022; Raes & ter Steege, 2007; Warren et al., 2021a).
	It is generally informative to examine randomization analyses in the context of three key questions for each method: what is changed in each replicate, what is kept constant, and what is measured (Box 1).  In this context, it is crucial to think about the differences between empirical models and those built using randomized data.  When randomization is used to estimate uncertainty, only those aspects of the data that are randomized will contribute to those estimates.  These differences are equally important for hypothesis testing but may be more subtle; since we are comparing empirical models to a distribution of models built on randomized data, any process that is present in the empirical data but removed by randomization may generate statistically significant results.  For instance, if empirical data is subject to spatial sampling bias but data for replicates is sampled without bias, type 1 errors may be produced in the absence of any biological signal (Warren et al., 2022).  As such, randomization should ideally be designed such that only the phenomenon of interest differs between empirical and randomized data.  It is only by doing so that rejection of the null hypothesis indicates reliable support for the alternative hypothesis.  
This review breaks down existing randomization analyses based on four components of the modeling process: occurrence data, predictors, evaluation data, and metrics.  Figure 1 presents a visual representation of this framework, and Figure 2 highlights the different approaches that have been used by existing tests for each step.  Table 1 lists in detail the similarities and differences between existing randomization tests that have been developed for a variety of purposes.

 Occurrence data 
Some of the simplest and most commonly used randomization analyses for ENMs are those that resample occurrence data to estimate uncertainty or transferability of model predictions.  For ENMs, uncertainty is most often estimated via bootstrap; a nonparametric method for estimating statistical distributions wherein points are resampled with replacement in order to generate a replicate data set of the same size as the original.  Repeating this process many times and making measurements on models built for each replicate (e.g., habitat suitability or metrics of model fit) allows for the estimation of variance or confidence intervals accompanying those estimates.  While this method is well established and widely used for many statistical applications (Efron & Tibshirani, 1994), it is worth noting that the variance estimated via this process is typically a very small component of the total uncertainty in ENM estimates (Diniz-Filho et al., 2009; Watling et al., 2015).  One interesting consideration when applying the bootstrap to occurrence data for ENMs is that many studies typically remove duplicate occurrence points before modeling, but the bootstrap will by design create duplicate occurrences by resampling.  Although counterintuitive, this is a necessary component of producing reliable bootstrap estimates.  It does create a potential pitfall, however; it is conceivable that one might design a workflow that places a duplicate-culling step between the resampling step and the modeling step, resulting in inaccurate estimates of statistical distributions.  This might be a particularly easy mistake to make when using bootstrap with modeling implementations that remove duplicate occurrences by default.
Jackknife resampling is similar to bootstrap, except that points are resampled without replacement and the replicate data sets are smaller than the original.  Delete-1 jackknife is typically conducted as a permutation analysis, with every point being left out of one replicate in turn, resulting in N replicates for N data points.  The delete-d jackknife is similar, except that some number of data points d is randomly removed in each replicate. Although jackknife resampling can be used to estimate uncertainty, and these estimates are known to converge on bootstrap estimates (Efron & Tibshirani, 1994), the use of jackknife sampling of occurrences in ENM is most often in the context of cross-validation (addressed below).  This is probably for the best, as there are several aspects of ENM studies that may make them poor fits for jackknife estimates of uncertainty.  The delete-1 jackknife is known to produce unreliable estimates of variance for non-smooth estimators (e.g., when estimating the quantiles of a distribution), particularly when outlier data points are included (Efron & Tibshirani, 1994; Shao & Wu, 1989).  The delete-d jackknife is more stable and typically more reliable as an estimator of variance, but may be problematic for ENM applications where the summary statistic being measured is sensitive to sample size or prevalence (e.g., niche breadth).  To the best of our knowledge this latter issue has not been studied, but given that jackknife resampling is not typically used for these purposes its potential impact on the field is likely small.
When sampling without replacement is used for ENMs, typically the goal is to use cross-validation to estimate how well a model’s predictions generalize to new data rather than to estimate uncertainty.  The most commonly used cross-validation method in ENM involves randomly separating the occurrence data into two subsets, one of which is used for training and the other for model validation.  This may be done as a single iteration, or may be repeated a number of times.  Leave-one-out cross-validation subsamples the data in the same way as the delete-1 jackknife, but instead of measuring variance across these replicates it evaluates each replicate model’s ability to predict the withheld point.  In contrast, k-fold cross-validation randomly partitions occurrence data into k distinct subsets of size N/k, and is thus similar to the delete-d jackknife except that the replicate models are evaluated on the withheld subsets.  The average behavior of these replicates is taken to indicate the ability of the model to predict new occurrences, although this interpretation is known to be overly optimistic due to spatial autocorrelation and spatial sampling bias (Araujo et al., 2005; Veloz, 2009).  Initially in the ENM literature, k-fold cross-validation was typically performed by partitioning datasets into training and validation data randomly.  In recent years, however, it has become common to partition data spatially (including both occurrence and background data in some cases, Radosavljevic and Anderson 2014), in particular for cases where the goal is to produce models that are transferable in space and/or time (Barbosa et al., 2009; Muscarella et al., 2014; Valavi et al., 2019).
