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Abstract 11 

Random DNA barcodes are a versatile tool for tracking cell lineages, with applications 12 
ranging from development to cancer to evolution. Here we review and critically evaluate 13 
barcode designs as well as methods of barcode sequencing and initial processing of 14 
barcode data. We first demonstrate how various barcode design decisions affect data 15 
quality and propose a new optimal design that balances all considerations we are 16 
currently aware of. We then discuss options for the preparation of barcode sequencing 17 
libraries, including inline indices and Unique Molecular Identifiers (UMIs). Our main 18 
conclusion is that the utility of inline indices is high whereas that of UMIs is low. Finally, 19 
we test the performance of several established and new bioinformatic pipelines for the 20 
extraction of barcodes from raw sequencing reads and for error correction. We find that 21 
both alignment and regular expression-based approaches work well for barcode 22 
extraction, and that error correction pipelines designed specifically for barcode data are 23 
superior to generic ones. Overall, this review will help researchers approach their 24 
barcoding experiments in a deliberate and systematic way.  25 



1 

 

1 Introduction 26 

Observing how clonal populations of cells change over time is key to many problems in 27 
evolution, development, cancer, and other fields. Until recently, tracking cell lineages 28 
was a slow and labor-intensive process (Conklin, 1905; Serbedzija et al., 1989; Holland 29 
& Varmus, 1998; Kretzschmar & Watt, 2012; Hsu, 2015). Recent advances in genetic 30 
engineering and nucleic acid sequencing technologies spurred the development of a 31 
new generation of high-throughput lineage tracking methods based on DNA “barcodes” 32 
(Blundell & Levy, 2014; Woodworth et al., 2017; Kebschull & Zador, 2018; Baron & van 33 
Oudenaarden, 2019; Masuyama et al., 2019; Wagner & Klein, 2020; Dujardin et al., 34 
2021; VanHorn & Morris, 2021). In these approaches, individual cells are tagged with 35 
unique genetic markers called “barcodes”. Many thousands of cell lineages carrying 36 
different barcodes can be tracked within a population over multiple generations using 37 
high-throughput sequencing. Although barcode lineage tracking (BLT) techniques are 38 
fairly nascent, they have already found many applications, e.g., for characterizing T-cell 39 
recruitment (Schumacher et al., 2010), tracing cellular differentiation over the course of 40 
organismal development (McKenna et al., 2016; Frieda et al., 2017; Alemany et al., 41 
2018; Wagner et al., 2018; Weinreb et al., 2020), studying the clonal history of 42 
metastasis in cancer (Bhang et al., 2015; Wagenblast et al., 2015; Roh et al., 2018; 43 
Gutierrez et al., 2021; Umkehrer et al., 2021; Fennell et al., 2022), screening and 44 
characterizing mutant libraries (Giaever et al., 2002; Bell et al., 2014; Wetmore et al., 45 
2015; Johnson et al., 2019; Li et al., 2019; Schubert et al., 2021), identifying the 46 
provenance of microbial strains (Qian et al., 2020), and studying evolutionary dynamics 47 
(Levy et al., 2015; Al’Khafaji et al., 2018; Cira et al., 2018; Nguyen Ba et al., 2019; 48 
Fasanello et al., 2020; Jasinska et al., 2020). With such rapid growth, many methods 49 
have been developed for designing, sequencing and identifying barcodes in the raw 50 
sequence data. Multiple labs have independently developed their own BLT procedures 51 
without necessarily evaluating pros and cons of other methodologies. Here, we review 52 
various existing approaches to BLT experiments and identify some of the best practices 53 
for generating and reading barcodes. 54 
BLT studies fall into two modalities (Woodworth et al., 2017; Kebschull & Zador, 2018; 55 
Baron & van Oudenaarden, 2019). Retrospective studies, which are typically carried out 56 
in the context of development, infer the lineage history of a population of cells based on 57 
naturally occurring somatic genetic variation at highly mutable loci, such as 58 
microsatellites, that can be viewed as barcodes (e.g., (Reizel et al., 2011, 2012). In 59 
prospective studies, random DNA barcodes are introduced into an organism by the 60 
experimentalist to observe future changes. Barcode diversity is usually generated in 61 
vitro, i.e., before the barcodes are integrated into the organism’s genome (e.g., (Giaever 62 
et al., 2002; van Heijst et al., 2009; Bhang et al., 2015; Levy et al., 2015; Johnson et al., 63 
2019; Eyler et al., 2020; Ge et al., 2020). More recent methods have also been 64 
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developed that integrate a targeted-mutagenesis module into the organism which then 65 
generates barcode diversity at the barcode locus in vivo (e.g., (Peikon et al., 2014; 66 
McKenna et al., 2016; Frieda et al., 2017; Kalhor et al., 2018; Raj et al., 2018; 67 
Spanjaard et al., 2018; Chan et al., 2019). In this review, we focus on DNA barcodes 68 
used for prospective lineage tracing, with a specific focus on in vitro barcoding 69 
approaches, although some of the discussion will be relevant to other cases as well. 70 
Early prospective lineage tracking studies generated and engineered barcodes into 71 
individual strains (e.g., different deletion mutants) and then pooled them for the tracking 72 
experiment (Giaever et al., 2002; Smith et al., 2009). Today, pools of barcoded strains 73 
are typically generated by transforming populations of cells in bulk with libraries of 74 
constructs that contain a diversity of DNA barcodes. The number of distinct cell lineages 75 
in such pools can range from hundreds (Cira et al., 2018; Fasanello et al., 2020) to 76 
millions (Bhang et al., 2015; Umkehrer et al., 2021). A barcoded population is then 77 
sampled at one or more timepoints, and the PCR-amplified barcodes are sequenced, 78 
typically on the Illumina platform. The relative abundance of each barcode at each 79 
timepoint can be estimated from these data, which can then be used for downstream 80 
analysis e.g. estimating mutant enrichment over the course of the experiment. 81 

Researchers who seek to use in vitro-generated barcodes for prospective lineage 82 
tracking face a number of choices with respect to barcode design, sequencing and 83 
barcode identification. These include questions regarding barcode length and base 84 
composition, strategies for barcode amplification, methods for extracting barcodes from 85 
raw sequencing data as well as methods for error correction. Previous studies have 86 
implemented a variety of solutions to each of these problems, but we are unaware of 87 
any systematic review or comparison of various approaches. Here we review current 88 
practices in barcode design, sequencing and identification, discuss the implications of 89 
various choices, and identify current best practices for designing and conducting lineage 90 
tracking experiments using DNA barcodes. In the Appendix, we also briefly discuss a 91 
related problem of high-throughput genotyping of clones at a barcode locus. 92 

2 Barcode design, synthesis and integration 93 

Designing DNA barcodes involves a number of decisions. How long should the barcode 94 
locus be? What should be its base composition? Where in the genome will it be 95 
integrated? etc. These choices can have various downstream implications, e.g. for the 96 
number of lineages that can be tracked, for the fidelity of barcode amplification and 97 
sequencing and for the accuracy with which lineage frequencies can be estimated. In 98 
this section, we discuss some design considerations for the barcode locus itself 99 
(Section 2.1) as well as some practical decisions involved in the construction of a 100 
barcoded strain library (Section 2.2). 101 



3 

 

2.1 Structure of the barcode locus 102 

In essence, barcodes are simply random sequences of nucleotides. Most DNA 103 
synthesis companies offer an option of including random nucleotide bases into 104 
oligonucleotide sequences. Such “barcode” oligos are chemically synthesized and then 105 
incorporated into plasmids and/or directly into the genome. In this section, we discuss 106 
only the structure of the barcode locus itself and leave out the discussion of other parts 107 
of the oligos that may be necessary for engineering and sequencing purposes, such as 108 
the presence of PCR priming sites. 109 
The simplest barcodes can be formed by a sequence of random nucleotides, i.e., a 110 
sequence of “N”s in the oligo design (see Wetmore et al, 2015 design in Figure 1A). 111 
Other barcode designs feature short constant “anchor” sequences that break up 112 
“variable” regions (see Levy et al, 2015 and Johnson et al 2019 designs in Figure 1A) or 113 
consist of alternating random bases that are constrained to be strong (“S”, i.e. G or C) 114 
or weak (“W”, i.e. A or T; see Bhang et al, 2015 design in Figure 1A). We show below 115 
that some designs produce barcodes that are less likely to exhibit extreme GC-content 116 
or long repetitive regions (e.g. “AAAAAA”), two features that can lead to high frequency 117 
of errors or biases associated with PCR amplification and sequencing. We then discuss 118 
the considerations that determine the length of the barcode and describe our 119 
recommended barcode sequence. We conclude this section with a brief discussion of 120 

