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Spatial wombling is an approach for detecting edges within a defined two-dimensional landscape. This
is achieved by calculating the rate and direction of change through the interpolation of points. This not
only gives an approximation as to the shape of the landscape but can also be used to identify candidate
boundaries cells that delimit a shift from one state to another within the landscape. Here we introduce
the SpatialBoundaries.jl package for Julia, which has been developed to implement the wombling
algorithm for datasets that are spatially referenced for both uniformly or randomly sampled landscapes.
From a practical perspective, the wombling functionality allow the user to answer two questions: how
much and in which direction does the variable of interest change? and the boundaries functionality
identifies candidate boundary cells. We conclude by providing a working example of the package using
the various woody plant layers for Britain and Ireland from the EarthEnv database.

1

Background

There is value in being able to identify boundaries within a landscape as it provides us with a starting
point from which to understand changes in species assemblages, ecological communities, or even sim-
ply to delineate areas (based on a shared property) into discrete units, for example ecosystemic regions
(Fortin et al. 2000; Post et al. 2007). Here we present a Julia (Bezanson et al. 2017) package aimed at
detecting boundaries across a specified geographical area by identifying zones of rapid change using the
wombling edge detection algorithm. This approach was originally developed by Womble (1951) in the
context of understanding trait variation within a geographic area and was later modified by Barbujani
et al. (1989) for the purpose of understanding changes in gene frequencies, although it also has a more
general ecological applicationwith regards to spatial data (Fortin &Dale 2005), serving as a complimen-
tary approach to cluster analysis (Fortin & Drapeau 1995). Wombling has applicability to a wide range
scenarios e.g. trait measurements or genotypes (Barbujani et al. 1989), species interaction networks
(Fortin et al. 2021), and has explicitly been used (to list a few examples) to detect transitions within
a landscape (Camarero et al. 2000; Philibert et al. 2008), and analyse the spread of invasive species
(Fitzpatrick et al. 2010). Although the origins of wombling may be rooted in anthropology and has
been extensively used in ecology the potential applicability also extends to other systems such as high-
energy experiments in physics (Matchev et al. 2020), or to understand the genetic-linguistic patterns of
European populations (Sokal et al. 1990).

Broadly speaking spatial wombling is an edge-detection algorithm which traverses a geographic area
(for the purpose of this discussion let’s imagine a spatially referenced dataset pertaining to species rich-
ness for each location) and defines this area in terms of the rate (𝑚) and corresponding direction of
change (𝜃) through interpolating between nearest neighbours. Although the wombling algorithm (as
implemented here) is designed to work with two-dimensional i.e. planar data (as delimited by 𝑥 and 𝑦
—which would be the co-ordinates of where species richness was sampled), it is beneficial to view this
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Figure 1 A visual conceptualisation of how
the wombling algorithm interpolates points
across a geographical area (in this case the
points are regularly arrange in space) for a vari-
able of interest (𝑧) to calculate the rate (𝑚) as
well as the direction (𝜃) of change. Here the
sampled landscape is shown in panel A with
the size of the points correlating to the mag-
nitude if the variable of interest (𝑧). Panel B
shows the two components of the landscape
once wombled, which are then combined and
superimposed across the original landscape in
panel C, with the dashed line indicating a can-
didate boundary. Here the colours as well
as the size of the arrows indicate the rate of
change and the direction should be interpreted
as moving from the ‘low’ to the ‘high’ point.
Note that the dimensions of the wombled land-
scapes (B) will be smaller than the original
landscape (A) due to the interpolation process
i.e. where we originally had an 𝑛 × 𝑟 grid we
now have an (𝑛 - 1)(𝑟 - 1) sized grid.

plane as a three-dimensional object (or series of curves), as shown in fig. 1, panel A. Here the ‘ampli-
tude’ of the curvature of the plane is determined by the value of 𝑧 (species richness) and the rate and
direction of change is calculated by using the first-order partial derivative (𝜕) of the surface (curve) as
described by 𝑓(𝑥, 𝑦). This then gives us an indication of how steep the gradient/curve (𝑚) is between
neighbouring cells as well as the direction (from the ‘low’ to the ‘high’ point; 𝜃) of the slope (panel B,
fig. 1). Large values of𝑚 are associated with zones of rapid change in the landscape and are indicative
of a shift from one ‘state’ to another i.e. a potential ecological boundary within the landscape (Fortin &
Dale 2005), dashed line in panel C, 1. One benefit of the wombling approach is that interpolation is not
necessarily restricted to a rectangular (2 × 2) window (that would entail a landscape where points are
regularly arranged in space) and can easily be re-written so as to accomodate points that are not regu-
larly arranged across space (as per Fortin 1994), thereby giving the user more flexibility with regards to
how the sampling points are arranged (i.e. sampled) across the landscape.