The randomization used in the identity/equivalency test of Warren et al. (2008, 2021a) is somewhat unusual.  By shuffling the identity of empirical occurrence points for two species but keeping sample size and location intact, it effectively samples without replacement (as in jackknife), but without changing sample size (as in bootstrap).  The closest parallel is the two-sample permutation test (Eaton, 1935), but sampling for the identity test is random and all possible combinations are not simulated.  It is therefore most accurately interpreted as a Monte Carlo estimate of a two-sample permutation test, very similar to “permanova” tests used elsewhere in ecology (M. J. Anderson, 2001).  The “rangebreak” tests developed by Glor and Warren (2011) effectively combine this method with spatially structured sampling that keeps various spatial aspects of the species’ distributions intact.  
Parametric approaches for occurrence data have also been developed for ENMs. In these applications, the goal of randomization is to eliminate specific correlations in the data while keeping marginal distributions of associated variables intact, thereby allowing users to measure how strongly those correlations affect model outputs.  For the most part these methods have treated the study area in much the same way that summary statistics on an empirical data set are typically used in parametric bootstraps; it is treated as a fixed component from which replicate data sets are simulated.  These simulated data sets are then used for modeling to generate null distributions of expected model fit given some aspects of the empirical data or study design. 
Broadly speaking, in order to have confidence that a model makes meaningful predictions we must have confidence that those predictions fall outside the behavior of an uninformative model.  Although this may seem tautological, it highlights the primary issue of evaluating model predictions in ENM: what does an uninformative ENM look like?  Or, more precisely, what would we expect an ENM prediction to look like if the phenomenon we are trying to parameterize were not operating, i.e., if the suitability of habitat for the species was unaffected by the environmental gradients being used for modeling?  This turns out to be a surprisingly complicated question.
Before addressing randomization tests, two possible simple null hypotheses should be addressed: random predictions and uniform predictions.  Early tests of ENM significance tried to adopt classical approaches for assessing model fit such as a chi-square test (Ortega-Huerta & Peterson, 2008; Peterson, 2001), but the null hypothesis under these tests is equivalent to assuming that the spatial prediction of an uninformative model should be random and without spatial autocorrelation.  This assumption is unlikely to hold for ENMs; species occurrences, environmental predictors, and the sampling of occurrence data are all spatially autocorrelated processes, and as such a prediction from a model in which there is no relationship between occurrences and the environment will nevertheless tend to be spatially autocorrelated.  In addition, autocorrelation generally creates a bias toward underestimating standard errors of model parameters, increasing the likelihood that spurious relationships will appear to be statistically significant (R. L. Anderson, 1954; Hawkins, 2012).  
The idea of a uniform prediction (e.g., all grid cells in the study area receive equal suitability scores) as a null model is intuitive to investigators who are familiar with linear regression models, where the prediction under the null hypothesis is simply the empirical mean of the response variable.  This is the null model assumed by many modeling algorithms (Elith et al., 2011; Hastie & Tibshirani, 2004; McCullagh & Nelder, 1989; Phillips et al., 2006), where its interpretation is “the expected model fit in the absence of any observed relationship between the occurrence of the species and the environmental predictors”.  However, due to the presence of multiple sources of spatial autocorrelation (as outlined above), uniform predictions are rarely seen in real ENMs even when occurrence data are distributed randomly across the landscape (Raes & ter Steege, 2007).  Demonstrating that the distribution of suitability scores departs from a uniform prediction is therefore not a reliable indicator that the model has made a useful inference.  
	This highlights a central disconnect in ENMs that is worth considering; the difference between an idealized “uninformative model” and a model built using uninformative occurrence data.  In order to meaningfully demonstrate that a model fits better than expected by chance, we would ideally generate a distribution of expected model performance that mimics all of the incidental or undesirable aspects of our data (sample size, spatial autocorrelation, multicollinearity, sampling bias), but which does not include the phenomenon of interest, i.e., that the probability of observing the species bears some causal relationship to a set of environmental gradients.  It is here that the three questions outlined in Box 1 become useful in helping us to understand what aspects of the data or modeling process are being controlled for and what is being tested.  Raes and ter Steege (2007) demonstrated that the null expectation for the area under the receiver operating characteristic curve (AUC), a commonly used metric of model performance, could in some cases be accompanied by significant error bars, so that models fit with uninformative data might appear to have predictive power.  They suggested a test wherein: 1) occurrence points are randomly distributed across the training area, 2) models are built using the same settings and predictors as the empirical model, 3) their performance is evaluated based on how well they predict their training data, and 4) the distribution of performance metrics for this null distribution is compared to the performance of the empirical model at predicting its training data (Table 1, figures 1 and 2).  If the performance of the empirical model falls above the selected quantile of the null distribution (e.g., > 95% of models built using uninformative data), the model is thought to be reliable.  
