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Abstract 26 

Collaborative assessments of direct replicability of empirical studies in the medical and social 27 

sciences have exposed alarmingly low rates of replicability, a phenomenon dubbed the ‘replication 28 

crisis’. Poor replicability has spurred cultural changes targeted at improving reliability in these 29 

disciplines. Given the absence of equivalent replication projects in ecology and evolutionary 30 

biology, two inter-related indicators offer us the possibility to retrospectively assess replicability: 31 

publication bias and statistical power. This registered report assesses the prevalence and severity of 32 

small-study (i.e., smaller studies reporting larger effect sizes) and decline effects (i.e., effect sizes 33 

decreasing over time) across ecology and evolutionary biology using 87 meta-analyses including 34 

4,250 primary studies and 17,638 effect sizes. Further, we estimate how publication bias might 35 

distort the estimation of effect sizes, statistical power, and errors in magnitude (Type M or 36 

exaggeration ratio) and sign (Type S). We show strong evidence for the pervasiveness of both 37 

small-study and decline effects in ecology and evolution. There was widespread prevalence of 38 

publication bias that resulted in meta-analytic means being over-estimated by (at least) 0.12 39 

standard deviations. The prevalence of publication bias distorted confidence in meta-analytic results 40 

with 66% of initially statistically significant meta-analytic means becoming non-significant after 41 

correcting for publication bias. Ecological and evolutionary studies consistently had a low statistical 42 

power (15%) with a 4-fold exaggeration of effects on average (Type M error rates = 4.4). Notably, 43 

publication bias aggravates low power (from 23% to 15%) and type M error rates (from 2.7 to 4.4) 44 

because it creates a non-random sample of effect size evidence. The sign errors of effect sizes (Type 45 

S error) increased from 5% to 8% because of publication bias. Our research provides clear evidence 46 

that many published ecological and evolutionary findings are inflated. Our results highlight the 47 

importance of designing high-power empirical studies (e.g., via collaborative team science), 48 

promoting and encouraging replication studies, testing and correcting for publication bias in meta-49 

analyses, and embracing open and transparent research practices, such as (pre)registration, data- and 50 

code-sharing, and transparent reporting. 51 
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Introduction 55 

Replicable prior findings are the foundation of cumulative scientific research. However, large-scale 56 

collaborative attempts to repeat studies have demonstrated that prior findings often fail to replicate 57 

in the medical and social sciences [1-3]. This raises concerns about the reliability of previously 58 

published studies (often referred to as the ‘replication crisis’; [4]). A similar issue of low 59 

replicability is likely to occur in ecology and evolutionary biology [6] (see also [5]). Yet, systematic 60 

assessments of replicability in this field are exceedingly rare [6, 7] perhaps because of the absence 61 

of strong incentives towards conducting replication studies [7, 8], and for logistical reasons (e.g., 62 

difficulties of conducting studies of rare species or remote ecosystems [9, 10]). 63 

 64 

There are, however, two inter-related indicators that can be used to retrospectively gauge 65 

replicability in ecology and evolutionary biology: publication bias and statistical power. 66 

Publication bias and low statistical power increase the occurrence of unreliable effect size estimates 67 

that cannot be replicated. Publication bias commonly occurs when studies with statistically 68 

significant results are published more frequently than those with statistically non-significant 69 

findings (also referred to as ‘file-drawer problem’ [11]) or are published more quickly (‘time-lag 70 

bias’, respectively [12, 13]). More rapid publication of statistically significant results can also lead 71 

to a decline in reported effects over time (‘decline effect’ [12, 13]). When statistically significant 72 

effects are preferentially published, smaller studies will tend to report larger effect sizes (known as 73 

‘small-study effects’; [14]). Statistical power is a proxy of ‘replicability probability’, as it is defined 74 

as the likelihood of detecting a given (true) effect as statistically significant (the complement to 75 

Type II error; [15]).  76 

 77 

Several meta-research studies in ecology and evolutionary biology have investigated the prevalence 78 

of publication biases and low statistical power. Jennions and Moller [12] reported a statistically 79 

significant decline effect  in a survey of 44 ecology and evolutionary biology meta-analyses that 80 



had been published in 2002. Using 52 meta-analyses published in 2000, Barto and Rillig [16] 81 

reached a similar conclusion. In a cumulative meta-analysis, Crystal‐Ornelas and Lockwood [17] 82 

also identified a statistically significant decline in the magnitude of the effect of invasive species on 83 

species richness, using 240 papers published between 1999 and 2016. In their work, this decline 84 

effect was present consistently regardless of taxonomic groups, invasion time, or journal quality. 85 

Twenty years ago, statistical power in 10 ecology, evolution, and behaviour journals was estimated 86 

at 13% – 16% for small effects and 40% – 47% for medium effects (where small effects are r = 0.1 87 

and medium effects are r = 0.3; sensu Cohen [18]). Even lower statistical power was estimated for 88 

the journal Animal Behaviour in 1996, 2003, and 2009 (7% – 8% and 23% – 26% to detect Cohen’s 89 

small and medium effect sizes, respectively; [17]). 90 

 91 

Despite earlier efforts in ecology and evolutionary biology, the field still lacks a systematic 92 

overview of the extent to which different forms of publication bias would distort the estimation of 93 

true effects. Further, no studies have evaluated how such distorted effect sizes prevent us from 94 

correctly estimating statistical power. The statistical power of a given study depends on sample size 95 

and the estimate of corresponding “true” effect size (e.g., a larger effect size leads to a higher 96 

power; see Fig. 1A). Therefore, to avoid overestimating the statistical power of a given study, an 97 

unbiased proxy of the “true” effect size should be used. Contrastingly, previous attempts in ecology 98 

and evolution often used Cohen’s benchmarks to quantify statistical power for a given study [19, 99 

20]. Yet, these benchmarks were derived from Cohen’s qualitative intuitions for studies in the 100 

social sciences rather than a quantitative synthesis of the representative literature [21]. Cohen’s 101 

benchmarks are arbitrary, and not necessarily applicable to ecological and evolutionary studies. As 102 

with exemplar studies in other fields [22], “true” effects can be estimated via meta-analytic 103 

approaches and preferably corrected for potential publication bias [23, 24]. Using publication bias-104 

corrected effect size estimates as “true” effects would, more accurately, quantify statistical power as 105 

well as the two related, yet underappreciated, statistical errors: Type M and S errors (Fig. 1B and 106 



1C; [25]). Type M error, also known as exaggeration ratio (magnitude error), represents the ratio 107 

between an estimated effect and a “true” effect, whereas Type S error represents the probability of 108 

attaining statistical significance in the direction opposite to the true effect [26]. No study has yet 109 

quantified these two quantities systematically across the field of ecology and evolutionary biology.  110 

 111 

Fig. 1  112 

Statistical power, Type S and M errors as a function of the “true” effect size (the alpha level is fixed at 0.05). The 113 

generic form of effect sizes (e.g., SMD, lnRR, Zr) are simulated from 0 to 1 with a fixed standard error (0.25). These 114 

panels (A – C) show that studies investigating larger true effects have higher power (A) and lower rates of Type M (B) 115 

and S (C) errors. If a study suffers from publication bias, the effect size is likely to be exaggerated, and consequently, 116 

the corresponding statistical power, Type M and S errors would be underestimated.  117 

 118 

Here, we capitalize on the rapid growth of ecological and evolutionary meta-analyses to 119 

systematically assess the extent to which patterns consistent with publication biases are common 120 

across the fields of ecology and evolutionary biology, and, if attributed to actual publication bias, 121 

their impacts on the estimates of effect size, statistical power, Type M and S errors [27]. First, we 122 

test for the presence and severity of two indices of publication bias (i.e., small-study effect and 123 

decline effect) at two levels: (i) the within-meta-analysis level using a newly proposed multilevel 124 

meta-regression method; and (ii) the between-meta-analysis level using second-order meta-analyses 125 

(i.e., meta-meta-analyses). Second, we correct for these publication biases and quantify the degree 126 

of decline in bias-corrected effect-size magnitude. Finally, we use uncorrected and bias-corrected 127 

