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The march of the human footprint 23 

Abstract 24 

Human influence is driving planetary change, often in undesirable and unsustainable ways. 25 

Recent advances enabled us to measure changes in humanity’s footprint on Earth annually from 26 

2000 – 2019 with a nine-fold improvement in spatial resolution over previous efforts. We found 27 

that earlier studies seriously under-estimated the magnitude, extent, and rate of change in the 28 

human footprint.  Inclusion of newly available data sources suggest that human influence on the 29 

land surface grew faster in the five years prior to the COVID-19 pandemic than at any other time 30 

in the last 12,000 years. The global extent of uninfluenced areas declined by 23% over the last 31 

two decades, an area equivalent to one-third the land mass of the United States. By providing a 32 

mechanism to regularly update maps going forward, this work provides a foundation for more 33 

accurate, detailed and timely approaches to sustainability. 34 

Main 35 

As a species, human beings are agents of change1. Whereas most species must adapt to the 36 

environment in which they find themselves, people adapt the environment to our liking, working 37 

in voluble and fluid social groups to advance our aims.  We erect structures to facilitate our 38 

endeavors and avoid the weather; transform ecosystems to produce foods and materials; extend 39 

roads, railways and ports to acquire natural resources and move people and goods; and deploy 40 

power to light our nights, heat and cool our buildings, cook our food, and animate our electronic 41 

and mechanical helpers. 42 

Unfortunately, the combined effect of these structures and activities has had profound 43 

consequences for the planet on which we all depend2-6.  To model these effects scientists have 44 
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discovered that a surprisingly simple index, the human footprint7,8, has remarkable value9.  The 45 

human footprint is simply the weighted sum of where people live (population density), where we 46 

build our infrastructure (roads, railways, and other built infrastructure), where we can reach 47 

(accessibility), and where we deploy energy, as measured by the night-time lights data visible 48 

from satellites, a proxy for access to industrial energy sources (see Methods).  Relative weights 49 

transform these disparate, spatial data into a common, synthetic index.  Since first described in 50 

20027, a vast literature has grown up around the human footprint, demonstrating its utility in 51 

understanding the distribution and abundance of species,10,11 measuring the invasibility of 52 

landscapes12,13, loss and fragmentation of natural ecosystems14,15, changes in the climate through 53 

land use change16 and greenhouse gas emissions17, and as a general marker of human impacts on 54 

the planet9,18. Analogous research has shown that relatively uninfluenced areas, conversely, act 55 

as carbon sinks19, provide ecosystems services such as clean air20 and water21, and remain 56 

strongholds for biological diversity22-23.  As humans continue to encroach on these less-57 

influenced (i.e., “wilder”7,14, “more ecologically intact”19,22) places, society increases the risk of 58 

encounter with zoonotic-origin disease agents24, such as the SARS-CoV-2 coronavirus. These 59 

pathogens then trace back along the transportation networks embodied in the human footprint to 60 

kill the vulnerable, weaken the healthy, and cause immense social and economic disruption25.   61 

Because so much depends on the human footprint, in practical and theoretical terms, it is 62 

important that human footprint data be as accurate and frequently updated as possible. Past 63 

efforts have been limited by temporal and spatial resolution of the underlying drivers8,14,15,22.  64 

The roads driver, for example, has been treated statically because there was only one map of 65 

roads at the global scale8.  All roads, from paths to superhighways, were given the same weight 66 

because road types were undifferentiated. Population data were compiled in only five-year 67 
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increments and over unevenly sized units, the consequence of the different census geographies.  68 

Similarly land cover/land use data were mapped inconsistently over time and using different 69 

methods and sources across analyses.  Related analyses leave out some components while adding 70 

in others26,27.  The combined effect has been to constrain the ability of scientists to systematically 71 

measure change in human influence and fully understand its implications.  72 

Here we present a 20-year annual retrospective taking advantage of higher spatial resolution, 73 

more frequently updated, and better thematically resolved datasets, representing nine core drivers 74 

of human influence to create the next-generation of human footprint maps (Figure 1a; Extended 75 

Data Figures 1-3).  We analyzed these data in two ways across all land areas except Antarctica 76 

and adjacent Antarctic Islands using open-source methods.  First, following in the tradition of the 77 

“first-generation” of human footprint mapping7,8, we used constant roads28, rails29, and 78 

settlement30 layers but combined them with higher-resolution, methodologically consistent, 79 

dynamic population31 and land cover32 mapping to produce an annual time series of footprint 80 

maps from 2000-2019 at nominal 300 m resolution.  Second, we created new, “second-81 

generation” methods by supplementing these static data layers with dynamic, better defined 82 

information about structures, roads, and railways data from the crowd-sourced Open Street 83 

Map33 (OSM) and replaced power consumption information, represented by stable night-time 84 

lights data from the Defense Meteorological Satellite Program – Operational Linescan System34 85 

(DMSP-OLS), with higher resolution, better calibrated night-time lights data from the Visible 86 

Infrared Imaging Radiometer Suite35 (VIIRS) for the period 2014 – 2019.  By implementing our 87 

analysis on the Google Earth Engine36 and making the resulting maps, methods, and supporting 88 

drivers freely available, we lower the barrier to future annual updates, enabling other researchers 89 

to build on and improve our efforts. 90 
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Our study has broader implications than making sustainability research faster and more robust, 91 

however.  It quantitatively addresses the key question:  How extreme are the impacts of human 92 

actions on the natural environment?  And how are these impacts varying over space and time in 93 

the 21st century? 94 

Results 95 

The quickening of human influence 96 

The primary metric of the human footprint is the human influence index (HII; see Methods, 97 

Figure 1a, Table 1).  The index maps a spatial gradient of human influence: from city centers, 98 

through suburbs and exurban areas, to remote locales.  Using the human footprint, one can 99 

quantitatively describe areas as more or less artificial (influenced by human activity), or 100 

conversely, less or more natural.  “Human influence” in this sense represents both the degree to 101 

which places have already been modified and the potential for on-going or future modification.  102 

We note that the extremes of the human influence spectrum are theoretical, not real, constructs.  103 

Even in places where the HII = 0, there remains human influence from climate change, 104 

atmospheric deposition, or other global factors not captured in the index.  Similarly even in the 105 

most influenced places, such as midtown Manhattan, natural forces are in play:  rain falls, winds 106 

blow, soil accumulates, and plants and animals recruit, grow, reproduce, and die. Influence and 107 

its converse, intactness, are relative concepts7.  The improved resolution of the latest footprint 108 

maps is such that one can observe these relative patterns at spatial scales from neighborhoods, to 109 

nation states, to continents, to the world as a whole. 110 

To demonstrate how HII is changing through time, we began by calculating the global mean HII 111 

and assessing its variation (Figure 1b,c).  Through analysis of the 2000 – 2019 time series of 112 
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human footprint maps using the first-generation methods, we observed that the mean global HII 113 

score is relatively low (between 6 – 7 on a 0-60 scale) but increasing at an average rate of 0.33% 114 

per year.  We showed some years (2001, 2004, 2005, 2008) had modest global declines in mean 115 

human impact against an overall increasing trend.  These results correspond roughly to previous 116 

analyses of human footprint change when studied with a non-continuous set of time points.  For 117 

example, Venter et al., observed a 9% increase in human influence from 1993 – 20098. 118 

With the second-generation methods developed for this paper, including OSM and VIIRS 119 

sources and appropriate weightings, we found that the global mean HII score was both higher 120 

(mean 6.06 rather than 5.53, comparing first- to second-generation methods, on a 0 – 64 scale) 121 

and accelerating six times faster than previously observed (average rate of 1.82% per year 122 

compared to 0.27%; Figure 1b) from 2014 to 2019.  The standard deviation in HII also widened 123 

by nearly 25% over the study period on a global scale (Figure 1c).  All drivers -- not only the 124 

crowd-sourced ones from OSM -- grew in magnitude and extent, as described below, suggesting 125 

that the acceleration of growth in mean HII is a broad-based phenomenon, driven by all inputs 126 

(Figure 1d-e).   127 

To place these rates of change in long-term perspective, we estimated the global mean HII over 128 

the last 12,000 years using the Anthrome 12K dataset37 (Methods; Extended Data Table 1).  129 

Anthromes are “anthropogenically modified” land cover classes based on population density, 130 

land use/land cover, and ecosystem type38, using sources analogous to but more limited than our 131 

inputs. Global estimates of mean HII extrapolated from anthromes (Figure 1f) grew on average 132 

of 0.002% per year for the first 10,000 years of the Holocene; tripled its annualized rate of 133 

growth to 0.006% in the first millennium of the Common Era; doubled again between 1000 – 134 

