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Abstract 

Environmental monitoring is increasingly shifting towards a set of systems that describe changes 

in real-time. In ecology specifically, a series of challenges have prevented the roll-out of real-time 

monitoring for features such as biodiversity change or ecosystem service provision. Conservation 

culturomics, a field concerned with interactions between people and nature, is well-placed to 

demonstrate how monitoring might move towards a network of real-time platforms, given its 

existence almost exclusively in the digital realm. Here we describe a set of considerations 

associated with the development of real-time monitoring platforms for conservation culturomics. 

We then introduce a near real-time platform for the Species Awareness Index, a global index of 

changing biodiversity awareness derived from the rate of change in page views for species on 

Wikipedia. This platform will update automatically each month, operating in near real-time (hosted 

here: https://joemillard.shinyapps.io/Real_time_SAI/), with plans to make the underlying data 

queryable via an API independent of the platform. The real-time SAI will represent the first real-

time and entirely automated conservation culturomic platform, and one of the first within the 

discipline of ecology. We conclude by envisioning a future for real-time monitoring, presenting a 

general framework for real-time monitoring in ecology, and calling for an online real-time 

observatory that can evolve with the structure of the web. 

 

Introduction 

 

Real-time monitoring has revolutionised environmental management, offering insight and 

foresight on the risk of natural and anthropogenic disasters (Smith et al., 2017), and influencing 

human-health and disease spread (Hadfield et al., 2018). Real-time ecological and biodiversity 

monitoring could potentially offer similar benefits, but has historically been constrained by 

challenges in wide-scale manual data collection (Biber 2013), as well as a lack of infrastructure 

and expertise for automating analyses and reporting. However, the development of monitoring 

approaches like eDNA (Garlapati et al., 2019), remote sensing (Steenweg et al., 2017), acoustics 

(Sethi et al., 2020), animal satellite telemetry (Wall et al., 2014) and culturomics (Ladle et al., 
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2016), offer potential pathways towards real-time monitoring of biodiversity and ecosystem 

services.   

 

Conservation culturomics (henceforth referred to as CC), a sub-field of culturomics dedicated to 

the study of human relationships with nature and wildlife (Ladle et al., 2016), is ideally placed for 

the development of real-time monitoring systems, given its existence almost wholly in the digital 

realm. The study of CC has proved insightful in improving our understanding of human-nature 

interactions. For instance, culturomics has shown that interest in biodiversity increased during 

COVID-19 lockdowns (Roll et al., 2021), and that interest changes according to seasonality 

(Mittermeier et al., 2019). From a conservation perspective, culturomics has revealed patterns of 

wildlife trade (Li and Hu, 2021) and helped to gather information on wildlife-associated 

recreational activities (Monkman et al., 2018; Otsuka and Yamakoshi, 2020). All of the above are 

changing the conservationist’s understanding of human-nature interactions. Unfortunately, there 

is often a lag between data being collected and being incorporated into published scientific 

outputs that can be used to inform conservation action. A real-time CC platform could address 

this lag, helping to create immediate actionable insights.  

 

A prime example for the use of a real-time CC platform concerns interest or awareness in species. 

Tracking the spread (distribution) of invasive species is one potential application. With real-time 

information, species arrival could be detected through spikes in culturomic activity (e.g. Twitter 

posts, Wikipedia searches, citizen science records). For example, Asian Hornet Watch, a mobile 

app for reporting sightings of the invasive Asian Hornet in the UK, enables the rapid 

implementation of management to prevent further spread of an invasive species (CEH, 2017). 

Alert systems of this sort help to target limited conservation resources, making real-time 

culturomics platforms of great potential value to the field of conservation. Online CC platforms 

have previously been developed for awareness of biodiversity (Caetano et al., 2021; Cooper et 

al., 2019), but these lack updates in real time, meaning they represent a static snapshot of public 

awareness. 

