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Abstract 22 

1. The literature is awash with studies purporting to show how various species and data 23 

characteristics affect the performances of Species Distribution Models (SDMs). Many of these 24 

studies follow a similar template: they fit SDMs for several species, or the same species using 25 

different datasets; assess the accuracy of those SDMs using skill statistics; and then identify 26 

correlates thereof. Interpreting the findings of these studies is challenging because skill statistics 27 

can reflect species and data characteristics rather than model accuracy, and correlates of model 28 

performance are not necessarily causes.  29 

2. Here, we took a different approach to identifying causes of variation in SDM performance. We 30 

fitted models for 535 species across 5 invertebrate groups and 1 plant group in the United 31 

Kingdom (UK), using a fairly typical SDM workflow. We measured two components of SDM 32 

performance: the variance among replicate fits and accuracy. Rather than using skill statistics, 33 

accuracy was assessed by taxon experts. We constructed Directed Acyclic Graphs (DAGs) 34 



depicting plausible effects of explanatory variables (e.g. species’ prevalence, sample size) on 35 

SDM performance, then quantified those effects using multilevel piecewise path models.  36 

3. We found that the degree to which the available data covered species’ environmental niches 37 

was the only explanatory variable to affect SDM accuracy. We suggest that previously reported 38 

associations between sample size and SDM accuracy reflect improved coverage of species 39 

environmental niches at higher sample sizes; that is to say, niche completeness confounds the 40 

effect of sample size on SDM accuracy. We also report that the completeness of species’ 41 

environmental niches, sample size, species’ prevalence and the degree to which the available 42 

data cover species’ geographic ranges affect SDM variance.  43 

4. Our results demonstrate the challenges associated with the high-throughput approach to 44 

modelling species’ distributions. There is no guarantee that accurate and precise SDMs can be 45 

constructed for large numbers of species unless their ranges and niches have been sampled 46 

comprehensively. Decisions about whether modelling is worthwhile should not be based on 47 

simple criteria like sample size.  48 

Keywords: Directed Acyclic Graph; Structural Equation Modelling; causal inference; expert 49 

elicitation; species distribution modelling 50 

Introduction 51 

Species Distribution Models (SDMs, also known as habitat suitability models) estimate species’ 52 

environmental preferences. Put very simply, they do so by comparing the environment at locations 53 

where a species was observed with the environment at locations where it was not. Once this 54 

comparison has been made, the SDM can be used to predict habitat suitability at any geographic 55 

location and point in time for which the relevant environmental data are available. This feature of 56 

SDMs makes them extremely useful for such applications as predicting the spread of invasive species 57 

(Montalva et al., 2017) and disease vectors (Simons et al., 2019), predicting future shifts in species’ 58 

distributions in response to climate change (Stewart et al., 2022), and spatial conservation planning 59 

(El-Gabbas et al., 2020). If SDMs are to be applied in such settings, however, it is important that they 60 

perform well in terms of predicting habitat suitability. 61 

The performance of a SDM may be decomposed broadly into its accuracy and precision (Bazzichetto 62 

et al., 2022). Accuracy is a measure of how close the model’s predictions are to the “truth” on 63 

average. The most commonly used measure of a SDM’s accuracy is its discrimination ability, that is, 64 

its ability to predict higher habitat suitability at locations where the species was observed than 65 

locations where it was not (Jiménez-valverde et al., 2013). Precision, on the other hand, is a measure 66 

of the variability among predictions from replicate model fits, which might include variability among 67 

SDM algorithms where multi-model ensembles are constructed (Watling et al., 2015). Models with 68 

high accuracy and precision will consistently make predictions that are close to the truth; clearly, it is 69 

desirable to know the situations in which this can be expected. 70 

The literature is awash with studies purporting to show how various methodological decisions, data 71 

characteristics and species traits affect SDM performance. Methodological decisions include the 72 

choice of SDM algorithm or ensemble of algorithms (Fukuda & De Baets, 2016; Hao et al., 2020), 73 

environmental covariates (Arenas-Castro et al., 2022; Bucklin et al., 2015; De Marco & Nóbrega, 74 

2018), and strategies to mitigate undesirable properties of the occurrence data (Barbet-Massin et 75 

al., 2012; Beck et al., 2014; Chapman et al., 2019; Dudík et al., 2005; Fourcade et al., 2014; Phillips et 76 

al., 2009). Data characteristics include the extent of spatial clustering and geographic bias 77 

(Bazzichetto et al., 2022; Beck et al., 2014; Steen et al., 2020), the expertise of data collectors (Steen 78 

et al., 2019), the ratio of presences to absences (Fukuda & De Baets, 2016), coverage of species’ 79 



geographic ranges (Konowalik & Nosol, 2021), and sample size (Feeley & Silman, 2011; Hernandez et 80 

al., 2006; Stockwell & Peterson, 2002; Wisz et al., 2008). And finally, species traits include range size 81 

relative to the study extent (Santika, 2011) and niche breadth (Hernandez et al., 2006; Tessarolo et 82 

al., 2021), amongst others. Most of the studies listed above follow a similar template: they fit SDMs 83 

for several species, or for the same species using different methodologies and datasets, then assess 84 

the accuracy of those models.  85 

Assessing the accuracy of a SDM generally involves comparing its predictions to data. This data might 86 

be the same data that was used for model fitting, data withheld when fitting the model, or 87 

completely independent data (e.g. from a separate survey). Alternatively, in simulation studies, 88 

where virtual species are used, SDM predictions can be compared to those species’ true 89 

distributions directly. Regardless, predictive accuracy is typically evaluated using skill statistics, such 90 

as the Area Under the receiver operator Curve (AUC), the True Skill Statistic (TSS) and Cohen’s Kappa 91 