In the context of the three questions in Box 1, the aspect of model performance being randomized in each replicate is the spatial location of the occurrence points.  The aspects of the empirical model that are held constant include sample size, modeling algorithm, study area, and autocorrelation and multicollinearity of the predictor variables, meaning that any effects of these phenomena would be preserved in the null distribution.  The measurement being made is AUC on training data.  As a result, rejection of this null hypothesis would be interpreted as “the ability of the empirical model to fit its training data is not well explained by sample size, algorithm, study area, or as a statistical artifact of the spatial structure of the predictors”.  Or, alternatively, “the fit of the empirical model to its training data exceeds what would be expected by chance when those confounding phenomena are accounted for”.  
The Raes and ter Steege (2007) method of constructing null distributions was later extended by Warren et al. (2016; 2021a) and Bohl et al. (2019).  Both of these methods partition data into training and validation groups and evaluate how well models built using randomly drawn points perform using discrimination accuracy on validation data.  The primary differences between these methods lie in which data is used for evaluation; Bohl et al. (2019) evaluated models fit with random occurrence data to the withheld validation data used to evaluate the empirical model, while Warren et al. (2016) used randomly drawn validation data. Warren et al. (2021b) showed that similar methods could be used to measure bias in ENM study design.  Warren et al. (2008, 2010, 2021a) and Broennimann et al. (2012; Di Cola et al., 2017) used similar methods to compare the similarity between niche estimates for pairs of species to the similarity between models based on random points drawn from each species’ range.  Mandle et al. (2010) used a similar resampling strategy to examine changes in niche breadth between native and invasive populations.  
All of these methods select points with uniform probability over the study area to generate the null distribution, which means that any correlation between the occurrence of the simulated points and the environmental predictors would be entirely spurious.  However, it also means that any spatial autocorrelation in the empirical occurrence points would not be present in the data used to construct the models for the null distribution.  This leaves us comparing an empirical model where the occurrence data are typically autocorrelated to a null distribution built without that effect, raising the possibility that rejection of the null could be driven by spatial autocorrelation.  However, tests that account for autocorrelation in occurrence data have also been developed.  Nunes & Pearson (2017) developed a method for tests of niche divergence that randomly rotates and translocates the empirical occurrence points, preserving the spatial relationships between them, and demonstrated that this produced results that were more similar to results from ordination techniques than the test implemented in Warren et al. (2008). Beale et al. (2008) constructed a null distribution by simulating random occurrences with the same level of spatial autocorrelation as the empirical data, and found that most ENMs did not outperform random data.  More recently, a study by Osborne et al. (2022) demonstrates that a similar phenomenon affects hypothesis tests; many tests that produce significant results when using randomly selected points to generate the null distribution no longer do so when those points are sampled with a level of spatial autocorrelation similar to that in the empirical data set, suggesting that tests of null hypotheses based on randomly selected points may be overly subject to type 1 errors.  The authors provide a new toolbox for simulating random data with spatial structure similar to the empirical data, which may help in avoiding this issue in empirical studies.  However, it may not be desirable to generate a null distribution that accounts for all spatial autocorrelation in the occurrence data. Species occurrences may be autocorrelated due to dispersal limitation and spatial sampling bias, which users typically do not want to parameterize, but even in the absence of these phenomena occurrence data may be spatially autocorrelated simply because individuals are responding independently to an autocorrelated environment.  This last source of autocorrelation contains much of the signal we are trying to parameterize in ENMs, and distinguishing between sources of autocorrelation is typically quite difficult (Kühn & Dormann, 2012).  Warren et al. (2022) developed a method that samples replicate occurrence points from a set of target group points or a raster layer representing spatial sampling bias (Phillips et al. 2009; Syfert et al. 2013), but even in the ideal case where sampling effort is known perfectly this does not account for dispersal limitation and historical factors.  Warren et al. (2022) also provide a simulation analysis where unbiased points are used to generate null distributions for empirical data that is sampled with spatial bias, and similar to Osborne et al. (2022) find that type 1 errors are very common.
The perfect method for sampling occurrence points for randomization analyses has likely not yet been devised, and will necessarily vary based on the intended application.  Ideally it should correct for all of the non-target phenomena generating spatial autocorrelation in the study system while leaving the independent responses of individuals to an autocorrelated environment intact.  Whether this goal is even obtainable on real data is questionable, but the above studies show that working toward this goal should be a primary focus of future methodological development in this area.  In particular, the question of whether a given approach produces more biologically realistic niche estimates will need to be determined by using virtual species for which the true niche is known, as one of the fundamental questions in this area will be whether the relationship of the species to its environment is being removed by an incorrectly specified sampling distribution.  This mirrors broader calls for increased reliance on simulations in the ENM literature (Meynard et al., 2019; Warren et al., 2020). 

