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Abstract  21 

Carbon and nutrient recycling by free-living microbial decomposers and fire - two key 22 

recycling pathways - are highly sensitive to climatic variation. However, mutualistic 23 

associations of microbiomes with plants and animals cause previously underestimated 24 

environmental buffering effects. This close cooperation between small and large organisms 25 

solves a fundamental allometric trade-off between mass-specific metabolic capacity 26 

(decreasing with body size) and homeostatic capacity (environmental buffering; increasing 27 

with body size), allowing the combination of the best of both worlds along the body mass 28 

spectrum from microbes to elephants. A diverse metamicrobiome, where plant- and animal-29 

associated microbiomes complement the free-living microbiome, consequently increases 30 

ecosystem homeostasis of recycling rates in a variable environment. We argue for better 31 

integration of this fundamental ecological process in predicting the consequences of current 32 

accelerated environmental change. 33 



Glossary: 34 

Biome An area classified according to a characteristic 

group of species that lives in it, such as the 

tundra, savanna or tropical rainforest. 

Carbon and nutrient recycling The transformation of carbon and potentially 

limiting nutrients (e.g. N, P, K, Ca, Mg) from their 

various organic forms e.g. proteins, fats) to their 

biologically reactive inorganic forms 

(ammonium, phosphates, exchangeable bases) 

that can be used by plants and microbes. 

Climate variation 

 

The way aspects of climate (such as 

temperature and precipitation) differ from an 

average, due to natural and sometimes periodic 

changes in the circulation of the air and ocean, 

volcanic eruptions, and other (including 

anthropogenic factors at multiple temporal 

scales (days, seasons, years, decades). 

Free-living microbiome The set of microbes (bacteria, protists, archaea, 

fungi) without a close and intimate association 

with larger organisms together responsible for 

carbon and nutrient recycling in soil.  

Ecosystem homeostasis The degree to which key ecosystem processes, 

such as primary productivity, secondary 

productivity, carbon storage and nutrient 

recycling are kept constant by biotic interactions 

despite strong variations in environmental 

conditions imposed from larger spatial scales, 

such as solar radiation, air temperature and 

rainfall. 

Homeostatic capacity of organisms The relative ability of an organism to keep the 

physical and chemical conditions (e.g. 

temperature, moisture, osmotic potential, pH) in 

its internal environment (inside the organism) 

constant despite strong fluctuations in these 

factors in its external environment. 



Metabolic capacity of organisms The rate of energy turnover (J day-1) of an 

organism, determining its capacity for nutrient 

and carbon turnover from organic to inorganic 

reactive forms. 

Metamicrobiome The interacting set of four main microbiomes 

responsible for carbon and nutrient recycling in 

terrestrial ecosystems consisting of i) the free-

living microbiome, and the mutualistic 

microbiomes associated with ii) plants (i.e. 

mycorrhizae and rhizosphere bacteria), iii) 

macrodetritivores (i.e. gut microbes or fungal 

gardens), and iv) with herbivores (gut microbes).  

Mutualism/mutualistic A symbiotic relationship between two species 

where both partners benefit from their 

interaction. Mutualistic interactions between 

animal or plant hosts and microbial habitués 

span from intracellular (e.g. endophytic fungi) to 

extracellular (e.g. bacteria and Archaea in gut 

lumen) to exosymbiontic, in which part of the 

microbiome is found outside of the host but is 

actively maintained and tended for by hosts, as 

in ectomycorrhizal or termite-associated fungi.  

Preemption Interaction between two species or species 

groups where the first species typically 

consumes a resource or substrate before the 

second species can access it. 

Saprotroph An organism that derives nourishment from 

detritus. 

Substrate availability 

(equivalent term: resource availability) 

The rate per unit area or soil volume at which 

biologically reactive forms of elements that can 

be directly metabolized by organisms become 

available. For primary producers, these include 

nitrate, ammonium, and phosphates while for 

heterotrophic organisms this is the rate of their 

food supply, such as sugars (bacteria), grass 

(herbivores), litter (decomposers).  