Figure 1. Barcode and sequencing design considerations. A. Structure of the barcode locus and 
examples of published barcode designs. B. Two commonly used barcode amplification strategies,  one-
step PCR (left) and two-step PCR (right). Key features on the primer sequences are indicated and 
explained in boxes. The optional experiment tag region on the template DNA is not shown for clarity. Note 
that in some one-step PCR strategies, inline indices with offsets are included, and sequencing starts at a 
similar location as in the two-step PCR strategy. 
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“pre-multiplexing”, a way of leveraging barcode design to reduce labor and material 121 
costs at the library preparation stage. 122 

Anchors and GC content control 123 
The sequence of the barcode matters. To demonstrate this, we reanalyzed data from 124 
six barcode sequencing datasets (Table S1). We found that the empirical indel error 125 
rate increases exponentially with homopolymer run length (Figure 2A) and with 126 
dinucleotide run length (Figure 2C). For runs with more than 10 repeats of a single 127 
nucleotide or dinucleotide, up to 30% of reads associated with a barcode have an 128 
insertion or deletion in the repetitive sequence. Simulations predict that the prevalence 129 
of repetitive DNA sequences varies with the barcode design, and these predictions are 130 
quantitatively supported by the data (Figure 2B,D). Specifically, long homopolymer runs 131 
are most common in barcodes with homopolymer anchor sequences (e.g. “AA”, Levy et 132 
al. 2015 design, Figure 1A), and long dinucleotide runs are most common in barcodes 133 
with repeating pairs of 2-fold degenerate bases (“WSWS…”, Bhang et al. 2015 design 134 

Figure 2. Barcode design features and error rates. (A) The total indel error rate in homopolymer runs, 
estimated from barcode data from four datasets. (B) The frequency of homopolymer runs of different 
lengths in the empirical and simulated datasets of barcodes with different designs (see Methods for 
details). (C) The total indel error rate in dinucleotide runs, estimated from barcode data from three 
datasets. (D) The frequency of dinucleotide runs of different lengths in the empirical and simulated 
datasets of barcodes with different designs. (E) The distribution of barcode lengths in each empirical 
dataset, using barcodes with at least 20 reads (see Methods for details). (F) The distribution of GC 
content in barcodes in the empirical and simulated dataset. The barcode designs are shown in Figure 1 
and Table S1. 
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(Figure 1A), also used by (Eyler et al., 2020; Ge et al., 2020)) or repeated dinucleotide 135 
anchors (e.g. “CA”, Johnson et al. 2019 design, Figure 1A).  136 
We have also observed that a barcode’s GC content can sometimes dramatically bias 137 
its representation in the sequencing data (Figure S1, unpublished data). This bias could 138 
be driven by GC-content dependent differences in the PCR amplification (Aird et al., 139 
2011; Benjamini & Speed, 2012; Laursen et al., 2017). Furthermore, Figure S1 shows 140 
that the magnitude of this bias has a random component (i.e., the bias is stronger in 141 
some libraries than in others), which could stem from uncontrolled variation in the set-up 142 
of the PCR reaction, purity of the template, etc. These observations also suggest that 143 
GC-content driven biases can be reduced by constraining GC content of all barcodes to 144 
a narrow range. Anchors with balanced GC content (e.g., “CA” anchors as in the 145 
Johnson et al. 2019 design) can help achieve this goal (albeit at the expense of 146 
increasing the frequency of dinucleotide runs), while the “AA” and “TT” anchors used in 147 
(Levy et al., 2015) lead to both low GC-content barcodes (Figure 2F) and a high 148 
occurrence of long homopolymer runs (Figure 2B). A new barcode design we propose 149 
and discuss below is an attempt to minimize each of these potential sources of bias and 150 
error (Figure 2B, D, F, black dashed lines). 151 

Length and information 152 

The choice of barcode length is dictated by a balance between several factors. On the 153 
one hand, barcodes cannot be too long because of current synthesis and sequencing 154 
limitations. Furthermore, longer barcodes, when read by sequencing, will contain 155 
statistically more errors than shorter barcodes. On the other hand, length of the barcode 156 
locus, together with its structure and base composition, determine the amount of 157 
information that the locus can encode, which in turn limits the number of distinct 158 
lineages that can be tracked. Specifically, the information content in bits of each 159 
barcode position is given by the logarithm with base 2 of the number of alternative 160 
nucleotides that can be present at the position. For example, each position where any 161 
one of the four nucleotides can be present encodes log24 = 2 bits of information, 162 
positions where only two different nucleotides are admissible encode 1 bit, whereas 163 
anchor positions encode 0 bits. The total information I of a barcode locus is given by the 164 
sum of information across all of its positions, such that there are at most 2I distinct 165 
barcode sequences. In a lineage tracking study, each lineage must be tagged with a 166 
unique barcode, so that a barcode locus with information I enables tracking of at most 2I 167 
distinct lineages. Thus, to track K lineages, the barcode locus must have information 168 
content that exceeds Imin = log2K bits. A barcode locus that consists of L random 169 
nucleotides (the {N}×L design as in Ref. (Wetmore et al., 2015), see Figure 1A) has the 170 
highest information content of 2L bits among all barcodes of length L. Thus, tracking K 171 
lineages requires the barcode of any design to be longer than Lmin = ½ log2K bp. 172 
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In practice, barcodes need to have information I that exceeds Imin by several bits (and, 173 
consequently, whose length exceeds Lmin by several bp). Recent studies have 174 
successfully tracked K = 105 to K = 106 lineages (Imin between 16.6 and 19.9 bits and 175 
correspondingly Lmin between 8.8 and 10 bp) with barcodes with length between 15 to 176 
20 bp and information content between 30 and 40 bits (see Figure 1A;  (Levy et al., 177 
2015; Johnson et al., 2019; Eyler et al., 2020; Ge et al., 2020; Jasinska et al., 2020; 178 
Borchert et al., 2021)). 179 
There are two reasons why I must exceed Imin. First, since cells acquire barcoded DNA 180 
constructs at random, the barcode library must be diverse enough to ensure that the 181 
probability that two cells acquire the same barcode is small. If the frequency of the most 182 
common barcode sequence in the library is fmax and K cells are barcoded, then each 183 
barcode sequence is typically introduced into at most one cell whenever Kfmax ≪ 1. If all 184 
barcodes are represented in the library equally (so that their frequencies are 2–I), this 185 
condition is always satisfied whenever I > Imin. However, the distribution of barcode 186 
frequencies in the library is seldom uniform (Klein et al., 2020), in which case fmax > 2–I, 187 
so that it is advisable to choose barcodes with information content exceeding Imin by at 188 
least a few bits to account for random sampling. 189 
The second reason to increase I further is that barcode sequences cannot be 190 
synthesized or read with perfect accuracy. While errors are inevitable, good barcode 191 
designs account for error statistics and enable researchers to correct at least some of 192 
them. Sequencing errors can be accounted for most easily. On the Illumina platform, the 193 
error rate is estimated to be ≤ 0.4% per sequenced nucleotide (Stoler & Nekrutenko, 194 
2021), such that up to 7.7% of reads of a 20 bp (40 bit) barcode are expected to contain 195 
at least one error and up to 0.3% are expected to contain two or more errors. Good 196 
barcode designs ensure that the true barcode sequence can be correctly inferred 197 
despite these errors. All error correction methods rely on the premise that true barcode 198 
sequences are sufficiently sparse in the sequence space, so that they all differ from 199 
each other at least at 2, or, better yet, at 4 positions (4-8 bits, see Section 4). 200 
To evaluate the error-correction capacity of a given barcode design when tracking K 201 
lineages, it is useful to calculate the fraction of K random barcodes that have a nearest 202 
neighbor barcode within Hamming distance d. Our simulations of binary barcodes (see 203 
Methods) show that this fraction increases rapidly with K (Figure 3), such that if binary 204 
barcodes of length 30 are used to track K = 105 lineages, about 89.5% of them have 205 
another barcode at Hamming distance 4 or less, which can complicate or compromise 206 
our ability to correct many sequencing errors. However, increasing barcode length to 60 207 
enables one to track K ~ 107 lineages while maintaining the capacity to correct 208 
sequencing errors since only about 0.04% of barcodes have a nearest neighbor within 209 
Hamming distance 6 (Figure 3). 210 
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Optimal barcode sequence 211 
The considerations discussed above place conflicting demands on barcode design. 212 
High information content is most easily achieved by using fully random nucleotides, but 213 
such barcodes have problems with GC content and homopolymer runs (Figure 2). At 214 
the same time, full control of the GC content is achieved at a great reduction of 215 
information or expansion of length (see Figure 1A) and can still have problems with 216 
dinucleotide runs (Figure 2) . Thus, we propose a new barcode design that is optimal in 217 
the sense that it achieves a reasonable balance between all these demands. We 218 
propose interspersing 2-fold degenerate “WS” nucleotides between every three 4-fold 219 
degenerate nucleotides to generate a 38 bp barcode: 220 
“NNNWSNNNWSNNNWSNNNWSNNNWSNNNWSNNNWSNNN”. This sequence has 221 
62 bits of information, a guaranteed GC content between 18% and 72%, and maximum 222 
homopolymer/dinucleotide run lengths of 4 (Figure 2B, D, F, black dashed lines). 223 