1.1. Rate of change The rate of change (𝑚) can be used to find the zones of rapid change within the
geographical area—which, in turn, can be used to identify potential candidate boundaries. The rate of
change is calculated as follows:

𝑚 =

√
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

2

+
𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

2

(1)

Where 𝑓(𝑥, 𝑦) can be expanded as:

𝑓(𝑥, 𝑦) = 𝑧1(1 − 𝑥)(1 − 𝑦) + 𝑧2𝑥(1 − 𝑦) + 𝑧3𝑥𝑦 + 𝑧4(1 − 𝑥)𝑦

For convenience the values of the centroid of the ‘search window’ i.e. 𝑥 and 𝑦 can be standardised to 0.5
when working with points regularly arranged in space. Additionally, as we are interpolating between
points, it should also be noted that the original 𝑛 ∗ 𝑟 geographical area will now be an (𝑛 − 1)(𝑟 − 1)
sized grid (i.e. one less row and one less column of values for the wombled landscape as illustrated in
panel C of fig. 1).

Whenwe areworkingwith points that are irregularly arrangedwithin the geographical area it is possible
to use triangulation wombling (Fortin 1994; Fortin & Dale 2005; Fortin et al. 2021). Here the approach
to wombling has beenmodified by Fortin (1992) so as to interpolate the plane between the three nearest
neighbours (as opposed to the usual 2 × 2 grid). Nearest neighbours are found by using the Delaunay
triangulation algorithm (Delaunay 1934) after which the rate of change is still calculated in the same
manner as in eq. 1, however as we are now only working with a three-point ‘window’ 𝑓(𝑥, 𝑦) will be
defined as:
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𝑓(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐

where

[
𝑎 𝑏 𝑐

]
=
⎡
⎢
⎣

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

⎤
⎥
⎦

−1

⋅
[
𝑧1 𝑧2 𝑧3

]

and the 𝑥 and 𝑦 co-ordinates of the centroid of the triangle formed by the three points are calculated as
follows:

(𝑥1 + 𝑥2 + 𝑥3
3

)
,
(𝑦1 + 𝑦2 + 𝑦3

3
)

1.2. Direction of change It is also possible to calculate a corresponding direction (𝜃) for each rate of
change (noting that the same equation can be used for both lattice and triangulation wombling). This
is calculated as:

𝜃 = arctan (
𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

/
𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 ) + ∆

where ∆ =
⎧

⎨
⎩

0 if 𝜕𝑓(𝑥,𝑦)

𝜕𝑥
≥ 0

180 if 𝜕𝑓(𝑥,𝑦)

𝜕𝑥
< 0

⎫

⎬
⎭

This gives the direction of change which, as the name implies, indicates the direction the rate of change
is ‘travelling.’ The direction of change should be interpreted as wind direction i.e. where the change is
coming from and not where it is moving towards. As is the nature of maths when the rate of change is
zero it is still possible to calculate a real direction for the non-change — which will be 0. This means
it is possible to think of and use the direction of change independently of calculating boundaries per
se and can be used to inform how the landscape is behaving/changing in a more ‘continuous’ way as
opposed to discrete zones/boundaries. For example if changes in species richness are more gradual
(rate of change is near constant) but the the direction of change is consistently East to West (i.e. 90) we
can still infer that species richness is more or less uniformly increasing in a South-North direction (this
is somewhat exemplified in the direction of change landscape of panel B in fig. 1 where the dominant
direction of change is East-West).

1.3. Candidate boundaries Detecting boundaries i.e. areas where the angle of the landscape transi-
tions sharply is surprisingly simple. After having calculated the rate of change (𝑚) for the geographical
area it is possible to use these values to identify and assign potential boundaries (Oden et al. 1993; Fortin
& Drapeau 1995; Fortin & Dale 2005). As large rate of change values are indicative of a steep gradient
it stands to reason that these points are indicative of a shift from one state to another i.e. indicative of
a boundary. Following the approach outlined in Fortin & Dale (2005) a threshold value (or percentile
class) can be set and will determine what proportion of cells will be retained as potential boundaries.
For example if using a 0.1 threshold then the highest 10% of points (which are ranked based on𝑚) will
be classified as candidate boundaries. Note that points with the same rate of change will be assigned the
same rankmeaning that more than 10% of the (𝑛−1)(𝑟−1) could potentially be identified as candidate
boundary cells. This approach to identifying potential boundary cells is not the sole approach and there
are other ways and nuances from which to approach boundary estimation, such as the use of Voronoi
tessellations (Oden et al. 1993; Fortin & Drapeau 1995; Matchev et al. 2020).
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2