1700, to 0.014%; grew almost an order of magnitude faster from 1700 – 1900, at 0.13%; and 135 
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nearly doubled again between 1900 – 2000, to grow at a rate of 0.25% per year.  Temporal 136 

patterns in the rates of change over the first fifteen years of the 21st century were similar for the 137 

Anthrome 12K extrapolation and the first-generation human footprint analysis (Figure 1g).  In 138 

contrast, the second-generation human footprint, with temporally varying roads and improved 139 

night-time lights, showed much faster growth in HII (Figure 1 g, analysis 3). The highest rate of 140 

changed of mean HII in the study occurred from 2016 to 2017 (3.21% per annum).  In summary, 141 

our results suggest that human influence on Earth grew faster from 2014 - 2019 than at any 142 

previous time in the last 12,000 years, and stood in 2019, before the SARS-CoV-2 pandemic, at 143 

the greatest levels of influence, both in magnitude and extent, yet recorded in human history. 144 

The relative importance of drivers of human influence 145 

To better understand these overall trends in human influence, we analyzed the contribution of 146 

each of the nine drivers over time.  Proportionally population density, land cover, and roads were 147 

consistently the largest contributors to human influence globally, contributing on average, 148 

31.1%, 30.4%, and 22.1% of mean HII, respectively, using the first-generation methods (Figure 149 

1d).  Because of past limitations with earlier human footprint mappings7,8, variation in human 150 

influence could only be driven by changes in population density, land cover, and/or power 151 

consumption, since these are the only factors that varied. Population density and land cover 152 

drivers increased on average 0.52% and 0.36% per year, respectively, from 2000 – 2019.  153 

Although the nighttime lights/power driver contributed on average only 10.9% of total human 154 

influence over this period, considerable inter-annual variation was observed, even after 155 

radiometric calibration and other adjustments to compensate for blooming in the DMSP time 156 

series39.  Some years showed inter-annual increases in mean value (e.g. +5.3% from 2003 – 157 

2004) while others had decreases (-4.9% from 2004 – 2005, -4.1 from 2005-2006).  These 158 
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fluctuations may be due to changes in economic activity40 and/or variability in the sensor output 159 

that persist after correction and may be the reason why earlier studies of the human footprint8, 160 

and ours, observed reductions in human influence in some areas.  Over the entire 2000 – 2019 161 

period, however, the DMSP-derived, power driver, showed a net increase; on average, its global 162 

mean score increased 0.92% per year in that time.  The world is growing brighter at night. 163 

Adding in the OSM and VIIRS data shifted the relative contributions of the different drivers in 164 

the second-generation results (Figure 1e):  proportionally, roads drove more of overall human 165 

impacts, contributing 33.3% of mean global human influence, followed by population density 166 

(27.2%), land cover (26.3%), power (5.9%), structures (2.9%), accessibility from coastal and 167 

navigable waters (2.9%), and railways (1.6%).   168 

The accelerating trend seen in the second-generation human footprint mapping is largely due to 169 

adding the crowd-sourced OSM data, which have been improving in recent years41,42.  The 170 

increases could be the result of new construction of roads and infrastructure or increased 171 

documentation of pre-existing roads and infrastructure as the OSM data has become complete.  It 172 

is impossible to entirely differentiate between these two cases given the existing OSM data 173 

structure, which does not record the date of construction. It seems most plausible that both are 174 

true:  past efforts under-estimated human influence and human influence globally is continuing 175 

to accumulate, but the exact timing is provisional. 176 

The validation of HII scores against high-resolution aerial photography helped bring these 177 

abstract measurements into focus by highlighting how quotidian changes in human footprint 178 

have become in the 21st century:  the felling of a forest for a field, the paving of a road, the 179 

replacement of an open field with housing (see Methods; Extended Data Figure 3).  Through 180 

validation exercises, we verified that we mapped the presence or absence of human influence 181 
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with 98.9% overall accuracy.  By driver, validation comparisons indicate that our maps reliably 182 

showed the presence of verifiable roads, 98.0%, of cases; types of land use, 91.2%; built 183 

structures (other than roads and railways), 69.4%; and access from navigable waters, 68.0%.  We 184 

also showed an inter-validator Kappa statistic of 0.8 (strong agreement between validators).  For 185 

all drivers, error rates of commission were less than error rates of omission, suggesting that our 186 

footprint maps, while extraordinary, are in fact conservative treatments of change (Extended 187 

Data Table 2).    188 

The loss of uninfluenced areas and intensification of human influence elsewhere 189 

To further characterize the spatial pattern of human influence change, we subtracted the 2019 190 

and 2000 human footprint maps on a cell-by-cell basis (Figure 2a).  This analysis revealed that 191 

human impact index scores increased across 42.5% of the global land area (excluding Antarctica 192 

and Antarctic Islands), decreased in 6.4% of the area, and did not change in the remaining 51.1% 193 

(Figure 2b).  Increases were clustered in North America (especially the United States), Europe, 194 

the Arabian Peninsula, the Sahel, India, China, and Southeast Asia.  Clusters of decreasing HII 195 

were found in former industrial areas in the United States, Canada, Europe and Asia; in war torn 196 

areas such as the Horn of Africa, Syria and Iraq; and in rural areas in proximity to growing urban 197 

centers, such as coastal Central Africa, Turkey, Eastern Europe, and western Japan, for example.  198 

Where decreases are observed, they were driven primarily by changes in the nighttime 199 

lights/power driver in the first-generation methods from 2000 - 2014 (56% of countries), whereas 200 

in the second-generation methods from 2014 – 2019, changes in land use drove most decreases 201 

(62% of countries) (Extended Data Table 3).  Despite pockets of decrease, we observed that all 202 

countries of the world, with the exception of the Principality of Andorra (5% decrease), saw the 203 
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mean and sum of human impacts increase from 2000 to 2019 (Extended Data Table 4).  The 204 

Spratly Islands43 in the South China Sea saw the greatest proportional increase, 749%.   205 

Taking the difference of the frequency histograms of HII scores recorded for the 2000 and 2019 206 

footprints revealed how much human influence have both expanded into new areas and 207 

intensified in existing areas of influence (Figure 2c).  The greatest decrease in frequency was 208 

observed for previously uninfluenced areas (HII = 0), a loss of area of 3.07 million km2 (Figure 209 

3a,b), equivalent to about a third of the land area of the United States of America.  Nearly all 210 

uninfluenced areas have been erased from the temperate zone (e.g. Figure 3c); similarly major 211 

portions of the Amazon Basin (Figure 3d) and central African forests, the Chang Tang region in 212 

China, and even remote, arid regions in Australia (Figure 3e) and the Sahara Desert, have been 213 

subjected to advancing human influence.  Visibly, these patterns appear to be driven by the 214 

extension of roads over the last two decades, followed by increased population density, 215 

infrastructure, and associated power consumption.   216 

The human footprint also intensified in areas subjected to some level of existing human 217 

influence.  We observed that the frequency of nearly all HII values greater than 1 increased, with 218 

the greatest increases in the HII ranges 2 - 4, 7 – 9, 14 – 19, and 26 – 41 (Figure 2c).  As HII is a 219 

composite index there are multiple ways in which these intermediate values can be generated. 220 

Based on visual inspection and the weighting of HII (Methods), we interpret increases in HII 2 – 221 

4 values to be associated with the extension of access into peri-wilderness areas following new 222 

(or newly mapped) roads; 7 – 9 with conversion of mosaic cropland / natural vegetation areas 223 

through expanding agriculture; 14 – 19 with intensification of development in and around 224 

existing croplands, and 26 – 41 with intensification of suburban and ex-urban development in the 225 

United States, the Caribbean, Europe, India, northern China, and Java, and other regions with 226 
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proximity to existing towns and cities.  Some reversals were noted in Eastern Europe, northeast 227 

Asia, and the northeastern USA and southeastern Canada, which may be associated with 228 

agricultural abandonment and rural depopulation, and in Somalia and Angola, in areas of social 229 

unrest and conflict. 230 

Discussion 231 

Policy implications 232 

The human footprint measures in some sense what was once called “civilization”44, at least the 233 

physical manifestations of it:  the expansion of population; the construction of infrastructure and 234 

settlements; the conversion of forests, grasslands, and wetlands to farms, fields, and cities; and 235 

since the Industrial Revolution, the deployment of power beyond what muscle can supply.  236 

Domesticating the Earth18,37 has been an approximately 12,000-year project and brought many 237 

benefits to humanity: a diverse populace nearing eight billion; declines in extreme poverty; 238 

improvements in health and education; advances in arts, literature, science, and technology; 239 

increased freedoms for some; modest wealth for many, and extraordinary wealth for a few45.  240 