Pre-multiplexing 224 
It is often desirable to sequence barcodes from multiple BLT experiments on one 225 
Illumina lane. The standard solution to this problem is to use Illumina indices during 226 
library preparation (Figure 1B and Section 3). However, this approach requires that the 227 
sequencing library is prepared for every sample individually. It is possible to reduce this 228 
labor and material costs by “pre-multiplexing” different BLT experiments. 229 
One pre-multiplexing strategy is to add a short sequence—referred to as the 230 
“experiment tag”—next to the barcode (Figure 1A) and to construct barcoded strain 231 

Figure 3. Fraction of binary barcodes with at least one other barcode within a certain Hamming-
distance radius, as a function of library size. Lines correspond to different radii d, as shown in the 
legend. Panels show barcodes with different lengths and information content. For each size K, five 
replicate libraries of binary barcode sequences were simulated and the resulting fractions were averaged 
over the replicates. 
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libraries for different BLT experiments with different experiment tags (Boyer et al., 232 
2021). Another strategy is to create multiple plasmid libraries (see Section 2.2) with 233 
non-overlapping sets of barcode sequences (Johnson et al., 2019). Of course, these 234 
plasmid libraries must be sequenced to determine which barcodes belong to each set. 235 
The second strategy can be implemented easily only if the number of tracked lineages 236 
is much smaller than the diversity of the library of chemically synthesized barcode 237 
oligos. 238 
With either strategy, pre-multiplexed samples can be pooled together prior to DNA 239 
extraction and library preparation. The identity of the BLT experiment can then be 240 
inferred from the sequence of the “experiment tag” (first strategy) or the barcode itself 241 
(second strategy). In addition to or instead of increasing throughput, pre-multiplexing 242 
can be used redundantly with standard Illumina multiplexing to avoid potential 243 
misidentification of reads due to template switching, index hopping, or primer cross-244 
contamination (see Section 3 and Johnson et al., 2019). 245 

2.2 Synthesis and integration 246 

Once the barcode construct has been designed, the oligonucleotides carrying the 247 
barcodes must be synthesized and engineered into the organism. While an in-depth 248 
discussion of various engineering methods involved in the barcoding process is beyond 249 
the scope of this paper, we outline here the basic steps and then discuss some 250 
considerations related to barcode construct synthesis and to the choice of the locus into 251 
which barcodes are integrated. 252 

Overview of the barcoding process  253 
The barcoding process usually begins with the synthesis of oligonucleotides carrying 254 
the barcode sequences. Such an oligo library is then typically used to generate a library 255 
of larger DNA constructs that are ready to be transformed into the organism of interest.  256 
These constructs are typically integrated into a plasmid backbone and transformed into 257 
Escherichia coli for long-term storage. Before each application, plasmids are harvested 258 
and transformed into the target organism, either directly (Levy et al., 2015) or after 259 
another manipulation step, such as backbone digestion (Jasinska et al., 2020) or 260 
lentivirus generation (McKenna et al., 2016). Sometimes, barcodes are integrated into 261 
the organism’s genome using high-efficiency recombinase systems, such as 262 
transposon-based systems like Tn7(Jasinska et al., 2020), Cre-Lox (Levy et al., 2015), 263 
or CRISPR-Cas9 (Zhu et al., 2019). 264 
It is important to note that the construction of barcoded strain libraries involves multiple 265 
sampling steps, each of which inherently reduces barcode diversity. It is critical to 266 
ensure that sample sizes at each step are large enough that the diversity of the 267 
barcoded strains at the end is sufficient for the purposes of the BLT experiment. It may 268 
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also be useful to sequence the plasmid library before using it for the transformation of 269 
the target organism. 270 

Synthesis 271 
In vitro barcodes are typically generated using chemical oligonucleotide synthesis, 272 
which can result in errors in the length of the barcode as well as its sequence. Filges et 273 
al quantified the error rate of synthesized oligonucleotides from multiple manufacturers 274 
and various purification methods, and found that IDT Ultramer and Eurofins PAGE 275 
oligonucleotides had similarly high purity (~98.4% full-length molecules; (Filges et al., 276 
2021). Oligonucleotides without any purification (“de-salted”) can result in as low as 277 
86% full-length molecules, and should thus be avoided (Filges et al., 2021). In our 278 
experience with IDT, ordering “custom/hand mixed” random nucleotides provided a 279 
more even frequency distribution than “machine mixed” nucleotides (see 280 
https://www.idtdna.com/pages/products/custom-dna-rna/mixed-bases).  281 

Integration locus 282 

In some BLT studies, barcodes are integrated into different, sometimes random, 283 
genomic locations in different lineages (Giaever et al., 2002; Wetmore et al., 2015; 284 
Johnson et al., 2019). But in many others, researchers wish to integrate a barcode into 285 
one specific locus, in which case they need to decide what this locus would be. The first 286 
decision is whether the barcode will be maintained on the chromosome (Levy et al., 287 
2015; Jasinska et al., 2020) or on an extrachromosomal plasmid (Cira et al., 2018). 288 
While the latter strategy is easier to implement, barcodes maintained on plasmids are 289 
less stable (i.e., they can be lost), although stability depends on the organism, growth 290 
environment and the type of plasmid (Friehs, 2004; Shao et al., 2021). 291 
The second question is to identify the specific locus for barcode integration. Some 292 
considerations that will bear on this decision are study-specific, e.g., whether the 293 
barcode needs to be expressed (Wagner et al., 2018). Others are more general, such 294 
as the aforementioned stability requirement, i.e., the requirement that lineages maintain 295 
their barcodes over the course of the experiment. For this purpose, one should avoid 296 
barcode integration into recombination hot-spots or into loci adjacent to mobile genetic 297 
elements. Barcode stability can be further enhanced by integrating the barcode in the 298 
immediate proximity of an essential gene, such as next to an antibiotic resistance 299 
marker (Giaever et al., 2002) or in an intron of an essential gene (Levy et al., 2015). 300 
Another general consideration is that the presence of the barcode should minimally 301 
perturb cellular function. For example, in many evolutionary studies, barcodes should 302 
ideally have no effect on the organism’s fitness, in which case pseudogenes or genes 303 
whose disruption is known to have no effect on fitness in the study environment are 304 
good candidates for integration. 305 
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3 Barcode sequencing 306 