 

Here we discuss a set of considerations in building a real-time CC platform, before introducing a 

near real-time platform for the Species Awareness Index (SAI). The SAI describes the rate of 

change in Wikipedia page views for ~40,000 species across 10 Wikipedia languages, adjusted 

for the background change in each language (Millard et al., 2021). The SAI could in theory be 

used to track the societal extinction of species (Jarić et al., 2022), as a complement to biological 

extinction measured through metrics such as the Red List Index (Butchart et al., 2007), the Living 

Planet Index (LPI: Collen et al., 2009), or the Biodiversity Intactness Index (De Palma et al., 2021). 

Our prototype platform is currently hosted online as a Shiny app 

(https://joemillard.shinyapps.io/Real_time_SAI/), which will update automatically each month 

through a batch process that runs virtually. This real-time platform is cost effective, scalable, and 

implementable with modest programming skills. We finish by envisioning a future for real-time 

monitoring in the context of conversation culturomics, and then conclude by emphasising the need 

for long-term joined-up thinking on CC.  
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Considerations for real-time conservation culturomics 

 

There are many challenges associated with the development of real-time monitoring platforms for 

CC. In this section we set out four key considerations: 1) Platforms need to track robust metrics 

that have a meaningful interpretation in real-time; 2) Platform hosting will ideally be cost-effective 

and computationally efficient; 3) Platforms will need to be built such that they account for the 

structure of APIs, in terms of limits, permissions, and potential changes; and 4) Platforms need to 

have a long-term funding and maintenance plan, ideally linked to a particular conservation or 

natural history institution with an in-house informatics team. In this section, we consider each of 

these points in turn, with a particular focus on CC. However, many of the considerations we raise 

will also be valuable for any real-time monitoring program in ecology. 

 

Robust metrics of human-nature interactions 

 

A prerequisite for any real-time CC platform is the development of robust metrics that take some 

web-derived data source(s) as an input and then outputs a metric with a temporal dimension that 

meaningfully describes some form of human-nature interaction. Such a metric can be highly 

abstracted describing human-interactions in a coarse manner, or specifically oriented towards a 

particular population or behaviour. Highly abstracted metrics include those that set out to measure 

biodiversity awareness (Caetano et al., 2021; Cooper et al., 2019; Millard et al., 2021) or broad 

engagement with nature (Phillips et al., 2022; Roll et al., 2021). Specifically-oriented metrics 

include those that track interactions between humans and particular species, at a high taxonomic 

or geographic resolution (Acerbi et al., 2020; Sbragaglia et al., 2021). 

 

For either highly abstracted or highly resolved human-nature metrics, the temporal dimension is 

particularly important in real-time monitoring. This is for two key reasons. First, the metric needs 

to be measured at a resolution sufficient to observe heterogeneity in the phenomena of interest. 

For example, seasonality of human interest in biodiversity will not be detected if the culturomics 

data of interest is measured at an annual resolution. Some sources, such as Twitter data, are 

time-stamped at a very high resolution of seconds (Twitter, 2022a), making them highly amenable 

to understanding high resolution real-time insights, whereas other data sources are aggregated 

at the daily resolution (Wikimedia, 2022). Second, real-time metrics must be feasibly derivable at 

the temporal resolution of interest. As a minimum, each metric must be at least as fast to derive 

as its data is collected, i.e. if data is collected hourly, but it takes more than an hour to derive 

metrics for a given selection of data, the real-time metric will begin to lag and become outdated. 

This may be problematic when working with high-dimensional visual, text, or audio data, in which 

a series of computationally intensive steps may be required in processing the data before the 

derivation of any metric. 