However, the costs have also been enormous in terms of a changing climate, loss of biodiversity, 241 

discombobulated ecosystems, and increased vulnerability to pandemic disease2,5,14,25, 46.  Some 242 

have lost more than they gained47.  Yet all of us inhabit our shared world and pursue our 243 

ambitions under the assumption that the planet will provide a safe and hospitable environment 244 

into the future.  That assumption is becoming increasingly less tenable48.  What a terrible and 245 

tragic irony it would be if we destroyed the underpinnings of our success by extending the 246 

human footprint too far and too fast because we, the change makers, would not change what it 247 

means to succeed. 248 
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Our fate is not fixed, however.  Human influence is not inevitably negative impact7. The premise 249 

and promise of sustainability science is that we can understand the effects we are having on the 250 

planet and mitigate the less desirable ones, through planning, practice, and a commitment to use 251 

what we learn.  For society to shape the human footprint in manner consonant not only with the 252 

needs of the current generation but for future generations as well, it is clear that more needs to be 253 

done to shape the human footprint to provide for people and nature5,46. We draw out a few 254 

implications here. 255 

Clearly this analysis highlights that the road network deserves special attention49,50.  Roads are 256 

the vanguard of new development, the facilitator of transportation induced climate emissions, 257 

and the conduit by which disease organisms move from safe harbors within intact ecosystems 258 

into the globally connected, human population.  Road management is key to any global 259 

sustainability strategy. Closing roads that are no longer needed, especially in the more intact 260 

parts of the world, is one of the easiest ways to slow the expansion of the human footprint51. 261 

Countries exist at different stages of development. Some undoubtedly need more infrastructure 262 

to advance social and economic goals52.  But all countries should consider the marginal benefits, 263 

as well as the marginal costs, of extending the next highway, laying the next foundation, or 264 

clearing the next wetland or forest patch for agriculture.  Such decisions are not isolated, but 265 

connected with  past decisions and freighted with consequences for the future.  Keeping equity 266 

and justice in mind, we need to do as much as we can with the infrastructure we have, repairing 267 

it where we must and removing it where no longer needed, before committing to the next 268 

transformation of a world already so transformed. 269 

Meanwhile the underlying drivers of the human footprint’s drivers (population, land use, 270 

infrastructure, and power consumption) are themselves in flux. It would be a mistake to interpret 271 
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the trends of the last two decades as predictions for the next twenty years.  Long-term 272 

demographic shifts are slowing the rate of population growth, even as the population continues 273 

to grow51. Humanity continues to concentrate in towns and cities, with wide-reaching, socio-274 

ecological implications8,45,52.  Some suggest we have already passed peak land conversion for 275 

agriculture53.  In fora around the world, advocates for more infrastructure and development are 276 

increasingly pressed to answer:  To what end? For whom? And at what cost?  277 

The human footprint is a critical way to inform these discussions, assess their results, and when 278 

coupled with other scientific models, articulate why they matter.  A next-generation 279 

sustainability science, building off a regularly and consistently updated human footprint, has 280 

much to offer in guiding these historical phenomena toward successful socioeconomic pathways 281 

where people and nature not only co-exist but thrive for generations yet to come.   282 
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Methods 408 

Overview 409 

Building on previous studies7,8,14, 26, 27, we studied five broad categories of human impact on 410 

nature (Table 1):  population density, land cover/land use, built infrastructure, accessibility, and 411 

power consumption.  Clearly, these drivers do not reflect all ways that human beings influence 412 

the environment nor do they reflect the impact of each person equally.  Our claims, based on the 413 

extensive supporting literature2-4,9,11-14,18-25 (see also: Supplemental Materials) are more modest:  414 

that when these factors exist in the landscape, some species, especially non-human commensal 415 

species, and ecosystem qualities such as vegetative cover, permeability, and species richness and 416 

abundance are more likely influenced by human activity than areas in a less or uninfluenced 417 

state46.  Moreover, when these drivers co-occur, or more intensive forms of the drivers are 418 

present, the cumulative influence, and likely impacts, are also greater.9,19   419 

Because higher resolution, more complete datasets became available only for later years of our 420 

study period, we studied the human footprint in two, overlapping time series.  As detailed in the 421 

main text, the traditional “first-generation methods” deploy temporally-varying population, land 422 

cover, and power consumption / nighttime lights data and static representations of waterways, 423 

roads, railways, and infrastructure.  The “second-generation” methods use these same types, but 424 

supplemented with temporally varying, better resolved and tagged data on roads, railways, 425 

waterways, and infrastructure, and higher resolution, better calibrated nighttime lights data.  426 

These improvements enable us to detect change more accurately and at higher resolution spatial 427 

and temporal resolution that previous analyses8,16,27.   428 
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All driver data, regardless of native spatial resolution, were analyzed within Google Earth 429 

Engine36 using the same system of 3-arc-second cells, which have a nominal 300-meter square 430 

side at the Equator. Google Earth Engine measures areas on a per-cell basis, so areas reported 431 

here account for variation in cell size with latitude. 432 

To facilitate comparison, we weighted each driver on a 0 – 10 scale, so that a value in one driver 433 

is roughly comparable to the same value in another driver. We then summed over the drivers as 434 

to arrive at the Human Impact Index (HII), which we measured to two decimal places (0.00) and 435 

stored as integers by multiplying by 100.  Where possible we used methods similar to earlier 436 

studies to enable long-term comparability7-9,14.  We plotted human footprint maps for 2009 437 

between this study resampled to match Venter et al.8 2009 footprint to show close agreement 438 

between the two analyses (Extended Data Figure 5).    439 

Population density  440 

People, like all other species, interact with organisms and ecosystems where they live.  These 441 

interactions are density-dependent to some extent, especially at low levels of human population 442 

density19,26.  Density-dependent impacts include noise, pollution, hunting, gathering, vegetation 443 

stomping and removal, disturbance of wildlife, and other such factors.   444 

For both time series, we used the WorldPop Unconstrained Residential Population dataset31, 445 

which disaggregates administrative unit population counts from national and subnational 446 

censuses into grid cell-based counts on an annual basis, using other geospatial datasets and 447 

Random Forest machine learning techniques56. 448 
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Following Venter et al.8, to represent the impacts from human population density, we gave any 449 

cell with a density greater than 1000 people per square km a weight of 10.  For less densely 450 

inhabited areas, we applied the logarithmic scaling function shown in Table 1. 451 

Land cover 452 

Human beings impact the environment through wholescale or partial transformation of 453 

ecosystems associated with urbanization, agriculture, natural resource extraction, and animal 454 

husbandry, with a wide variety of associated changes in species habitat and ecosystem 455 

function.46 456 

For both time series, we used the ESA CCI Land Cover Dataset32, which provides 33 land cover 457 

classes in an annual time series using a consistent methodology.  We gave urban land cover a 458 

weight of 10; irrigated croplands, 8; rainfed croplands, 7; and mosaic cropland / natural 459 

vegetation with population densities greater than or equal to 1 person per square km received a 6 460 

when cropland was more than 50% of the area, and a 4 when cropland was less than 50%.  All 461 

other classes (e.g. tree-covered areas, grasslands, shrublands, sparsely vegetated classes, lichens 462 

and mosses) received a weight of 0 (see Supplementary Information Figure S1). 463 

Built infrastructure 464 

Human beings modify the landscape with built structures, which displace the existing 465 

ecosystems, disrupting habitats, altering water movements and air flows, changing the thermal 466 

environment, arresting soil development, and providing barriers to movement.46  Energy 467 

expended in and by using infrastructure contributes to climate change.5,17  We considered three 468 

categories of built infrastructure:  roads, railways, and a wide-array of other built infrastructure. 469 

(Supplementary Information Figure S2-S4). 470 
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Built infrastructure is critical to many social, economic, humanitarian, and environmental 471 

analyses that it is surprising that globally consistent, publicly available datasets have been 472 

lacking for so long.  In the first-generation time series we mapped roads using static methods 473 

comparable with past efforts, using gRoads28, VMap029, and Global Human Settlement Layer30,57 474 

datasets (Table 1.)   475 

To supplement these static data with dynamic data in the second-generation methods, we 476 

automated ingestion of Open Street Map33 (OSM) data into Google Earth Engine.  Volunteer 477 

mappers and organizations continuously create and maintain the OSM data. We fetch the OSM 478 

Protocolbuffer Binary Format file, convert it to a text file using the Osmium C++ library58, then 479 

split that file into individual files for each tag pertaining to roads, railways, and infrastructure, 480 

discarding invalid and infinitesimal geometries. Linear and point features are rasterized using the 481 

GDAL library59, where each 300 m cell for each tag is assigned a value of 1 if any feature with 482 

the specified tag is present. We update the previous time point then ingest the data into Earth 483 