Predictors
	Randomization analyses applied to predictors are used for two primary purposes; to evaluate the contribution of individual predictors to the model, and (as with many occurrence randomization tests) to generate a null distribution of expected model performance against which to evaluate the empirical model.  Currently available methods to measure variable importance proceed by either altering which predictors are included or randomizing predictor values, while methods to construct a null model replace the empirical predictor set with an entirely different set of predictors.  This divide is an artifact of how the field has developed rather than being implicit in the methods; each approach could conceivably be used for either purpose (e.g., randomizing predictor values to develop a null distribution for model fit, or comparing empirical predictor sets to simulated ones to estimate variable importance).
The most common approaches to measuring the contributions of each predictor involve subsampling the predictor set but keeping the spatial structure of each predictor intact (e.g., Maxent (Phillips et al., 2006, Phillips 2021)).  This is often done in two complementary ways: one in which a model is built with each predictor alone, and one in which a model is built removing each predictor in turn.  These are intended to answer the questions: “How well could I model my species’ distribution using only this predictor”, and “How well could I model my species’ distribution without this predictor”, respectively.  These are almost always performed as permutation tests (i.e., all possible single-predictor and delete-1 predictor models constructed), and the change in performance measured via regularized gain on training data.  
	A different suite of methods attempts to estimate variable importance not by excluding predictors, but by randomly shuffling the values of a single predictor while keeping the other predictors unchanged, and comparing a model built with this predictor set to the empirical model via some metric of model performance (Greenwell et al., 2019; Phillips, 2021; Searcy & Shaffer, 2016; Smith & Santos, 2020).  This process removes any correlation between the occurrence of the species and the randomized predictor.  By repeating this process for each predictor and measuring the change in model fit, users can assess different predictors’ relative contributions.  In contrast to the methods that remove predictors from the training set entirely, this method keeps both the number of predictors and the marginal distribution of each predictor constant, facilitating direct comparisons between the empirical model and the replicate models.
Methods that alter the whole predictor set in order to construct a null model typically involve replacing the empirical predictors either with a simulated predictor set or with an alternate set intended to mimic some aspect(s) of the empirical predictors. Bahn and McGill (2007) compared the fit of ENMs trained with environmental predictors to models trained with spatial variables alone, and suggested that a model with predictors hypothesized to have relationships with the species’ niche that cannot outperform simple spatial interpolation should be rejected.  Although comparing model fits to those produced by spatial autocorrelation alone is a useful idea, it is worth noting that many environmental gradients are locally or globally correlated with latitude or longitude, and as such it could be argued that the results seen for “spatial autocorrelation only” models in this framework may in some cases be driven by the environmental niche.  As such this may be too strict as a null hypothesis if our goal is to detect when species’ occurrences are correlated with the environment.  Other investigators have compared the fit of ENMs to models built using spatially autocorrelated “nonsense” layers such as classical works of art (Fourcade et al., 2018).  While this approach does overcome the issue of being generally correlated with real environmental gradients, both this approach and that of Bahn and McGill (2007) involve using predictors for the null model that may differ from the empirical predictors both in the degree and scale of autocorrelation and in patterns of multicollinearity across the predictor set.  
Although these approaches were well suited to the purposes for which they were developed, they may be unsatisfying in generating null models for widespread use, as each consists of only a single alternative set of predictors and therefore cannot be used to generate a distribution of expected model fits. Chapman (2010) compared the fit of ENMs built using real environmental predictors to the fit of models built using simulated predictors with similar spatial structure.  Unlike the approaches of Bahn and McGill (2007) and Fourcade et al. (2016), this simulation-based approach allows the possibility of doing multiple replicates.  Using these, the author found that single-variable models led to type 1 errors (i.e., a significant correlation between a species’ occurrence data and a fictitious predictor) 86% of the time when fitting linear responses and 94.4% of the time when fitting quadratic responses.  Chapman (2010) also extended this approach to include multiple variables, and found that models built using real environmental predictors barely outperformed those using simulated predictors.  The null model implemented by this method is very appealing, but widespread adoption may have been hampered by the fact that the implementation requires orthogonal empirical predictors (i.e., those with no correlation between them).  This would necessitate principal component analysis (PCA) on predictor variables for most studies, and many ENM practitioners are reluctant to do so because of the difficulties in interpreting PCA axes of predictor variables (Dormann 2011).