(Allouche et al., 2006; Leroy et al., 2018).  92 

Although widely-used, skill statistics have been criticised on several grounds. A major limitation is 93 

that they depend on the focal species’ prevalence, that is, its range size relative to the study extent 94 

(Jiménez-valverde et al., 2013; Lobo et al., 2008). This is problematic even for simulation studies, 95 

where the species’ true distribution is known. Another problem is that, where sample prevalence—96 

i.e. the ratio of presences to absences in the evaluation data—does not equal the species’ true 97 

prevalence, skill statistics may not reflect a model’s discrimination ability (Leroy et al., 2018). This 98 

limitation is particularly problematic given the widespread use of pseudo-absences in place of true 99 

absences, and the fact that true prevalence is seldom known. A related issue is that skill statistics 100 

give equal weight to presences and (pseudo) absences by virtue of their mathematical formulations, 101 

despite the fact that pseudo-absences are not observed. Notwithstanding these limitations and 102 

others (e.g. Lobo et al., 2010), AUC, kappa and TSS remain the most common measures of SDM 103 

accuracy. 104 

Whilst most studies evaluate SDM accuracy using skill statistics, an alternative is to solicit expert 105 

opinion. For example, Smart et al. (2019) sought expert opinion on the realism of species response 106 

curves estimated by small-scale niche models for vascular plants and bryophytes in the United 107 

Kingdom (UK). Similarly, Beck et al. (2014) sought expert opinion on the spatial predictions produced 108 

by various SDMs for a European butterfly. These latter authors found that model accuracy increased 109 

when the occurrence data were thinned to reduce spatial clustering. However, this finding was 110 

evident only to the expert: it was not reflected by an increase in AUC. This clearly demonstrates that 111 

expert validation can, at the very least, provide a different perspective to skill statistics on what 112 

determines SDM accuracy.  113 

Whether using expert opinion or skill statistics, appropriately quantifying SDM performance is only 114 

the first step towards understanding its determinants. The researcher must then quantify the 115 

relationships between the performance measures and predictors thereof. This is often achieved 116 

using some form of regression analysis—e.g. multiple regression, partial regression, ANOVA or t-117 

tests (Barbet-Massin et al., 2012; De Marco & Nóbrega, 2018; Feeley & Silman, 2011; Steen et al., 118 

2019; Tessarolo et al., 2021; Watling et al., 2015; Wisz et al., 2008)—or even simpler measures of 119 

correlation (Hernandez et al., 2006). 120 

Whilst clearly useful, regression does not necessarily tell the full story when it comes to ascertaining 121 

the effects of independent variables on a response variable. It is well known that regression 122 

coefficients vary as independent variables are added to and removed from the model (Angrist & 123 

Pischke, 2009). Indeed, using regression for causal inference requires assumptions about all 124 



confounders having been measured and included in the model (Gelman & Hill, 2006; McElreath, 125 

2020). Furthermore, as it is typically used—i.e. with one response variable—regression cannot deal 126 

with indirect effects, which occur where one variable mediates the effect of a second variable on the 127 

response (Baron & Kenny, 1986). 128 

In other disciplines, and to a lesser extent in ecology (but see Grace, 2006), the limitations of 129 

regression mentioned above have been long recognised and overcome using graph theory and 130 

causal analysis. Directed Acyclic Graphs (DAGs; Greenland et al., 1999; Pearl et al., 2016) are 131 

constructed to codify researchers’ theories about how the explanatory variables affect the response 132 

variable(s). DAGS might reveal confounders that must be included in a regression analysis in order to 133 

produce unbiased coefficients. They might also reveal mediation pathways, or multiple response 134 

variables; in this case, path analysis, or more complex structural equation models, can be used to 135 

estimate the effects of interest (Grace, 2006).  136 

Here, we used graph theory, causal analysis and expert validation to understand the drivers of SDM 137 

performance. We fitted SDMs for 1216 species of insect and bryophyte in the United Kingdom (UK), 138 

using a fairly typical presence/pseudo-absence modelling workflow. We evaluated the performances 139 

of a subset (535; 44%) of these models, both in terms of variance among replicate model fits, and 140 

accuracy as assessed by taxon experts. We used DAGs to conceive plausible models describing the 141 

effects of explanatory variables on SDM performance. We then used multilevel path analysis to 142 

quantify those effects, given our SDM workflow.  143 

Methodology 144 

Species occurrence data 145 

We fitted SDMs using presence-only species occurrence records. The data were supplied by national 146 

recording schemes in the UK, who collate records made by volunteer expert naturalists for their 147 

taxon group of interest. For most taxa, we used the same data as Outhwaite et al. (2019), but 148 

applied additional filters. We only used gridded records collected at 1 km2 or finer between 2000 149 

and 2015 to match the SDM covariate data (supplementary material one), and removed records that 150 

were duplicated in terms of grid cell and species (standard practice for species distribution 151 

modelling). 152 

Species Distribution Models 153 

In this section, we briefly outline the SDM workflow (Fig. 1), but refer the reader to the ODMAP 154 