Engine as a single, multi-band image for the requested date, where each band represents an OSM 484 

tag.  485 

We weighted the direct impacts of infrastructure based on typologies identified in the source data 486 

(Table 1; Supplementary Information Figures S2-S4).  Paved major highways with more than 487 

two lanes received a 10; paved, two lane, arterial roads received an 8; other roads, including 488 

unpaved roads, paths and trails, received a 4.  Railways received weights from 4 – 8 depending 489 

on their operational status and/or type.  Other structures received a weight of 10 for major 490 

developments (e.g. housing developments, parking lots, airfields, landfills, quarries, nuclear 491 

explosion site, etc.); an 8 for medium-sized clusters of development intermixed with vegetation 492 

(e.g. residential houses, power lines, farm buildings, military bases, etc.);  a 6 for scattered 493 
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developments (e.g. barns, isolated cabins, vegetated embankments, etc.); and other minor 494 

developments of a limited scale received a 4 (e.g. ditch, snow fence, hut, zip line,  etc.). 495 

Accessibility 496 

People have impacts beyond the places where they live, assuming they can get there49. Impacts 497 

are similar to the ones described under population density, though generally less frequent, 498 

therefore deserving of less weight.  499 

We modeled accessibility using the simple declining exponential function based on distance 500 

from roads and navigable waterways developed by Venter et al.8 (Table 1).  Open surface water 501 

data were derived from analysis of radar and optical remote sensing data60.  Waterways were 502 

assumed to be navigable if they were at least 300 m wide in one dimension, including coasts.  503 

We assumed all roads are accessible, as well as waterways within 15 km of a population center 504 

(defined as a cell with population density of 10 or more people per square km).  We gave access 505 

points from water a weight of 4, or for roads, half of direct impact (4, 4, or 2, depending on type; 506 

Supplementary Information Figure S4), at the point of access, declining to 0 beyond 15 km.  We 507 

did not give railways an indirect weight.  508 

Power 509 

We included a proxy for power utilization because the ability to harness energy to do work 510 

greatly amplifies the ability of human beings to alter the environment.  One person with an eight 511 

ton, diesel-fueled bulldozer can create changes to the environment much faster and more deeply 512 

than that same person with a shovel because more energy is expended in the same period of time 513 

and physical limitations of bone and muscle are removed.  The same applies for other kinds of 514 

machinery:  cars, trucks, lawn mowers, leaf blowers, etc.  We assume the ability to access power 515 
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from electricity or fossil fuels follows the pattern of stable night-time lights measured by 516 

satellites.  Artificial light during the nighttime hours can also have a disruptive effect on 517 

wildlife61,62 in addition to being a proxy for human uses of non-muscle power.  Nighttime lights 518 

are also approximate measures of economic activity40,63. 519 

We used datasets from two satellite platforms to measure nighttime lights:  the Defense 520 

Meteorological Satellite Program/Operational Linescan System34 (DMSP) and the Visible 521 

Infrared Imaging Radiometer Suite35 (VIIRS) mounted on the Suomi NPP satellite mission.  The 522 

VIIRS sensor is four times better resolved than the DMSP data (15 arc-seconds rather than 30 523 

arc-seconds), performs an on-board calibration, is both more sensitive in low-light conditions 524 

and less subject to saturation in high light areas than DMSP, and is offered in monthly time 525 

rather than annual time series.  However the VIIRS data is only available since 2014. First-526 

generation human footprint methods use the DMSP data to present power consumption; the 527 

second-generation methods, the VIIRS data.  We developed an inter-calibrated, largely 528 

comparable mapping by adapting the procedures suggested by Li et al.38.  That method creates 529 

annual composites of the VIIRS data, controls for noise using a min-max stretch that varies by 530 

latitude, and then converts VIIRS radiance values into a 0-63 Digital Number scale comparable 531 

to DMSP.  It also inter-calibrates across the different DMSP sensors, including recently available 532 

data that carry the DMSP time series through 2019.  533 

To weight the lights data, we analyzed the deciles of the frequency distribution of pixels for the 534 

first year in the time series, using the methods from Venter et al.8.  Weights of 0 – 10 were 535 

applied to the 10 decile ranges (Supplementary Information Figure S5).  The same ranges were 536 

used for all time points to maintain comparability. 537 

Validation   538 



25 
 

To validate our human impact mapping, we randomly selected 2521 cells stratified by level of 539 

development:  high (HII > 46.66), medium (HII 23.33 – 46.65) and low levels (HII 0 – 23.32) of 540 

impact and within 6 bands of 60 degrees of longitude each, to ensure geographic coverage.  For 541 

each cell, we further randomly selected three years between 2000 - 2019.  We examined high-542 

resolution aerial imagery in Google Earth Pro by overlaying the cell boundaries on the imagery 543 

and taking advantage of the “historical imagery” feature, choosing the closest date of available 544 

imagery within twelve months of the randomly selected year.  We scored cloud-free, clear 545 

images for visible signs of built infrastructure, land cover type, the presence of roads, and 546 

navigable waters, using the same scoring rubric applied to the driver data, and dropping locations 547 

where imagery was unavailable or unclear.  If there were no roads or navigable waters within the 548 

cell boundaries, we measured the distance from the center of the cell to the nearest visible road 549 

or navigable waterway, up to 15 km.  We did not score for population density or power (e.g. 550 

nighttime lights) since population density was not directly observable and the imagery was 551 

collected in the daytime.  We also do not report railway scores because we had too few samples 552 

had railways to make the validation meaningful.  Since identification to type was not always 553 

possible visibly, we developed confusion matrices64 for the presence or absence of signs of 554 

human impact (HII) and of each driver (except population, nighttime lights, and railways) 555 

individually. From these matrices, we calculated rates of overall accuracy and errors of 556 

commission and omission for 1,575 cells, using first-generation method footprints between 2000 557 

– 2014, and second-generation footprints for 2015 – 2019. As further validation, two examiners 558 

independently validated the same 15% of sample of the validation locations.  We calculated 559 

Cohen’s Kappa Statistic to measure score reliability between validators65.  560 

Anthrome 12K Analysis 561 
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For each of classes in the 2015 Anthrome 12K map37, we calculated the mean HII using the 562 

second-generation human footprint for 2015 (Extended Data Table 2).  We substituted class 563 

means of HII in the 5 arc-minute, anthrome maps by class and calculated the global mean of 564 

human impact for each time point.  This analysis and the following three were conducted in 565 

ArcGIS66 version 10.7.1.  All other calculations (including all calculations of area) were made 566 

with Google Earth Engine36. 567 

Driver Analysis 568 

 For each driver for each time point, we calculated the mean and standard deviation, to estimate 569 

the contribution to total HII. 570 

Country Analysis 571 

We used the GADM67 version 3.6 level 0 boundaries to define countries with internationally 572 

recognized ISO 3166-1 codes.  We calculated the mean, sum, and standard deviation of HII for 573 

each time point.  574 

HII Decrease Analysis 575 

On a per-cell basis we calculated the regression line through the HII values for 2000 – 2014 576 

(first-generation methods) and 2015 – 2019 (second-generation methods) to find the cells that 577 

decreased in HII by at least 0.25 / year.  We analyzed these cells to find the driver whose 578 

changes were most frequently associated with declines in HII on a country-by-country basis 579 

using the GADM67 version 3.6 level 0 boundaries. 580 

Unimpacted areas Analysis 581 
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For purposes of this paper, we define unimpacted areas as cells  where HII = 0.  Such areas have, 582 

by definition, zero population density, evince natural land cover types, have no built 583 

infrastructure, are the equivalent of being more than 15 km from the nearest road or navigable 584 

waterway, and emit no night-time lights, as mapped with the driver datasets described above.  585 

We tallied unimpacted areas for the 2000 first-generation human footprint and the 2019 second-586 

generation footprint maps to estimate loss of such areas globally. 587 

Data availability 588 

All calculation outputs are available as Earth Engine Image assets with a consistent naming 589 

convention based on the date for which the calculation was run. Human Impact Index images are 590 

stored in the `projects/HII/v1/hii` ImageCollection (e.g. `projects/HII/v1/hii/hii_2001-01-01`). 591 

Driver ImageCollections are also available to analysts with Earth Engine access to use 592 

individually and combine in different ways: `projects/HII/v1/driver/infrastructure`, 593 

`projects/HII/v1/driver/land_use`, `projects/HII/v1/driver/population_density`, 594 

`projects/HII/v1/driver/power`, `projects/HII/v1/driver/railways`, `projects/HII/v1/driver/roads`, 595 

and `projects/HII/v1/driver/water`.  596 

For convenience, final HII datasets are also available as Cloud-Optimized Geotiffs, which can be 597 

used in a desktop GIS via remote url or by downloading, with urls of the form 598 