A: Effect size vs. statistical power B: Effect size vs. Type S error C: Effect size vs. Type M error



mean effect sizes as proxies of the “true” effect to assess the statistical power, Type M and S errors 128 

in ecology and evolutionary biology both at the primary study (effect-size) and the synthesis (meta-129 

analysis) level. 130 

 131 

Materials and Methods 132 

In this registered report, we have already finished collection (Section Data collection), retrieval, 133 

and cleaning (Section Data retrieval and cleaning) of data from a pre-existing dataset [28]. We 134 

have not yet commenced the statistical analyses process (Section Statistical analysis). 135 

 136 

Database 137 

Data retrieval and cleaning 138 

By checking the main text, supplementary materials, and/or online data repositories (e.g., Dryad, 139 

GitHub, Open Science Framework) of the 102 meta-analytic papers, and emailing corresponding 140 

authors, if necessary, we were able to include 80 papers that reported essential information for our 141 

statistical analyses. These 80 papers contained 108 independent meta-analyses. Among these 108, 142 

36 meta-analyses used standardised mean difference (SMD) which includes some well-known 143 

estimators such as Hedges’ g or Cohen’s d; [29]; 20 of these meta-analyses  provided raw data (i.e., 144 

descriptive statistics: mean, standard error or deviation, and sample size) whereas the remaining 16 145 

cases provided only effect sizes and variance. Twenty meta-analyses used the log response ratio 146 

(lnRR; [30]; also known as the ratio of means, ROM): 10 cases with raw data, and 10 cases without 147 

raw data. Thirty-one cases used the correlation coefficient or its Fisher’s transformation, Zr (given 148 

that the variance of Zr and sample size is convertible, all cases of Zr were with raw data). All 149 

correlation coefficients were converted to Zr to better approximate normal errors [31]. The 150 

remaining 20 meta-analyses used other effect size metrics, such as heritability (h2; [32]), regression 151 

slope (e.g., reaction norm or selection gradient; [33, 34]), 2-by-2 binary data (e.g., log odds and risk 152 

ratios; [35]), raw mean difference [36], and non-standard metrics (proportion; [37]).  153 



 154 

We decided to only include meta-analytic cases using SMD, lnRR, and Zr in our datasets because, 155 

in addition to being the most commonly used effect sizes in ecology and evolutionary biology [38, 156 

39], they share statistical properties necessary to fit a formal meta-analytic model: (i) they are “unit-157 

less,” which allows comparisons of studies originally using different units, (ii) they are 158 

(asymptotically) normally distributed, and (iii) they have readily computable (unbiased) sampling 159 

variance [31]. To keep our datasets independent, we only used the effect sizes in their original 160 

forms, although data augmentations (e.g., conversions between Zr to SMD) could maximise the 161 

statistical power of the following statistical analyses by maximising the number of sample sizes per 162 

dataset (in this case, the number of effect sizes). Therefore, our final three datasets consisted of (1) 163 

36 meta-analytic cases of SMD, (2) 20 cases of lnRR, and (3) 31 cases of Zr (Fig. 2). For each 164 

primary study included in the final dataset, we retrieved four key variables: (i) effect sizes reported 165 

(i.e., SMD, lnRR, or Zr), (ii) standard errors (or sampling variances) of each effect size (to test for 166 

small-study effects), (iii) sample sizes per condition where possible (i.e., experimental group versus 167 

control group for SMD and lnRR); sample sizes are used to create a predictor to test and correct for 168 

small-study effects (i.e., ‘effective sample size’; see Section Second-order meta-analysis for 169 

details), and (iv) publication year (to test for a decline effect).  170 



 171 

Fig. 2  172 

The workflow showing the data compilation, statistical modelling processes, and our aims. Using the datasets 173 

containing 88 independent meta-analytes (36 SMD, 20 lnRR, and 31 Zr cases, respectively), we used a two-step 174 
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modelling procedure to assess (i) the estimated prevalence and severity of publication bias across the fields of ecology 175 

and evolutionary biology, and (ii) how such publication bias affects the estimates of effect size, statistical power, Type 176 

M and S errors. In the first step (i.e., within-meta-analysis level), multilevel meta-analytic approaches will be used to 177 

estimate the overall mean (used for power and errors calculations), and test and adjust for publication bias for each 178 

meta-analytic case. In the second step (i.e., between-meta-analysis level), the estimates from the first step were 179 

statistically aggregated using either mixed-effect models or random-effects meta-analytic models (i.e., secondary meta-180 

analysis). 𝛽o is the meta-analytic overall mean (i.e., 𝛽o[overall] in Equation 1), which signifies the uncorrected effect size 181 

estimate if publication bias exists but is not corrected. 𝛽1 and 𝛽2 are the indicators of small-study effect and time-lag 182 

bias (equivalent to 𝛽1[small−study] and 𝛽1[time−lag] in Equation 2). 𝜂0[u] is the standardised 𝛽o. (i.e., 𝜂0[overall]). 𝜂0[c] is 183 

the standardised bias-corrected meta-analytic overall mean (i.e., 𝜂0[bias−corrected] in Equation 6). 𝜂1[small−effect], 184 

𝜂2[time−lag] are standardised model coefficients corresponding to 𝛽o, 𝛽1, and 𝛽2 (i.e., 𝜂1[small−effect] and 𝜂2[time−lag] in 185 

Equation 6). 186 

 187 

Statistical analysis 188 

Data collection 189 

We used a recent meta-analytic database that had been collected to evaluate the reporting quality of 190 

systematic reviews and meta-analyses published in ecology and evolutionary biology [28]. The 191 

inclusion and screening criteria identified meta-analyses that were broadly representative of meta-192 

analyses published in ecology and evolutionary biology journals from 2010-2019. In brief, the 193 

database creators compiled a list of ‘Ecology’ and/or ‘Evolutionary Biology’ journals via the 194 

categories of the ISI InCites Journal Citation Reports®. Within the included journals, they searched 195 

Scopus using the string “meta-analy*” OR “metaanaly*” OR “meta-regression”. They restricted the 196 

search to articles published from January 2010 to 25 March 2019. Search results were then filtered 197 

to the 31 journals most frequently publishing meta-analyses. By taking a random sample of studies 198 

within each journal, a total of 297 papers was returned. After screening (search records, and 199 

inclusion and screening criteria are available at [28]), the database included a representative sample 200 

of 102 ecological or evolutionary meta-analyses. 201 

 202 



Multilevel meta-analytic modelling  203 

We used multilevel meta-analytic approaches to (i) estimate the meta-analytic overall mean (i.e., 204 

uncorrected effect size estimates), (ii) detect potential publication bias (i.e., test small-study and 205 

decline effects), and (iii) correct for publication bias for each meta-analysis included in our datasets 206 

(Fig. 2). 207 

 208 

Estimating uncorrected effect sizes 209 

To obtain uncorrected effect sizes for each meta-analysis (i.e., within-meta-analysis level), we fitted 210 

intercept-only multilevel meta-analytic models with SMD, lnRR, and Zr as our response variables, 211 

as in Equation 1 [39]. Equation 1 can account for dependent data by modelling both between-study 212 

variance (heterogeneity) and within-study variance (residual). It was written as: 213 

𝐸𝑆𝑗𝑖 = 𝛽o[overall] + 𝑠𝑗 + 𝑜𝑗𝑖 + 𝑚𝑗𝑖 , (1) 214 

where 𝐸𝑆𝑗𝑖 is the extracted effect size, either SMD, lnRR, or Zr; 𝛽o[overall] is the intercept, 215 

representing the estimate of overall effect (i.e., meta-analytic estimate of effect size); 𝑠𝑗 = the study-216 

specific (between-study) effect of study j; 𝑜𝑗𝑖 = the observation-level (within-study) effect for the 217 

effect size i (used to account for residual heterogeneity); 𝑚𝑗𝑖 = the measurement (sampling) error 218 

effect for the effect size i. Between- and within-study effects are normally distributed with mean 0 219 

and variance, 𝜎2 (i.e., 𝒩(0, 𝜎2)). In Equation 1, effect size (𝐸𝑆𝑗𝑖) and sampling variance (𝑚𝑗𝑖) can 220 

be calculated from the meta-analytic data. Using the restricted maximum likelihood (REML) 221 

method, we can obtain (approximately) unbiased estimates of variance parameters 𝜎2 for between- 222 

and within-study effects (𝑠𝑗 and 𝑜𝑗𝑖) [40]. With the REML estimate of 𝜎2, we can obtain the 223 

maximum likelihood estimate of the model coefficients (i.e., 𝛽o[overall]). These estimated model 224 

coefficients represent the (uncorrected) overall meta-analytic means for SMD, lnRR, or Zr. The 225 

model fitting was implemented via the rma.mv function from the metafor R package (version 3.4-0) 226 