 

Unlike the publication of a CC metric in the academic literature, a real-time platform is uniquely 

placed such that it can be updated according to current thinking in the academic community. This 

is particularly relevant to metrics such as the SAI (Millard et al., 2021), which leans heavily on the 

methodological backbone of the LPI. Although the LPI has undergone multiple improvements 



(Collen et al., 2009; McRae et al., 2017), it is still subject to criticism and suggestions for further 

improvement (Leung et al., 2020; Puurtinen et al., 2022). Moreover, metrics such as the SAI 

(Millard et al., 2021) or Biodiversity Engagement Indicator (Cooper et al., 2019) have not yet been 

sufficiently critiqued to fully understand the extent to which they are useful or meaningful. As in 

the LPI (Ledger et al., 2022), the authors of the SAI are receptive to feedback to ensure that the 

field continues to move forward. In the manner of living reviews (Elliott et al., 2014), updatable 

platforms that can provide a robust current account of human-nature interactions should be 

encouraged. 

 

Hosting a real-time platform 

 

A real-time platform could be hosted on any website, but this often requires specialised html 

programming skills which are uncommon amongst CC researchers and practitioners (Hampton 

et al., 2017). This skill gap could be resolved by employing web-developers, but this would inflate 

the cost of platform development and maintenance. A practical solution is to use established 

dashboard platforms like R Shiny apps (Chang et al., 2022). Shiny apps are developed using R, 

a common programming language amongst quantitative conservationists (Lai et al., 2019), and 

so can be developed and maintained by CC researchers. Shiny apps are also cost-effective, as 

the price you pay is dependent on their use. For high-use applications, Shiny applications may 

struggle with high-traffic, in which case it could be worthwhile exploring services such as 

ShinyProxy, which are more equipped for concurrent application use (Open Analytics, 2022). 

 

Whilst Shiny applications are suitable for hosting a real-time platform, they are ill-equipped for the 

intensive computation needed to derive CC metrics. A solution to this could be to use virtual 

machines or servers as a ‘back-end’ to derive the metric, and then Shiny as the ‘front-end’ for 

hosting the metric. Examples of servers include Amazon web services (AWS, 2022),  Microsoft 

Azure (Microsoft, 2022) and Google Cloud (Google Cloud, 2022). These servers are already 

widely used in high performance computing applications e.g. deep-learning (Jauro et al., 2020), 

and are cost-effective as they generally charge proportionate to use. By shifting all computation 

on to online servers, instead of local computers, there is less risk of disruption from software 

updates or power outages. Perhaps the biggest obstacle to using online servers is researcher’s 

unfamiliarity with them, as they can be dense and complex to use, but through making this shift, 

we can increase the resilience of platforms and improve their longevity. 

 

Accounting for the structure of APIs 

 

The data used in CC metrics are often drawn from application programming interfaces (APIs), 

which allow online hosted datasets to be queried and downloaded. These APIs are dynamic in 

nature, as they host a constant stream of new data. They are also subject to changing terms of 

use, can alter the format data is provided in, and can shift download limits (often called rate limits, 

meaning the rate at which data can be requested from the API). These changes in data usage-

rights and format could cause a platform to fail. It’s likely a program of long-term maintenance 

would be needed to address these issues. It's also important that the community of researchers 



using and maintaining these real-time platforms develop relationships with and receive 

communication from data providers, to foresee and address changes before the platform fails. 

Whilst API changes will need to be addressed to prevent platforms from failing, it's worth noting 

that changes in API use will not always be restrictive. For example, Twitter has recently changed 

their policy to boost API access for academics (Twitter 2022a). Previously researchers could only 

download a small selection of recent Tweets, but now Twitter allows researchers access to the 

entire history of public tweets, with much less restrictive download limits. This presents 

opportunities for CC dashboards to not just monitor real-time changes, but also historical change.  

 

Caution needs to be applied when using online culturomics datasets that store human-nature 

data. From a practical and legal perspective, websites such as Wikipedia and Twitter have strict 

API restrictions, in terms of the purpose, regularity, pattern, and quantity of requests. If a user (IP 

address) breaks these terms, they risk being blocked, potentially permanently (Twitter, 2022b). 