Once a lineage tracking experiment is complete and samples are collected, the next 307 
step is to characterize lineage diversity in these samples by sequencing them at the 308 
barcode locus. Since the number of barcodes per sample is often very large and their 309 
relative abundances can vary by multiple orders of magnitude, sequencing must be 310 
done to a substantial depth, often ≳106 reads per sample. Our discussion here focuses 311 
on the Illumina platform where such depths can currently be achieved at a relatively low 312 
cost. 313 

Barcode amplification and sequencing begins with DNA extraction, usually with 314 
standard organism-specific methods. Then, PCR is used to simultaneously amplify the 315 
barcode locus and attach Illumina adapters necessary to create sequencing-ready DNA 316 
fragments. Both the sequencing-library preparation and the sequencing process itself 317 
introduce errors into the barcode sequence, which creates difficulties in identifying 318 
barcodes in the data and increases noise in the estimates of their frequencies. 319 
However, clever PCR designs can help reduce and correct some of these errors, as 320 
well as reduce labor and sequencing costs. In particular, we discuss the benefits and 321 
pitfalls of using one- versus two-step PCR setups, Unique Molecular Identifiers (UMIs), 322 
inline indices and a few other factors (see Figure 1B). 323 

One- and two-step PCR setups 324 
The simplest way to generate sequencing-ready barcode amplicons from a sample’s 325 
genomic DNA is to PCR-amplify the barcode locus using primers that contain standard 326 
Illumina adapter components, including Illumina multiplexing indices, the sequencing 327 
priming site, etc. We refer to this simplest approach as the “one-step” PCR setup 328 
(Figure 1B). A slightly more complex alternative is the “two-step” PCR setup (Figure 329 
1B). Here, the first PCR is typically carried out for a small number of cycles (2–10). Its 330 
purpose is to attach “overhangs” to template molecules. These overhangs contain 331 
useful components, such as inline indices, UMIs and read offsets, which we discuss in 332 
detail below, as well as a “universal” priming site for the standard Illumina primers used 333 
in the second PCR. The second PCR is typically carried out for a larger number of 334 
cycles (12–25) and results in sequencing-ready fragments. 335 
Both setups have some advantages and disadvantages. A major advantage of the two-336 
step PCR setup is that inline indices can greatly expand multiplexing capacity, which not 337 
only increases throughput but can also improve data quality (see below). This 338 
advantage is traded off against an additional bottleneck in the two-step PCR setup 339 
because a fraction of the original template molecules do not receive overhangs (which 340 
are necessary for in the second PCR) and a fraction of molecules with overhangs are 341 
lost during the cleanup after the first PCR. The advantage of the one-step setup is that it 342 
avoids this bottleneck, potentially reducing noise, and in general involves a bit less 343 
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hands-on work. On the other hand, one-step setup requires (somewhat expensive) long 344 
non-standard primers and, most importantly, lacks the multiplexing capacity endowed 345 
by inline indices. 346 

Inline indices 347 

A major advantage of a two-step PCR setup is that the inline indices added during the 348 
first PCR step greatly expand the multiplexing capacity enabled by standard Illumina 349 
indices (Figure 1B). Like the Illumina indices, inline indices are predefined sequences 350 
that encode sample information. For example, each replicate of a BLT experiment can 351 
be tagged with its own inline index during the first PCR step. In this setup, sample 352 
information can be encoded by a combination of four indices (two Illumina and two 353 
inline). In principle, samples tagged with different inline indices during the first PCR can 354 
be pooled together for the second PCR, although we do not recommend this practice 355 
due to the possibility of template switching events (Kinsler et al., 2022) . 356 

Expanded multiplexing capacity allows for redundant sample encoding whereby all 357 
samples are distinguished from each other by at least two indices, e.g., one inline index 358 
and one Illumina index. One redundant design that we found particularly useful is where 359 
each 5’ inline index is associated with a unique 3’ Illumina index and each 3’ inline index 360 
is associated with a unique 5’ Illumina index. Such redundancy can be used to 361 
effectively detect primer cross-contamination, “index hopping”, and template switching 362 
events that can occur during library preparation or on the Illumina flow cell (Illumina, 363 
2017; Guenay-Greunke et al., 2021; Kinsler et al., 2022). These processes generate 364 
chimeric sequences, which introduce demultiplexing errors that in turn translate into 365 
errors in lineage frequency estimates. In the aforementioned design, most such events 366 
(those that occur in the bulk of the fragment, between the inline indices) generate 367 
“inadmissible” index combinations that can be easily identified and discarded. Using this 368 
approach, we found that ~5% of reads had inadmissible index combinations 369 
(Venkataram et al., 2021), but others have reported rates of up to 43% (Kinsler et al., 370 
2022). Note that, while it is possible to include inline indices in the one-step PCR setup, 371 
their utility would be limited. They cannot expand the multiplexing capacity, but can help 372 
detect some index hopping events (those that occur between the Illumina index and the 373 
inline index that are on the same primer). The rate of index hopping is much higher on 374 
“patterned flow cell” Illumina machines, so we also recommend using a non-patterned 375 
flow cell machine for barcode sequencing whenever possible (Illumina, 2017; Guenay-376 
Greunke et al., 2021; Kinsler et al., 2022). 377 

Unique Molecular Identifiers (UMIs) 378 

The process of preparing a sequencing library introduces a number of potential errors 379 
that may influence the quality of BLT data. In particular, if the number of template 380 
molecules that are being amplified by PCR is small, data will be noisy despite high read 381 
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depth. In addition, sequence-specific biases may arise during PCR (i.e., some barcodes 382 
may be amplified more efficiently than others) which can lead to systematically 383 
inaccurate frequency estimates (Thielecke et al., 2017). The two-step PCR setup allows 384 
researchers to employ Unique Molecular Identifiers, or UMIs, that can help diagnose 385 
these issues. UMIs are random sequences, typically 6 to 10 bp long, present on the 386 
first-step PCR primers (Figure 1B), such that each molecule that serves as a template in 387 
the second-step PCR is tagged with one UMI. Once the final DNA fragment is 388 
sequenced, the UMI appears at the start of each read and can be used to determine 389 
whether multiple reads with the same barcode sequence derive from the same template 390 
molecule (Kivioja et al., 2011). 391 

Although many BLT studies have used UMIs, few have clearly articulated what kinds of 392 
insight can and cannot be gained from them. UMI-tagged barcode data allow us to 393 
calculate two numbers for each barcode: the total number of reads containing the 394 
barcode and the number of unique barcode-UMI combinations among these reads. By 395 
dividing the latter by the former and subtracting this ratio from 1, we can obtain the 396 
fraction of “UMI duplicates”, i.e., the fraction of redundant reads derived from the same 397 
template molecule. To understand how the fraction of UMI duplicates can help diagnose 398 
potential PCR problems, consider two extreme cases of the distribution of UMI 399 
duplicates across barcodes. 400 

At one extreme, the fraction UMI duplicates is close to 1 for most barcodes, which 401 
means that the same barcode is associated with the same UMI on many reads. In other 402 
words, the number of sequenced fragments greatly exceeds the number of original 403 
template molecules, so that most reads derive from a small number of templates. We 404 
refer to this regime as “template-limited”. At the other extreme, the fraction UMI 405 
duplicates is close to zero for most barcodes, which indicates that UMI duplicates are 406 
rare, i.e., almost every read contains a unique barcode-UMI combination. In other 407 
words, the number of original template molecules greatly exceeds the number of 408 
sequenced fragments, so that most templates are sequenced on at most one fragment. 409 
We refer to this regime as “read-limited”. 410 