(Overview, Data, Model, Assessment and Prediction; Zurell et al., 2020) document in supplementary 155 

material one for full details. We used three SDM algorithms to estimate species’ habitat suitability: 156 

Maxent, regularized logistic GLMs and random forests. We used the species occurrence data 157 

outlined above, and pseudo-absences generated according to the “non-overlapping target group” 158 

approach (Cerasoli et al., 2017; Phillips et al., 2009), as response variables. Twenty-five topographic, 159 

land cover and climate variables were used as covariates. We split the data randomly into five 160 

equally-sized subsets, then fitted each algorithm five times, leaving out one subset each time. 161 

Hence, we fitted 15 models for each species, which enabled us to assess the variability among 162 

replicate fits. The models were fitted at a spatial resolution of 1 km2 on the British Ordnance Survey 163 

grid (EPSG:27700). Ensemble predictions were generated for each species by taking a weighted 164 

average (based on AUC) of the fifteen replicate model fits (Boyd et al., 2022).  165 

We use the R (R Core Team, 2019) package soaR (https://github.com/robboyd/soaR) to fit, average 166 

and evaluate the models. soaR wraps around the packages glmnet, randomForest (Breiman et al., 167 

2018) and dismo (Hijmans et al., 2017).  168 

https://github.com/robboyd/soaR


 169 

Figure 1. Species distribution modelling and assessment workflow. See the supplementary ODMAP 170 

document for full details (SM2).  171 

Expert assessments of SDMs and data  172 

Taxon experts (Table 1) assessed the available records and ensemble SDM predictions, in geographic 173 

space, for all species in their group of interest (or a random subset of 100 species in the case of the 174 

more speciose bryophytes; Table 1). Amongst other questions, they were asked 1) whether the 175 

available records for each species cover its environmental niche; 2) whether the available records for 176 

each species cover its geographic range; and 3) whether the map of predicted habitat suitability for 177 

each species (i.e. the ensemble SDM) reflects its true environmental niche in geographic space. The 178 

experts provided their answers to these questions on Likert scales ranging from 1 (excellent 179 

coverage/excellent habitat suitability predictions) to 5 (extremely poor coverage/extremely poor 180 

habitat suitability predictions).  181 

Each expert was provided with a tailored R Shiny app, which included the predicted maps of habitat 182 

suitability, a map of the records used to fit the SDMs, maps of the environmental layers used to fit 183 

the models, and various questions including those listed above. Example code, containing all of 184 

these questions, can be found in (Pescott, 2022). 185 

Table 1. A taxonomic breakdown of the number of species modelled, the number of models 186 

assessed, the assessors initials (see author list) and their affiliations. 187 

Taxonomic group Number of 
species 
modelled  

Number of 
species 
assessed 

Expert initials Recording scheme  

Mosses, liverworts 
and hornworts 
(Bryophyta, 
Marchantiophyta, and 
Anthocerotophyta) 

782 100 CDP British Bryological Society 
(https://www.britishbryol
ogicalsociety.org.uk/) 

Centipedes 
(Chilopoda) 

29 29 TB British Myriapod and 
Isopod Group, Centipede 

https://www.britishbryologicalsociety.org.uk/
https://www.britishbryologicalsociety.org.uk/


Recording Scheme 
(https://www.bmig.org.uk
/) 

Dragonflies (Odonta) 46 46 PT British Dragonfly Society 
Recording Scheme 
(https://british-
dragonflies.org.uk/) 

Hoverflies (Syrphidae) 226 226 RM Dipterists Forum, Hoverfly 
Recording Scheme 
(http://hoverfly.uk/hrs/)  

Mayflies 
(Ephemeroptera) 

38 38 CM Riverfly Recording 
Schemes: Ephemeroptera 
(http://www.ephemeropt
era.org.uk/) 

Soldierflies and allies 
(Lower Brachycera) 

95 95 MH Soldierflies and Allies 
Recording Scheme 
(http://soldierflies.brc.ac.
uk/) 

 188 

Conceptual models describing SDM performance 189 
Measures of SDM performance 190 