Model
	Since the purpose of many randomization analyses is to estimate the sensitivity of our conclusions given various aspects of the data, for most approaches the modeling step is kept relatively constant.  While some modeling algorithms might involve a stochastic element in optimization, it is not common for users to construct many replicate models on unaltered data except when systematically altering some aspect of the modeling process such as model complexity or feature types (Muscarella et al. 2014; Warren and Seifert 2011).  However, some algorithms include randomization as an integral component of the modeling process.  This is particularly true of many machine learning methods that are popular in the field such as GARP, artificial neural networks, and deep-learning methods (Benkendorf & Hawkins, 2020; Deneu et al., 2021; Stockwell, 1999).  Random forests, for example, performs bootstrap resampling of the occurrence data for each replicate and subsampling of the predictor set at every node in the decision tree built for each replicate (Breiman, 2001).  
The use of these algorithms within the context of other randomization analyses raises an interesting point: typically when conducting randomization analyses it is assumed that the variance observed in the resulting models is a product of the randomization in question.  If the modeling step itself involves a random component, the variance estimates from the randomization analyses may be somewhat inflated.  However, in most practical cases this effect is likely to be small, particularly when users employ best practices to reduce variance between model runs (Breiman 2001).

Evaluation data
	All randomization analyses involve making one or more measurements on the model outputs for each iteration, and in some cases these involve evaluating model predictions on a set of occurrence data.  The choice of evaluation data may have subtle but important effects on how rejection of the null hypothesis should be interpreted.  For instance, Raes and ter Steege (2007) construct their null distribution by measuring the fit of models trained on randomly chosen data to the same data used to fit the model, in essence asking “given the study design (study area, predictors, algorithm, etc.), how well should we expect a model to predict its training data assuming there is no signal in the occurrence data?”  Warren et al. (2016, 2021a), on the other hand, simulate random points but split them into training and validation data and measure discrimination accuracy on both.  In this implementation, the interpretation of the null distribution for the training data is the same as in Raes and ter Steege (2007), but for the validation data is more appropriately “how well should we expect a model to predict data withheld from training, assuming there is no signal in either data set?”  Bohl et al. (2019), in contrast, simulate random training data but evaluate the replicate models’ ability to predict the same validation data withheld from the empirical data set, resulting in a null distribution that may be interpreted as “how well should we expect a model to predict this particular set of empirical validation data, assuming there is no signal in the training data?”  
This demonstrates both the promise and the difficulty of implementing randomization analyses: subtle differences in sampling may result in analyses that answer different questions in ways that are not immediately obvious. Our goals in constructing ENMs are typically not to predict either simulated or empirical evaluation data.  Rather, our goals are to estimate quantities of ecological importance: habitat suitability, the relative importance of environmental variables, the shape and nature of the ecological niche, the species’ potential distribution, etc.  While comparison to null hypotheses for model performance is undoubtedly better for selecting useful models than naive threshold values of evaluation statistics (Bohl et al., 2019; Osborne et al., 2022; Raes & ter Steege, 2007), which if any of these methods is most useful for the actual goals of niche modeling is unknown and may vary by application.
In most cases examined here, evaluation data is a product of the same simulated process as the training data, as the goal is usually to evaluate empirical observations against the expectation if data were completely random (Raes & ter Steege, 2007; Warren et al., 2008; Warren et al., 2021a) or driven by some specified process such as spatial autocorrelation or sampling bias (Osborne et al., 2022; Warren et al., 2022).  However, this is not always the case; the Bohl et al. (2019) test measures ability of models fit with randomly drawn occurrence points with little to no spatial autocorrelation to predict points from the empirical data set, which may have a higher level of spatial autocorrelation.  A similar mismatch occurs in the “asymmetric” background/similarity test of Warren et al. (2008), where overlap for each replicate is measured between a model built with random data and one built with empirical data.  The “symmetric” background test, implemented in ecospat (Broennimann et al., 2012; Di Cola et al., 2017) and later in ENMTools (Warren et al., 2021a) does not have that feature; it instead constructs the null distribution of overlaps by drawing points at random for both species in each replicate.  The effects of constructing replicates from a combination of simulated and real data compared to using purely simulated data have not been fully evaluated, but such a comparison could be fruitful.

Metrics
	Once a set of replicate models has been constructed via randomizations, they are summarized either in terms of the model predictions themselves or by calculating summary statistics based on those predictions.  In the case of analyses intended to map estimates of bias or uncertainty in suitability scores, this is often done at the level of individual grid cells.  This may take the form of calculating mean and variance of predictions from replicates, or direction and magnitude of predicted change in habitat suitability as a function of climate (Warren et al., 2021b). These maps allow users to evaluate where in geographic space models make the most stable and unbiased decisions, which can be an indispensable tool when using models for decision support.
	When randomization tests are used in the context of null hypotheses, however, it is more typical to compare some summary statistic calculated on the empirical models to the distribution of that same summary statistic across the replicate models.  When studying niche evolution, this is usually some metric that quantifies the similarity between two species in predicted habitat suitability (Broennimann et al., 2012; Glor & Warren, 2011; Heibl & Calenge, 2013; Warren et al., 2008), or which measures the estimated niche breadth for a single species (Mandle et al., 2010).  In cases where randomization is used to generate null hypotheses for model fit (Bahn & McGill, 2007; Bohl et al., 2019; Chapman, 2010; Fourcade et al., 2018; Raes & ter Steege, 2007; Warren et al., 2021a), tests are generally conducted using discrimination accuracy on whatever data is used for validation.
	
