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Abstract 11 

Lineage-specific traits determine how plants interact with their surrounding environment. As 12 

different species may find similar phenotypic solutions through evolution to tolerate, persist in 13 

and invade environments with certain characteristics, some traits may become more common in 14 

certain types of habitats. These general patterns of geographical trait distribution point towards 15 

the existence of some rules in how plants diversify in space over time. Trait-environment 16 

correlation analyses are ways to discover general rules in plant biogeography by quantifying to 17 

what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In 18 

this synthesis, I give a short historical overview on trait-environment correlation analyses, from 19 

some key observations from classic naturalists to modern approaches using trait evolution 20 

models, large phylogenies, and massive datasets of traits and distributions. I discuss some 21 

limitations of modern approaches, including the need for more realistic models, the lack of data 22 

from tropical areas, and the necessary focus on trait scoring that goes beyond macro-23 

morphology. Overcoming these limitations will allow the field to explore new questions related 24 

to trait lability and niche evolution and to better set apart rules and exceptions in how plants 25 

diversify in space over time.  26 
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 28 

Introduction: lineage specific trait as determinants of plant distribution  29 

Lineage-specific traits control how plants interact with their physical environment and 30 

can modulate their geographical distribution in at least three different ways. First, they can allow 31 

plant lineages to survive in an environment that, due to physiological constraints, they would not 32 

be able to tolerate otherwise (Good, 1931). For example, species native to closed canopy biomes 33 

tend to have larger leaf areas (Givnish, 1988) and larger seeds to store nutrients for germination 34 

(Foster & Janson, 1985) due to photosynthesis limitations in shady habitats. Second, lineage-35 



specific traits can facilitate lineages to persist and reproduce in certain environments by allowing 36 

them to better compete for resources or survive against natural enemies. For instance, spines tend 37 

to be more common in open habitats where grassing herbivores are numerous (Charles-38 

Dominique et al., 2016) and higher diversity of chemical compounds is observed in tropical 39 

rainforests where plants are under constant pressure from pathogens (Kursar et al., 2009). Third, 40 

lineage-specific traits can increase chances of lineages to invade new environments by 41 

facilitating events of long-distance dispersal and the establishment of new populations from just 42 

a few individuals. Such traits include, for instance, capacity for self-fertilization (Pannel et al., 43 

2015) and certain types of seed dispersal strategies that increase lineage vagility over 44 

evolutionary time (Onstein et al., 2019; Vasconcelos et al., 2021).  45 

 46 

Figure 1. (A) Schematic representation of the geographical distribution of eleven species across 47 

an environmental gradient (- to +) and which present two different traits (X and Y). Each trait is 48 

more common in one of the extremes of the environmental gradient. Over evolutionary time, this 49 

pattern can be formed through: (B) common descendance of sympatric species; or (C) 50 

convergent evolutionary responses of unrelated lineages. The second scenario (C) provides 51 



significantly more robust evidence for trait-environment correlation in an explicit evolutionary 52 

framework due to the larger number of empirical replicates (marked with asterisk). 53 

 54 

The crucial role that traits play in modulating plant distribution may lead some traits to 55 

become more common in certain types of habitats, as many different species find similar 56 

phenotypic solutions through their evolution to tolerate, persist in and invade environments with 57 

certain characteristics (Figure 1A). Similar phenotypic solutions may arise from common 58 

descent, when closely related species inherit a similar suite of beneficial traits to exist in one 59 

given type of habitat (Figure 1B). For instance, most species of montane lupines (Lupinus, 60 

Fabaceae) are perennial and belong to a clade that invaded the Andes and diversified in situ, 61 

meaning that there are few events of elevation transition linked to the evolution of perennial life 62 

history strategy in that group (Drummond et al., 2012). However, similar phenotypic solutions 63 

can also arise in distantly related species through parallelisms and convergences (Figure 1C; e.g. 64 

Donoghue et al., 2022). For instance, the way in which we recognize biomes often refer to traits 65 

that are commonly found across several unrelated lineages that occur under a similar temperature 66 

and precipitation. The biome classification of “broadleaf rainforests”, for example, refer to a 67 

plant trait (“broadleaves”) that is common in warmer forests that receive a lot of rain throughout 68 

the year, and “shrublands” indicate drier or cooler areas that are dominated by a particular life 69 

form (“shrubs”). In this case, independent events of environment transitions may appear 70 

correlated with the acquisition of a similar phenotypic characteristic through the evolution of 71 

independent lineages, even if that biome has a disjunct distribution around the world (e.g. 72 

savannas and rainforests; Pennington and Hughes, 2014; Eiserhardt et al., 2017).  73 