Stoichiometric 

 

The balance of biologically important elements 

in organisms and resources 

 35 

Carbon and nutrient recycling in a changing climate 36 

Carbon and nutrient recycling of plant materials (here-after ‘recycling’) is central to ecosystem 37 

functioning because it maintains primary productivity and regulates the Earth’s climate [1]. However, 38 

global change is strongly altering the rate and stability of recycling in many terrestrial ecosystems, with 39 

consequences for ecosystem dynamics and potential feedback to global biogeochemical cycles and 40 

climate [2,3]. Global carbon models generally assume that plant-assimilated carbon and nutrients are 41 

predominantly returned into inorganic forms by either the free-living soil microbiome [4] or fire, 42 

representing two major terrestrial recycling pathways [5]. Both pathways are highly sensitive to 43 

forthcoming environmental change, which can induce strong climatic (e.g. extreme events) and 44 

substrate limitations. For example, intensified droughts can halt litter organic matter decomposition for 45 

extended periods [6]. However, mutualistic microbiomes associated with plants (mycorrhizal fungi), 46 

macroinvertebrates (gut microbes and fungal gardens in mounts and nests), and herbivores (gut 47 

microbes) are also important agents of organic matter mineralization and can dominate the recycling 48 

process at local to regional scales [7-9]. Recent evidence suggests that these mutualistic microbiomes 49 

increase long-term average recycling rates in most terrestrial ecosystems by reducing environmental 50 

fluctuations and lifting limitations to microbial breakdown, making them less sensitive to climate 51 

variation. Here, we review how the free-living soil microbiome and at least three mutualistic 52 

microbiomes interact in a metamicrobiome (Fig. 1). To illustrate how the metamicrobiome concept is 53 

key to understanding ecosystem and biome scale recycling (and thus to ecosystem responses to global 54 

change), we have to start with the constraints on the functioning of the free-living soil microbiome. 55 

Constraints on carbon and nutrient recycling by the free-living microbiome 56 

Soil chemo-physical conditions are highly heterogeneous both in time and space. Abiotic factors that 57 

determine microbial performance - i.e. soil moisture, temperature, pH and redox status - fluctuate 58 

continuously, causing soil microbial activity to be highly restricted to specific microsites and periods 59 

where chemo-physical limitations (or climatic limitations) are removed [10]. Because free-living soil 60 

bacteria and archaea are so small, they depend primarily on substrates that move towards them 61 

passively by diffusion [11]. This makes soil water essential:  it prevents desiccation and acts as a solvent 62 

for water-soluble organic substrates and a transport medium for microbes and their chemicals and exo-63 

enzymes [12]. Their metabolic activity therefore highly depends on temporal variation in water content 64 

of the soil. In addition, soil temperature is a key factor for the metabolic activity of ectothermic 65 

organisms, including microbes [13]. In regions with a long cold season such as the arctic tundra, this 66 

reduces organic matter recycling and promotes carbon sequestration [14].  67 



 68 

Fig. 1: Metamicrobiome ecology: carbon and nutrient recycling in terrestrial ecosystems is generally 69 

mediated by a metamicrobiome of four interacting microbiomes, i.e. the Free-living Microbiome (FlM), 70 

the Macrodetritivore-associated Microbiome (DaM), the Herbivore-associated Microbiome (HaM), and 71 

the Plant-associated Microbiome (PaM). The mutualistic microbiomes DaM, HaM, and PaM profit from 72 

the homeostatic conditions offered by their hosts, allowing recycling to continue when environmental 73 

conditions for the FlM become unfavourable. Alternatively, carbon and nutrients can be recycled by fire. 74 

For other nutrients such as P, K, Mg, and Ca, the same recycling principles hold, except the gaseous 75 

components (N2 and NOx) are missing.  76 

 77 

While soil is the largest reservoir of carbon substrates in terrestrial ecosystems, several mechanisms 78 

further limit carbon and nutrient recycling by the free-living microbiome. Physical mechanisms such as 79 

occlusion within large soil aggregates and adsorption onto mineral surfaces limit substrate accessibility 80 