Looking forward
	A sobering pattern emerges from the literature reviewed here.  In every study that attempted to correct for some level of methodological bias or autocorrelation in the data, it was found that failure to account for these statistical realities resulted in unacceptable levels of type 1 error (Beale et al., 2008; Bohl et al., 2019; Chapman, 2010; Osborne et al., 2022; Raes & ter Steege, 2007; Warren et al., 2021b; Warren et al., 2022), leading to spurious rejection of null hypotheses and unreliable estimates of model fit.  Given the methodological differences between these studies, the similarity in outcomes must be viewed as strong evidence that many empirical ENM results may be subject to this sort of type 1 error.  These problems are not due to the randomization analyses; rather they indicate widespread issues with ENMs that only became apparent when randomization analyses were conducted.  Rather than indicating an insurmountable problem for ENMs, we instead suggest that this highlights the crucial importance of further development of randomization methods to provide more accurate estimates of expected model behavior.
In preparing this review we revisited dozens of studies that developed novel randomization analyses for use with ENMs.  However, this apparent methodological diversity represents only a fraction of the true potential of these methods.  By examining the workflow in Figure 1 and options in Figure 2, we can see that there are a multitude of possible approaches that have yet to be developed and evaluated for use with ENMs.  Taking a broad view of the categorization framework outlined here (occurrences + predictors -> model -> evaluation data -> metrics), one could view this as a modular workflow for measuring uncertainty and testing hypotheses which could be implemented in a flexible software package.  Here we present a few examples that could prove fruitful for future research.
Recent studies have demonstrated that failing to account for spatial autocorrelation (Osborne et al., 2022) or spatial sampling bias (Warren et al., 2022) in randomly sampled point data for randomization tests results in a substantial risk of type 1 error.  While these studies demonstrated how to modify some existing tests to account for these issues, there are others for which these changes have not been implemented.  Given the severe risks of failing to account for these issues this should be a top priority, and any downstream developments that include sampling random occurrences must take this issue into account.
	A growing body of work suggests that discrimination accuracy may be unsuitable for selecting models under some modeling conditions and for some applications (Jiménez-Valverde et al., 2013; Lobo et al., 2008; Warren et al., 2020), but these studies have been conducted solely in the context of using discrimination metrics on the empirical model and data.  This leaves open the interesting possibility that one or more of the existing methods for coupling discrimination accuracy with randomization analyses will render them far more effective for model selection, but we are not aware of any study where this question has been satisfactorily addressed.  There is also the potential to extend existing methods beyond discrimination accuracy.  Methods for measuring model calibration have been adapted for use with ENMs (Hirzel et al., 2006; Phillips & Elith, 2010).  These metrics evaluate how well continuous model suitability scores match the proportion of occupied sites, and as such may be more relevant to applications where continuous suitability scores are used (e.g., measuring niche overlap or breadth, or any application where models are not thresholded and continuous suitability estimates are interpreted as being biologically relevant).  Calibration metrics have seen some level of adoption, but to date have rarely been used in randomization analyses (but see Smith and Santos 2020).  
Parametric methods that simulate predictor variables with similar statistical properties to empirical data sets offer a lot of promise, but are so far not particularly well-developed nor widely used in the literature.  Chapman (2010) developed a method for doing this, but it does not allow simultaneous inclusion of spatial autocorrelation and multicollinearity in the predictor set and as such can only be used when predictors are not correlated.  A method capable of rapidly generating sets of random environmental rasters with user-specified autocorrelation and multicollinearity could be useful in generating null hypotheses for assessing model fit, and would also be very useful in advancing the simulation literature in this field.
Another possibility is to randomize multiple components simultaneously to generate hypothesis tests for model validation that are more general than the current implementations.  As an example, one could simulate both point data and environmental rasters with statistical properties similar to an empirical data set to construct a distribution of expected model performance given the statistical properties of this data set without requiring that either the point data (as in Chapman 2010) or the predictor set (as in Raes and ter Steege 2007 and similar studies) be fixed at their empirical values.  In the ideal case, this would allow us to evaluate model predictions against a null hypothesis that simultaneously took into account all non-target processes in the empirical data (e.g., spatial sampling bias, multicollinearity, spatial autocorrelation in the environment, etc.).
However promising this area of methodological development may be, we would like to sound a note of caution.  The most common complaint among new ENM practitioners is that there is a bewildering array of methods available, and it can be quite difficult to select a set of approaches that is suitable for a particular application.  This likely contributes to why even experienced ENM practitioners exhibit high fidelity to popular or preferred methods, which further restricts the adoption of new methods (Ahmed et al., 2015). This has been compounded by the fact that the field has been fairly lax when it comes to demonstrating the value of new methods; often their utility is promoted based on verbal arguments alone, or if they are vetted with data it is typically in the context of measuring changes to model fit on real data sets for which the truth about the phenomena being estimated (e.g., response to environmental variables, patterns of niche evolution, effects of climate change) are not known.  As a result, we often end up adopting new methods based on their ability to produce very slight improvements on a limited number of data sets using metrics that bear little relationship to the intended applications of most models.  Randomization analyses are one of the most promising avenues for dealing with some of these issues.  However, if they are poorly vetted, they may simply add more complexity and more metrics of dubious value to a field that is already overloaded with options.  To avoid this outcome it will be incumbent on future investigators in this area to validate their new methods using realistically complex simulations where the true values of the phenomena being modeled are known. This echoes broader calls in the literature for increased reliance on simulations to vet methods (Dormann et al., 2013; Leroy et al., 2016; Meynard et al., 2019; Warren et al., 2020).  Doing so will likely include virtual species methods, virtual ecologist methods, simulations of evolution and dispersal, and the simulation of virtual environments.  Given the widespread use of ENMs in making crucial environmental decisions and understanding broad-scale ecological and evolutionary processes, however, the effort will undoubtedly be justified.
Methodological development in the ENM literature has largely been driven by the need to compensate for the many problematic aspects of the data typically used for modeling.  Randomization analyses are some of the most flexible and important tools we have for dealing with many of these issues, but studies have shown that careful design of randomization is critical in order to avoid misleading results.  Continued development of randomization tests is going to be one of the cornerstones of the field going forward, and we hope that the synthesis of existing literature and the conceptual framework highlighted here will help to clarify this complex area of research as well as point the way towards possibilities that have not yet been explored.
 