Distantly related lineages having similar evolutionary responses to the same component 74 

of the physical environment (such as climate, soil, and topography) point towards the existence 75 

of some general rules in how plants diversify in space over time. With modern tools, it is 76 

possible to quantify to what extent unrelated lineages have similar evolutionary responses to a 77 

given physical environment, and thus how general these general rules are, through analyses of 78 

trait-environment correlations. In this synthesis, I give a brief overview of how trait-environment 79 

correlations have been historically noted and quantified and discuss some avenues for future 80 

research based on current limitations of modern approaches.  81 

 82 

A brief historical overview on trait-based approaches to plant biogeography  83 

The history of observation that plant trait distribution correlate with aspects of the 84 

physical environment goes back to before the proposition of the evolutionary theory. Von 85 

Humboldt and Bonpland (1807) provided arguably the most popular account of his time on how 86 

vegetative traits respond to environmental temperature, by observing that alpine plants in tropical 87 

mountains have similar vegetative characteristics as those found in the temperate zones of 88 

Europe. These observations were later mentioned by Darwin (1859, Origin of Species, Chapter 89 



XI) to support his theory of natural selection, as evidence that unrelated plant lineages (e.g. 90 

species of different genera and families) may acquire similar forms when faced with similar 91 

environmental challenges, no matter where they are on the globe. In the first half of the 20th 92 

century, key further contributions to these observations came from the works of Arber (1920), 93 

who described similar anatomical patterns in roots and stems of aquatic plants for different 94 

families of flowering plants; and Raunkiaer (1934) who proposed a categorization for life forms 95 

in plants in relation to how growing buds are protected during unfavorable seasons. In the second 96 

half of the 20th century, Stebbins (1950, 1974) contributions were remarkable for linking the 97 

physical environment not only to the convergent evolution of vegetative traits, but also 98 

reproductive traits such as flower and fruits. He suggested that the physical environment may 99 

often cause an indirect effect on the spatial distribution of plant traits that depend on animal 100 

behavior, because the distribution of animals themselves (e.g. pollinators and dispersers) are also 101 

impacted by characteristics of the physical environment. It is important to note that most of the 102 

trait-environment correlation hypotheses developed during this period were based mainly on 103 

morphological descriptions, natural history observations, or simple statistics and did not account 104 

for common ancestry among species. Though most patterns were described in the context of the 105 

evolutionary theory, at that time there were no tools available to quantify how specific or general 106 

these patterns were across many lineages and in an explicit evolutionary framework – that is, 107 

when considering common ancestry among lineages in the analyses (Felsenstein, 1985).  108 

The end of the 20th century brought the popularization of computers, the global 109 

positioning system (“GPS”) and molecular sequencing techniques. These new technologies 110 

allowed quantifying trait-environment correlations using more accurate accounts of species 111 

geographical distributions (see also Colli-Silva et al., 2020) and to consider the impact of shared 112 

descendance on trait evolution through molecular-based phylogenies (Felsenstein, 1988; Webb 113 

and Donoghue, 2005; Webb et al., 2008) and phylogenetic comparative methods (Felsenstein, 114 

1985; Donoghue, 1989). Some noteworthy findings of these early stages of quantitative trait-115 

environment correlations using comparative methods include a latitudinal gradient of seed size 116 

due to a correlation with vegetation type (Moles et al., 2007), the correlation between seed and 117 

seedling morphology and degree of canopy opening (Zanne et al., 2005), and the evolution of 118 

defense traits in relation to soil variables (Fine et al., 2004). Studies of this period have typically 119 

used simple trait evolution models (Pagel 1994) or regressions of phylogenetic independent 120 

contrasts (Felsenstein, 1985) to measure trait-environment correlations.  121 

 122 

Modern approaches to trait-environment correlations  123 

The use of more realistic approaches for measuring trait-environment correlations were 124 

generally hampered by the lack of global datasets and new models that only became widely 125 

available, or popularized, in the last 15 years. Existing databases of molecular sequences (e.g. 126 

NCBI, 2022) and occurrence points (e.g. GBIF, 2022), and newly available environmental layers 127 

(Karger et al., 2017; Brown et al., 2018), as well as collaborative initiatives to score massive trait 128 



datasets (e.g. Wright et al., 2004; Kattge et al., 2011; Díaz et al., 2016), have allowed many trait-129 

environment correlation hypotheses to be tested at a global scale and in an explicitly 130 

evolutionary framework (e.g. Moles 2018; Bruelheide et al., 2018; Sinnott-Armstrong et al., 131 