[15,16]. Vegetation composition and structure determine to what extent and when organic substrates 81 

remain part of standing biomass (aerial position) or come into contact with the soil surface [17] and thus 82 

potentially limit substrate supply to free-living microbes. The mineralization rate of organic matter also 83 

depends on the C:N:P ratio of the substrate relative to the decomposers' need [18]. Because microbial 84 



organisms function best at specific stoichiometric C:N:P ratios, nutrients in organic matter that 85 

approach that ratio and thereby meet stoichiometric requirements will increase microbial activity and 86 

mineralization rates [19]. In summary, substrate availability depends greatly on the microbial landscape; 87 

decomposition of organic substrates can only occur when water, oxygen, (high quality) substrates, the 88 

microbial organism, and their (exo-) enzymes all come together in space and time [12,20].  89 

Small organisms: highest metabolic capacity  90 

Organisms vary significantly in body mass, ranging by over 20 orders of magnitude from 10-15 g 91 

microbes to 2·108 g blue whales. The size of organisms correlates with many ecological and 92 

physiological traits in predictable ways [21]. A fundamental relationship underlying many of these 93 

patterns is the quarter-power allometric scaling of organismal basal metabolic rate M with body mass 94 

B, where B ∝ M3/4 [22]. It predicts how larger organisms have an increasingly lower rate of energy use 95 

per unit of body mass, as B/M ∝ M-1/4; and holds across a wide variety of taxonomic groups [23], 96 

including plants [24]. This predictably lower metabolic capacity of larger organisms, compared to 97 

microbes, has been explained by constraints imposed by the architecture of their internal transport 98 

network on the rates at which nutrients and oxygen can be delivered to the cells in metazoans [25,26]. 99 

Also, relative body area scales with body mass as B/M ∝ M-1/3, constraining the capacity for resource 100 

uptake through passive diffusion in larger organisms. As a result, bacteria, archaea, protists and fungi 101 

have the highest per mass capacity for energy and nutrient turnover (i.e. metabolic capacity, Fig. 2A), 102 

but only if environmental conditions such as temperature and moisture are optimal as they have limited 103 

capacity to control their internal conditions and direct surroundings.  104 

Large organisms: highest homeostatic capacity 105 

In contrast, larger, multicellular species have a better capacity to stabilize their internal environment or 106 

immediate surroundings through various anatomical, physiological, and behavioral adaptations that are 107 

not possible in microbes [27]. This homeostatic capacity also scales with body mass but opposite to 108 

metabolic capacity (Fig. 2). Lower surface-to-volume ratios in larger organisms are favourable under 109 

environmental conditions where restricting water (droughts) or heat loss (cold periods) are important 110 

[28]. For example, larger organisms are less likely to be seasonally disrupted in their daily activities by 111 

a need to go into hibernation or torpor under cold conditions [29]. Moreover, the higher capacity (relative 112 

to body mass) of larger organisms to store energy and nutrient reserves allows these organisms to 113 

remain active during longer periods of resource limitation [30]. Behavioral adaptations of animals (e.g. 114 

seeking shade or sun, moving long distances to find suitable food or water, or burrowing to deeper soil 115 

layers to prevent climatic stress) also contribute to their homeostatic capacity. This also applies to 116 

plants, e.g., through opening and closing of stomata, rolling up of graminoid leaves during drought, and 117 

rooting deep to access water by dryland trees. These behavioral adaptations also scale with body size 118 

[31], with larger organisms having a higher capacity to move towards essential resources. Also, larger 119 

organisms have more options to improve their local environment to their benefit through ecosystem 120 

engineering and extended phenotypes (e.g. beaver dams, rodent burrows, bird nests, termite mounds). 121 