Box 1.

1. What is changed in each replicate?  In the context of estimating uncertainty in model predictions, this is equivalent to determining which sources of variance will be measured (e.g., using bootstrap of occurrence points to estimate uncertainty due to incomplete sampling).  When constructing null distributions, however, components of the data are being randomized in order to determine what range of values the summary statistic(s) might have if those particular aspects of the data were unimportant.
2. What is held constant?  Any aspect of the data or study design that is not randomized does not contribute to the uncertainty estimates or null distributions produced by randomization analyses.  While this may seem obvious when stated as such, it is rarely addressed explicitly when these analyses are discussed. The practical result is that uncertainty estimates or the results of hypothesis tests must be interpreted within the context of the fixed components of the study design, and may have little relevance to the results that might be produced if different choices were made for those fixed components.
3. What is measured?  One of the primary appeals of randomization analyses is that they are very flexible; they make it possible to estimate uncertainty or test hypotheses using a wide variety of measurements that may be made on ENMs.  Two key considerations to keep in mind are whether the metric being used is adequate to address the application of the model or hypothesis being tested, and whether measurements made on replicate models are comparable to those made on the empirical model.  For example, if a metric is affected by prevalence, comparing the empirical observation to replicates based on jackknife subsampling of occurrence data will likely lead to type 1 errors simply due to differences in sample size. 
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Figure 1.  Generalized workflow involving randomization.  When the purpose of randomization is a hypothesis test, users typically build an empirical model (A) representing the estimated niche, distribution, or suitability of habitat.  Randomization involves generating replicate data sets (B) that randomize or simulate some aspect of the data.  This might involve keeping the empirical occurrence points but altering the set of predictors (i), simulating occurrence points while keeping the same predictors as the empirical model (ii), or possibly simulating both (iii), although this possibility has not been explored to date.  The distribution of summary statistics or model predictions can either be used to estimate uncertainty in parameters of interest, or can be compared to the results from the empirical model to test hypotheses.  Summary statistics can be calculated using data either from the empirical data set (iv) or simulations (v).
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Figure 2.  A summary of different options for randomization analyses from the existing literature.  Differences between various tests may be seen as making different selections from these options and substituting them into the modular workflows outlined in Figure 1.  As an example, the model significance test of Raes and ter Steege (2007) could be interpreted as using “random uniform simulated” occurrence points for the simulated occurrences and using that same data for model evaluation in workflow ii -> v in Figure 1, and then using discrimination accuracy for “summary statistics”.  The resulting distribution would then be compared to discrimination accuracy from the empirical model (Figure 1, part A).  The Bohl et al. (2019) approach uses “random uniform simulated” occurrence data in step ii, but evaluation is via empirical validation data (iv).
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	Test
	Occurrences
	Predictors
	Evaluation Data
	Metrics

	
	
	
	
	
	

	Model Fit
	Raes and ter Steege (2007)
	Simulated uniformly random across range
	*
	Simulated training data
	Discrimination

	
	Beale et al. (2008) modification of Raes and ter Steege (2007)
	Simulated randomly across range based on autocorrelation in empirical data
	*
	Simulated training data
	Discrimination

	
	Osborne et al. (2022) modification of Raes and ter Steege (2007)
	Simulated randomly across range based on autocorrelation in empirical data
	*
	Simulated training data
	Discrimination