[41]. 227 

 228 



Detecting publication bias 229 

To test for patterns consistent with publication bias within each meta-analysis, we used a multi-230 

moderator multilevel meta-regression model (an extended Egger’s regression; cf. [42]). This 231 

approach deals with two common issues in ecological and evolutionary datasets: (i) using a 232 

multilevel model to control for data dependency [43], and (ii) using a regression method with 233 

multiple moderators to account for between-study heterogeneity [44]. We adopted this approach to 234 

test the presence of small-study and decline effects, respectively. This was written as: 235 

𝐸𝑆𝑗𝑖 = 𝛽0[bias−corrected] + 𝛽1[small−study]𝑒𝑟𝑟𝑜𝑟𝑖 + 𝛽2[time−lag](𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡) + 𝑠𝑗 + 𝑜𝑗𝑖236 

+ 𝑚𝑗𝑖 , (2) 237 

where 𝛽0[bias−corrected] is the intercept, representing bias-corrected overall effect/meta-analytic 238 

estimate of effect size (see more details below); 𝑒𝑟𝑟𝑜𝑟𝑖 is the uncertainty index of effect size (i.e., 239 

sampling error of effect size, 𝑠𝑒𝑖), and 𝛽1[small−study] is the corresponding slope and an indicator of 240 

small-study effect; 𝑦𝑒𝑎𝑟𝑖 is the publication year, 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡 is the latest year of published papers, 241 

and 𝛽2[time−lag] is the corresponding slope and an indicator of decline effect (i.e., time-lag bias).  242 

 243 

When assuming there is no small-study effect (i.e., 𝑒𝑟𝑟𝑜𝑟𝑖 = 0) and decline effect (i.e., 𝑦𝑒𝑎𝑟𝑖 −244 

𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡 = 0), the intercept 𝛽o[overall] in Equation 2 becomes a conditional estimate that can be 245 

interpreted as the bias-corrected overall effect (i.e., the estimate of “true” effect which is distinct 246 

from the unconditional estimate of 𝛽o[overall] in Equation 1). We centred the ‘year’ variable by 247 

subtracting each year (𝑦𝑒𝑎𝑟𝑖 ) from the latest 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡 to set the latest year as the intercept, 248 

𝛽0[bias−corrected]. This process allowed the estimate of true effect (i.e., 𝛽0[bias−corrected] in Equation 249 

2) to be conditional on 𝑦𝑒𝑎𝑟𝑖 = 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡 so that 𝛽0 was least affected by a decline effect if it 250 

existed. Further, we used a sampling error equivalent √1/�̃�𝑖 = √(𝑛𝑒 + 𝑛𝑐) 𝑛𝑒𝑛𝑐⁄ ) to replace 𝑠𝑒𝑖 251 

when fitting SMD and lnRR where possible (4�̃�𝑖 is referred to as an effective sample; 𝑛𝑒 is the 252 

sample size of the experimental group, 𝑛𝑐 is the sample size of the control group; [42]). This can 253 



correct for the ‘artefactual’ correlation between 𝐸𝑆𝑗𝑖 and 𝑒𝑟𝑟𝑜𝑟𝑖 as the point estimate of SMD and 254 

lnRR are inherently correlated with their sampling variances (see Table 3 in [31], and Equation 10 255 

in [45]).  256 

 257 

A small-study effect is statistically detected if Equation 2 has a statistically significant 258 

𝛽1[small−study] (i.e., p-value < 0.05). Similarly, the decline effect (i.e., time-lag bias) is indicated by 259 

a statistically significant 𝛽2[time−lag]. Depending on the specific phenomenon tested, 𝛽1[small−study] 260 

and 𝛽2[time−lag] might be expected to be positive or negative when publication bias exists. For 261 

example, for an effect that is expected to be positive, a small-study effect and decline effect would 262 

be expressed in a positive value of 𝛽1[small−study] (i.e., small-size non-statistically significant 263 

effects and small-size statistically significant negative effects are underrepresented)) and negative 264 

value of 𝛽2[time−lag] (i.e., overall effect size declines over time), respectively. In such a case, a slope 265 

(𝛽1[small−study] or 𝛽2[time−lag]) with opposing direction (unexpected sign) indicates no detectable 266 

publication bias and subsequently does not require correction for such a bias. The magnitude of the 267 

slope represents the severity of the small-study effect or decline effect. Therefore, using Equation 2, 268 

we were able to detect the existence of publication bias and identify its severity for each meta-269 

analysis and each effect size statistic. 270 

 271 

Correcting overall estimates for publication bias 272 

To avoid the biased estimate of 𝛽0[bias−corrected], we fitted Equation 3 when detecting a statistically 273 

significant 𝛽0[bias−corrected] in Equation 2. Equation 3 was written as: 274 

𝐸𝑆𝑗𝑖 = 𝛽0[bias−corrected] + 𝛽1[small−study]𝑒𝑟𝑟𝑜𝑟𝑖
2 + 𝛽2[time−lag](𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡) + 𝑠𝑗 + 𝑜𝑗𝑖275 

+ 𝑚𝑗𝑖 , (3) 276 

In contrast to Equation 2, Equation 3 used a quadratic term of uncertainty index (i.e., sampling 277 

variance 𝑣𝑖 or 1/�̃�𝑖) to alleviate the downward bias of an effect size estimate (for explanations see 278 



[42, 46]). Theoretically, this procedure provided an easy-to-implement method to correct for 279 

publication bias for each meta-analysis (i.e., the conditional estimate of intercept in Equation 3). In 280 

practice, however, there were two different types of 𝛽0[bias−corrected] estimates to consider. This is 281 

because high heterogeneity [44] can lead the signs of the slopes (𝛽1[small−study] and 𝛽2[time−lag]) to 282 

be opposite from that expected from publication bias [42]. We would subsequently misestimate 283 

𝛽0[bias−corrected] if slopes with unexpected signs are included in Equations 2 and 3. 284 

 285 

 286 

Fig. 3  287 

The decision tree used to obtain the estimate of the ‘unbiased’ effect (i.e., conditional 𝛽0). First, use a two-step 288 

procedure to estimate 𝛽0, 𝛽1 and 𝛽2 from the full model (Equations 2 or 3). Then, depending on whether the signs of 289 

slopes (𝛽1 and 𝛽2) are opposite from what will be expected from publication bias (caused by a high amount of 290 

unaccounted heterogeneity), there are two types of estimates of 𝛽0. The first type includes all 𝛽0 regardless of their 291 

signs (𝛽1 and 𝛽2); the second type of estimated 𝛽0 has four scenarios. Scenario 1 = only select 𝛽0 with expected signs of 292 

𝛽1 and 𝛽2 from the full model; Scenario 2 = employ reduced model 1 (Equation 4) to re-estimate 𝛽0 where 𝛽1 has an 293 

unexpected sign, while 𝛽2 has an expected sign; Scenario 3 = employ reduced model 3 (Equation 5) to re-estimate 𝛽0 if 294 
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𝛽1 has an expected sign, while 𝛽2 has an unexpected sign; Scenario 4 = use 𝛽0 from the null model (Equation 1) when 295 

both 𝛽1 and 𝛽2 have unexpected signs (i.e., without the small-study effects or decline effects). The symbols (𝛽0, 𝛽1, and 296 

𝛽2) are as in Fig.2. 297 

 298 

Depending on the signs of the slopes (𝛽1[small−study] and 𝛽2[time−lag]), there were two types of 299 

estimated 𝛽0[bias−corrected]. We used a decision tree (Fig. 3) to obtain the estimate of each type of 300 