To summarize, larger organisms have a larger homeostatic capacity when faced with temporarily 122 

unfavourable conditions (Fig. 2).  123 

 124 

Fig. 2: (A) The trade-off between per mass metabolic capacity (log scale) and homeostatic capacity as 125 

a function of body mass (B). An example of the scaling relation of homeostatic capacity with body mass, 126 

showing how the capacity to regulate body temperature changes with body mass, where body 127 

temperature homeostasis is expressed as the difference between maximum (Bmax) and minimum (Bmin) 128 

body temperatures. The solid symbols represent actual data and open symbols represent simulated 129 

data, while triangles represent data compiled by Stevenson (1985) and the circles represent additional 130 

data listed in supplement S1.  131 

 132 

The trade-off between metabolic and homeostatic capacity drives mutualisms 133 

The observed opposite relationships of body mass with metabolic and homeostatic capacity of 134 

organisms suggests a fundamental trade-off: the same organism cannot excel at both (Fig. 2). Microbes 135 

are best at achieving high metabolic rates under optimal conditions while large multicellular eukaryotes 136 

are best at realizing such optimal conditions in their bodies and immediate surroundings. The long-term 137 

outcome of this trade-off is the evolution of mutualisms. Multicellular eukaryotes have repeatedly 138 

solved their metabolic constraints over evolutionary time by engaging in mutualisms with microbes that 139 

possess complex and efficient metabolic capabilities [32], and microbes have 'accepted this request' 140 

because it stabilizes their environment and resource supply. The capacity to acquire microbial partners 141 

has been both a key factor in the evolution of first eukaryotes from prokaryotes [33] as well as in the 142 

subsequent eukaryote diversification [34], shaping the adaptation to new habitats, lifestyles, and diets. 143 

These mutualisms have therefore led to multiple synergies between metabolic and homeostatic 144 

capacity (Box 1). 145 

 146 



Box 1: Synergies between metabolic and homeostatic capacity: different mechanisms  147 

Stress alleviation benefits 148 

In biomes that experience seasonal or multi-annual drought, metazoans often evolve traits that promote 149 

their water acquisition and  conservation. They can control the water content in their body, or in their 150 

direct surroundings, or by selecting constantly moist microhabitats, all of which can be beneficial for 151 

their microbial mutualists. For example, fungus-growing termites, which engage in a complex three-way 152 

symbiosis with their bacterial gut microbiome and a basidiomycete fungus [92,93], promote the activity 153 

of the fungal symbiont by optimizing the humidity inside their mounds. They do this by ’wicking’ or 154 

actively transporting water to or from their nests, and regulating evaporation and respiration by 155 

ventilation [94,95]. Earthworms vertically move up and down in their burrows to stabilize moisture in 156 

their direct surroundings [86], supporting the continued activity of their microbiome. Stabilization of 157 

chemo-physical conditions also applies to plant hosts. Ectomycorrhizas (EcM) can alleviate drought 158 

stress to host trees by enhancing access to soil water [96,97]. However, when water tables fall during 159 

summer, trees in Mediterranean forests and woodlands shift their primary water source to deeper soil 160 

layers [98] thereby returning the water-provisioning favour to their fungal symbionts [49]. By lifting 161 

moisture and temperature constraints, hosts increase the growth, survival, and resource processing 162 

activity of microbes, i.e. “metabolic homeostasis” [55]. Mutualistic associations between hosts and 163 

microbes, therefore, decouple microbial activity from unfavourable conditions, reducing the overall 164 

control of climate on the recycling of organic matter.  165 

Complementarity benefits 166 

Hosts can also lift substrate quality limitations by facilitating complementary contributions between 167 

multiple symbiotic microbial partners. The guts and rumen of mammalian herbivores and 168 

macrodetritivores act as biological chemostats where hundreds of microbial species and their 169 

metabolites all interact in the digestion process. Substrates that result from the metabolism of some 170 

microbial species are often efficiently further metabolized by other species (metabolic cross-feeding), 171 

thereby promoting fuller decomposition, from polymer degradation to sugar fermentation [99], in one 172 