Further, the licences for using data from websites like Wikipedia and Twitter often prevent the 

sharing of any raw data, and only allow the presentation of aggregated data. Finally, whilst the 

data are publicly available, there are still ethical considerations for using these datasets (Di Minin 

et al., 2021). Websites with personal profiles and data such as Twitter or Flickr should be used 

carefully. It’s important that any culturomics application, real-time or not, abide by the highest 

ethical and legal standards (Thompson et al., 2021).  

 

Developing a funding plan for the long-term 

 

We propose that a clear, consistent, and long-term funding plan is developed to allow real-time 

conservation culturomic platforms to run with longevity. A funding plan is essential to ensure 

sufficient personnel for the long-term development and maintenance of the platform, which will be 

needed as the structure of the web changes. It’s also important that funding is available to handle 

the cost associated with any virtual machines, servers and Shiny apps, with contingency planning 

in place to handle changing prices. Given these funding requirements and the uncertainty 

associated with academic funding streams, academia is likely not the best place for real-time 

platforms to be maintained. Instead, the ideal location for any real-time platform could be with a 

conservation or natural history organisation, that has both an established informatics team, and 

sits within a network of practitioners that could make use of the platform (e.g. RSPB, ZSL, Birdlife 

International, IUCN, UNEP-WCMC, the Natural History Museum). 

 

A near real-time monitoring platform for the Species Awareness Index 

 

Building a real-time version of the SAI has been a challenging endeavour. Although a prototype 

is now built, development will inevitably be a continual process, as bugs are overcome and new 

features added. In this section, we set out three core stages which were required in the building 

of a real-time platform for the SAI: first, we describe the core changes made to the underlying SAI 

code, required to enable the efficient execution of the whole pipeline in one batch process; 

second, we describe the Shiny app platform used to host the data outputted from our batch 

process; and third, we summarise the whole batch process itself. In the context of each section, 



we briefly highlight future areas of development. Much of the content below assumes that the 

reader is familiar with the SAI itself (see Millard et al 2021). 

 

Changes to the core SAI code 

 

In the original SAI publication, much of the code we wrote relied on the R package rLPI (Institute 

of Zoology, Zoological Society of London, 2022). rLPI is a package designed specifically for the 

calculation of the LPI, an aggregated trend representing the average change in abundance of 

many vertebrate populations. Given that the SAI is inspired by the LPI, it made sense at the initial 

stage to apply it to Wikipedia views. For a couple of reasons, we have moved away from the rLPI 

package, and instead have developed a set of scripts specifically for the SAI. First, to be amenable 

for use with the rLPI package, Wikipedia view data needed to be reformatted such that it looks 

like a set of population trends. Moving forward we can now use the more informative Wikipedia 

specific column names. Second, rLPI contains a large quantity of additional code that we did not 

require in the SAI. For example, rLPI automatically bootstraps species page trends before they 

are adjusted for change in a random set of pages. 

 

In addition to the changes above, at present we also do not jack-knife the bootstrapped trend of 

random adjusted species pages, or yet include a form of weighting. In the original version of the 

code, bootstrapped trends were jack-knifed by language, with influential languages then removed 

from the overall trend. Previously this resulted in the removal of the French language from the 

overall trend and the trend broken down by taxonomic class. Our eventual intention is to 

automatically jack-knife the trend by language each month, calculate some parameter that 

summarises the influence of individual languages, and then remove any language that surpasses 

a particular threshold of influence. For now, however, this has not been implemented, but 

represents a priority for further development. Currently, users should be cautious in interpreting 

the overall and class level indices, since these are likely heavily influenced by change in the 

French language (see Millard et al 2021 for an explanation as to why this is the case). In the 

Supplementary information of our original paper, we also explored a set of weightings by total 

internet users and the number of species in which a language is represented (Millard et al 2021). 