We considered two distinct aspects of model performance: accuracy and the variability among 191 

replicate models fits. Accuracy was assessed by the experts (see question 3 above). This can be 192 

considered a measure of discrimination ability because the experts based their judgements on 193 

whether habitat suitability was predicted to be higher at more suitable locations and vice versa. The 194 

variability among replicate model fits was calculated as the sum of the variance of habitat suitability 195 

across grid cells (hereafter “variance”). This measure includes the variability among algorithms and 196 

models fitted to different data subsets. Hence, it is in part a measure of sampling variability—i.e. the 197 

variation in some statistic, here habitat suitability—among samples.  198 

Explanatory variables 199 

We assumed that SDM accuracy and variance are functions of five variables: species’ prevalence (see 200 

below), sample size, expert-assessed niche completeness (the degree to which the available records 201 

cover the species’ environmental niche), expert-assessed range completeness (as niche 202 

completeness but for the species’ geographic range) and expert assessor identity. There are many 203 

variables that have been shown to affect SDM accuracy—such as the choice of SDM algorithm, 204 

covariates and pseudo-absence strategy—that we do not consider here. We hold these variables 205 

constant in our SDM workflow so have effectively conditioned on them. 206 

The explanatory variables were measured or derived in different ways. Range and niche 207 

completeness were assessed by the experts and reported on a five-point Likert scale as described 208 

above. Sample size is simply the number of 1 km grid cells (EPSG:27700) in which each species was 209 

recorded from 2000–2015 (i.e. an imperfect measure of range size). We use the term prevalence to 210 

describe an index of species’ range size that corrects for survey incompleteness, based on expert-211 

assessed range completeness. Specifically, prevalence equals sample size divided by range 212 

completeness. Prevalence is low where sample size is low and expert-judged range completeness is 213 

http://hoverfly.uk/hrs/


high (i.e. where recorded range size at 1km is low despite the fact that a high proportion of the 214 

species’ range has been sampled), and vice versa.  215 

Conceptual models 216 

We used DAGs to conceive plausible conceptual models depicting the effects of the explanatory 217 

variables on SDM accuracy and variance. DAGs are non-parametric, and are distinct from the 218 

statistical models used to analyse them (see “Statistical analysis of conceptual models” below). Our 219 

general strategy was to start with a theoretically plausible DAG, test whether it was empirically 220 

plausible, then refine it accordingly (similar to steps 1-3 in Grace & Irvine, 2020). The primary goal of 221 

model testing was to ascertain whether a DAG’s (conditional) independencies were consistent with 222 

our data. If these were consistent, we then assessed the support for the DAG’s implied mediation 223 

pathways using the “joint significance” method (MacKinnon et al., 2002). At no point did we posit a 224 

theoretically implausible DAG just to satisfy these criteria. 225 

Using this strategy, we rejected two DAGs then arrived at two DAGs that were both theoretically and 226 

empirically plausible. It was not clear which of these models was the most plausible, so we consider 227 

them both hereafter. Full details of the model conceptualisation and testing process can be found in 228 

the R Markdown document in supplementary material two. Justifications for the DAG structures are 229 

given below. 230 

The first of the plausible DAGs, hereafter “Model one” (Fig. 2), supposes that SDM accuracy is 231 

caused by all five of the explanatory variables described above. Sample size is assumed to have a 232 

direct effect; this effect has been reported across a range of species with varying characteristics 233 

(Wisz et al., 2008). Sample size itself is assumed to be caused by species’ prevalence and range 234 

completeness: for a given prevalence, larger range completeness equals higher sample size; likewise, 235 

for a given range completeness, larger prevalence equals larger sample size. Hence, prevalence and 236 

range completeness have indirect effects on accuracy mediated by sample size. Prevalence is 237 

assumed to have a direct effect on accuracy, as reported by Santika (2011). Prevalence also has 238 

direct effects on range completeness and niche completeness: it is more difficult for a recorders to 239 

cover a given proportion of a prevalent species’ range and niche than a common one. Hence, 240 

prevalence has an indirect on accuracy mediated by range and niche completeness, and, because 241 

range completeness has an effect on sample size, by sample size. Niche completeness has a direct 242 

effect on accuracy: SDMs estimate species' environmental niches, so it is logical to assume that 243 

sufficient coverage of those niches will affect their ability to do so. Niche completeness and range 244 

completeness are assumed to have a common cause in “recorder behaviour”, which is defined as 245 

recorders’ decisions about where to sample geographically and hence environmentally. The recorder 246 

behaviours determining this pattern in our aggregated datasets are unobserved. 247 

In terms of variance, Model one supposes that sample size has a direct effect. Recall that we 248 

calculated variance across replicate model fits, which varied in terms of algorithm and occurrence 249 

data. Grimmett et al. (2020) showed that the variability among SDM predictions from different SDM 250 

algorithms was lower at high sample sizes. Likewise, variability among models fitted to data subsets 251 

should be lower at high sample sizes. This is because smaller samples are more likely to be unusual 252 

(different from the population) by chance, which increases the sampling variability (Lohr, 2022).  253 

In addition to sample size, model one assumes that species’ prevalence has a direct effect on SDM 254 

variance. Syphard & Franklin (2009) showed that species’ prevalence affects the congruence of 255 

spatial predictions among SDM algorithms, which is one component of our measure of SDM 256 

variance. Furthermore, we suspect that variability among model fits using the same algorithm will be 257 



larger for prevalent species. Our theoretical justification for this effect is that there is less variability 258 

in the types of habitats in which rarer species occur; no matter which subsample of the data is 259 

considered, there will only be occurrence data from those habitats. Hence, the models will produce 260 

more consistent predictions (when sample size is conditioned on).  261 

Niche completeness is the final variable assumed to have a direct effect on variance by Model one. 262 