regulated environment. Moreover, the host continuously removes metabolic end products that are 173 

released by mutualistic microbes, which favours further metabolism through reducing feedback 174 

inhibition [100]. Similarly, the bacterial community inside the guts of termites, and the basidiomycete 175 

fungi that they farm, contribute to the decomposition process in a complementary way [101]. The 176 

termites facilitate the process by transferring the substrates and enzymes between the microbial 177 

partners [93,102] and thereby speed up the recycling process. 178 

Preemption and shortcutting benefits 179 

Large hosts also bring mutualistic microbes in continuous contact with substrates through preemption 180 

(or short-circuiting). Some fungi positioned themselves closer and closer to living plant root cells in 181 

anticipation of their death, which at some point in evolutionary time likely led to the mycorrhizal habitat 182 



in which substrate is colonized before death [103]. The secured and high supply of “easy” carbon 183 

through plant hosts allows expansion of mycorrhiza into upper soil layers at the expense of the free-184 

living microbiome. Moreover, the supply of host photo-assimilates supports the synthesis of ‘expensive’ 185 

enzymes that can break down very recalcitrant organic substrates, thereby simultaneously lifting 186 

substrate quality limitations. Indeed, ecto- and ericoid mycorrhizae are effective scavengers for 187 

relatively recalcitrant organic N and P sources and could therefore reinforce a competitive advantage 188 

over free-living saprotrophs by limiting the availability of these essential elements [104,105]. Fungus-189 

growing termites also preempt organic matter in the soils they occupy [106]. After a first gut passage, 190 

collected litter is directly delivered as pseudo-faeces to the termite's fungal symbionts [93]. The 191 

continuous directional flow of litter inside mounds explains why soils occupied by termites can be 192 

depleted of soil nutrients and organic carbon [107], and why the inter-mound soil matrix may host 193 

smaller populations of microbes [108]. Finally, large mammalian herbivores consume resources before 194 

green plant parts turn into litter and can, therefore, be considered even better preemptors of energy-195 

rich substrates than macrodetritivores [106].  196 

 197 

Metamicrobiome organization along global gradients  198 

As the four microbiomes (free-living, the detritivore-associated, plant-associated and large herbivore-199 

associated) all interact in a metamicrobiome (Fig. 1), but each with different sets of adaptations, their 200 

relative importance is expected to strongly vary between different biomes. Because microbial activity 201 

increases with temperature and moisture availability, recycling rates are generally faster in tropical 202 

regions [35,36]. Higher rainfall promotes closed-canopy systems, which excludes most of the large 203 

herbivore-associated microbiome - indirectly increasing the importance of other microbiomes. 204 

Permanently wet environments also limit abiotic forms of recycling, such as fire [5] and 205 

photodegradation [37], making the free-living soil microbiome dominant in recycling organic matter (Fig. 206 

3). This dominance under these conditions is also expected from the trade-off between metabolic and 207 

homeostatic capacity: the stable environment in tropical forests allows soil microbes to remain active 208 

and recycle substrates throughout the year.  209 

The herbivore-associated microbiome (HaM) is expected to dominate intermediate rainfall regions with 210 

high soil fertility (Fig. 3) because high plant nutrient concentrations support high levels of herbivory 211 

[38,39]. Also under cold or saline conditions, plant quality ingested by herbivores (and thus the HaM) is 212 

higher due to restricted productivity, while carbohydrate accumulations can act as osmoregulation or 213 

antifreeze [40], and endothermic herbivores provide warm refugia for microbial decomposition. In the 214 

harshest and least productive environments (extreme drought or cold), hosts can no longer survive at 215 

high densities, and photodegradation becomes increasingly important [41] (Fig. 3). 216 