Methods and features

The SpatialBoundaries package implements theWombling algorithmwithin the Julia ecosystem and
is made available under the permissive MIT license. The source code (along with more extensive doc-
umentation) can be found at github.com/EcoJulia/SpatialBoundaries.jl. This is an open project and is
thus open to contributions. The package itself has two main functions 1) calculate the rate (𝑚) and di-
rection (𝜃) of change for landscapes for points that are both regularly (i.e. lattice wombling) and irregu-
larly arranged cross space (triangulation wombling) arranged in space using the wombling function (for
which layers can also be aggregated using mean), and 2) identifying candidate boundary cells based on
a user defined threshold value using the boundaries function. Objects that have been passed through a
wombling function are of the Womble abstract type (which has the two sub-types of LatticeWomble and
TriangulationWomble). This package is, to the best of our knowledge, the only package to implement
the Wombling algorithm within Julia.

2.1. Wombling The wombling function calculates and outputs both the rate (𝑚) and direction (𝜃;
where the direction is denoted from the ‘low’ to the ‘high’ point) of change for a given geographical
area. Leveraging the multiple dispatch within Julia this one function will execute either the lattice or
triangulation wombling algorithm depending on the structure (spatial referencing) of the input dataset,
meaning that it does not need to be user specified. When a matrix of 𝑧 values is used (where the row
and column id’s act as the co-ordinates) the lattice wombling algorithmwill be executed andwhen three
vectors (consisting of the co-ordinates (𝑥 and 𝑦), and 𝑧 values respectively) the triangulation wombling
algorithm is executed. The resulting output object will have two components (𝑚 and 𝜃) and will be
typed based on the wombling method used. That is a uniformmatrix will result in an object of the type
LatticeWomble and irregularly arranged points will be of the type TriangulationWomble.

2.2. Overall mean wombling value The mean function calculates the Overall mean wombling value.
The methodology stems from the Overall Mean Lattice-Wombling Value (𝑚̄) used by Fortin (1994) in
whichmultiple surfaces (think different 𝑧 variables) can be overlaid for the purpose of finding themean
rates and directions of change for a composite landscape. The mean rate of change can be defined as
the average of𝑚 values (for a specific centroid) for the given set of surfaces and the same is done for the
direction of change using the 𝜃 values. Alongside the mean the standard deviation is also calculated
for both the rate and direction of change. Although Fortin (1994) only present this approach for lat-
tice wombled landscapes we have extended the functionality to include both lattice and triangulation
wombled types. This is provided that the landscape (i.e. co-ordinates) of the different surfaces are ex-
actly the same. Note here that the original wombling type is retained and the output data will remain
either type LatticeWomble or TriangulationWomble.

2.3. Boundaries The boundaries function takes the rate of change (𝑚) of an object of either of the
two Womble types (i.e. LatticeWomble or TriangulationWomble), and identifies potential boundary cells
based on a user specified threshold (with the default being 0.1). As opposed to selecting only one thresh-
old value we recommend inputting a range of threshold values into the boundaries function to assess
how it changes the number of points retained (i.e. boundary cells identified). For example we might
see sharp transitions in the number of points that are retained as the threshold value is increased. This
inflection point is probably the ideal threshold value to use for boundary selection as a rapid increase
in the number of points retained is indicative of a large number of cells with the same rate of change.

3

Woody areas of Britain and Ireland: a wombling example

Below is an example using the various functions within SpatialBoundaries to estimate boundaries for
(i.e. patches of) wooded areas on Britain and Ireland using landcover data from the EarthEnv project
(Tuanmu & Jetz 2014) as well as integrating some functionality from SimpleSDMLayers (Dansereau &
Poisot 2021) for easier work with the spatial nature of the input data. Because there are four different
layers in the EarthEnv database that represent different types of woody cover we will use the overall
mean wombling value. As the data are arranged in a matrix i.e. a lattice this example will focus on
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lattice wombling, however for triangulation wombling the implementation of functions and workflow
would look similar with the exception that the input data would be structured differently (as three
vectors of 𝑥, 𝑦, 𝑧) and the output data would be typed as TriangulationWomble objects.