𝛽0[bias−corrected] for each meta-analytic case. The function of the decision tree was that, if the 301 

slopes (𝛽1[small−study] and 𝛽2[time−lag]) had unexpected signs, we took out the corresponding slope-302 

related term(s) from the full models to form reduced models (Equations 4 and 5) to better estimate 303 

𝛽0. The reduced models were written as Equations 4 and 5, respectively: 304 

𝐸𝑆𝑗𝑖 = 𝛽0[bias−corrected] + 𝛽1[small−study]𝑒𝑟𝑟𝑜𝑟𝑖 + 𝑠𝑗 + 𝑜𝑗𝑖 + 𝑚𝑗𝑖 , (4) 305 

𝐸𝑆𝑗𝑖 = 𝛽0[bias−corrected] + 𝛽2[time−lag](𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡) + 𝑠𝑗 + 𝑜𝑗𝑖 + 𝑚𝑗𝑖 , (5) 306 

Specifically, the first type of estimate of 𝛽0[bias−corrected] was obtained by fitting Equation 2 or 3 307 

(termed as full models). That included all cases of 𝛽0[bias−corrected] without consideration of the 308 

signs of 𝛽1 and 𝛽2 (i.e., conditional 𝛽0[bias−corrected] estimated from the full model; see Fig. 3). The 309 

second type of estimate of 𝛽0[bias−corrected] was obtained under the following four scenarios: (i) 310 

𝛽0[bias−corrected] estimated under expected signs of 𝛽1[small−study] and 𝛽2[time−lag] (i.e., conditional 311 

𝛽0[bias−corrected] estimated from the direction-controlled full model; see Fig. 3), which meant a co-312 

occurrence of a small-study effect and a decline effect, (ii) 𝛽0[bias−corrected] estimated under the 313 

unexpected sign of 𝛽1[small−study] and the expected sign of 𝛽2[time−lag], which signalled the 314 

existence of a small-study effect but no decline effect (i.e., conditional 𝛽0[bias−corrected] estimated 315 

from reduced model 1; see Equation 4 and Fig. 3), (iii) 𝛽0[bias−corrected] estimated under the 316 

expected sign of 𝛽1 and the unexpected sign of 𝛽2, which indicated the occurrence of a decline 317 

effect but no small-study effect (i.e., conditional 𝛽0[bias−corrected] estimated from reduced model 2; 318 

see Equation 5 and Fig. 3), and (iv) 𝛽0[bias−corrected] estimated under unexpected signs of 319 



𝛽1[small−study] and 𝛽2[time−lag], which suggested little concerns about a small-study effect or a 320 

decline effect. 321 

 322 

Second-order meta-analysis  323 

In this section, we statistically aggregated the above-mentioned regression coefficients (i.e., 324 

𝛽0[bias−corrected], 𝛽1[small−study] and 𝛽2[time−lag]) to (i) reveal the patterns of potential publication 325 

bias across the fields of ecology and evolutionary biology, and (ii) quantify the extent to which 326 

publication bias might cause a reduction in effect-size magnitude across meta-analyses (Fig. 2). 327 

 328 

Estimating the overall extent and severity of publication bias  329 

To allow for aggregations of 𝛽1[small−study] (i.e., an indicator of small-study effect) and 𝛽2[time−lag] 330 

(i.e., an indicator of decline effect) over different effect size metrics (i.e., SMD, lnRR, and Zr), we 331 

standardized coefficients to eliminate scale-dependency [47]. This was achieved by z-scaling (i.e., 332 

mean-centring and dividing by the standard deviation) 𝑒𝑟𝑟𝑜𝑟𝑖, 𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡, and 333 

standardizing the response variable 𝐸𝑆𝑗𝑖 by dividing by the standard deviation without mean-334 

centring, prior to modelling, as given by Equation 6: 335 

𝑐(𝐸𝑆𝑗𝑖) = 𝜂0[bias−corrected] + 𝜂1[small−effect]𝑧(𝑒𝑟𝑟𝑜𝑟𝑖) + 𝜂2[time−lag]𝑧(𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡) + 𝑠𝑗336 

+ 𝑜𝑗𝑖 + 𝑚𝑗𝑖 , (6) 337 

Equation 6 indicates that one standard deviation change in 𝑒𝑟𝑟𝑜𝑟𝑖 and 𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡 would 338 

change 𝐸𝑆𝑗𝑖 by 𝜂1[small−effect] and 𝜂2[time−lag] standard deviations, respectively. Further, to 339 

interpret 𝛽0 as a bias-corrected overall effect, 𝛽0 was set conditional on 𝑒𝑟𝑟𝑜𝑟𝑖 = 0 (i.e., without 340 

small-study effect) and 𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡 = 0 (i.e., without decline effect). As such, we replaced 341 

𝑧(𝑒𝑟𝑟𝑜𝑟𝑖) by 𝑧(𝑒𝑟𝑟𝑜𝑟𝑖) − 𝑧(𝑒𝑟𝑟𝑜𝑟0) and replace 𝑧(𝑦𝑒𝑎𝑟𝑖 − 𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡) by 𝑧(𝑦𝑒𝑎𝑟𝑖) −342 

𝑧(𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡), as shown in Equation 7:  343 

𝑐(𝐸𝑆𝑗𝑖) = 𝜂0[bias−corrected] + 𝜂1[small−effect](𝑧(𝑒𝑟𝑟𝑜𝑟𝑖) − 𝑧(𝑒𝑟𝑟𝑜𝑟0)) + 𝜂2[time−lag](𝑧(𝑦𝑒𝑎𝑟𝑖)344 

− 𝑧(𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡)) + 𝑠𝑗 + 𝑜𝑗𝑖 + 𝑚𝑗𝑖 , (7) 345 



where 𝑧(𝑒𝑟𝑟𝑜𝑟0) denotes the z-score when 𝑒𝑟𝑟𝑜𝑟𝑖 = 0, which is equal to 
0−mean[𝑒𝑟𝑟𝑜𝑟𝑖]

SD[𝑒𝑟𝑟𝑜𝑟𝑖]
; 346 

𝑧(𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡) is the z-score when 𝑦𝑒𝑎𝑟𝑖 is the latest year. Likewise, to obtain the best estimate of 347 

standardized bias-corrected effects, we introduced Equation 8 where a quadratic error term was 348 

used: 349 

𝑐(𝐸𝑆𝑗𝑖) = 𝜂0[bias−corrected] + 𝜂1[small−effect] (𝑧(𝑒𝑟𝑟𝑜𝑟𝑖) − 𝑧(𝑒𝑟𝑟𝑜𝑟0))2 + 𝜂2[time−lag] (𝑧(𝑦𝑒𝑎𝑟𝑖)350 

− 𝑧(𝑦𝑒𝑎𝑟𝑙𝑎𝑡𝑒𝑠𝑡)) + 𝑠𝑗 + 𝑜𝑗𝑖 + 𝑚𝑗𝑖 , (8) 351 

Therefore, fitting 8 created two datasets: (1) the full dataset containing 𝜂0[bias−corrected], 352 

𝜂1[small−effect] and 𝜂2[time−lag] without consideration of their signs (standardised slopes of the first 353 

type estimate), and (2) the reduced dataset containing 𝜂0[bias−corrected], 𝜂1[small−effect] and 354 

𝜂2[time−lag] with expected directions (standardised slopes of the second type estimate: scenarios 1 – 355 

4, Fig. 3). We then conducted a series of second-order meta-analyses to statistically aggregate these 356 

standardised regression coefficients across meta-analyses [48, 49]. We employed a random-effects 357 

meta-analytic model with the inverse square of each coefficient’s standard error as weights to fit 358 

such second-order meta-analyses [41]. For both the full and reduced databases, we obtained a 359 

weighted average of the regression coefficient 𝜂1[small−effect] (or 𝜂2[time−lag]) to indicate the 360 

occurrence of small-study effects (or decline effects) across the fields of ecology and evolutionary 361 

biology. To compare the severity of publication bias between different types of effect size, we 362 

further incorporated effect-size types as a moderator (i.e., a fixed factor or predictor with three 363 

levels: SMD, lnRR, and Zr) in these random-effects models.  364 

 365 

Quantifying the reduction in effect-size magnitude after controlling for publication bias 366 