Nutrient-poor environments generally promote plant species with low-quality tissues, which produce 217 

poor-quality litter (i.e. substrates) via so-called traits after-life effects [42]. Due to the small size and, 218 



therefore, high nutrient requirements of microbes, the activity of the soil microbiome is negatively 219 

impacted by recalcitrant compounds and the low concentrations of nutrients in these substrates, which 220 

slows recycling and reinforces the low nutrient availability in poor sites. The proportion of mycorrhiza 221 

relative to saprotrophs (part of the FlM) increases with decreasing soil fertility in boreal forests [43]. 222 

From a metamicrobiome perspective, preemption makes a mycorrhizal association increasingly 223 

beneficial compared to living alone in an energy-depleted environment, giving the plant-associated 224 

microbiome an outsized role in recycling in poor ecosystems (Fig. 3). Abiotic forms of recycling may 225 

also increase in importance when aboveground standing biomass accumulates in poor environments 226 

due to low herbivore abundance. Especially in climatically seasonal environments (but with high enough 227 

productivity for fuel production), this may lead to increased recycling by fire [44] (Fig. 3) as both the 228 

free-living and plant-associated microbiome predominantly act on substrates within soils.  229 

Lastly, there are various examples of nest or mound-building macrodetritivores that can lift both climatic 230 

and substrate limitations, which may give the macrodetritivore-associated microbiome a dominant role 231 

in relatively nutrient-poor environments that are either periodically cold or dry (Fig. 3). Many temperate 232 

and boreal zone ant species build above-ground nest-mounds and keep them free from plants to obtain 233 

heat from solar radiation. The nests of yellow meadow ants (Lasius flavus and L. umbratus) significantly 234 

increase in temperature in the summer, creating favourable conditions for their own gut microbiome and 235 

other soil biota and serving as ‘hot spots’ for recycling [45,46]. Because the burrows of desert isopods 236 

provide more stable temperature and higher moisture, the recycling of plant litter is controlled by macro-237 

detritivores in desert ecosystems [47].  238 

In summary, the contribution of the different mutualistic microbiomes to recycling should increase with 239 

climatic and substrate limitations (Fig. 3). The improved homeostatic and pre-emptive capacity 240 

contributed by hosts allows mutualistic microbiomes to maintain recycling even throughout 241 

unfavourable periods. However, homeostasis and preemption require investments and only work when 242 

costs are balanced by sufficient benefit in exploiting energy-rich substrates, increasing the importance 243 

of abiotic forms of recycling in the most limiting environments.  244 



 245 

Fig. 3: The relative importance of the free-living soil microbiome (FlM, grey) and mutualistic Herbivore-246 

associated Microbiome (HaM, purple) of vertebrate megafauna, invertebrate Macrodetritive-associated 247 

Microbiomemacrofauna (MaM, green), and the Plant-associated Microbiome (PaM, brown) for recycling 248 

of plant organic matter along gradients of climatic and substrate limitation. Large arrows represent the 249 

dominant switches in relative importance. See fig. 1 for further explanation of the different microbiomes.  250 

 251 

Homeostasis in variable environments  252 

The organization of the metamicrobiome is not only expected to vary with average environmental 253 

conditions but also interacts with their temporal variability. Microbial activity is expected to be highest 254 

when the environment is not too dry and not too wet (leading to soil anoxia) [48], not too cold and not 255 

too hot, leading to a restricted set of conditions for nutrient recycling (green area in Fig. 4A). Soil organic 256 

matter thus is subject to temporal variation in both moisture and temperature on multiple time scales 257 

(Fig. 4A). In seasonally variable habitats, soil moisture and temperature will frequently move in and out 258 

of the optimal range of free-living microbes. Consequently, the rate of recycling by the free-living 259 

microbiome is expected to be tightly linked to seasonal changes in rainfall (Fig. 4B) and to vary much 260 

more than mutualistic microbiomes, which experience less variation in chemo-physical conditions (Fig. 261 