2021). The use of broader datasets in terms of both taxonomic and geographic scope is important 132 

because defining rules requires generalizations that work for as many lineages as possible, and 133 

quantifying that is only possible when data from many plant groups are combined in a single 134 

analytical framework. Inferences can be dubious when derived from single events (Maddison 135 

and FitzJohn, 2015), so to understand which patterns are rules and which are exceptions multiple 136 

natural replicates of the same type of event are needed (Figure 1C) (e.g. replicated radiations; 137 

Donoghue et al., 2022). The possibility of reconstructing large phylogenies (e.g. Zanne et al., 138 

2014, 2018; Beaulieu and O’Meara, 2018), or using multiple phylogenies that present the pattern 139 

of interest (e.g. Simon et al., 2009, Vasconcelos et al., 2020; 2021), means that an adequate 140 

number of independent evolutionary transitions of the same type (e.g. multiple habitat shifts 141 

and/or multiple transitions between trait states) can be achieved more easily.  142 

With the need for increasing the number of independent replicates of a certain trait-143 

environment association also comes the need for more realistic trait evolution models that can 144 

incorporate the heterogeneity of evolutionary processes across the tree of life. For example, new 145 

extensions of hidden-Markov models allow transition rates between states of a discrete trait to 146 

vary across a phylogeny (Boyko and Beaulieu 2021, 2022), which would be expected if the 147 

dynamics of trait evolution differ among clades, a compelling assumption especially in larger 148 

phylogenies (Beaulieu et al., 2013). Phylogenetic regression methods that allow the error term to 149 

be modeled according to different assumptions of how continuous traits evolve (Ho and Ané, 150 

2014) and shift detection methods that allow the parameters of continuous trait evolution models 151 

to vary across the phylogeny (Khabbazian et al., 2016; Uyeda and Harmon, 2014) also allowed 152 

for more biologically realistic pictures of continuous trait evolution. Similarly, models that allow 153 

for the joint evolution of discrete and continuous traits (Tribble et al., 2021; Boyko et al., 2022) 154 

allow for traits and environmental variables to influence one another throughout evolution in 155 

cases where they are correlated.   156 

 157 

Limitations of current approaches  158 

There are exciting ways in which trait-environment correlations can be used to 159 

understand plant biodiversity with the development of more realistic models and increasing 160 

availability of trait, distribution, and phylogenetic datasets. However, there are also many 161 

limitations in current approaches that must be tackled by future studies aiming at quantifying 162 

trait-environment correlations as the field moves forward. I highlight three of these limitations 163 

below.  164 

First, we need to keep working on the development of more realistic models. For 165 

instance, models that simultaneously account for the differential dynamics of speciation and 166 

extinction rates as well as trait and environment evolution would be more realistic, as all these 167 



processes affect how traits become common in one type of environment (Vasconcelos et al. 168 

2022). A common problem in model development is that more realistic models tend also to be 169 

more complex (i.e., with more parameters to be estimated) and then face identifiability problems 170 

(Louca and Pennell, 2020), power issues (Davis et al., 2013), and computational limitations 171 

(Maliet and Morlon, 2022). Many of the current available approaches also frequently require 172 

data transformations that may not be realistic. For example, the discretization of traits and 173 

environmental variables that are clearly continuous in nature (e.g., elevation) and the lack of 174 

appropriate ways to simplify multivariate traits in an explicit phylogenetic framework (Uyeda et 175 

al., 2015). Solving these limitations will increase our flexibility in asking different types of 176 

questions due to the use of more realistic datasets and assumptions related to how correlated 177 

evolution works. 178 

Second, we must fill the gaps in datasets of phylogenies, traits, and distributions from 179 

poorly known groups, especially in tropical areas. Though large online databases of molecular 180 

data, geographical distribution, and traits are exceptional resources for global analyses, they tend 181 

to cover a higher proportion of the diversity of temperate regions (Figure 2; see also Collen et al., 182 

2008; Cornwell et al., 2019). The fact that data richness (Collen et al., 2008; Cornwell et al., 183 

2019) and taxonomic accuracy (Freeman and Pennell, 2021) is still skewed towards the poles 184 

may lead to biased interpretations of results from large scale analyses. This means that to 185 

understand, for example, how plant lineages have moved in space over time or how they adapted 186 

to specific habitats, even if we try to include all the available data, results may be weighted for 187 

patterns observed in temperate habitats. Global generalities in trait-environment correlations will 188 

only be properly documented when data from the whole globe is included in the analyses 189 