Likewise, to quantify the differences between uncorrected effect sizes and their bias-corrected 367 

estimates for the different types of effect-size metrics, we required standardised estimates of these 368 

effect sizes to draw comparisons. The term 𝜂0[bias−corrected] in the full dataset provided a 369 

standardised bias-corrected effect size (i.e., an intercept estimated using the full model, where all 370 



cases of 𝜂1[small−effect] and 𝜂2[time−lag] were included regardless of their directions). Also, 371 

𝜂0[bias−corrected] in the reduced dataset provided standardised bias-corrected effect sizes, which 372 

were obtained using expected directions of 𝜂1[small−effect] and 𝜂2[time−lag]. In contrast, the 373 

standardised uncorrected effect sizes were obtained by standardizing 𝐸𝑆𝑗𝑖 by dividing by standard 374 

deviation before fitting Equation 1 (that is, standardised intercept in the null model: 𝜂0[overall]). We 375 

then used the absolute mean difference as a metric to quantify the reduction in effect-size 376 

magnitude following correction for publication bias, where the point estimate and sampling 377 

variance was written as: 378 

D = |γuncorrected−effect
𝑠 −  γcorrected−effect

𝑠 |, (9) 379 

Var(D) = SEγcorrected−effect
𝑠

2 + SEγuncorrected−effect
𝑠

2 − 2𝑟SEγcorrected−effect
𝑠 SEγuncorrected−effect

𝑠 , (10) 380 

where γcorrected−effect
𝑠  and γuncorrected−effect

𝑠  are the values of standardised uncorrected effect size 381 

(standardised 𝜂0[overall] in the null model) and its bias-corrected version (standardised 382 

𝜂0[bias−corrected] in the full or reduced models), respectively; SEγcorrected−effect
𝑠  and 383 

SEγuncorrected−effect
𝑠  are associated standard errors; 𝑟 is the correlation between standard errors 384 

(SEγcorrected−effect
𝑠 vs. and SEγuncorrected−effect

𝑠 ), which is assumed to be 1 because the two estimates 385 

should be strongly correlated. 386 

 387 

Given that D is an absolute variable, it follows a ‘folded’ normal distribution because taking the 388 

absolute value will force probability density on its left side (x-axis < 0) to be folded to the right [50, 389 

51]. The corresponding folded mean and variance could be derived from its ‘folded’ normal 390 

distribution as Equations 11 and 12: 391 

𝐷𝑓 = √
2

𝜋
Var(𝐷)𝑒−𝐷2 2Var(𝐷)⁄ + 𝐷(1 − 2Φ(

−𝐷

√Var(𝐷)
)) , (11) 392 

Var(𝐷𝑓) = 𝐷2 + Var(D) − (√
2

𝜋
Var(D)𝑒−𝐷2 2Var(D)⁄ + 𝐷(1 − 2Φ(

−𝐷

√Var(D)
)))2 , (12) 393 



where Φ is the standard normal cumulative distribution function (see more details in [50, 52]). 394 

Equations 9 to 12 enable us to calculate 𝐷𝑓 and Var(𝐷𝑓) for both full and reduced databases. We 395 

used a random-effects meta-analytic model (rma.uni function; [41]) to synthesise these 𝐷𝑓 with 396 

Var(𝐷)𝑓 as sampling variance across meta-analyses. Also, we incorporated effect size type as a 397 

moderator to compare the differences in effect size reduction between SMD, lnRR, and Zr.  398 

 399 

Estimating statistical power, and Type M and S errors 400 

We assessed the statistical power and Type M and S errors in the primary studies with experimental 401 

effects that were approximated by uncorrected and bias-corrected effect sizes [24, 53]. Although 402 

meta-analyses can increase power over primary studies [54], they might still be underpowered to 403 

detect the true effect (i.e., p-value > 0.05). Therefore, we also calculated the statistical power, Type 404 

M and S errors for each meta-analysis. To obtain averaged statistical power, and Type M and S 405 

errors at the primary study level, we used a mixed-effects model to aggregate over the estimates of 406 

power, and Type M and S errors from primary studies. We used the lmer function in the lme4 R 407 

package (version 1.1-26) to fit these mixed-effects models [55], which incorporated the identity of 408 

the primary study as a random factor to account for between-study variation. Similarly, we used a 409 

weighted regression to aggregate meta-analysis level power, and Type M and S errors, with the 410 

number of effect sizes (k) within each meta-analysis as weights. We implemented the weighted 411 

regression via the base R function (version 4.0.3), lm.  412 

 413 

Deviations and additions 414 

The Stage 2 of this registered report has three deviations from the Stage 1 protocol. First, in the 415 

section on Correcting for overall estimates for publication bias, the best estimate of the bias-416 

corrected overall effect (i.e., model intercept 𝛽0[bias−corrected]) was initially planned to be obtained 417 

by a two-step procedure where when a zero effect exists (i.e., statistically non-significant 418 

𝛽0[bias−corrected]), uncertainty index (i.e., sampling error 𝑒𝑟𝑟𝑜𝑟𝑖 or √1/�̃�𝑖) was used (Equation 2) to 419 



estimate 𝛽0[bias−corrected], while when a non-zero effect exists (i.e., statistically significant 420 

𝛽0[bias−corrected]), a quadratic term of uncertainty index (i.e., sampling variance 𝑣𝑖 or 1/�̃�𝑖) was 421 

used (Equation 3) to estimate 𝛽0[bias−corrected] [56, 57]. We decided to only use Equation 3 to 422 

estimate 𝛽0[bias−corrected] because there is no need to estimate 𝛽0[bias−corrected] when no genuine 423 

effect exists (Equation 2). 424 

 425 

Second, in the section Estimating the overall extent and severity of publication bias, we changed z-426 

scaling (i.e., mean-centring and dividing by the standard deviation) response variable 𝐸𝑆𝑗𝑖 prior to 427 

model fitting to standardizing response variable 𝐸𝑆𝑗𝑖 by dividing by the standard deviation without 428 

mean-centring. This is because centring the response variable would make estimating model 429 

intercept (𝛽0[bias−corrected]) unfeasible [47]. The same change was made in the section on 430 

Quantifying the reduction in effect-size magnitude after controlling for publication biases. 431 

 432 

Third, we added a post-hoc analysis where we removed the meta-analyses with statistically non-433 

significant mean effects and subsequently calculated the average statistical power, Type M and S 434 

error rates. The reason why adding this post-hoc analysis was that the underlying true effect sizes in 435 

some meta-analyses were likely to be so trivially small (and biologically significant) that 436 

corresponding power calculation was meaningless. In such a case, if we included those effects when 437 

estimating average power across meta-analyses in ecology and evolution, we would get a 438 

downwardly biased average power estimate. Note that relevant results were reported in 439 

Supplementary Material (Table S4). 440 

 441 

3 Results  442 

3.1 The pattern of small-study effects in ecology and evolutionary biology 443 

3.1.1 Within-meta-analysis level 444 



Of the 87 ecological and evolutionary meta-analyses, 15 (17%) meta-analyses showed evidence for 445 

a (i.e., smaller studies reporting larger effect sizes) (i.e., statistically significant 𝛽1[small−study]; see 446 

Fig. 4A). Importantly, 𝛽1[small−study] from 54 (62%) meta-analyses were in the expected direction 447 

(Fig. 4A), indicating that these meta-analyses exhibited a statistically non-significant tendency for a 448 

small-study effect.  449 

 450 

3.1.2 Between-meta-analysis level 451 

When aggregating 𝛽1[small−study] obtained from the 87 meta-analyses (i.e., when conducting the 452 

second-order meta-analysis), there was a statistically significant pooled 𝛽1[small−study] providing 453 

evidence for the existence of small-study effects across meta-analyses (grand mean 𝛽1[small−study] = 454 

0.084, 95% confidence intervals (CIs) = 0.034 to 0.135, p-value = 0.001; Fig. 5A). Moreover, the 455 

heterogeneity among the 𝛽1[small−study] estimates obtained from the 87 meta-analyses was low 456 

(𝜎𝑎𝑚𝑜𝑛𝑔−𝑚𝑒𝑡𝑎−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠
2  = 0.0050; 𝐼𝑎𝑚𝑜𝑛𝑔−𝑚𝑒𝑡𝑎−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