4B). 262 

Microbiomes can also alternate over time in their dominance of the recycling process, which stabilizes 263 

its overall rate. For instance, in temperate woodlands, mycorrhizal fungi are most important during the 264 



summer, likely due to increased water supply by plants [49], while free-living fungi reach their maximum 265 

abundance in autumn [50] associated with peak litter production [51]. Similar alterations are found for 266 

other microbiomes. Foraging activity by termites (Macrotermes sp.) and desert isopods (Hemilepistus 267 

reaumurii) peaks during the hot and dry season [52,53], which can lead to a proportional increase in 268 

macrodetritivore-driven recycling during drier periods relative to the free-living microbiome [54,55] (Fig. 269 

4D). Finally, many populations of large herbivores migrate seasonally to overcome periodic limitations 270 

associated with food quality or quantity [56,57], which can amplify the contribution of grazing to recycling 271 

during unfavourable climatic conditions. A diverse metamicrobiome - where different host-associated 272 

microbiomes complement the free-living microbiome - therefore leads to ecosystem homeostasis of 273 

carbon and nutrient recycling rates in variable environments (Fig. 4C). 274 

Global change relevance 275 

Climate change, especially extreme events (increase in frequency, duration and amplitude of heat 276 

waves and extreme droughts) can bring soil environmental conditions more frequently outside the 277 

optimal conditions for the free-living soil microbiome. Drought-induced changes in community 278 

composition can cause long-term effects, reducing recycling rates for up to one year, even when water 279 

becomes available again [6]. More climatic variation also increasingly exposes the free-living 280 

microbiome to repeated dry-rewetting or freeze-thaw cycles, which damage the microbial community 281 

[58]. Such cycles may cause nutrient losses through leaching to ground and surface waters [59,60] 282 

because soil microbes are important dynamic sinks for carbon and nutrients [61]. Warming furthermore 283 

loosens microbial association networks in colder biomes [62], which can lead to a loss of cooperative 284 

interactions (e.g. syntrophy) between microbes [63,64]. Also, droughts and intense rainfall events can 285 

cause more pulses in microbial recycling [65], leading to more mismatches with plant uptake needs, 286 

impairing primary productivity [65,66]. All these factors make recycling by the free-living microbiome 287 

highly sensitive to climate change.  288 

In contrast, mutualistic microbiomes can provide important buffering effects in a changing climate. Large 289 

mammalian herbivores can accelerate recycling through the modification of growing conditions (e.g. 290 

sunlight) and the direct return of nutrients to soils through urination and defecation [67-69]. Higher rates 291 

of recycling boost plant productivity, even in climatically harsh environments. The arctic region was 292 

much colder and drier during the last glacial maximum but was much more productive, a discrepancy 293 

that has been termed the “productivity paradox” [70]. The paradox can be explained by the much higher 294 

mean body size of the animal hosts that were present at the time [71]. A large body enabled mammoths 295 

to efficiently exploit and preempt substrates, giving rise to the highly productive grasslands of the 296 

Pleistocene: the mammoth steppe [71]. The loss of megaherbivores during the Pleistocene  297 



 298 

Fig. 4. A) Phase space of temperature and moisture content of organic matter. The colour gradient 299 

visualizes the optimal conditions (green) for microbial activity. Mutualistic microbiomes experience less 300 

variation in chemo-physical conditions, as represented by the smaller circles, compared to free-living 301 

microbes in different biomes. B). The rate of recycling by the free-living microbiome should be intimately 302 

linked to fluctuations in soil temperature and moisture, while recycling by mutualistic microbiomes is 303 

more stable over time. C) Temporal alternation in the relative contribution of the FlM (grey solid line) 304 

and mutualistic microbiomes (dotted line) to recycling, leading to D) higher rates of recycling at the 305 

ecosystem level even at high climatic and substrate limitations. 306 

 307 

megafaunal extinctions slowed recycling, made recycling more seasonally limited, and consequently 308 

may have turned the highly productive steppes into tundra ecosystems [72]. Currently, the (sub)arctic 309 

is the strongest atmospheric carbon source due to a positive feedback between a warming climate and 310 



the thaw of carbon-rich permafrost layers [73]. Reverting the moss and shrub-dominated tundra back 311 

to a productive grassy steppe ecosystem by the reintroduction of large herbivores could potentially slow 312 

down carbon emission because the increased recycling and productivity would improve carbon capture 313 