	
	Warren et al. (2022) modification of Raes and ter Steege (2007)
	Simulated randomly across range based on sampling bias estimate
	*
	Simulated training data
	Discrimination

	
	Bohl et al. (2019)
	Simulated uniformly random across range
	*
	Empirical evaluation data
	Discrimination

	
	Warren et al. (2016, 2021a) model significance test
	Simulated uniformly random across range, randomly partitioned into training and test data
	*
	Simulated training and test data
	Discrimination

	
	Warren et al. (2022) modification of Warren et al. (2016, 2021a) test of model significance
	Simulated randomly across range based on sampling bias estimate
	*
	Simulated training and test data
	Discrimination

	
	K-fold cross-validation
	Subset of size N-N/k resampled from empirical data without replacement
	*
	Withheld subset of occurrence points
	Discrimination

	
	Leave one out cross-validation
	Subset of size N-1 resampled from empirical data without replacement
	*
	Withheld occurrence point
	Discrimination

	
	Spatial cross-validation (Barbosa et al. 2009, Muscarella et al. 2014, Radosavljevic and Anderson 2014, Valavi et al. 2019)
	Spatially structured subset of empirical occurrence data
	*
	Remaining spatially structured subset of empirical occurrence data
	Discrimination,
AIC (Barbosa et al. 2009)

	
	
	
	
	
	

	Uncertainty
	Bootstrapping occurrences to estimate uncertainty
	Random sample of size N from empirical data with replacement
	*
	None
	Cell statistics (mean, variance, SD)

	
	Delete-D jackknife of occurrences to estimate uncertainty
	Random subset of size N-D from empirical data without replacement
	*
	None
	Cell statistics (mean, variance, SD)

	
	
	
	
	
	

	Niche Comparisons
	Identity test (Warren et al. 2008)
	Empirical occurrence data for two species, with species identity of points shuffled randomly
	*
	None
	Niche overlap

	
	Asymmetric background test (Warren et al. 2008)
	Empirical occurence data for one species, points simulated uniformly random across other species' range
	*
	None
	Niche overlap

	
	Symmetric background test (Broennimann et al. 2012, di Cola et al. 2017, Warren et al. 2016, 2021a)
	Simulated uniformly random across each species' range
	*
	None
	Niche overlap

	
	RTR test (Nunes and Pearson 2017)
	Rotation and translocation of empirical occurrences for two species
	*
	None
	Niche overlap

	
	Osborne et al. (2022) modification of symmetric background test
	Simulated randomly across range based on both intra- and inter-specific autocorrelation
	*
	None
	Niche overlap

	
	Warren et al. (2022) modification of symmetric background test
	Simulated randomly across range based on sampling bias estmate
	*
	None
	Niche overlap

	
	Rangebreak tests (Glor and Warren 2011)
	Empirical occurrence data split into random spatial partitions of appropriate N
	*
	None
	Niche overlap

	
	Mandle et al. (2010)
	Empirical occurrence data split into native and invasive ranges
	*
	Models projected onto environment space based on binned combinations of predictors
	Niche breadth

	
	
	
	
	
	

	Bias
	Warren et al (2021b) bias test
	Simulated uniformly random across range
	*
	Projected to future climate scenario
	Change in average suitability, change in # grid cells predicted present/suitable

	
	Warren et al (2022) modification of Warren et al (2021a) bias test
	Simulated randomly across range based on sampling bias estimate
	*
	Projected to future climate scenario
	Change in average suitability, change in # grid cells predicted present/suitable

	
	
	
	
	
	

	Variable Importance
	Bahn and McGill (2007)
	*
	Variables respresenting latitude and longitude
	Empirical training data
	Correlation coefficient

	
	Fourcade et al. (2018)
	Empirical (random split into training and evaluation data)
	Paintings trimmed to the shape of the study area
	Empirical training and evaluation data
	Discrimination

	
	Chapman (2010)
	Empirical (random split into training and evaluation data)
	Simulated layers based on autocorrelation in empirical predictors
	Empirical evaluation data
	Discrimination

	
	Leave-one-out variable jackknife (Phillips et al. 2006)
	*
	Empirical layers with one layer removed
	Empirical training data
	Discrimination

	
	Single-variable variable jackknife (Phillips et al. 2006)
	*
	A single layer from the empirical set
	Empirical training data
	Discrimination

	
	Permutation variable importance (Breiman 2001, Searcy and Shaffer 2016, Greenwell et al. 2019,  Smith and Santos 2020, Phillips 2021)
	*
	Empirical layers with the values of one layer shuffled randomly
	Empirical training or test data
	Discrimination, Calibration (Smith and Santos 2020)


[bookmark: RANGE!A1:F34]
Table 1. Details of replicate simulations for randomization analyses.  Asterisks indicate aspects of replicate data that remain unchanged between empirical model and replicates.
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