2  =10%) suggesting high generalizability of 457 

these results. Three percent of  this heterogeneity could be explained by the types of effect sizes 458 

(SMD, lnRR, Zr) being meta-analysed (𝑅𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
2  = 0.031); the non-random pattern of the small-459 

study effect was mainly driven by SMD (grand mean 𝛽1[small−study] = 0.091, 95% CI = 0.018 to 460 

0.165, p-value = 0.015; Fig. 5B) and Zr (grand mean 𝛽1[small−study] = 0.119, 95% CI = 0.026 to 461 

0.212, p-value = 0.013), but not lnRR (grand mean 𝛽1[small−study] = 0.029, 95% CI = −0.072 to 462 

0.13, p-value = 0.571). 463 



 464 

Fig. 4. The percentage of ecology and evolutionary meta-analyses showing evidence of publication 465 

bias. (A) a small-study effect (i.e., small non-statistically significant effects and small statistically 466 

significant negative effects are underrepresented), (B) a decline effect (; the magnitude of effect 467 

sizes changes over time). See more details in the legend of Fig. 3. All figures were drawn using the 468 

geom_bar() function in ggplot2 R package (version 3.3.5) [58]. 469 



 470 

Fig. 5. Orchard plots showing the distribution of the indicator of small-study effect (model slope 471 

𝛽1[small−study] ) for each meta-analysis and meta-analytic aggregation of 𝛽1[small−study]  (pooled 472 

𝛽1[small−study]). (A) Pooled 𝛽1[small−study] across different meta-analyses and different types of effect 473 

size, indicating the pattern of small-study effects. (B) Pooled 𝛽1[small−study] for each type of effect 474 

size. Solid circles = 𝛽1[small−study] estimates obtained from each meta-analysis; the size of each solid 475 

circle is proportional to its inverse standard error (i.e., precision). Open circles = pooled 476 

𝛽1[small−study] . Thick error bars = 95% confidence intervals (CIs). Thin error bars = prediction 477 

intervals (PIs). See more details in the legend of Fig. 2. All panels were made using orchard_plot() 478 

function in orchaRd R package (version 2.0) [59]. 479 

3.2 The pattern of decline effects in ecology and evolutionary biology 480 



3.2.1 Within-meta-analysis level 481 

Thirteen of 87 (15%) meta-analyses showed evidence for a decline effect (i.e., effect sizes 482 

decreasing over time), with 54 (62%) meta-analyses showing a statistically non-significant decline 483 

in effect size over time (Fig. 4B).  484 

 485 

3.2.2 Between-meta-analysis level 486 

There was a statistically significant pooled 𝛽2[time−lag] (grand mean 𝛽2[time−lag] = −0.006, 95% CI 487 

= −0.009 to −0.002, p-value < 0.001; Fig. 6A) providing evidence for the existence of decline 488 

effects across meta-analyses. In addition, the estimates of 𝛽2[time−lag] were homogeneous across 489 

these 87 meta-analyses (high generalizability of results) given the almost zero estimate of relative 490 

heterogeneity (𝜎𝑎𝑚𝑜𝑛𝑔−𝑚𝑒𝑡𝑎−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠
2  = 0.0001; 𝐼𝑎𝑚𝑜𝑛𝑔−𝑚𝑒𝑡𝑎−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

2  < 1%). Five percent of that 491 

heterogeneity could be explained by the types of effect sizes (𝑅𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
2  = 0.05); SMD and Zr 492 

exhibited a statistically significant pattern of decline effect (SMD: pooled 𝛽2[time−lag] = -0.005, 493 

95% CI = -0.010 to -0.001, p-value = 0.013; Zr: pooled 𝛽2[time−bias] = -0.008, 95% CI = -0.015 to -494 

0.001, p-value = 0.023; Fig. 6B), but lnRR did not (pooled 𝛽2[time−bias] = -0.004, 95% CI = -0.01 to 495 

0.003, p-value = 0.289). 496 



  497 

Fig. 6. Orchard plots showing the distribution of the indicator of decline effects (model slope 498 

𝛽2[time−lag] ) for each meta-analysis and meta-analytic aggregation of 𝛽2[time−lag]  (pooled 499 

𝛽2[time−lag]). (A) Pooled 𝛽2[time−lag] across different meta-analyses and different types of effect size, 500 

indicating the systematic pattern of decline effect. (B) Pooled 𝛽2[time−lag] for each type of effect size. 501 

See more details in the legend of Figs. 2 and 3. All panels were made using orchard_plot() function 502 

in orchaRd R package (version 2.0) [59]. 503 

 504 

3.3 The inflation of effect size estimates and distortion of meta-analytic evidence by publication 505 

bias 506 



Across the 87 meta-analyses, the estimated absolute mean difference between the original 507 

(uncorrected) effect size (𝛽0[overall]) and its bias-corrected version (𝛽0[bias−corrected]) were 508 

statistically significant (pooled D = 0.225, 95% CI = 0.180 to 0.269, p-value < 0.001; Fig. S1A). 509 

The overestimation in SMD, lnRR, and Zr were 0.189, 0.195 and 0.333 standard deviation units, 510 

respectively (Fig. S1B). After back-transformation to the original scale, the publication bias led the 511 

estimates of SMD, lnRR, and Zr to be exaggerated by an average of 0.217, 0.116 and 0.128 (Fig. 7), 512 

respectively. Moreover, when correcting for publication bias, 33 out of 50 initially statistically 513 

significant meta-analytic mean became non-significant. 514 

 515 

 516 

Fig. 7. The magnitude declines in meta-analytic estimate of effect sizes after correcting for 517 

publication bias for each meta-analysis. 9 out of 20 meta-analyses of lnRR, 17 out 36 meta-analyses 518 

of SMD, 14 out 31 meta-analyses of Zr had corrected directions of slope after adjusting for 519 

publication bias. The remained 11 in lnRR, 19 in SMD, and 17 in Zr showed wrong direction of 520 

slope because of high degree of heterogeneity that could not be controlled for. Original = 521 

uncorrected meta-analytic estimate effect sizes (i.e., 𝛽o[overall] in Equation 1). Bias-corrected = 522 

meta-analytic estimate effect size corrected for the presence of two forms of publication bias, small-523 

study and decline effects (i.e., 𝛽0[bias−corrected] in Equation 3).  524 

 525 

3.4 Statistical power, and Type S and M error rates 526 



3.4.1 Sampling level (primary studies) 527 

Overall, primary studies or single experiments (i.e., sampling level) only had a statistical power of 528 

23% to detect the “true” effect indicated by the original (uncorrected) meta-analytic estimate of 529 

effect sizes, 𝛽o[overall] (19%, 24% and 28% for sampling level of SMD, lnRR, and Zr, respectively; 530 

see Fig. 8 and Table S1). When bias correction was employed, the overall power to detect the “true” 531 

effect (𝛽0[bias−corrected]) decreased to 15% (12%, 16%, and 18% for sampling level of SMD, lnRR, 532 

and Zr, respectively; see Fig. 8A and Table S1).  533 

 534 

The primary studies infrequently showed the wrong estimation of the signs of the true effect sizes 535 

(overall Type S error = 5%; Fig. 9 and Table S2). For example, the primary study (i.e., sampling 536 

level) of lnRR and SMD had only 5% and 6% probabilities of having a direction that was opposite 537 

to the meta-analytic mean estimated as 𝛽o[overall]. Correcting for publication bias increased Type S 538 

error by 60% (from 5% to 8%). By contrast, the primary studies tended to exaggerate the magnitude 539 

of the meta-analytic mean estimated as 𝛽o[overall] (overall Type M error = 2.7; Fig. 10 and Table 540 

S3). For example, the magnitude of lnRR, SMD and Zr were overestimated by an average of 2.5, 541 

3.5 and 2 times, respectively. When correcting for the publication bias (𝛽0[bias−corrected]), the Type 542 

M errors were increased to 4 (3.5 for lnRR, 6 for SMD and 3.4 for Zr). 543 

 544 

3.4.2 Meta-analysis level 545 

On average, at the level of individual meta-analyses lnRR and Zr had statistical power that was 546 

equal or over the nominal 80% level to detect the true effects estimated as 𝛽0[bias−corrected]: 81% 547 

for both lnRR and Zr (Fig. 8 and Table S1). In contrast, the estimated power of SMD was 41%, 548 

which fell short of the nominal 80% level. When detecting true effects indicated by 549 