Again, for both of these weightings, we do not yet have an implementation in our real-time version, 

but we intend to implement both.  

 

Building the platform interface 

 

The real-time SAI is hosted online on a Shiny app (see here 

https://joemillard.shinyapps.io/Real_time_SAI/), which will update automatically each month 

through reads from an AWS droplet. We use this approach first and foremost because Shiny is a 

package written explicitly to integrate with R. Given that the SAI code is written in R, it therefore 

made sense to build the platform in Shiny, since we could just port over all the ggplot2 code 

(Wickham et al., 2022) used to build the visualisations on the ‘Trends’ page. At the moment, the 

platform is hosted at shinyapps.io under RStudio’s free hosting. Although free hosting is sufficient 

for a prototype, our long-term intention is to shift to ShinyProxy, which enables enterprise-level 

traffic handling under an open-source model (Open Analytics, 2022). Such a change will require 

https://joemillard.shinyapps.io/Real_time_SAI/


bundling the platform into an R package, which can then be installed via a Docker image (Docker, 

2022). 

 

A summary of the whole real-time SAI pipeline 

 

Although R Shiny is convenient as a tool due to its integration with R, this close integration makes 

it tempting to run large quantities of R code on the fly with each instance of the app. In the case 

of the SAI, this would mean running a pipeline that takes a number of hours each time a user 

wants to view a specific trend. Such a time lag before viewing the SAI trends would render the 

platform unusable. Instead, therefore, we have opted to shift all core SAI code and Wikipedia view 

downloads off the app, with this running in the background on a virtual machine in a batch Python 

process each month. The output of this batch process is then written to an AWS droplet, from 

which the Shiny app reads each time it’s fired up. Through building the platform in this way, Shiny 

will always request from the most recent version of the SAI output, and it will only ever take as 

long to load as it does to generate the set of ggplots on the ‘Trends’ page. In this subsection we 

describe each core step of the real-time SAI pipeline that runs each month (also see Figure 1 for 

a schematic of each core step in the pipeline). Note that we do not describe the Shiny app itself, 

since this functions just to visualise the data outputted by the monthly batch process. 

 

In the first instance, each month a Python script downloads Wikipedia views from each of the 

species and random pages previously included in the original SAI publication (see Millard et al 

2021), and then calculates an average number of daily views per month for each page. The 

underlying taxonomy and main Wikipedia page name for each of these species was taken from a 

Onezoom download (Wong and Rosindell, 2022), and the random pages were identified using 

the Random Page Wikipedia API (as in Millard et al 2021). We opted not to download a different 

set of random pages each month for each language, since this alone would be a significant 

additional overhead, even without considering the need to download new time series for the whole 

period with each passing month. In the long term our intention is to further test the influence of 

random page selection, and potentially include a download of new complete series random pages 

each month. 

 

To ensure that at each month the new download starts from the previous month, at the top of our 

batch Python script we read in the most recent version of the overall SAI trend (from the local 

directory of a virtual machine). This file contains a date column containing all dates from the 

beginning to the current end of the time series. The Wikipedia API download then starts from the 

last month of that date column to the most recent month beyond that date column. Following the 

download completion of each taxonomic class in each language, and each random page in each 

language, all of these average daily views per month are then written to disk on a virtual machine 

with a unique time-stamped file name. 

 

After the Wikipedia view download is complete, that same Python script then executes a set of R 

scripts on the virtual machine that run all of the relevant SAI code. This batch process consists of 