(Cornwell et al., 2019). Until sampling in the tropics matches the sampling in the temperate 190 

regions, efforts on understanding the role of traits on the spatial diversification of plants at a 191 

global scale will remain preliminary at best. Future studies that seek to understand these general 192 

patterns should seek not only theoretical and methodological advancement, but also in filling this 193 

fundamental lack of data from tropical regions.  194 



 195 

Figure 2. The latitudinal bias in large datasets of phylogenetic representation and traits. (A) 196 

Molecular data for phylogenetic reconstruction and (B,C) two traits commonly used in trait-197 

environment correlation analyses: (B) ploidy and (C) seed mass. Distribution data comes from 198 

POWO (2022). Other data comes from, respectively, (A) Smith and Brown (2018), (B) Rice et 199 

al., (2019), and (C) Maitner et al., (2018). Code and details for plotting maps are available in 200 

github.com/tncvasconcelos/synthesis. 201 

 202 

Third, we should focus on improving available datasets of phylogenies, traits, and 203 

distributions not only in quantity, but also in quality. Much of the large-scale analyses on trait-204 

environment correlations has so far been focused on macro-morphological traits that can be 205 

readily scored from herbarium collections, taxonomic descriptions, or that are commonly 206 

measured from plots of forestry surveys. Though form and function are linked, and macro-207 

morphology can tell us a lot about plant adaptations to their environment (e.g. Donoghue et al., 208 



2022), traits related to seed germination (e.g. Tudela-Isanta et al., 2018), cytotype (e.g. Rice et 209 

al., 2020), below ground organs (e.g. Laliberté 2017; Carmona et al., 2021), defensive chemicals 210 

(e.g. Hahn et al., 2019), phenology (e.g. Staggemeier et al., 2010; Fernandéz-Martínez et al., 211 

2019), and anatomy (e.g. Alcantara et al., 2018) are also crucial to understand spatial 212 

diversification of plants, and comprehensive datasets for these are still scarce. To understand the 213 

role of the physical environment on the evolution of traits that are primarily associated with 214 

animal interactions, such as pollination or dispersal strategies, we must also have a better 215 

understanding of pollinator and disperser spatial distributions, as well as details of these 216 

interactions, and this data is also scant for most plant groups (see also Weber and Agrawal, 2012; 217 

Dellinger, 2020). Much of this data can be only collected through carefully designed experiments 218 

or field observations (Sinnott-Armstrong et al., 2022) that can be expensive, risky, and time-219 

consuming, and for that reason often avoided by research groups.  220 

 221 

New biological questions and shifts in paradigm 222 

It is perhaps worth noting that the progress in the field discussed in here seems to be 223 

mostly technical – that is, based on the development of new datasets and methods and not 224 

necessarily on a new set of biological questions. A focus on technical progress is not necessarily 225 

a bad thing. In a way, trait-environment correlation studies have always aimed to answer the 226 

simple question of “why plants are where they are and why they look how they look” that existed 227 

for centuries. The advantage of modern approaches is that they allow a more biologically 228 

realistic picture of how correlated evolution works, and so can lead to more satisfactory answers 229 

to these questions. However, it is also possible to argue that technical developments in studies of 230 

trait-environment correlations have allowed for a completely new set of biological questions to 231 

be asked. For instance, the parameterization of some evolutionary processes in new extensions of 232 

trait evolution models have changed the way in which we investigate trait-environment 233 

correlations. One example is the focus on evolutionary rates. Measuring rates have opened the 234 

possibility to explore questions related to the role of the environment on trait lability (e.g. Lovo 235 

et al., 2021) and the role of traits on niche conservatism and niche evolution (e.g. Smith & 236 

Beaulieu, 2009; López‐Jurado et al., 2019; Qiu et al., 2019; Baniaga et al., 2020; Vasconcelos et 237 

al., 2021), rather than merely testing if support for a trait-environment correlation exists or not. 238 

Previously established generalities are also challenged when old hypotheses are confronted with 239 

new data that often come from poorly studied groups and areas (e.g. Vasconcelos et al., 2019; 240 

Vasconcelos et al., 2020). Increasing the number of empirical replicates may shift paradigms in 241 

terms of rules and exceptions of how plants diversify in space (e.g. Igea and Tanentzap, 2020; 242 

Sun et al., 2020). In that way, overcoming current limitations in data and methods will allow the 243 

field to explore new questions and to better set apart rules and exceptions in trait-based 244 

approaches to plant biogeography. 245 
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