𝛽0[bias−corrected], the statistical power of each meta-analysis decreased to 40%, where lnRR, SMD 550 

and Zr decreased to 63%, 25% and 51%, respectively. 551 

 552 

Ecological and evolutionary meta-analyses had a relatively low probability of reporting an opposite 553 

sign to the true direction of both 𝛽o[overall] and 𝛽0[bias−corrected] (Type S = 5%–8%; Fig. 9 and 554 

Table S2). Meta-analyses considerably reduced the overestimation of the true effect size for lnRR 555 

(Type M = 1.1 for 𝛽o[overall] and 1.3 for 𝛽0[bias−corrected]; Fig. 10 and Table S3), SMD (Type M = 556 

1.9 for 𝛽o[overall] and 2.5 for 𝛽0[bias−corrected]) and Zr (Type M = 1.1 for 𝛽o[overall] and 1.6 for 557 

𝛽0[bias−corrected]). 558 

 559 



Fig. 8. Ecological and evolutionary studies’ median statistical power to detect “true” effects that 560 

were approximated by meta-analytic mean effect size estimates (labels: Meta-analysis, Sampling) 561 

and their bias-corrected versions (labels: cMeta-analysis, cSampling). On the y-axis, effect size 562 

metrics with different subscripts represent different individual meta-analyses (see Fig. 2). Sampling 563 

= statistical power at sampling level (primary studies). cSampling = statistical power at sampling 564 

level after correcting for publication bias. Meta-analysis = statistical power at meta-analysis level. 565 

cMeta-analysis = statistical power at meta-analysis level after correcting for publication bias. See 566 

more details in the legend of Fig. 3. All figures were drawn via geom_tile() function in ggplot2 R 567 

package (version 2.0) [58]. 568 

 569 

 570 



Fig. 9. Ecological and evolutionary studies’ median Type S error rates (sign error) in detecting 571 

“true” effects that were approximated by meta-analytic mean effect size estimates (labels: Meta-572 

analysis, Sampling) and their bias-corrected versions (labels: cMeta-analysis, cSampling). On the y-573 

axis, effect size metrics with different subscripts represent different individual meta-analyses (see 574 

Fig. 2). Sampling = statistical power at sampling level (primary studies). See more details in the 575 

legend of Figs. 3 and 8. All figures were drawn via geom_tile() function in ggplot2 R package 576 

(version 2.0) [58]. 577 

 578 

 579 



Fig. 10. Ecological and evolutionary studies’ median Type M error rates (magnitude error) in 580 

detecting “true” effects that were approximated by meta-analytic mean effect size estimates (labels: 581 

Meta-analysis, Sampling) and their bias-corrected versions (labels: cMeta-analysis, cSampling). On 582 

the y-axis, effect size metrics with different subscripts represent different individual meta-analyses 583 

(see Fig. 2). Gray cells indicate that Type M errors are greater than 10. See more details in the 584 

legend of Figs. 3 and 8. All figures were drawn via geom_tile() function in ggplot2 R package 585 

(version 2.0) [58]. 586 

 587 

4 Discussion  588 

We have conducted the first comprehensive investigation of the prevalence and severity of two 589 

common forms of publication bias (i.e., small-study and decline effects) in the fields of ecology and 590 

evolutionary biology. Overall, we found strong support for small-study and decline effects (time-lag 591 

bias) with little heterogeneity across studies. The prevalence of such publication bias resulted in 592 

overestimating meta-analytic mean effect size estimates by at least 0.12 standard deviations. and 593 

substantially distorted the ecological and evolutionary evidence. When estimating power using bias-594 

corrected effect size estimates, ecological and evolutionary studies and experiments consistently 595 

showed low statistical power (15%). Primary studies had a 4-fold overestimation of effects (Type M 596 

error = 4.4) and the signs of the effects were small yet not trivial (Type S error = 8%; error in the 597 

direction can lead to a completely opposite conclusion). To place these in perspective with the 598 

replication crisis [5, 6], we conclude that prior published findings in ecology and evolutionary 599 

biology, at least for the current dataset (87 meta-analyses, 4,250 primary studies, 17,638 effect 600 

sizes) are likely to have low replicability. 601 

4.1 The persistent and non-negligible publication bias in ecological and evolutionary meta-602 

analyses 603 

4.1.1 Small-study and decline effects are general phenomena 604 



We have found that 17% of ecological and evolutionary meta-analyses show evidence for small-605 

study effects (i.e., smaller studies reporting larger effect sizes). Medical researchers found a similar 606 

percentage of meta-analyses showing small-study effects (7% – 18%) in a survey of 6,873 meta-607 

analyses (which was able to obtain a large sample because medical research has a large pool of 608 

meta-analyses to draw from and because that study extracted a much narrower scope of data from 609 

each meta-analysis than did our study; [7, 60]. Similarly, 13% – 25% of psychological meta-610 

analyses presented evidence for small-study effects [61, 62]. These values may seem relatively 611 

small, but this is in part because, for a given meta-analysis, bias detection methods often lack 612 

statistical power to identify a small-study effect [42, 60, 63]. Indeed, simulations have shown that 613 

the power to detect a moderate small-study effect in a medical meta-analysis with 10 studies was as 614 

low as 21% [14].  615 

Given the limited power to detect a small-study effect [14], it seems reasonable to focus on the sign 616 

and magnitude of the relationship between effect size and sampling error rather than decisions 617 

based on p-values (i.e., null-hypothesis significance testing). By doing so, we found that more than 618 

60% of meta-analyses had a positive statistically non-significant relationship between the effect size 619 

and its sampling error, indicating that small studies (i.e., with large sampling error or small 620 

precision) tend to report larger effects. We confirmed these results by employing a more powerful 621 

approach, i.e., a second-order meta-analysis or meta-meta-analysis, which showed a statistically 622 

significant positive relationship between effect size and sampling error. This result is in line with 623 

recent investigations revealing an negative mean association of effect size and sample size in 624 

psychology and psychiatry meta-analyses [48, 64]. Moreover, our analysis also showed a small 625 

amount of heterogeneity among these 87 slopes. This positive and homogenous effect, therefore, 626 

implies that small-study effects are commonplace in ecology and evolutionary biology. Similar 627 

conclusions were reached in investigations of economic and psychological meta-analyses: small-628 

study effects are widespread phenomena [65-67]. 629 



We conclude that decline effects are also widespread in the field. More than 50% of ecological and 630 

evolutionary meta-analyses showed a negative relationship between effect size and their year of 631 

publication, indicating that effect sizes decrease over time. As mentioned above, the principal 632 

reason for failing to detect a decline effect in a single meta-analysis root in the low statistical power 633 

of the available detection methods [13, 42, 68]. The observed power to determine a decline effect in 634 

the current set of 87 meta-analyses was considerably low (median = 13%). This low power was 635 

similar to that observed in another much larger survey of 464 ecological meta-analyses (median = 636 

17%; [68, 69]). Importantly, our second-order meta-analysis have found a statistically significant 637 

and homogeneous effect (Figure 6A), corroborating that decline effects are common in both sub-638 

fields previously explored (status signalling: [70], plant and insect biodiversity: [17, 71] and ocean 639 

acidification: [72]) and general fields of ecology and evolutionary biology [12, 68]. Evidence from 640 

other disciplines also reveals the pervasiveness of decline effects (medical and social sciences: [48, 641 