These regimes differ in two respects. First, given the same total sequencing depth, 411 
estimates of lineage frequencies will be noisier in the template-limited regime than in the 412 
read-limited regime simply because fewer molecules are being counted. In this sense, 413 
the read-limited regime is more cost-effective. Second, in the read-limited regime, UMIs 414 
provide little information about sequence-specific amplification biases because all 415 
templates that are represented in the sequencing data are represented equally (once) 416 
and it is unknown which templates are not represented. In contrast, sequence-specific 417 
amplification biases (if they exist) can be in principle detected in the template-limited 418 
regime because different template molecules may be represented by different numbers 419 
of reads. Such biases can also be to some extent corrected by removing UMI 420 
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duplicates, i.e., by counting unique barcode-UMI combinations rather than counting all 421 
reads carrying each barcode. However, the extent to which such biases can be 422 
corrected strongly depends on the fraction of UMI duplicates in the data. In fact, our 423 
simulations show that the power to correct biases grows slowly with the fraction of UMI 424 
duplicates (Figure S2). For example, if each template molecule is sequenced on 425 
average twice, UMI duplicates comprise 50% of reads, but discarding all them corrects 426 
only 40-70% of the underlying PCR biases. 427 

Even if the biases cannot be corrected fully, removing UMI duplicates will in principle 428 
improve the estimation of lineage frequencies, in any sequencing regime. However, 429 
before removing UMI duplicates, researchers must ensure that the same UMI sequence 430 
is unlikely to associate with two distinct template molecules carrying the same barcode 431 
just by chance. This undesired event can happen if the UMI diversity is low. For 432 
example, if the UMI is only 6 bp long, there are only 46 ≈ 103 distinct UMIs available 433 
during the first PCR. If 104 distinct template molecules with a certain barcode are 434 
eventually sequenced, each UMI will on average associate with 10 different templates. 435 
Removing UMI duplicates in this case would erroneously reduce the abundance of this 436 
barcode by a factor of 10. Thus, we recommend removing UMI duplicates only if the 437 
number of possible UMI sequences is several orders of magnitude larger than the 438 
highest barcode read count. 439 

In summary, the distribution of UMI duplicates can help us determine the sequencing 440 
regime. Sequencing in the read-limited regime will produce data that may contain 441 
unobserved PCR biases which can distort barcode frequencies. Sequencing in the 442 
template-limited regime will produce noisy data that will still contain biases, unless most 443 
of the reads are discarded. Thus, the read-limited regime is preferable in practice 444 
because of its cost-effectiveness, and most BLT studies have been done in this regime 445 
(Levy et al., 2015; Johnson et al., 2019). It appears more prudent to reduce sequence-446 
specific amplification biases with careful barcode design (see Section 2.1). Thus, in our 447 
opinion, if a two-step PCR is required for multiplexing or other practical reasons, it is 448 
easy and beneficial to have UMIs on the first-step primers, but we see no fundamental 449 
issues with single-step PCR setups without UMIs. 450 

Read offsets 451 

Every sequencing-ready fragment contains a priming site for an Illumina sequencing 452 
primer. Although it is possible to design the barcode locus so that sequencing begins 453 
directly at the barcode (Eyler et al., 2020; Ge et al., 2020; Jasinska et al., 2020), the 454 
standard location of the sequencing primer site is downstream of the Illumina index and 455 
upstream of the inline index/UMI region (two-step PCR in Figure 1B). This location 456 
implies that sequencing commences in a region that could have low nucleotide diversity 457 
in the sequencing library. Low diversity, particularly at the beginning of a read, can 458 
substantially reduce base-call accuracy on the Illumina platform (Illumina, 2022). This 459 
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problem is usually remedied with standard methods, such as spike-in of PhiX or by 460 
sequencing a barcode library together with a genomic library on the same lane. A 461 
barcode PCR design feature referred to as “Read offsets” can be used in conjunction 462 
with these methods to further increase nucleotide diversity at the beginning of barcode 463 
reads. The idea is simply to design a set of first-step PCR primers with inline indices or 464 
UMIs of variable length, which create “read offsets” in the downstream regions of 465 
otherwise low diversity (e.g., between the inline index and the barcode). Then, 466 
fragments with different offsets are read by the sequencer asynchronously, which 467 
increases base diversity. 468 

Other ways to minimize errors and bias 469 

In our experience, the quality of barcode sequencing data can vary depending on 470 
several factors, such as the type of polymerase, the PCR purification and size-selection 471 
method. We found that high-fidelity polymerases, especially during the first PCR step, 472 
consistently produce better quality data. We also found that bead-based size selection 473 
coupled with standard gel extraction works reliably better than strict E-gel-based 474 
(Thermo Fisher) size selection. While these simple general practices improve data 475 
quality, some biases remain and require more sophisticated approaches, such as those 476 
discussed above (see Section 2.1). 477 

4 Identifying barcodes in sequencing data 478 

Once the sequencing data has been obtained and de-multiplexed, the final technical 479 
step is to extract barcodes from sequencing reads and estimate the relative 480 
abundances of the lineages. 481 

Barcode extraction 482 

Extracting barcodes from the sequencing reads may appear as a trivial problem at first 483 
glance, given that the structure of the read is known by design. However, the challenge 484 
is that not all reads may have identical structure due to different read offsets (see 485 
Section 3.4), variability in barcode length that arose during synthesis, and errors that 486 
arose during sequencing library preparation and sequencing itself. These challenges 487 
can be solved using either regular expressions (“regex”, e.g. (Johnson et al., 2019; 488 
Chochinov & Nguyen Ba, 2022); or sequence alignment (e.g. (Venkataram et al., 489 
2021)). The former scans each read for certain user-specified patterns of characters, 490 
whereas the latter uses sequence alignments to find the locations of constant regions 491 
(sequence regions shared by all fragments) flanking the barcode before extracting the 492 
barcode sequence between those regions. 493 
We applied both of these approaches to six barcode sequencing datasets (Table S1) to 494 
test their speed and relative accuracy. To compare the two methods, we looked at the 495 
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first 100,000 reads of each dataset and directly compared extracted barcodes. We 496 
found that both methods successfully extracted barcodes from 94-98% of reads, with 497 
the vast majority of the remaining reads excluded due to low quality scores (Table S2). 498 
Excluding reads in which both methods did not extract a barcode (again usually based 499 
on low quality scores), the two methods extracted the same barcode in 97.5-99.5% of 500 
reads (Table S2). The most common exceptions to this overarching concordance are 501 
cases where barcodes have abnormal length. Such barcodes were correctly extracted 502 
by the alignment method but were not extracted or extracted incorrectly by our regex 503 
method, which only allows barcodes to vary in length by at most 2 base pairs. However, 504 
more lenient regular expressions can be developed to allow for more barcode length 505 
variation. Indeed, we used regular expressions with no length constraints to examine 506 
the distributions of barcode length in our datasets, which show that abnormally short  507 
barcodes exist at appreciable frequencies (Figure 2E). Finally, in very rare cases, both 508 
methods extracted incorrect barcode sequences, which happened usually due to 509 
misidentification of the constant regions flanking the barcodes. 510 
In our hands, the regex approach ran 5 to 10 times faster than alignment, processing 511 
~140 million reads in ~2 hours using a basic cloud machine from Deepnote. Given the 512 
speed of the regex approach, we believe it will be the method of choice for most 513 
applications despite a minor loss of accuracy. When using any method, researchers 514 
should pay attention to the fraction of reads without an extracted barcode. This fraction 515 
exceeding a few percent indicates a potential problem with sequencing quality, 516 
misspecification of parameters of the extraction method, or data (e.g., high abundance 517 
of abnormal barcodes). 518 