We suspect that different SDM algorithms will respond differently to low niche completeness, which 263 

will result in increased variance among the predictions from those algorithms. For example, random 264 

forests and Maxent can be relatively complex, so are able to fit—or overfit—the available data 265 

closely. On the other hand, the regularized GLMs do not overfit the data by definition. This means 266 

that, where niche completeness is low, Maxent and random forests can be expected to produce 267 

different predictions to the GLMs in geographic locations and environments that have not been 268 

sampled (Werkowska et al., 2017), which would be reflected by an increase in our measure of 269 

variance.  270 

After preliminary testing (supplementary material two), the data provided mixed support for the role 271 

of sample size in Model one. There was evidence that sample size mediated the effect of prevalence 272 

on accuracy. However, there was only weak evidence for an effect of range completeness mediated 273 

through sample size (supplementary material 2, p. 12), and models including sample size did not 274 

explain appreciably more of the variance in accuracy than those without it (see “Results” and 275 

supplementary material 2, p. 21). Hence, we devised a model (hereafter “Model two”) in which it is 276 

assumed that sample size has no effect on accuracy (Fig. 3). That is to say, Model two supposes that 277 

range completeness has only a direct effect on accuracy, and none of the effect of prevalence on 278 

accuracy is mediated through sample size.  279 

Statistical analysis of conceptual models 280 

We used piecewise path analysis to estimate the effects of the explanatory variables described 281 

above on SDM accuracy and variance, using the R package piecewiseSEM (Lefcheck, 2016). Path 282 

analysis is the process of estimating path coefficients for each arrow, or “edge”, in a DAG (Grace, 283 

2006). They are equivalent to the coefficients estimated by regressing the variable on the receiving 284 

end of an edge on the variable from which the edge originates; that is to say, by regressing the 285 

“child” on its “parent” in DAG parlance. Where one variable affects another via more than one 286 

pathway (i.e. where a child has more than one parent), the path coefficient for one parent is equal 287 

to the partial regression coefficient obtained by regressing the child on that parent whilst 288 

conditioning on all other parents (i.e. multiple regression). In our analysis, for ease of interpretation, 289 

we standardised the path coefficients using the z transformation.  290 

Path coefficients indicate the direct effect of each parent on its child, but these can be used to 291 

calculate indirect and total effects (Sobel, 1982). One variable has an indirect effect on another 292 

where there is an intermediate variable (mediator). Indirect effects may be subdivided into specific 293 

and total indirect effects. A specific indirect effect is the product of all path coefficients in one 294 

pathway; for example, prevalence → n → accuracy in Fig. 1. The total indirect effect of one variable 295 

on another is the sum of the specific indirect effects over all pathways linking the them (Preacher & 296 

Hayes, 2008; Tarling, 2009). The total effect of one variable on another is the sum of its direct effect 297 

and total indirect effect (Grace, 2006; Tarling, 2009).  298 

To assess the uncertainty associated with the estimated effects, we used nonparametric 299 

bootstrapping. We resampled the data with replacement to create 1000 bootstrap samples, fitted 300 

models to each sample, and report the 95% (percentile) confidence intervals for each effect across 301 

samples.   302 



One might expect the expert-assessed variables in our analysis to differ systematically among taxon 303 

groups and assessors (recalling that one assessor evaluated the models for each taxon group). For 304 

example, the experts might simply differ in what they perceive to be an accurate model, or what 305 

constitutes “very good” coverage of a species’ range. Or perhaps expert-assessed accuracy will vary 306 

between taxon groups if, say, the environmental covariates are more appropriate for some groups 307 

than others. 308 

To assess the extent of any systematic differences between taxon groups in terms of expert-scored 309 

accuracy, we calculated their intraclass correlation coefficients. The respective values 0.08, 0.25 and 310 

0.23 (supplementary material 2, p. 21), indicating that the data are not independent within 311 

assessors. Hence, we include a random intercept for assessor identity in the portions of Models one 312 

and two in which accuracy, range completeness or niche completeness are the response variable. 313 

Sensitivity analysis 314 

Piecewise path models are based on linear regression and so are bound by the same assumptions. 315 

These include the assumptions that the response variables are numeric and normally distributed, 316 

which our data violate. Nevertheless, we proceeded with piecewise path models because it has been 317 

oft demonstrated that linear regression is robust to such violations (e.g. Norman, 2010).  318 