[74]. Moreover, grazing can prevent fuel accumulation and therefore limit fire frequencies in seasonally 314 

dry ecosystems, reducing nutrient and carbon losses [75,76]. This adds evidence to findings that large 315 

herbivores are important in mitigating the negative impacts of climate change [77].  316 

Plant-associated microbiomes also buffer against the currently observed acceleration of carbon 317 

release. Warming promotes higher rates of recycling by the soil microbiome, stimulating a net loss of 318 

soil carbon that may further accelerate global warming [78]. Higher atmospheric CO2 concentration and 319 

temperatures generally result in higher net primary productivity (NPP) which means that (everything 320 

else being equal), nutrients can become more limiting [79]. A higher fraction of NPP would therefore 321 

have to go to nutrient acquisition, reducing the buffering effect that increased productivity has on rising 322 

CO2 levels. The plant-associated microbiome can delay this so-called ‘progressive nutrient limitation’ 323 

because EcM mines the soil organic matter for nutrients, promoting carbon sequestration also in 324 

nutrient-limited areas [80].  325 

Concluding remarks 326 

The relative contributions of the different mutualistic microbiomes as outlined in Fig. 1 are currently 327 

undergoing rapid change in ecosystems worldwide. Among animal hosts, larger herbivores seem to be 328 

more sensitive to ongoing land-use change and climate change [81], as was the case during the 329 

Pleistocene defaunation. Large animals have vulnerable life-history strategies [82], need more space 330 

because of larger home ranges [31,83], and have only a limited capacity to adapt to hotter daytime 331 

temperatures [84]. Intensive land use reduces soil insect nest and mound densities [85] and dries out 332 

topsoils to unfavourable levels for earthworms [86], and so forms a significant challenge to the 333 

macrodetritivore-associated microbiome. The plant-associated microbiome is also vulnerable: 334 

ectomycorrhiza-dependent vegetation is declining on all continents and is being replaced by non-335 

mycorrhizal vegetation due to forest logging and agricultural intensification [87]. 336 

Such challenges to mutualistic microbiomes will reduce the rate and stability of recycling, with cascading 337 

effects on the biodiversity and productivity of terrestrial ecosystems that will eventually impact the whole 338 

system Earth. Better protection of (semi-)natural ecosystems that support a diverse metamicrobiome 339 

preserves their resilience to climate change. For example, ecological restoration through rewilding can 340 

stop further defaunation by re-introducing missing wildlife and can thereby restore multiple important 341 

ecosystem functions [88]. Different studies indeed show that restoration of megaherbivores can lead to 342 

a more productive plant community and the moderation of fire regimes [89,90]. Similarly, restoring 343 

native (forest) vegetation in abandoned agricultural fields supports the recovery of the plant-associated 344 

microbiome [87,91]. 345 

By mapping the connections between the fields of microbial ecology, community ecology, and 346 

ecosystem ecology, we have provided an integrated framework that accounts for the prominent role of 347 



host-mediated microbiomes in the recycling of plant matter. Especially for biomes where the activity of 348 

the free-living microbiome is chronically or periodically limited, inclusion of mutualistic microbiomes may 349 

radically modify predictions on the sensitivity of ecosystems to increased variability and soil carbon 350 

sequestration under current and future climate and land-use. To test the general ideas outlined in this 351 

paper and advance this line of research, there is now a need for more empirical data on the importance 352 

of different microbiomes across biomes and soil types (see outstanding questions). We recommend the 353 

simultaneous measurement of the activity of mutualistic microbes in comparison to free-living microbes 354 

in controlled field experiments and across main environmental gradients. Finally, we underscore the 355 

need for common linguistic and conceptual currencies between microbiologists and ecologists to merge 356 

our understanding of the factors that control the activity of the metamicrobiome. 357 

 358 
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