`https://storage.googleapis.com/hii-export/2001-01-01/hii_2001-01-01.tif`. 599 

[Note to editor:  All asset and tiff locations will be updated on `https://wcshumanfootprint.org` 600 

prior to publication along with a user-friendly visualization application.] 601 

Code Availability 602 

https://storage.googleapis.com/hii-export/2001-01-01/hii_2001-01-01.tif
https://wcshumanfootprint.org/
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We have made our open-source code available at 603 

`https://github.com/SpeciesConservationLandscapes`. Each repository contains an explanatory 604 

README as well as the Google Earth Engine code used to run the calculations.  The computer 605 

code is distributed under the GNU General Public License 3.0 606 

(https://www.gnu.org/licenses/gpl-3.0.html). 607 
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 648 

Figure 1.  (a) The global map of the extent and intensity of the human impact index7-9 649 

(colloquially the human footprint) on the land’s surface (Antarctica excluded) in 2019.  Red 650 

colors represent relatively higher human impacts, green areas relatively lower.  Human impact is 651 

mapped at a nominal 300 m resolution.  Detail maps and more color-blind friendly color schemes 652 

are shown in the Extended Data.  (b) Global mean of the human impact index (HII) from 2000 – 653 

2019, using traditional, first generation methods, consistent with previous human footprint 654 

maps7,8, including static roads and infrastructure drivers but dynamic population, land use and 655 
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power consumption (blue) and improved, second generation methods, which include 656 

dynamically changing roads and infrastrcuture and higher resolution nighttime lights (red); see 657 

Main text.  (c) Standard deviation of the HII, 2000 – 2019; first generation methods (blue), 658 

second generation methods (red).  (d) Mean contributions of five drivers of human impact 659 

(population density, land cover, structures, railways, roads, access population centers along 660 

navigable waters, and power consumption) to the human footprint, annually 2000 – 2019, using 661 

first generation methods.  (e)  Mean contributions of the same drivers as (Figure 1d) annually 662 

from 2014 – 2019, using second generation methods. (f) Extrapolated mean HII over the last 663 

12,000 years extrapolated from the the Anthrome 12K analysis36.  (g) Mean and standard 664 

deviation of annual percentage change in mean HII for (1) first generation methods from 2000 – 665 

2015, (2) the Anthrome 12K extrapolation from 2000 – 2015, and (3) the second generation 666 

methods from 2014 – 2019.  See Main text for details. 667 

  668 
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 669 

Figure 2.  (a) Per-pixel change in human impact index (HII) between 2000 – 2019.  (b) 670 

Distribution of the magnitude of change in HII, 2000 – 2019.  Note the logarithmic y-axis.  n is 671 

the total count of cells globally. (c) Change in frequency at each level of HII, comparing 672 

histograms from 2000 and 2019. 673 

 674 

  675 
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 676 

Figure 3.  (a) Map of unimpacted areas in 2000 (blue), 2019 (pink), and jointly (purple), as 677 

measured by the human impact index (HII).  Squares indicate locations of inset views. (b) 678 

Change in the area of HII = 0 from 2000 – 2019 in millions of square km.  The blue line 679 

represents the trend in the first-generation human footprint analysis from 2000 – 2014; the red 680 

line indicates second-generation human footprint trend from 2014 – 2019, after the inclusion of 681 

dynamically changing roads and infrastructure data and improved nighttime lights.  (c) Inset 682 

view of western North America, (d) Inset view of the the Amazon Basin. (e) Inset view of central 683 

and western Australia. 684 

  685 
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Table 1. Source and weightings of the nine drivers of human impact, 2000– 2019, using the first- 686 

(2000 – 2019) and second-generation (2014 – 2019) methods. 687 

Impact driver First 
gene-
ration. 

Second 
gene-
ration.  

Global dataset Native time period; 
frequency 

Native 
resolution 

Human impact weightinga 

Population density √ √ WorldPop29 Residential 
Population 

2000 – present; 
annual 

100 m 3.333 * log(persons / km2 + 1); if density 
> 1000 persons / km2 → 10 

 
Land Cover √ √ ESA CCI Land Cover 

Dataset30  
1992 – present; 
annual 

300 m Depends on land cover class and 
population density; 33 classesa 

Infrastructure       
… Structures √ √ Global Human Settlement 

Layer28 
2000 – 2014; static  30 m 10 

  √ Open Street Map31 2012 – present; 
weekly 

Vector Depends on type; 192 typesa 

 
… Roads √ √ gRoads26  1980 – 2010; static Vector 8 

  √ Open Street Map31  2012 – present; 
weekly 

Vector Depends on type; 29 typesa 

 
… Railways √ √ Vector Map 027  c. 1990 – 2000; 

static 
Vector Depends on status; 5 classesa 

 
  √ Open Street Map31  2012 – present; 

weekly 
Vector Depends on type; 14 typesa 

Accessibility       
… via Populated Coasts √ √ ESA CCI Water Bodies Map51 2000; static 150 m e^(distance * -0.0003) * 4b 
… via Navigable Waters √ √ Global Surface Waters51 1984 – present; 

annual 
30 m e^(distance * -0.0003) * 4b 

 
… via Roads √ √ gRoads26  1980 – 2010; static Vector e^(distance * -0.0003) * 4c 

  √ Open Street Map31  2012 – present; 
weekly 

Vector e^(distance * constant) * weightc 

Power √  Inter-calibrated stable 
nighttime lights series from 
DMSP32,38  

1992 – 2019; 
annual 

30 arc-
seconds 

10 equal area quantilesd → 0 - 10 

  √ Inter-calibrated stable 
nighttime lights series from 
VIIRS33, 38  

 

2014 – present; 
annual 

15 arc-
seconds 

10 equal area quantilesd → 0 - 10 

a, Weightings vary from 0 – 10 and follow Venter et al.8, except as noted.  Weights are detailed in the Supplementary Information for each type and 688 

class.  Figure S1 shows land cover weights, Figure S2 built structure weights, Figure S3 road weights, Figure S4 railway weights, and Figure S5 689 

power/night-time light weights. 690 

b, Distance (km) from population center (defined by density > 10 persons / km2) on coast or adjacent to navigable waterways up to 15 km. 691 

c, Distance (km) from road up to 15 km; road constants and weights depend on the type of road; see Supplementary Information. 692 

d. Mapping of quantiles is based on analysis of first year of time series and applied consistently to other time points, see Supplementary Information.  693 
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Extended data figures and tables 694 

 695 

Extended Data Fig. 1.  (a) Locations of detail views of the 2019 human footprint, illustrating (b) 696 

central California, (c) the Northeast Corridor from Massachusetts to Virginia, (d) the Yucatan 697 
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Peninsula, (e) the central Amazon Forest around Manaus, Brazil, (f) parts of Nigeria, Cameroon, 698 

and Gabon along the Gulf of Guinea, (g) southern England, northern France, and portions of 699 

Belgium and Ireland, (h) parts of Rwanda, Burundi, Uganda, Tanzania and eastern Democratic 700 

Republic of Congo, near Lake Victoria, (i) the Nile Delta and Palestine, (j) the region around 701 

Moscow, Russia, (k) parts of northern India, Nepal, and China, (l) southeastern China, and (m) 702 

southeastern Australia, including Sydney and Melbourne. 703 

  704 
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 705 

Extended Data Fig. 2.  (a) Locations of detail views of the 2019 human footprint, using an 706 

alternative color palette, illustrating (b) central California, (c) the Northeast Corridor from 707 

Massachusetts to Virginia, (d) the Yucatan Peninsula, (e) the central Amazon Forest around 708 
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Manaus, Brazil, (f) parts of Nigeria, Cameroon, and Gabon along the Gulf of Guinea, (g) 709 

southern England, northern France, southern England, northern France, and portions of Belgium 710 

and Ireland, (h) parts of Rwanda, Burundi, Uganda, Tanzania and eastern Democratic Republic 711 

of Congo, near Lake Victoria, (i) the Nile Delta and Palestine, (j) the region around Moscow, 712 

Russia, (k) parts of northern India, Nepal, and China, (l) southeastern China, and (m) 713 

southeastern Australia, including Sydney and Melbourne. 714 

  715 
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716 

Extended Data Fig. 3.  Stratified random sample locations used for validation of HII results.  717 
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 718 
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 719 

Extended Data Fig. 4.  High-resolution aerial photographs illustrate different levels of Human 720 

Impact Index (HII).  Note that population density, power consumption/nighttime lights, and 721 

distance from navigable waterways and roads are not visible in these images but do contribute to 722 

the HII. 723 

  724 
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 725 

Extended Data Figure 6.  (a) Locations of detail views of map of change in human footprint, 726 

from 2000 - 2019, illustrating (b) central California, (c) the Northeast Corridor from 727 