The robustness of linear regression notwithstanding, we assessed the sensitivities of our results to 319 

the choice of analytical method. By analytical method we mean statistical model, which is different 320 

to the non-parametric causal models described above. We analysed both causal models using 321 

several analytical methods, which varied in terms of how they treat the response variable expert 322 

score (ordinal or numeric), how they accounted for assessor identity (either by complete pooling, 323 

random intercepts or fixed effects), and how model fitting was achieved (e.g. covariance- or 324 

piecewise least-squares-based). Four of the five additional analytical methods gave roughly identical 325 

results (supplementary material three), so we only present the results from the multilevel piecewise 326 

path models here.  327 

Results 328 

Models one and two are highly congruent. They explain identical proportions (to two decimal places) 329 

of the variation in accuracy (0.16) and variance (0.35). The models also generally agree on the 330 

directions and magnitudes of the effects of each explanatory variable on accuracy and variance, and 331 

whether the confidence intervals span zero. The only exception is the effect of prevalence on 332 

accuracy. The standardised path coefficient is -0.23 in model one, and -0.05 in model two. Both 333 

coefficients include zero in their 95% confidence intervals, however.  334 

Both models agree that niche completeness is the only explanatory variable to have a direct effect 335 

on accuracy (Table 2). This effect is positive, as one would expect from ecological theory. Both 336 

models also suggest that prevalence has a total indirect effect on SDM accuracy (Table 2). We 337 

present this effect for transparency, but it cannot be meaningfully interpreted. We expand on this 338 

point in the Discussion below.  339 

Models one and two make the same assumptions about what determines variance, so their path 340 

coefficients are identical. Sample size, species’ prevalence and niche completeness all have strong 341 

direct effects on variance. The effect of niche completeness is negative—as it increase variance 342 

decreases. The effects of species’ prevalence and sample size are positive—as they increases 343 

variance does too. That is, predictions for widespread species with large sample sizes are most 344 

variable. Prevalence has the strongest direct effect. Prevalence and range completeness also have 345 

indirect effects on variance; prevalence has the stronger of these effects.   346 



 347 
Figure 2. Directed Acyclic Graph (Greenland et al., 1999) depicting Model one’s assumptions about 348 

what determines SDM accuracy and precision. The right-hand portion of the figure indicates that we 349 

included random intercepts in the model. Specifically, we allowed the intercepts to vary by assessor 350 

identity (and hence taxon group) in the portions of the model in which range completeness, niche 351 

completeness or accuracy is the response variable, because these were all expert assessed. The path 352 

coefficients were estimated using piecewise path analysis and were standardised using the z 353 

transformation. Bootstrapped 95% confidence intervals are shown in the parentheses; asterisks 354 

indicate that these do not span zero. For ease of interpretation, we only present the path 355 

coefficients for edges leading to accuracy and variance, because these are the variables of interest. 356 

 357 



Figure 3. Directed Acyclic Graph (Greenland et al., 1999) depicting Model two’s assumptions about 358 

what determines SDM accuracy and precision. The right-hand portion of the figure indicates that we 359 

included random intercepts in the model. Specifically, we allowed the intercepts to vary by assessor 360 

identity (and hence taxon group) in the portions of the model in which range completeness, niche 361 

completeness or accuracy is the response variable, because these were all expert assessed. The path 362 

coefficients were estimated using piecewise path analysis and were standardised using the z 363 

transformation. Bootstrapped 95% confidence intervals are shown in the parentheses; asterisks 364 

indicate that these do not span zero. For ease of interpretation, we only present the path 365 

coefficients for edges leading to accuracy and variance, because these are the variables of interest. 366 

Table 2. Direct, indirect and total effects of the explanatory variables on the response variables 367 

expert score and uncertainty from models one and two. Total indirect effects are the sum of the 368 

specific direct effects in each pathway linking one variable to another; the specific direct effects for 369 

each pathway are the product of the path coefficients in that pathway. Total effects are the sum of 370 

the direct and total indirect effects. 95% confidence intervals are given in parentheses. Confidence 371 

intervals were obtained by bootstrapping, but the R2 values and effect point estimates are from the 372 

models fitted to the original data. Red-filled cells indicate effects that are likely to be confounded 373 

(see the “Discussion” for more on this). 374 

Model Response  R2 Explanatory 
variable 

Direct effect Total indirect 
effect 

Total effect 

One 
 

Accuracy 0.16 n 0.26 (-0.21, 
0.78) 

- 0.26 (-0.83, 
0.37) 

Niche 
completeness 

0.36 (0.22, 
0.50) 

- 0.36 (0.23, 
0.50) 

Prevalence -0.23 (-0.75, 
0.29) 

0.34 (-0.19, 
0.86) 

0.11 (0.01, 
0.20) 

Range 
completeness 

-0.07 (-0.19, 
0.07) 

0.02 (-0.02, 
0.05) 

-0.05 (-0.17, 
0.08) 

Variance 0.35 n 1.19 (0.72, 
1.68) 

- 1.19 (0.72, 
1.68) 

Niche 
completeness 

-0.42 (-0.49, -
0.34) 

 - -0.42 (-0.49, 
-0.34) 

Prevalence -1.49 (-1.95, -
1.09) 

1.10 (0.63, 
1.56) 

-0.41 (-0.46, 
-0.36) 

Range 
completeness 

- 0.08 (0.05, 
0.11) 

0.08 (0.05, 
0.11) 

Two Accuracy 0.16 Niche 
completeness 

0.36 (0.22, 
0.50) 

- 0.36 (0.22, 
0.50) 

Prevalence 0.05 (-0.05, 
0.14)  

0.06 (0.10, 
0.21) 

0.11 (0.01, 
0.21) 

Range 
completeness 

-0.04 (-0.17, 
0.08) 

- -0.04 (-0.17, 
0.08) 

Variance 0.35 n 1.19 (0.72, 
1.68) 