7 scripts that run in sequence: 1) the derivation of individual species page view trends; 2) the 

derivation of individual random page view trends; 3) the bootstrapping of the random page view 



trend in each language; and then 4), 5), 6), and 7), which adjust change in species page views 

with change in a random set of pages, and then generate each of the data files underpinning each 

of Figures 1-4 on the ‘Trends’ page of the platform. These four files are stored in an AWS droplet 

from which the Shiny app reads each time the platform is fired up. Each of these files are also 

made available for download on the ‘Download’ page of the platform. Our reasoning for hosting 

only these Shiny inputs on AWS, is in part to keep cloud storage costs down, but also to ensure 

that the Shiny app can access these files once it’s been deployed (i.e. code running on our virtual 

machine can access local directories on that virtual machine, but a deployed Shiny app can’t). In 

the future our intention is to pivot our data storage to some form of SQL database with an 

associated API, which the Shiny app would request from at start-up. Researchers would then also 

be able to request subsets of random-adjusted species trends, for particular species, groups of 

species, languages, or time-periods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 1. Schematic summarising the real-time SAI pipeline that runs on a virtual machine each 

month. The whole pipeline is split between software running on a virtual machine and publicly 

available cloud service software. Each month a batch process runs on the virtual machine, which 

downloads the new set of views for that month from the Wikipedia API (according to the date of 

the previous set), calculates the daily average views per month for both the random and species 

pages, and then writes those files to the virtual machine HDD (script 00). That initial Python script 

then runs 7 other scripts that result in four rds files, each of which are written to an AWS droplet 

on the cloud, and then read into Shiny whenever an instance is fired up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Envisioning a future for real-time monitoring in ecology 

 

In the previous section we set out how a real-time monitoring platform can be built for an index of 

changing awareness of species. In the future, our hope is that platforms of this sort can sit within 

an online observatory of similar metrics. Such a platform would help to realise the aim of many in 

the CC community (Jarić et al., 2020) for an observatory that tracks analogues of societal 

extinction (Jarić et al., 2022). Ideally, such a monitoring system would incorporate a number of 

datasets, including Wikipedia, Baidu-Baike, Twitter, and Google, to capture a broad demographic 

and geographic distribution of users. An important consideration, however, is ensuring derived 

metrics are useful. Given real-time metrics carry a cost of development and maintenance, it’s vital 

that we ensure developed metrics add value. Regardless of these problems, however, a real-time 

digital observatory is feasible, since the underlying infrastructure in leveraging a real-time platform 

will be the same irrespective of data source.  

 

Developing a real-time observatory on CC data is a natural first-step, as an extensive array of 

data sources exist in the digital realm and so are amenable to the automated work-flow we 

present. However, this work-flow could also form the basis of a general framework for real-time 

monitoring in ecology, defined by four stages: 1) data is collected in real-time; 2) on a virtual 

machine, collected data is processed into metrics of change; 3) metrics of change are visualised 

with a front-end tool such as R Shiny; 4) these front-end platforms then deliver insight to policy-

makers in near real-time (Figure 2). With the increasing development of automated data collection 

approaches in ecology, such as networked camera traps which provide a continual stream of 

temporally and spatially resolved images (Wearn et al., 2017), there is a substantial opportunity 

for real-time monitoring in CC and ecology more generally. Such a development would help to 

realise a core aim of the CBD (Convention on Biology Diversity), for a set of ambitious and modern 

indicators that are compiled and updated regularly (UNEP CBD, 2021). 

 

 

 

 

 

 



 
 

Figure 2. General framework for developing a real-time monitoring program in ecology. The four 

boxes represent distinct stages, moving from data collection to delivering an impactful metric. 

Inside each box we bullet-point considerations for each stage. 

 

Summary 

 

Conservation culturomics has reached a critical point at which it is ideally placed to lead the way 

on real-time monitoring. Here we discuss a number of key considerations in realising this 

potential, before introducing a near-real time platform for the SAI. Our new platform will become 

an ongoing project, with new features added and bug fixing on a continual basis. Such a platform 

demonstrates the potential of culturomics to give insights on human-nature interactions, as they 

play out in the physical realm. Our eventual hope is that conservation culturomics researchers 

can come together to build a suite of real-time monitoring platforms that incorporate data from 

multiple online sources, helping to realise a core aim of the culturomics community. 
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