Error correction 519 

Even with the best practices suggested above, there will be a fraction of cases when the 520 
extracted barcode sequence differs from the sequence of its template molecule. The 521 
naive approach is to simply ignore these errors. However, it would come with a 522 
substantial data waste (and hence, reduced accuracy of lineage frequency estimates). 523 
Assuming a per-base error rate of 0.4% (Stoler & Nekrutenko, 2021), 7.7% of 524 
sequenced barcodes of length 20-bp contain at least one sequencing error; this fraction 525 
is 11% for 30-bp barcodes and 15% for 40-bp barcodes. Moreover, some errors may be 526 
sequence-specific (see Section 2.1), such that the naive approach may produce biased 527 
lineage frequency estimates. Fortunately, a number of error-correction techniques are 528 
available (e.g., (Li & Godzik, 2006; Edgar, 2010, 2016; Ghodsi et al., 2011; James et al., 529 
2018; Wei et al., 2021; Dasari & Bhukya, 2022; Millán Arias et al., 2022)), some of 530 
which were developed specifically for barcode data (e.g., (Zorita et al., 2015; Zhao et 531 
al., 2018; Tavakolian et al., 2022)). 532 

All these methods rely on a few assumptions. True barcodes must be sufficiently sparse 533 
in the sequence space, errors must be relatively infrequent, and an erroneous barcode 534 
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sequence must be more similar to its “parent” barcode than to any other true barcode. 535 
With good barcode design and careful sequencing library preparation, these 536 
assumptions are usually met. Then, error correction can be achieved by clustering 537 
sequenced barcodes according to a sensible similarity metric, such as Hamming or 538 
Levenshtein distance. The primary challenge is computational: BLT data often contains 539 
tens or hundreds of millions of reads, and calculating pairwise distances between all of 540 
them is not feasible. Clever algorithms that limit the number of comparisons are thus 541 
key to computational efficiency. 542 

We selected six error-correction software, two developed for generic sequence data, 543 
DNAClust (Ghodsi et al., 2011) and CD-Hit (Li & Godzik, 2006), and four developed 544 
specifically for barcode data, Bartender (Zhao et al., 2018), Starcode (Zorita et al., 545 
2015), Shepherd (Tavakolian et al., 2022) and “Deletion-Correct”, a modified version of 546 
the algorithm used in Johnson et al. (2019). We first tested their accuracy by performing 547 
error correction on a dataset of simulated barcode reads with realistic errors (Methods). 548 
We found that all four barcode-specific methods successfully identified the vast majority 549 
of barcode sequences and correctly inferred lineage abundances (Pearson R  = 1.0, 550 
Figure 4A-D), while both generic methods performed poorly (Figure 4E,F). While all four 551 
bespoke methods perform very well, they each had some idiosyncrasies. Bartender has 552 
a substantially higher false positive rate than either Shepherd or Starocode, where error 553 
sequences are incorrectly classified as distinct barcodes from the true sequence. 554 
Furthermore, Bartender incorrectly assigned an error sequence as the true barcode 555 
sequence 2.7% of the time and Starcode exhibited incorrect assignment 0.33% of the 556 
time, in comparison to 0.06% for Shepherd and 0% for Deletion-Correct. However, more 557 
than 95% of erroneous sequences inferred by each barcode-specific method were 558 
different from the correct sequences by a single basepair. Meanwhile, while Deletion-559 
Correct did not misidentify any sequences, it failed to detect many barcodes with < 5 560 
reads. 561 
We next applied the barcode-specific methods on three empirical datasets after having 562 
extracted barcodes using the alignment-based method (Levy et al., 2015; Johnson et 563 
al., 2019; Borchert et al., 2021). We found that Shepherd failed to identify many putative 564 
barcodes in these empirical datasets (Table S3). Specifically, the Levy et al, Johnson et 565 
al, and Borchert et al datasets contain 21,000, 10,000 and 2,800 barcodes with at least 566 
10 reads each, respectively, that are found by Bartender, Starcode and Deletion-Correct 567 
but not by Shepherd. All lineages missed by Shepherd but identified by other methods 568 
have abnormal length, suggesting that Shepherd’s filtering criteria are too strict (it filters 569 
out barcodes whose length deviates from the expected by more than 1 bp). While 570 
Starcode consistently ran faster than the other methods, we note that each method took 571 
< 4 minutes to run on a personal desktop computer (AMD Ryzen 5 1600, 16GB RAM), 572 
with the exception of Shepherd on the Levy et al dataset, which took about 30 minutes. 573 
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For all practical purposes, these execution times are sufficiently short to not 574 
substantially influence the choice of method.  575 
In summary, we strongly recommend using barcode-specific methods for error 576 
correction, including Shepherd, Starcode, Bartender and Deletion-Correct. It may be 577 
useful to use multiple methods in conjunction to better account for false positives, false 578 
negatives, incorrect barcode sequence assignment, and barcodes of abnormal length. 579 

6 Summary 580 

We have reviewed the choices faced by researchers during the design, sequencing and 581 
identification of random barcodes, as well as some of the implications of these choices 582 
for the quality of the data. Here we provide a succinct summary of our main points. 583 

Figure 4. Comparison of error correction methods. We tested six published error correction methods 
on a simulated barcode dataset (see Methods for details). The true abundance of each barcode (x-axis) is 
shown against the inferred abundance of the barcode most closely associated with it after error correction 
(y-axis). “R” is the Pearson correlation coefficient of log-transformed data for the successfully inferred 
barcodes. “WS” is the fraction of barcodes where a wrong sequence was inferred by the error correction 
method. Blue points along the x-axis show true barcodes that were not identified (numbers show 
percentages). Green points along the y-axis show identified barcodes that are not associated with a true 
barcode (numbers show percentages). The gray line is the diagonal y = x. 
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Design, synthesis and integration 584 

● The base composition of the barcode sequence strongly affects the error rates 585 
during sequencing library preparation and/or sequencing process itself. In 586 
particular, long homopolymer or dinucleotide runs and extremely high or low GC 587 
content should be avoided. 588 

● Barcode length and base composition limit the number of lineages that can be 589 
tracked. For barcodes with length 20 to 40 bp, the library size should be small 590 
enough that all but a small fraction of barcodes are at Hamming distance of at 591 
least four from each other. 592 

● Barcode oligonucleotides synthesized with HPLC or PAGE purification and hand-593 
mixed random bases result in barcode sequences with lower error rates. 594 

● When choosing the integration locus, consider (i) its stability with respect to 595 
recombination events that can lead to barcode loss and (ii) the implications of 596 
genetic manipulations at the locus for the organism’s physiology. 597 

Sequencing 598 
● Inline indices greatly expand multiplexing capacity and allow for detection of 599 

errors that arise due to template switching, index hopping and primer cross-600 
contamination. 601 

● UMIs help detect whether noise in the data comes from a low number of template 602 
molecules, but their power to correct PCR biases is low. 603 

● Read offsets help improve sequencing quality. 604 
● Use of high-fidelity polymerase during PCR reduces amplification errors. 605 

Identification 606 
● Regex and alignment approaches are both excellent at barcode extraction. 607 

Regex is faster, alignment is slightly better at identifying abnormal barcode 608 
sequences. 609 

● Error correction methods designed specifically for barcode data work much better 610 
than generic methods. Among the former, Shepherd is most accurate on 611 
simulated data but fails to recover barcodes of abnormal length, which appear in 612 
real data at non-negligible frequencies. 613 

7 Methods 614 

7.1 Measuring variation in barcode length 615 

To measure variation in barcode length in the empirical datasets, we extracted 616 
barcodes using regular expressions that strictly match the 10 base pairs before and/or 617 
after the barcode sequence, with no length criteria for the sequence in between. We 618 
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then measured the percentage of barcodes with each possible length, ranging from 10 619 
bp less than expected to 10 bp more than expected. We only considered barcodes with 620 
at least 20 read counts for this analysis to minimize the impact of amplification and 621 
sequencing errors on the distributions. We show this data in Figure 2E. 622 