- 1.19 (0.72, 
1.68) 

Niche 
completeness 

-0.42 (-0.49, -
0.34) 

 - -0.42 (-0.49, 
-0.34) 

Prevalence -1.49 (-1.95, -
1.09) 

1.10 (0.63, 
1.56) 

-0.41 (-0.46, 
-0.36) 



Range 
completeness 

- 0.08 (0.05, 
0.11) 

0.08 (0.05, 
0.11) 

 375 

Discussion 376 

In this paper, we used expert validation, graph theory and causal analysis to shed light on the drivers 377 

of SDM performance. We considered two components of model performance: accuracy, as assessed 378 

by the experts; and the variance among replicate model fits. We constructed DAGs depicting the 379 

effects of various explanatory variables on SDM performance, then analysed those DAGS using 380 

piecewise path models.  381 

We suggest that the experts’ knowledge is likely to be more informative than any one dataset that 382 

could have been used for model validation. Each expert is a national curator of the data for their 383 

taxon group. As such, they have much local, national and international field knowledge, and have 384 

written about the focal species’ autecologies (e.g. for distribution atlases and in field guides). Hence, 385 

their assessments arguably reflect an unrivalled synthesis of information.  386 

Our models suggest that prevalence has total indirect effects on SDM accuracy and variance, but 387 

these cannot be meaningfully interpreted. The problem is that recorder behaviour is unobserved, 388 

and it is difficult to see how it could be estimated (it covers e.g. geographic sampling biases and 389 

preferential sampling of some species in some locations). This means that the effects of prevalence 390 

on range completeness and niche completeness are confounded because it was not possible to 391 

condition on recorder behaviour. In turn, this is likely to have biased the total indirect effects of 392 

prevalence on accuracy and variance. That said, the structure of the DAGs is such that this will not 393 

bias any other effects reported; on the contrary, assuming our DAGs are true, inclusion of range and 394 

niche completeness enables unbiased estimation of the remainder of the path coefficients. 395 

Putting the above to one side, we found that niche completeness was the only explanatory variable 396 

to have an effect on expert-assessed accuracy (Table 2). Ours is not the first study to report this 397 

effect. For example, Konowalik & Nosol (2021) showed that SDMs fitted to datasets with greater 398 

environmental coverage generally produced models with greater discrimination abilities for one 399 

species of plant, as indicated by AUC and an expert assessor. However, we have demonstrated this 400 

on a much larger scale (i.e. across 534 species) and in an explicitly causal framework. 401 

Contrary to previous studies, we found little evidence that sample size affects SDM accuracy (Fig. 3). 402 

Model one includes an effect of sample size on accuracy, whereas Model two does not; 403 

nevertheless, Model one does not explain more of the variance in accuracy (Table 2). Furthermore, 404 

in model one the 95% confidence interval for the path coefficient denoting the effect of sample size 405 

on accuracy spans zero. We analysed Model one using five additional analytical methods (e.g. 406 

cumulative link ordinal regression, covariance-based path models) in supplementary material 3. 407 

Under the admittedly arbitrary assumption that p > 0.2 indicates little evidence for an effect, four of 408 

the five additional methods concur that there is little evidence for an effect of sample size on SDM 409 

accuracy, given the assumptions of Model one. 410 

We suggest that the previously reported associations between sample size and SDM accuracy are 411 

likely to reflect improved coverage of species’ environmental niches at higher sample sizes; that is to 412 

say, in causal terms, sample size is a confounder of the direct effect of niche coverage on SDM 413 

accuracy. For example, Wisz et al. (2008) and Feeley & Silman (2011) subsampled datasets for 414 

several species and showed that models fitted to the smaller subsets were less accurate. In both 415 

cases, however, the authors acknowledged that coverage of species’ environmental niches was 416 

lower in the smaller samples, clearly demonstrating the potential for confounding. However, neither 417 



paper discussed this in any detail, instead focusing on sample size without reference to niche 418 

completeness. We suspect that the same is true of other studies, particularly those which did not 419 

disclose variation in niche completeness with sample size (e.g. Hernandez et al., 2006). 420 

Another study to have claimed an effect of sample size on SDM accuracy is the seminal paper of 421 

Stockwell & Peterson (2002). Like the studies mentioned above, these authors subsampled complete 422 

datasets to manipulate sample size. However, they then created training datasets with n = 1000 423 

presences by resampling these subsamples with replacement. Hence, they actually held sample size 424 

constant, but varied the degree to which those samples reflected the full datasets. It is likely that 425 

samples more closely resembling the full dataset covered more of each species’ environmental 426 

niche, again demonstrating the potential for confounding. 427 

The spurious effect of sample size on SDM accuracy can be demonstrated using our data (final 428 

section in supplementary material three). We regressed SDM accuracy on sample size, and the 429 

coefficient was highly significant. We then included niche completeness as an additional 430 

independent variable, and the effect of sample size became highly insignificant and reduced in 431 

magnitude. This result was evident using both ordinary linear regression, and cumulative link ordinal 432 

regression with random intercepts for assessor ID. 433 

Other than the confounding effect of niche completeness, there are two alternative explanations for 434 