73, 74]). 642 

4.1.2 The distorted meta-analytic estimate of effect sizes and evidence by publication bias 643 

By combining the observed bias from both small-study and decline effects, we found evidence that 644 

magnitudes of effect sizes might have been overestimated by 0.217, 0.116 and 0.128 their original 645 

units for lnRR, SMD and Zr, respectively). A recent investigation of 433 psychological meta-646 

analyses also showed a statistically significant, albeit small, downward change in meta-analytic 647 

estimates after correcting for publication bias [75]. A comparison of meta-analyses that were 648 

published without pre-registration versus registered reports (which are less prone to publication 649 

bias) has also shown that unregistered meta-analyses substantially overestimated effect sizes 650 

although bias-correction like the one used in this study can eliminate the difference in results 651 

between registered meta-analyses and registered reports [76]. Accordingly, in our dataset, 652 

correcting for publication bias led to 33 of 50 initially statistically significant meta-analytic 653 

estimates becoming non-significant, suggesting that 66% of published ecological and evolutionary 654 

meta-analyses might have been overconfident in mean effect size estimates, and in some cases, 655 



potentially concluding that biologically meaningful effects exist when in fact they do not. Recent 656 

psychological investigations revealed a similar percentage (60%) of erroneous conclusions of meta-657 

analytic evidence because of publication bias [77].  658 

4.2 Low statistical power and high Type M error in ecological and evolutionary studies 659 

4.2.1 Ecological and evolutionary studies lack power and are prone to Type M error 660 

Primary studies in ecology and evolutionary biology included in our sample of meta-analyses, on 661 

average, only had a power of 15% to detect the effect size identified in the meta-analysis, which is 662 

consistent with earlier findings in the sub-fields of global change biology [53, 78] and animal 663 

behaviour: [10, 20]. When excluding the effects that are not statistically significant, the 664 

corresponding average power of primary studies was still very low (17%; Table S4). As a result, 665 

only studies with largely exaggerated effect sizes (4-fold) have reached statistical significance. 666 

Contrastingly, Type S error was small yet not trivial (8%); note that making an error in the direction 667 

can result in a completely opposite conclusion. The lack of statistical power seems to be a general 668 

phenomenon in scientific research, low power has been identified in many disciplines (medical 669 

sciences = 20% [79], neuroscience = 21% [22], psychological sciences = 36% [24], economics = 670 

18% [80]). Given this widespread bias in individual studies, meta-analysis with appropriate bias 671 

correction is an important part of generating reliable estimates of effect sizes[27]. Statistically 672 

speaking, meta-analysis is an effective way to approximate population-level estimates by 673 

combining sampling level estimates, despite its shortcomings, some of which were shown above. 674 

Science is a process of evidence accumulation in which primary studies are the basis that can be 675 

used to produce high-order and high-quality evidence (e.g., via systematic review and meta-676 

analysis). 677 

4.2.1 Publication bias aggravates the low power and high Type M error 678 

Publication bias is expected to aggravate low power and type M error rates because it creates a non-679 

random sample of effect size evidence. We show that correcting for publication bias resulted in a 680 



65% decrease in statistical power (23% vs. 15%), a 60% increase in Type S error rates (5% vs. 8%) 681 

and a 63% increase Type M error rates (2.7 vs. 4.4). Psychological and economic research also 682 

confirm that meta-analyses without bias adjustments overestimate the estimate of statistical power 683 

[24, 80]. Therefore, the exaggeration of power and effect size might have been even more severe in 684 

ecological and evolutionary studies if no bias corrections were to be made [6], providing further 685 

support to recent concerns about low replicability (“the replication crisis”) in the fields of ecology 686 

and evolutionary biology [5, 10]. 687 

4.3 Limitations 688 

There are three limitations in the present registered report. First, when calculating statistical power 689 

to detect true effects in ecology and evolutionary studies, we used the meta-analytic mean effect 690 

size (and corresponding bias-corrected version) as the true effect for each meta-analysis. We 691 

assumed that the multiple primary studies included in the same meta-analyses share a common true 692 

effect. However, the high heterogeneity in ecology and evolutionary meta-analyses indicates that 693 

each primary study may have a true effect size that is dependent on the research context (e.g., 694 

population and species; [44]). Therefore, using such context-dependent effects as the proxies of true 695 

effect is probably more reasonable [78]. Second, in the post-hoc analysis, we used the statistical 696 

significance (p-value < 0.05) of the meta-analytic mean effect size as the threshold to decide 697 

whether the true effect in a meta-analysis is so tiny that can be biologically neglected and 698 

subsequently excluded in the calculation of average power. We acknowledge that this 699 

categorization is arbitrary because the statistical significance does not represent biological 700 

significance [4]. However, it is difficult to exactly know the magnitude of the minimal effect that 701 

has biological importance. Third, the meta-analytic effect size estimates after correcting for 702 

publication bias may still be overestimated. This is caused by the incomplete reporting of important 703 

moderators in meta-analyses prevented us from accurately correcting for publication bias using our 704 

regression-based method [39, 43]. 705 

 706 



4.4 Implications 707 

4.4.1 How to properly test for publication bias and correct for its impacts? 708 

Given the strong and widespread evidence of publication bias found in this study (and others), 709 

publication bias tests should be a standard part of meta-analyses. A recent survey showed that 710 

publication bias tests have become more widespread in ecology and evolution in recent years [42]; 711 

however, inappropriate bias detection methods still dominate the literature [42]. Generally, 712 

regression-based methods are more powerful than other methods such as correlation-based methods 713 

[14, 60]. The regression-based method in the multilevel model framework used in the current study 714 

can further handle non-independence and high heterogeneity, which are common in the field, to 715 

bring down the rate of false positives [42-44]. Importantly, the method used here provides an 716 

intuitive quantification of the severity of publication bias. For example, the magnitude of pooled 717 

𝛽1[small−study] (0.119) of Zr was larger than that of SMD (0.091), indicating publication bias in Zr 718 

is more severe than in SMD. Regression-based methods have been shown to produce effect size 719 

estimates similar to those of registered reports [76]. We strongly recommend that meta-analysts 720 

employ the regression-based method, which was used by current paper, to routinely test the 721 

presence of publication bias, correct for its impact and report the corrected effect sizes, allowing 722 

stakeholders to better judge how robust the reported effects are. 723 

4.4.2 How to increase power and mitigate overestimation of effect for primary studies and meta-724 

analyses? 725 

For primary studies, a fundamental solution to increase statistical power and mitigate effect size 726 

overestimation is to increase sample sizes by building up more big-team science [81] or global-727 

scale collaborative scientific networks such as Nutrient Network [82], US Long-Term Ecological 728 

Research network [83], and Zostera Experimental Network [84]. Our results confirm that lnRR is a 729 

more powerful effect size metric than SMD [78]. Power of meta-analyses using lnRR was almost 730 

twice as large as SMD (lnRR vs. SMD: 81% vs. 41%). Moreover, lnRR was less prone to 731 



exaggeration (lnRR vs. SMD: 1 vs. 2). Practically, we recommend using lnRR as the main effect 732 

size when conducting meta-analyses if the biological questions focus on mean differences (but see 733 

[85]). Yet it is often best to use both in a meta-analysis with one as the main analysis and the other 734 

as sensitivity analysis (see [78, 86] for comparisons of the pros and cons of lnRR and SMD).  735 

4.5 Conclusions  736 

We indirectly yet empirically examined the extent of the replication crisis in ecology and 737 

evolutionary biology using two inter-related indicators: publication bias and statistical power. Our 738 

results demonstrate indicate that both forms of publication bias, small-study and decline effects, are 739 

persistent and non-negligible in the field. Primary studies in ecology and evolutionary biology are 740 

often underpowered and prone to overestimation of the magnitude of the effect (i.e., Type M error). 741 

The pervasive publication bias leads to overestimated effect sizes, meta-analytic evidence and 742 

statistical power, and to an underestimated Type M error rate, undermining the reliability of 743 

previous findings. Although no single indicator can capture the true extent or all relevant evidence 744 

of the replication crisis [87], our research provides clear evidence that, as in many other disciplines 745 

[1, 2, 4], previously published findings are likely to have low replicability in ecology and 746 

evolutionary biology. The likely replication crisis in these fields highlights the importance of (i) 747 

designing high-power primary studies by building up big-team science [7, 81] where possible, (ii) 748 

adopting appropriate publication bias detection and correction methods for meta-analyses [42], (iii) 749 

embracing publication-bias-robust publication forms (e.g., Registered Reports – like the current 750 

article) for both empirical studies and meta-analyses alike. More generally, researchers need to 751 

adhere more closely to open and transparent research practices [88], such as (pre-)registration [89], 752 

data and code sharing [90, 91], and transparent reporting [6], to achieve credible, reliable and 753 

reproducible ecology and evolutionary biology. 754 
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