7.2 Estimation of errors in barcodes with repetitive sequences 623 

We estimated the frequency of errors in repetitive barcode sequences using the 624 
barcode sequences and associated counts extracted using the alignment method. For 625 
both single nucleotides and every combination of two nucleotides (“dinucleotide”), we 626 
looked for barcodes with N repeats of that nucleotide or dinucleotide, with N ranging 627 
from 3 to 13. For the top 50 most abundant barcodes with a particular length run 628 
(excluding barcodes with less than or equal to 100 reads), we searched for putative 629 
error barcodes in which the number of repeats was increased or decreased by 1 or 2, 630 
but the rest of the barcode was identical. In parallel, we searched for single nucleotide 631 
errors derived from each of these barcodes. We added the read counts from both the 632 
indel and single-nucleotide errors to each “true” barcode’s read counts in order to 633 
ensure an accurate denominator when calculating error rates. We report the total indel 634 
error rate in Figure 2, which we calculate as the combined frequency of all four types of 635 
errors (insertions and deletions of 1 or two repeats). 636 

7.3 Simulating barcode designs and measuring barcode 637 

statistics 638 

In order to assess the features of various barcode designs, we simulated 100,000 639 
random barcodes for 5 possible designs, 4 associated with existing designs in our 640 
empirical datasets, and one new design (“N3WS”). We then measured the statistics of 641 
these sets of barcodes, along with the sets of empirical barcodes. For each empirical 642 
dataset, we used the list of barcodes derived from alignment-based extraction, 643 
excluding any barcodes that are not the expected length. For each barcode, we 644 
measured the percentage of GC bases, the longest homopolymer run, and the longest 645 
dinucleotide run (Figure 2). 646 

7.4 Distribution of Hamming distances between barcodes 647 

We generated barcode libraries with 102, 103, 104, 105, 106 and 107 binary barcodes of 648 
length 30, 40 or 60. To reduce computation time, we utilized an approximate-nearest-649 
neighbor algorithm as provided by the python Annoy library to find the nearest neighbor 650 
for every sequence in the dataset, which requires binary input. We report the fraction of 651 
sequences with a Hamming distance to their nearest neighbor less than or equal to 0, 2, 652 
4 or 6, averaged over five replicate simulations for each parameter combination. 653 
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7.5 Identification of UMI duplicates and detection of chimeric 654 

reads 655 

We previously used BarcodeCounter2 to extract barcodes from lineage tracking data 656 
(Venkataram et al., 2021). This software uses inline and Illumina index information to 657 
identify chimeric reads during sample demultiplexing and provides a count of UMI 658 
duplicates found for each barcode within each sequenced sample. We report chimeric 659 
read and UMI duplicate rates for the lineage tracking data from (Venkataram et al., 660 
2021). 661 

7.6 Simulations of bias detection using UMIs 662 

We simulated the process of template sampling in order to assess the utility of removing 663 
UMI duplicates in correcting biases in barcode frequency that occur during library 664 
preparation. We simulated cases in which a focal barcode is at a true frequency of 0.05 665 
or 0.25 in the template molecules, the total number of reads is 1 million, and the number 666 
of template molecules tagged with UMIs varies between 100,000 and 10 million. This 667 
variation in the number of template molecules represents a shift between the two 668 
regimes discussed in the main text: the lower the number of template molecules, the 669 
more commonly UMI sequences will repeat. For each frequency and number of 670 
template molecules, we simulate a range of biases. In each case, we randomly sample 671 
1 million reads from a “post-library-preparation pool” in which the initial abundance of 672 
the focal barcode has been multiplied by the bias factor. We also draw UMIs for each of 673 
these reads from a pool of unique UMIs corresponding to the (unbiased) number of 674 
template molecules associated with the focal barcode and the remainder of the 675 
population, respectively. We assume that every template molecule has a unique UMI 676 
(note that this may not be the case in real datasets, depending on UMI length). Using 677 
the number of unique UMIs in the simulated reads associated with the focal barcode 678 
and the remainder of the population, we calculate the frequency of the focal barcode 679 
after UMI deduplication, shown in Figure S2. 680 

7.7 Comparison of barcode extraction methods 681 

We implemented custom regular expression and alignment software to extract barcodes 682 
from each of six barcode datasets. To extract barcodes by regular expressions, a set of 683 
five custom regular expressions were composed for each dataset to extract barcode 684 
sequences based on the read sequences from each dataset. To extract barcodes by 685 
alignment, we used BLASTn+ v 2.6.0 (Altschul et al., 1990; Camacho et al., 2009) to 686 
identify the location of the constant sequences flanking each barcode within the read, 687 
and used these positions to extract the barcode sequence. BLASTn+ was run with the 688 
parameters ‘-word_size 6 -outfmt 6 -evalue 1E0 -maxhsps 1’. The abundance of each 689 
unique extracted sequence was tabulated for downstream analysis. 690 
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7.8 Comparison of error correction methods 691 

Simulations of barcode data with errors 692 
To simulate barcode data with a range of frequencies including high frequency outliers, 693 
we first drew 99,895 barcode abundances from an exponential distribution with mean 1, 694 
100 barcode abundances from an exponential distribution with mean 10, and 5 barcode 695 
abundances from an exponential distribution with a mean of 1000. We assigned each 696 
abundance to a randomly generated 20 bp barcode (“N20”). We then drew a number of 697 
reads associated with each barcode from a poisson distribution with a mean of the 698 
frequency of the barcode multiplied by 25 million (such that we expect a total of 699 
approximately 25 million reads). For any barcode with a mononucleotide run of 5 or 700 
more base pairs, we first simulated indel errors, using our empirical data on the rates of 701 
these events (Figure 2) to draw a poisson-distributed number of reads with a single 702 
base insertion or deletion. This indel simulation process is carried out recursively such 703 
that multiple-base indels are possible. Next, we simulated single nucleotide errors for 704 
each individual read at a rate of 0.4% per base. The final simulated dataset consists of 705 
a single row for each unique barcode that was “read” in this process, associated with a 706 
number of reads and the “true” barcode from which it is derived. 707 

Comparison of error correction methods 708 
We tested six error correction methods (Bartender v1.1.0, DNAClust v3, Starcode v1.4, 709 
Shepherd downloaded Aug 15 2022, CD-Hit v4.8.1 and Deletion-Correct, provided in 710 
this manuscript) on each of four datasets (Levy et al, Borchert et al, Johnson et al and 711 
the simulated dataset). Each program was run with the following parameters, where L is 712 
the length of the barcode, including anchor sequences: 713 

Bartender ‘-d 3’ 714 
DNAClust ‘-s {1-3.1/L} -k 6’ 715 
Starcode ’-d 3 -s’ 716 
CD-Hit ‘-c {1-3.1/L} -n 6’ 717 
Shepherd ‘-l L -bft 4 -eps 3’ 718 
Deletion-Correct: min_counts_for_centroid=2, max_edits=3, poisson_error_rate=0.1 719 

Programs were run on a personal desktop computer with an AMD Ryzen5 1600 3.2GHz 720 
processor and 16GB of ram. Software with multithreading support was run with 10 721 
threads / allocated processing cores and 5000MB of allocated memory. 722 

Data availability 723 

All code used for simulations, analysis and generating figures have been deposited on 724 
Zenodo at https://doi.org/10.5281/zenodo.7052125. 725 
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Appendix. Genotyping clones at a barcode locus 730 

A common task when using barcoded strain libraries is to identify the barcodes for 731 
individual clones isolated from the library. The traditional approach, based on Sanger 732 
sequencing, is effective for a small number of clones, but it becomes prohibitively 733 
expensive and labor intensive at ~102 clones. At larger scales, approaches that 734 
leverage next-generation sequencing technologies are preferred. 735 

The most straightforward cheaper alternative to Sanger sequencing is to individually 736 
amplify the barcode of each clone, tag it with a unique combination of indices and 737 
sequence it on the Illumina platform. Since this approach involves the same number of 738 
DNA extractions and PCR reactions as the Sanger approach, the cost of this approach 739 
scales linearly with the number of samples. The savings come from the reduction of 740 
sequencing costs per sample: sequencing of a sample with the Sanger technology 741 
currently costs about 2 USD, while the cost is less than 0.02 USD per sample on the 742 
Illumina MiSeq platform when sequencing 10,000 clones. 743 