the discrepancy between ours and others’ findings about the effects of sample size on SDM 435 

accuracy. The first is that we did not fit SDMs for species recorded in fewer than ten grid cells. We 436 

took this decision because we fitted the models using five-fold cross validation, which further 437 

reduced the sample size for any given fit. It is possible, however, that SDM accuracy is more sensitive 438 

to sample size where n < 10. 439 

Another explanation for the lack of an effect of sample size on accuracy could be that we omitted an 440 

important explanatory variable in Model one. An obvious example is niche breadth. It has been 441 

reported that niche breadth is negatively associated with SDM accuracy (Tessarolo et al., 2021), and 442 

one might reasonably assume that it is positively associated with sample size. Using the rules of 443 

omitted variable bias (Angrist & Pischke, 2009), it can be shown that in these circumstances our 444 

estimate for the effect of sample size on accuracy would be negatively biased.  445 

Whilst omitting niche breadth from Model one could negatively bias the estimated effect of sample 446 

size on SDM accuracy, we suspect that the extent of this bias would be small. We calculated the 447 

number of land cover classes (Morton et al., 2011) on which each species was recorded as a proxy 448 

for its niche breadth. This is not a perfect proxy for niche breadth, particularly for the invertebrates, 449 

but we suspect that it is a reasonably strong correlate thereof at the scale of our models (1 km2). The 450 

number of land cover classes on which species have been recorded is very weakly correlated with 451 

the residuals from Model one (r = 0.08, p = 0.07; supplementary material three), which implies that 452 

the extent of the omitted variable bias is small. This could reflect the fact that niche breadth is likely 453 

to be strongly correlated with species’ prevalence (Slatyer et al., 2013), which we do include in the 454 

model. Hence, prevalence should explain a similar portion of the variance in accuracy to niche 455 

breadth.  456 

Alternative explanations notwithstanding, we suggest that the confounding effect of niche 457 

completeness is the most logical explanation for our finding that sample size has little effect on SDM 458 

accuracy. This is worrying because analysts frequently use sample size as the sole criterion when 459 

deciding whether or not to fit SDMs for a given species (e.g. Amini Tehrani et al., 2021; Hoveka et al., 460 

2020, 2022; Spiers et al., 2018; Zellmer et al., 2019). We agree with Santini et al., (2021), who noted 461 



that, of the studies making methodological recommendations in the SDM literature, those making 462 

convenient recommendations (e.g. proceed if you have a sample size of at least n) tend to be more 463 

favourably received and widely cited. We appeal to analysts to think more critically and consider 464 

more nuanced (and ecological!) aspects of their data such as niche completeness.   465 

Assessing niche completeness is more difficult than calculating sample size, but there are several 466 

ways that one might go about this. One option is to consult experts as we did here. Another is to use 467 

range completeness as a proxy for niche completeness on the assumption that these are highly 468 

correlated; the analyst could then compare the distribution of records to published range maps, for 469 

example. Tools to assess the environmental representativeness of species occurrence data also exist 470 

(e.g. Boyd et al., 2021). Where additional data thought to cover a species’ niche are available—e.g. 471 

coarse-scale data from an atlas, or a digitised range map—these tools could be used to calculate 472 

niche coverage relative to the more complete data.  473 

Whilst we found little evidence for an effect of sample size on SDM accuracy, we found that SDM 474 

variance increased with sample size (when controlling for the other covariates; the raw correlation 475 

was negative). It seems unlikely that increasing sample size results in greater sampling variability in 476 

estimated habitat suitability scores. Rather, the effect of sample size on our measure of variance 477 

probably reflects increased inter-algorithm variability at high sample sizes (but see Grimmett et al. 478 

2020).  479 

One explanation for increased inter-algorithm variability at large sample sizes could be an increased 480 

disparity in algorithm complexity. For example, as sample size increases, Maxent will consider an 481 

increasing number of “feature classes” (Merow et al., 2013), which are essentially response curve 482 

shapes. This increase in complexity could result in predictions that differ from the simpler GLMs, 483 

thus explaining the increase in our measure of variance with sample size.  484 

In addition to sample size, we also found that species’ prevalence has a strong effect on SDM 485 

variance: models for widespread species tend to be less precise. This is a feature of the species’ 486 

autecology and not something that the analyst can change. Again, then, we suggest that priority 487 

should be given to collating data covering as much of the focal species’ environmental niche as 488 

possible, thereby increasing the chance that the model will be accurate. Indeed, this will also 489 

increase the chance that the SDM is precise (Table 2).   490 

An important implication of our results is that the common practice of “stacking” individual species’ 491 

SDMs to estimate species richness or similar is a risky business. Model performance is not random; 492 

rather, as we have shown, it varies with species traits and data characteristics. Hence, there is no 493 

reason to suppose that the errors will average out over many species. There could be serious biases 494 

in play.  495 

We do not claim that our causal models are true. However, in depicting them as DAGs we have laid 496 

bare our assumptions about what determines SDM performance in a falsifiable manner. We believe 497 

that this is an improvement on much of the (vast) literature proffering advice on fitting SDMs, and 498 

that it clarifies the causal basis of much of this advice in a way that can be built upon clearly. 499 
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