Massachusetts to Virginia, (d) the Yucatan Peninsula, (e) the central Amazon Forest around 728 
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Manaus, Brazil, (f) parts of Nigeria, Cameroon, and Gabon along the Gulf of Guinea, (g) 729 

southern England and northern France, (h) parts of Rwanda, Burundi, Uganda, Tanzania and 730 

eastern Democratic Republic of Congo, near Lake Victoria, (i) the Nile Delta and Palestine, (j) 731 

the region around Moscow, Russia, (k) parts of northern India, Nepal, and China, (l) southeastern 732 

China, and (m) southeastern Australia, including Sydney and Melbourne. 733 

  734 



45 
 

 735 

Extended Data Figure 7.  Comparison of human footprint maps for 2009 between Venter et al.8 736 

and this study, based on resampling our 2009 first-generation human footprint to match Venter et 737 

al.’s 1 km cells (n = 135,726).  The equation of the trendline (black) and coefficient of 738 

determination (R2) are shown.  Note the Venter et al. data have a maximum value of 50, where in 739 

this study, the first-generation human footprint methods have a maximum value of 59.  740 
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Extended Data Table 1. Summary statistics for the Human Impact Index (HII) for Anthrome 12K 741 

classes36 in 2015. 742 

Anthrome 12K Class - Year 2015 

Anthrome 
12K Index 

Value 

Count of 
Anthrome 
12K cells 

Minimum 
HII 

Mean 
HII 

Standard 
deviation 

HII 
Maximum 

HII 

Urban  11 10,234 2 40.02 11.7 64 

Mixed settlements 12 20,963 0 20.52 11.7 63 

Rice villages 21 13,976 0 23.88 8.5 63 

Irrigated villages 22 27,131 1 23.96 8.5 63 

Rainfed villages 23 72,244 0 21.01 8.8 63 

Pastoral villages 24 11,187 0 17.72 9.1 61 

Residential irrigated croplands 31 14,725 1 16.94 7.1 58 

Residential rainfed croplands 32 145,532 0 15.12 6.5 58 

Populated croplands 33 85,836 0 11.13 5.2 52 

Remote croplands 34 42,028 0 8.73 5.2 62 

Residential rangelands 41 88,626 0 11.18 5.6 57 

Popuated rangelands 42 143,126 0 7.00 4.6 58 

Remote rangelands 43 244,874 0 3.54 3.6 47 

Residential woodlands 51 59,801 0 10.52 6.7 61 

Populated woodlands 52 109,901 0 5.70 4.5 50 

Remote woodlands 53 146,502 0 2.32 2.9 41 

Inhabited treeless lands 54 156,930 0 5.28 5.1 62 

Wild woodlands 61 328,735 0 0.89 1.8 62 

Wild treeless lands 62 283,639 0 1.12 2.1 59 

Uninhabited ice 63 126,453 0 0.17 0.6 15 

No land 70 8 0 4.37 3.8 13 

 743 

  744 
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Extended Data Table 2.  Overall accuracy and rates of commission and omission error for the 745 

Human Influence Index and selected drivers, 2000 – 2019, in comparison to visual inspection of 746 

high resolution aerial photography (n = 2151).  747 

Data layer 
Overall 

accuracy Commission error  Omission error  

HII 98.92% 1.08% 0.00% 

Access from 
navigable waters 67.97% 6.77% 43.89% 

Roads (presence 
and/or access) 98.04% 0.90% 1.09% 

Land Cover 91.23% 4.06% 5.68% 

Built Structures 69.44% 3.39% 39.04% 

 748 

  749 
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Extended Data Table 3.  Most important drivers in areas where Human Influence Index (HII) 750 

values dropped by 0.25/year or more, analyzed by country (n = 284) 751 

Human Impact Driver Percentage of countries where this 

driver was most important in 

decreasing HII values, 2000 - 2014 

Percentage of countries where this driver was most 

important in decreasing HII values, 2015 - 2019 

Built structures 0%a 1% 

Land cover 25% 62% 

Population density 11 0% 

Power consumption 56% 2% 

Railways 0% a 1% 

Roads 0% a 28% 

Noneb 7% 5% 

a:  by definition, because these drivers are represented statically. 752 
b:  some countries had no 300m cells with decreasing human impacts over the periods indicated.   753 
 754 

  755 
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Extended Data Table 4. Mean and sum of human influence index values for the countries of the 756 

world in 2000 and 2019.  Note Antarctica and some neighboring islands were not studied. 757 

Country ISO 
 HII Mean in 

2000  
HII Sum in 

2000 
 HII Mean in 

2019  
HII Sum in 

2019 

Change in 
mean (2019 

- 2020) % 

Aruba ABW         2,797  5.61E+06         3,712  7.44E+06 33% 

Afghanistan AFG            931  8.03E+09         1,069  9.23E+09 15% 

Angola AGO            517  7.39E+09            609  8.70E+09 18% 

Anguilla AIA         2,406  1.95E+06         3,748  3.03E+06 56% 

Åland ALA         1,070  2.89E+07         1,574  4.25E+07 47% 

Albania ALB         1,314  5.45E+08         1,595  6.62E+08 21% 

Andorra AND         1,734  1.18E+07         1,650  1.12E+07 -5% 

United Arab Emirates ARE            967  8.38E+08         1,749  1.52E+09 81% 

Argentina ARG            464  1.76E+10            651  2.46E+10 40% 

Armenia ARM         1,021  4.23E+08         1,415  5.85E+08 39% 

American Samoa ASM         1,708  4.09E+06         2,676  6.41E+06 57% 

French Southern Territories ATF            234  2.65E+07            246  2.79E+07 5% 

Antigua and Barbuda ATG         1,961  9.00E+06         2,832  1.30E+07 44% 

Australia AUS            230  2.19E+10            305  2.91E+10 33% 

Austria AUT         1,447  1.98E+09         1,991  2.72E+09 38% 

Azerbaijan AZE         1,322  1.64E+09         1,634  2.02E+09 24% 

Burundi BDI         1,914  5.35E+08         2,168  6.06E+08 13% 

Belgium BEL         2,532  1.35E+09         3,267  1.74E+09 29% 

Benin BEN         1,031  1.35E+09         1,352  1.77E+09 31% 

Bonaire, Sint Eustatius and Saba BES         1,643  5.07E+06         2,403  7.41E+06 46% 

Burkina Faso BFA         1,261  3.94E+09         1,499  4.69E+09 19% 

Bangladesh BGD         2,018  3.35E+09         2,598  4.31E+09 29% 

Bulgaria BGR         1,405  2.36E+09         1,596  2.68E+09 14% 

Bahrain BHR         2,935  2.50E+07         3,813  3.25E+07 30% 

Bahamas BHS            790  1.05E+08            952  1.27E+08 21% 

Bosnia and Herzegovina BIH         1,188  9.36E+08         1,475  1.16E+09 24% 

Saint-Barthélemy BLM         2,638  4.72E+05         3,942  7.06E+05 49% 

Belarus BLR         1,150  4.40E+09         1,449  5.55E+09 26% 

Belize BLZ            746  1.88E+08            965  2.43E+08 29% 

Bermuda BMU         2,815  1.43E+06         4,192  2.13E+06 49% 

Bolivia BOL            371  4.65E+09            558  6.99E+09 50% 

Brazil BRA            415  4.00E+10            609  5.87E+10 47% 

Barbados BRB         3,066  1.51E+07         3,773  1.85E+07 23% 

Brunei BRN            730  4.69E+07         1,000  6.42E+07 37% 

Bhutan BTN            458  2.21E+08            649  3.14E+08 42% 

Bouvet Island BVT                -    0.00E+00                -    0.00E+00 0% 

Botswana BWA            328  2.29E+09            494  3.44E+09 50% 

Central African Republic CAF            296  2.07E+09            360  2.51E+09 21% 
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Canada CAN            156  3.19E+10            202  4.13E+10 30% 

Cocos Islands CCK         1,097  1.30E+05         1,908  2.27E+05 74% 

Switzerland CHE         1,646  1.06E+09         2,187  1.41E+09 33% 

Chile CHL            418  4.37E+09            569  5.95E+09 36% 

China CHN            815  1.05E+11         1,024  1.33E+11 26% 

Côte d'Ivoire CIV         1,105  3.99E+09         1,330  4.80E+09 20% 

Cameroon CMR            675  3.52E+09            895  4.67E+09 32% 

Democratic Republic of the Congo COD            561  1.45E+10            751  1.93E+10 34% 