First we can start by defining the extent of Britain and Ireland, which can be used to restrict the extrac-
tion of the various landcover layers from the EarthEnv database. We do the actual database querying
using SimpleSDMLayers.

using SpatialBoundaries
using SimpleSDMLayers
using Plots

british_isles = (left=-11.0, right=3.0, bottom=49.0, top=62.0)

landcover = SimpleSDMPredictor(EarthEnv, LandCover, 1:12; british_isles...)

We can remove all the areas that contain 100%water from the landcover data as our question of interest
is restricted to the terrestrial realm. We do this by using the “Open Water” layer to mask over the other
landcover layers.

ow_index = findfirst(isequal("Open Water"), layernames(EarthEnv, LandCover))

not_water = broadcast(!isequal(100), landcover[ow_index])

lc = [mask(not_water, layer) for layer in landcover]

Now we keep only layers one through four (i.e. “Evergreen/Deciduous Needleleaf Trees,” “Evergreen
Broadleaf Trees,” “Deciduous Broadleaf Trees,” and “Mixed/Other Trees”) of the landcover data as they
all contain information on woody cover data. Here each layer still remains a distinct element making
up the trees vector but the mean ‘woody tree layer’ (i.e the sum of the coverage for layers 1-4) is shown
in the first panel of fig. 2 to give an overview of what the data input data looks like as a composite.

trees = convert.(Float32, lc[1:4])

The trees vector can then directly be input into the wombling function, this will calculate both the rate
and direction of change for each layer separately.

wombled_layers = wombling.(trees)

As we are interested in overall woody cover for Britain and Ireland we can take the vector of wombled
layers and use them with the mean function to get the overall mean rates and directions of change for
woody cover.

wombled_mean = mean(wombled_layers)

This mean wombled layer can then be converted back into two distinct ‘mapping type’ layers - one for
rate of change (second panel in fig. 2) and the other for direction using SimpleSDMPredictor. In this
instance we visualised the direction of change as radial plots (third panel in fig. 2) to get an idea of the
prominent direction of change.

rate, direction = SimpleSDMPredictor(wombled_mean)

Lastly we can identify candidate boundaries using the boundaries function. By using a range of thresh-
olding values we can observe the effect of varying the threshold. In this example we actually vary the
threshold from 0.001 through to 1.0 and identify cells that are ‘high probability’ candidate boundaries
(i.e. always identified as a candidate boundary) as opposed to those that are ‘low probability’ bound-
aries. The rate of change of the candidate boundary cells are shown in the second panel of fig. 2 and the
direction (shown in red) on the third panel of fig. 2.
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Figure 2 Woody plant coverage for Britain
and Ireland based on the sum of the cover
for layers 1-4 from the EarthEnv project. The
second panel shows the overall mean rate of
change (i.e. the composite of the wombled lay-
ers for layers 1-4) but only for the cells iden-
tified as candidate boundary cells when using
a 10% threshold. The final shows a radial plot
of the overall mean direction of change for all
cells (blue) as well as only for the candidate
boundary cells (red) cells.
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# initilaise an object to store outputs
b = similar(rate)

for t in reverse(LinRange(0.001, 1.0, 20))
b.grid[boundaries(wombled_mean, t; ignorezero=true)] .= t

end

4

Summary

Edge and boundary detection (as well as their delineation) is an important and valuable concept in
spatial ecology (Cadenasso et al. 2003) of which wombling serves as an approach that is flexible in
its execution (owing to the non-lattice or triangulation capacity of the function) (Fortin 1994; Fortin &
Dale 2005) as well as it’s capacity to detectmore nuanced landscape changes as opposed to being limited
to more abrupt discontinuities such as cliffs/ridges by reducing noise in the landscape (Matchev et al.
2020). Wombling sets us up to answer two questions about the geographic area of interest: at what rate
and in which direction does the variable of interest change? This of course has value when it comes to
evaluating the variation (or uniformity for that matter) of a suite of ecological variables as well as how
they may vary with relation to each other.

SpatialBoundaries.jl provides the toolset with which to implement both lattice and triangulation
wombling using the wombling function - multiple dispatchmeans that the structure of the input dataset
will determine exactly which algorithm is implemented. This will simultaneously calculate both the
rate and direction of change and if desired multiple sets of different layers of the same geographic area
but defined by different 𝑧-variables/surfaces can be aggregated and averaged to calculate the overall
mean wombling value. Both wombling and meanwill return objects of the type Womble of either the sub-
type LatticeWomble or TriangulationWomble depending on which method was used. An object of any
sub-type Womble can be input into the boundaries function so as to identify cells that can be considered
as candidate boundaries based on a user specified threshold.
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