An even cheaper alternative for genotyping many clones is a pooled sequencing 744 
strategy sometimes referred to as “Cartesian pooling”, “Compressed sensing” or the 745 
“Sudoku method” (Barillot et al., 1991; Erlich et al., 2009; Shental et al., 2010; 746 
Vandewalle et al., 2015; Baym et al., 2016). The idea is to pool clones into multiple 747 
groups, such that each clone is present in several groups, prepare one Illumina library 748 
per group, sequence them and then infer the genotypes of all clones based on the 749 
knowledge of their presence/absence in each group. For example, clones can be 750 
arrayed into a 3-dimensional grid of p plates, each with r rows and c columns, e.g., in a 751 
series of 96-well plates. This would result in p + r + c groups, each containing all clones 752 
in a given plate, row or column across the entire collection. In this arrangement, each 753 
clone is present in only one specific combination of plate, row and column groups, and 754 
no two clones are present in the same combination of groups. In other words, group 755 
combination serves as a clone’s unique fingerprint. Further, if all clones have distinct 756 
barcodes, there will be only one barcode sequence present in any given combination of 757 
plate, row and column groups. In other words, each sequence will have a unique 758 
fingerprint, through which it can be assigned to the correct clone. While this strategy 759 
requires some additional work pooling clones into groups, the overall cost scales 760 
approximately as K1/3, where K is the number of clones, since only about K1/3 DNA 761 
extractions and PCR reactions are required. For example, a library of 960 clones can be 762 
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characterized using 30 pools (10 plate pools, 8 row pools and 12 column pools). The 763 
efficiency can be further improved by using additional “dimensions” for pooling and 764 
ensuring that all groups have similar numbers of clones (Barillot et al., 1991).  765 

A key limitation of the Cartesian pooling approach occurs when multiple clones have the 766 
same barcode. In this case, some sequences are present in more than one group 767 
combination (i.e., they have multiple fingerprints) which makes the association of 768 
sequences with clones non-unique. For example, consider a collection of 96 clones, 769 
pooled by row and column, where clones present in wells A5 and D7 have the same 770 
barcode. In this scenario, row groups A and D as well as column groups 5 and 7 will 771 
have this particular barcode sequence. Thus, the barcode could be assigned to any of 772 
four wells: A5, A7, D5 and D7. Resolving these degeneracies may require additional 773 
genotyping (Barillot et al., 1991).  774 
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Supplemental Figures  982 

Figure S2. Removing UMI duplicates rarely corrects biases in amplification. (A) The frequency of a 
simulated focal barcode with a library-preparation bias (e.g. PCR amplification bias) after removing UMI 
duplicates as a function of the fraction of UMI duplicates. (B) The percent of the difference between the 
true frequency and read-based frequency of the focal barcode that is corrected as a function of the 
fraction of UMI duplicates. Data is the same as in (A). 

Figure S1. Evidence of GC content affecting barcode frequencies. (A) Dynamics of the mean 
frequency of putatively neutral lineages carrying barcodes with different GC content (unpublished data). 
This experiment featured two 26 bp barcodes; different lines show the minimum number of G or C bases 
in the two barcodes. In the absence of GC-content-dependent biases, all lines should be parallel. (B) 
Change in log-frequency between timepoints 2 and 3 in (A). This change is expected to be independent 
of GC content. We note that GC-content bias was highly variable between samples in this experiment, 
suggesting that the specific library preparation conditions contribute to this effect. We also note that this is 
the strongest example of bias we have observed so far. 



31 

 

Supplemental Tables 983 

Study Description 

Read file 
used (SRR 
accession) 

Approximate 
Library Size 

(K) Reads 
Barcode Design  

(length / information) 

Johnson 
et al. 2019 

Timepoint 0 from a 
yeast RB-TnSeq 
experiment 

SRR9850741 400,000 18,560,760 NNNNCANNNNCANNNNCANNNNCAN
NNN 

(28 bp / 40 bits) 

Levy et al. 
2015 

Timepoint 0 from a 
yeast lineage tracking 
experiment 

SRR5747458 500,000 142,918,126 NNNNNAANNNNNAANNNNNTTNNNN
N 

(26 bp / 40 bits) 

Jasinka et 
al. 2020 

Initial barcode library 
for E. coli lineage 
tracking experiment 

SRR10556795 50,000 6,131,498 NNNNNNNNNNNNNNN 
(15 bp / 30 bits) 

Eyler et al. 
2020 

Timepoint 0 from 
stem-like glioblastoma 
cell lineage tracking 
experiment 

SRR10704145 50,000 7,465,619 WSWSWSWSWSWSWSWSWSWSWS
WSWSWSWS 

(30 bp / 30 bits) 

Ge et al. 
2020 

Timepoint from breast 
cancer cell line lineage 
tracking experiment 
(JQ1 treatment, 
passage 11, rep. 3) 

SRR9162708 80,000 11,809,554 WSWSWSWSWSWSWSWSWSWSWS
WSWSWSWS 

(30 bp / 30 bits) 

Borchert 
et al. 2022 

Timepoint 0 from a 
Pseudomonas putida RB-
Tnseq experiment (M9 
+ 20 mM D-glucose, 
Replicate A) 

SRR18112661 200,000 5,618,453 NNNNNNNNNNNNNNNNNNNN 
(20 bp / 40 bits) 

Table S1. Datasets reanalyzed in this paper. Approximate library sizes are based on preliminary error 984 
correction using Deletion-Correct.  985 
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Dataset 
No BC extracted 
by either method 

At least one BC extraction succeeded 

BCs Match 
Match with 1-

3 edits Mismatch Regex Failed 
Alignment 

Failed 

Johnson et al. 2019 1.67% 98.058% 
(66,266 BCs) 

0.589%  
(409 BCs) 

0.018%  
(11 BCs) 

1.300%  
(973 BCs) 

0.036%  
(8 BCs) 

Levy et al. 2015 3.82% 98.726% 
(80,386 BCs) 

0.155%  
(141 BCs) 

0.057%  
(49 BCs) 

0.995%  
(833 BCs) 

0.067%  
(63 BCs) 

Jasinka et al. 2020 1.87% 99.302% 
(33,555 BCs) 

0.269%  
(81 BCs) 

0.015%  
(6 BCs) 

0.413%  
(127 BCs) 

0.001%  
(1 BCs) 

Eyler et al. 2020 2.87% 97.588% 
(36,754 BCs) 

0.310%  
(238 BCs) 

0.045%  
(39 BCs) 

2.056% 
 (1618 BCs) 

0.001%  
(1 BCs) 

Ge et al. 2020 3.33% 98.837% 
(16,492 BCs) 

0.095%  
(45 BCs) 

0.080%  
(53 BCs) 

0.981%  
(480 BCs) 

0.007%  
(6 BCs) 

Borchert et al. 2022 5.94% 98.468% 
(66,554 BCs) 

0.165%  
(132 BCs) 

0.416%  
(385 BCs) 

0.314%  
(268 BCs) 

0.638%  
(596 BCs) 

Table S2. Comparison of two barcode extraction methods on 6 published datasets. Each row represents 986 
one barcode sequencing dataset used for testing. The first 100,000 reads were used to test a regex-987 
based barcode extraction method and an alignment-based barcode extraction method. We report the 988 
percentages of reads and number of unique barcodes identified by both methods or only one method 989 
(e.g. “Regex Failed” indicates cases where the alignment method identified a barcode in the read but the 990 
regex method did not).  991 
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Dataset Number of  
Extracted 
Sequences 

Starcode Bartender Shepherd Deletion- 
Correct 

Borchert et al. 
(2022) 

336,219 260,684 266,068 246,583 236,428 

Johnson et al. 
(2019) 

719,584 447,068 455,360 426,998 381,047 

Levy et al. 
(2015) 

2,086,173 500,565 539,250 480,067 500,806 

Simulation 1,544,849 99,581 100,257 99,615 99,152 

Table S3. Number of identified barcodes before and after error correction for three empirical datasets and 992 
simulated data across four error correction methods. 993 