Republic of Congo COG            463  1.76E+09            567  2.15E+09 22% 

Cook Islands COK         1,485  3.88E+06         1,918  5.01E+06 29% 

Colombia COL            519  6.57E+09            682  8.64E+09 31% 

Comoros COM         1,520  2.80E+07         1,925  3.54E+07 27% 

Cape Verde CPV         1,562  7.14E+07         1,948  8.91E+07 25% 

Costa Rica CRI         1,121  6.48E+08         1,368  7.90E+08 22% 

Cuba CUB         1,341  1.74E+09         1,619  2.10E+09 21% 

Curaçao CUW         2,217  1.05E+07         2,964  1.41E+07 34% 

Christmas Island CXR         1,068  1.58E+06         1,514  2.24E+06 42% 

Cayman Islands CYM         1,895  5.74E+06         2,634  7.98E+06 39% 

Cyprus CYP         1,633  1.26E+08         2,115  1.63E+08 29% 

Czech Republic CZE         1,895  2.54E+09         2,292  3.08E+09 21% 

Germany DEU         2,011  1.26E+10         2,492  1.56E+10 24% 

Djibouti DJI         1,036  2.56E+08         1,199  2.96E+08 16% 

Dominica DMA         1,125  9.64E+06         1,835  1.57E+07 63% 

Denmark DNK         1,911  1.59E+09         2,463  2.06E+09 29% 

Dominican Republic DOM         1,279  7.19E+08         1,587  8.92E+08 24% 

Algeria DZA            264  7.74E+09            390  1.14E+10 48% 

Ecuador ECU            653  1.85E+09            996  2.82E+09 53% 

Egypt EGY            308  3.76E+09            423  5.16E+09 37% 

Eritrea ERI         1,038  1.44E+09         1,122  1.56E+09 8% 

Western Sahara ESH            101  3.33E+08            200  6.57E+08 97% 

Spain ESP         1,330  9.76E+09         1,681  1.23E+10 26% 

Estonia EST            818  7.53E+08         1,364  1.25E+09 67% 

Ethiopia ETH            963  1.22E+10         1,138  1.45E+10 18% 

Finland FIN            543  4.22E+09            939  7.31E+09 73% 

Fiji FJI            867  1.88E+08         1,162  2.52E+08 34% 

Falkland Islands FLK            305  6.31E+07            474  9.81E+07 56% 

France FRA         1,682  1.48E+10         2,353  2.07E+10 40% 

Faroe Islands FRO         1,285  4.35E+07         1,469  4.98E+07 14% 

Micronesia FSM         1,155  8.53E+06         1,783  1.32E+07 54% 

Gabon GAB            355  1.04E+09            553  1.62E+09 56% 

United Kingdom GBR         1,850  8.45E+09         2,007  9.16E+09 8% 

Georgia GEO            940  9.81E+08         1,195  1.25E+09 27% 

Guernsey GGY         3,172  4.15E+06         3,685  4.83E+06 16% 

Ghana GHA         1,191  3.14E+09         1,509  3.97E+09 27% 

Gibraltar GIB         4,204  3.32E+05         4,931  3.90E+05 17% 
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Guinea GIN         1,028  2.86E+09         1,164  3.24E+09 13% 

Guadeloupe GLP         2,043  3.81E+07         3,003  5.60E+07 47% 

Gambia GMB         1,698  2.04E+08         1,868  2.24E+08 10% 

Guinea-Bissau GNB         1,111  4.22E+08         1,203  4.57E+08 8% 

Equatorial Guinea GNQ            837  2.51E+08         1,034  3.10E+08 24% 

Greece GRC         1,465  2.72E+09         1,788  3.32E+09 22% 

Grenada GRD         1,883  7.30E+06         2,774  1.08E+07 47% 

Greenland GRL              13  1.17E+09              14  1.20E+09 2% 

Guatemala GTM         1,164  1.46E+09         1,440  1.81E+09 24% 

French Guiana GUF            115  1.06E+08            207  1.91E+08 80% 

Guam GUM         1,884  1.14E+07         2,837  1.71E+07 51% 

Guyana GUY            132  3.10E+08            182  4.26E+08 37% 

Hong Kong HKG         2,797  3.42E+07         3,766  4.61E+07 35% 

Heard Island and McDonald Islands HMD              46  3.00E+05                 2  1.35E+04 -95% 

Honduras HND            804  1.04E+09         1,078  1.39E+09 34% 

Croatia HRV         1,453  1.28E+09         1,832  1.62E+09 26% 

Haiti HTI         1,465  4.62E+08         1,985  6.26E+08 35% 

Hungary HUN         1,771  2.66E+09         2,030  3.04E+09 15% 

Indonesia IDN            804  1.68E+10         1,189  2.49E+10 48% 

Isle of Man IMN         2,202  2.36E+07         2,298  2.46E+07 4% 

India IND         1,660  6.33E+10         2,184  8.33E+10 32% 

British Indian Ocean Territory IOT            943  3.23E+05         1,703  5.83E+05 81% 

Ireland IRL         1,361  1.73E+09         1,738  2.21E+09 28% 

Iran IRN            996  2.13E+10         1,177  2.52E+10 18% 

Iraq IRQ            940  5.51E+09         1,245  7.30E+09 32% 

Iceland ISL            278  7.06E+08            438  1.11E+09 58% 

Israel ISR         1,699  4.81E+08         2,229  6.31E+08 31% 

Italy ITA         1,567  7.07E+09         2,222  1.00E+10 42% 

Jamaica JAM         1,693  2.17E+08         2,071  2.66E+08 22% 

Jersey JEY         3,524  6.98E+06         3,645  7.22E+06 3% 

Jordan JOR            595  6.88E+08            844  9.76E+08 42% 

Japan JPN         1,760  9.07E+09         1,973  1.02E+10 12% 

Kazakhstan KAZ            562  2.50E+10            597  2.66E+10 6% 

Kenya KEN            866  5.57E+09         1,111  7.14E+09 28% 

Kyrgyzstan KGZ            890  2.52E+09            998  2.83E+09 12% 

Cambodia KHM            942  1.92E+09         1,281  2.60E+09 36% 

Kiribati KIR            979  7.46E+06         1,524  1.16E+07 56% 

Saint Kitts and Nevis KNA         2,184  6.37E+06         2,879  8.40E+06 32% 

South Korea KOR         1,881  2.55E+09         2,292  3.11E+09 22% 

Kuwait KWT         1,495  3.31E+08         1,992  4.41E+08 33% 

Laos LAO            724  1.95E+09            962  2.59E+09 33% 

Lebanon LBN         2,233  3.06E+08         2,606  3.57E+08 17% 

Liberia LBR         1,102  1.19E+09         1,295  1.39E+09 17% 

Libya LBY            240  4.86E+09            289  5.86E+09 21% 

Saint Lucia LCA         1,696  1.16E+07         2,505  1.71E+07 48% 
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Liechtenstein LIE         1,892  4.97E+06         2,522  6.63E+06 33% 

Sri Lanka LKA         1,646  1.21E+09         2,087  1.53E+09 27% 

Lesotho LSO         1,139  4.46E+08         1,702  6.66E+08 49% 

Lithuania LTU         1,262  1.57E+09         1,785  2.22E+09 41% 

Luxembourg LUX         2,143  9.48E+07         2,826  1.25E+08 32% 

Latvia LVA            883  1.14E+09         1,435  1.85E+09 63% 

Macao MAC         3,472  9.76E+05         5,225  1.47E+06 51% 

Saint-Martin MAF         2,817  1.44E+06         3,942  2.01E+06 40% 

Morocco MAR            820  4.45E+09         1,084  5.87E+09 32% 

Monaco MCO         4,578  9.16E+04         6,063  1.21E+05 32% 

Moldova MDA         1,741  9.55E+08         2,026  1.11E+09 16% 

Madagascar MDG            925  6.46E+09         1,061  7.41E+09 15% 

Maldives MDV         1,632  1.96E+06         2,986  3.59E+06 83% 

Mexico MEX            583  1.39E+10            790  1.88E+10 36% 

Marshall Islands MHL         1,293  1.69E+06         1,876  2.46E+06 45% 

Macedonia MKD         1,334  4.83E+08         1,525  5.51E+08 14% 

Mali MLI            456  6.69E+09            619  9.07E+09 36% 

Malta MLT         3,317  1.38E+07         4,554  1.89E+07 37% 

Myanmar MMR         1,007  8.01E+09         1,196  9.52E+09 19% 

Montenegro MNE         1,026  2.03E+08         1,413  2.79E+08 38% 

Mongolia MNG            236  5.94E+09            290  7.31E+09 23% 

Northern Mariana Islands MNP         1,164  6.16E+06         1,869  9.88E+06 61% 

Mozambique MOZ            663  6.04E+09            905  8.25E+09 37% 

Mauritania MRT            215  2.66E+09            250  3.10E+09 16% 

Montserrat MSR         1,123  1.27E+06         1,557  1.76E+06 39% 

Martinique MTQ         2,226  2.78E+07         3,267  4.07E+07 47% 

Mauritius MUS         2,381  5.57E+07         2,969  6.94E+07 25% 

Malawi MWI         1,235  1.34E+09         1,751  1.90E+09 42% 

Malaysia MYS            783  2.87E+09         1,138  4.17E+09 45% 

Mayotte MYT         1,851  7.63E+06         2,714  1.12E+07 47% 

Namibia NAM            213  2.12E+09            349  3.46E+09 63% 

New Caledonia NCL            735  1.62E+08            918  2.02E+08 25% 

Niger NER            347  4.82E+09            460  6.38E+09 32% 

Norfolk Island NFK         1,660  8.27E+05         2,775  1.38E+06 67% 

Nigeria NGA         1,363  1.40E+10         1,671  1.72E+10 23% 

Nicaragua NIC            893  1.21E+09         1,053  1.43E+09 18% 

Niue NIU         1,079  3.33E+06         1,284  3.96E+06 19% 

Netherlands NLD         2,576  1.59E+09         3,267  2.02E+09 27% 

Norway NOR            569  4.37E+09            781  6.00E+09 37% 

Nepal NPL            989  1.84E+09         1,433  2.67E+09 45% 

Nauru NRU         2,283  5.32E+05         4,121  9.60E+05 80% 

New Zealand NZL            530  2.07E+09            690  2.70E+09 30% 

Oman OMN            381  1.41E+09            756  2.79E+09 98% 

Pakistan PAK         1,330  1.49E+10         1,492  1.67E+10 12% 

Panama PAN            819  6.85E+08            969  8.10E+08 18% 
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Pitcairn Islands PCN         1,021  6.39E+05         1,139  7.13E+05 11% 

Peru PER            433  6.29E+09            578  8.41E+09 34% 

Philippines PHL         1,302  4.31E+09         1,769  5.86E+09 36% 

Palau PLW            935  4.32E+06         1,539  7.11E+06 65% 

Papua New Guinea PNG            434  2.24E+09            545  2.81E+09 26% 

Poland POL         1,735  9.63E+09         2,145  1.19E+10 24% 

Puerto Rico PRI         2,286  2.38E+08         3,147  3.27E+08 38% 

North Korea PRK         1,131  2.00E+09         1,428  2.52E+09 26% 

Portugal PRT         1,199  1.58E+09         1,716  2.26E+09 43% 

Paraguay PRY            487  2.35E+09            753  3.63E+09 55% 

Palestina PSE         2,201  1.74E+08         2,940  2.32E+08 34% 

French Polynesia PYF         1,261  4.53E+07         1,543  5.54E+07 22% 

Qatar QAT         1,090  1.56E+08         2,174  3.11E+08 99% 

Reunion REU         1,827  5.42E+07         2,604  7.73E+07 43% 

Romania ROU         1,445  5.44E+09         1,668  6.28E+09 15% 

Russia RUS            241  9.36E+10            296  1.15E+11 23% 

Rwanda RWA         1,549  4.12E+08         2,145  5.71E+08 38% 

Saudi Arabia SAU            540  1.27E+10            863  2.03E+10 60% 

Sudan SDN            698  1.52E+10            802  1.75E+10 15% 

Senegal SEN         1,253  2.82E+09         1,400  3.15E+09 12% 

Singapore SGP         3,159  2.24E+07         4,557  3.23E+07 44% 
South Georgia and the South Sandwich 
Islands SGS            201  1.23E+07            178  1.09E+07 -12% 

Saint Helena SHN            844  4.02E+06         1,014  4.83E+06 20% 

Svalbard and Jan Mayen SJM                 4  1.42E+07              16  5.41E+07 280% 

Solomon Islands SLB            473  1.45E+08            771  2.37E+08 63% 

Sierra Leone SLE         1,436  1.17E+09         1,622  1.32E+09 13% 

El Salvador SLV         1,536  3.56E+08         1,867  4.32E+08 22% 

San Marino SMR         2,753  2.59E+06         3,880  3.65E+06 41% 

Somalia SOM         1,019  7.27E+09         1,055  7.52E+09 3% 

Saint Pierre and Miquelon SPM            899  2.89E+06         1,155  3.71E+06 28% 

Serbia SRB         1,468  1.77E+09         1,731  2.08E+09 18% 

South Sudan SSD            674  4.77E+09            842  5.96E+09 25% 

São Tomé and Príncipe STP         1,207  1.34E+07         1,574  1.74E+07 30% 

Suriname SUR            114  1.84E+08            190  3.08E+08 67% 

Slovakia SVK         1,666  1.37E+09         1,933  1.59E+09 16% 

Slovenia SVN         1,374  4.39E+08         1,854  5.92E+08 35% 

Sweden SWE            568  5.64E+09            838  8.32E+09 48% 

Swaziland SWZ         1,172  2.54E+08         1,896  4.10E+08 62% 

Sint Maarten SXM         3,134  1.12E+06         4,305  1.54E+06 37% 

Seychelles SYC         1,735  7.99E+06         2,187  1.01E+07 26% 

Syria SYR         1,166  2.95E+09         1,383  3.50E+09 19% 

Turks and Caicos Islands TCA            887  8.60E+06         1,156  1.12E+07 30% 

Chad TCD            467  6.88E+09            638  9.40E+09 37% 

Togo TGO         1,166  7.50E+08         1,514  9.74E+08 30% 
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Thailand THA         1,449  8.56E+09         1,955  1.15E+10 35% 

Tajikistan TJK            799  1.59E+09            949  1.89E+09 19% 

Tokelau TKL         1,418  8.93E+04         1,549  9.76E+04 9% 

Turkmenistan TKM            757  5.06E+09            927  6.20E+09 22% 

Timor-Leste TLS         1,283  2.16E+08         1,550  2.60E+08 21% 

Tonga TON         1,624  1.24E+07         2,246  1.72E+07 38% 

Trinidad and Tobago TTO         1,678  9.70E+07         2,321  1.34E+08 38% 

Tunisia TUN            976  2.03E+09         1,207  2.51E+09 24% 

Turkey TUR         1,293  1.43E+10         1,575  1.74E+10 22% 

Tuvalu TUV         1,163  2.59E+05         2,221  4.95E+05 91% 

Taiwan TWN         1,601  7.00E+08         2,226  9.74E+08 39% 

Tanzania TZA            835  8.32E+09         1,147  1.14E+10 37% 

Uganda UGA         1,261  2.90E+09         1,772  4.07E+09 41% 

Ukraine UKR         1,471  1.46E+10         1,718  1.71E+10 17% 

United States Minor Outlying Islands UMI            605  1.79E+05         1,244  3.68E+05 106% 

Uruguay URY            485  1.12E+09            613  1.41E+09 26% 

United States USA            607  8.99E+10            902  1.33E+11 48% 

Uzbekistan UZB            962  6.23E+09         1,154  7.47E+09 20% 

Vatican City VAT         5,056  4.55E+04         5,900  5.31E+04 17% 

Saint Vincent and the Grenadines VCT         1,731  7.47E+06         2,213  9.55E+06 28% 

Venezuela VEN            546  5.55E+09            696  7.07E+09 27% 

British Virgin Islands VGB         2,083  3.03E+06         2,890  4.21E+06 39% 

Virgin Islands, U.S. VIR         2,870  1.09E+07         3,710  1.41E+07 29% 

Vietnam VNM         1,394  5.28E+09         1,799  6.81E+09 29% 

Vanuatu VUT            718  9.96E+07            869  1.21E+08 21% 

Wallis and Futuna WLF         1,687  2.14E+06         2,346  2.98E+06 39% 

Samoa WSM         1,273  4.09E+07         1,600  5.14E+07 26% 

Akrotiri and Dhekelia XAD         2,408  7.33E+06         3,028  9.22E+06 26% 

Caspian Sea XCA            894  1.21E+07         1,144  1.55E+07 28% 

Kosovo XKO         1,543  2.54E+08         2,026  3.33E+08 31% 

Northern Cyprus XNC         1,681  7.50E+07         2,045  9.13E+07 22% 

Paracel Islands XPI         1,765  7.06E+04         2,696  1.08E+05 53% 

Spratly Islands XSP            175  1.93E+03         1,489  1.64E+04 748% 

Yemen YEM            527  2.77E+09            677  3.56E+09 29% 

South Africa ZAF            684  1.06E+10            771  1.20E+10 13% 

Zambia ZMB            594  5.05E+09            802  6.81E+09 35% 

Zimbabwe ZWE         1,006  4.61E+09         1,358  6.22E+09 35% 
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