

1 **Kin recognition in non-native plants: a general hypothesis of invasiveness**

2 Rameez Ahmad¹, Yanjie Liu^{1*}

3 ¹*Jilin Da'an Agro-ecosystem National Observation and Research Station; Key Laboratory of*
4 *Marsh Wetland Ecosystem Conservation and Restoration, National Forestry and Grassland*
5 *Administration; State Key Laboratory of Black Soils Conservation and Utilization, Northeast*
6 *Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102,*
7 *China.*

8

9 ORCID: Rameez Ahmad, <https://orcid.org/0000-0002-4229-986X>

10 ORCID: Yanjie Liu, <https://orcid.org/0000-0003-3948-1246>

11

12 *Correspondence author: Yanjie Liu, Email: liuyanjie@iga.ac.cn

13

14

15 **Abstract**

16 Understanding how non-native plants successfully invade new environments is a fundamental
17 question in invasion ecology. Here, we propose a novel hypothesis of kin recognition - *the*
18 *ability of plants to differentiate between closely related and distantly related neighbors* - as a
19 mechanistic explanation for invasion success. To evaluate the idea, we reviewed existing
20 evidence for kin recognition in the plant invasion literature and synthesize supporting findings.
21 Finally, we outline promising research directions that could advance our understanding of kin
22 recognition in plant invasions and help clarify this emerging conceptual framework.

23

24 **Key words:** Alien plant, competition, exotic, facilitation, kin recognition

25

26 In the Anthropocene, invasive non-native species are amongst the major drivers of biodiversity
27 loss and ecosystem degradation, with severe ecological, economic, and health repercussions
28 (Pyšek et al., 2020; Diagne et al., 2021; Roy et al., 2023; Thakur et al., 2025). Several
29 hypotheses have been proposed to explain plant invasion mechanisms (Enders et al., 2020),
30 offering valuable insights into why invasive species often outcompete native ones. However,
31 these hypotheses predominantly focus on inter-specific interactions and fail to adequately
32 address the role of intra-specific interactions in driving invasiveness. Specifically, they cannot
33 explain why invasive plants frequently form high-density monocultures over large areas—
34 exceeding both their native range densities and those of co-occurring native species—since
35 such patterns are largely shaped by intra-specific competition.

36 A potentially significant yet understudied factor affecting non-native plant invasiveness is
37 kin recognition - *the ability of plants to distinguish closely related (kin) from distantly related*
38 *(sibling) neighbors* (Anten & Chen, 2021a, b). It may affect invasiveness by modulating the
39 intensity and outcome of intra-specific competition. In this paper, we first introduce the concept
40 of kin recognition in plants and then propose a novel hypothesis regarding kin recognition as a
41 mechanism for invasion success of non-native plants in novel ecosystems. Recognizing genetic
42 relatives allows non-native plants to optimize resource acquisition, refine competitive
43 strategies, and form cooperative alliances, all of which increase fitness at the stand level and
44 strengthen their establishment in new environments. We then evaluate the evidence of kin
45 recognition in plant invasion literature, highlight knowledge gaps and suggest promising
46 directions for future research.

47 **Kin recognition and its pathways in plants**

48 The concept of kin recognition, although originally proposed for the animal kingdom
49 (Waldman, 1988; Penn & Frommen, 2010), has gained attention in plant literature in the recent
50 past (Dudley & File, 2007; Dudley et al., 2013; Crepy & Casal, 2015; 2016; Anten et al., 2021a,

51 b). Substantial evidence is now available for the existence of kin recognition in plants, from
52 angiosperms to gymnosperms and including both wild species and crop plants (e.g., Anten et
53 al., 2021a, b; Sher et al., 2025; Xia et al., 2025). By recognizing genetically related neighbors,
54 plants can modify their behavior in ways that reduce competition and enhance reproduction,
55 ultimately benefiting the population as a whole (Karban et al., 2013; Torices et al., 2018; Milla
56 et al., 2019). For example, studies have indicated that plants exhibit less competitive behavior
57 when interacting with kin as compared to strangers (Yang et al., 2018; Takigahira & Yamawo,
58 2019). Likewise, a recent meta-analytical study revealed that kin recognition in plants reduced
59 below-ground competition by decreasing root biomass and length, root-shoot ratio, and lateral
60 root number, but enhanced above-ground light acquisition traits such as leaf area and boosted
61 reproductive success by increasing seed biomass (Xia et al., 2025). These findings suggest that
62 kin recognition in plants can influence fundamental ecological processes, such as plant trait
63 evolution, community structure, and diversity, and associated ecological interactions (Anten et
64 al., 2021a).

65 Kin recognition in plants occurs through a series of interlinked events allowing individuals
66 to distinguish closely related from distantly related neighbors and adjust their growth pattern
67 and behaviour accordingly (Biedrzycki & Bais, 2010; Sher et al., 2025). The process starts
68 when one plant individual (i.e., sender) releases a signal in the surrounding environment. Next,
69 a neighboring individual (i.e., receiver) from the population detects and interprets the signal.
70 Finally, the receiving individual reacts to the signal by showing a favorable response towards
71 kin through co-operative or altruistic behaviour, with the latter benefiting population as a whole
72 even at the cost to senders' individual fitness (Sher et al., 2025). Plant signaling has been
73 recognized as a critical factor in kin recognition allowing individuals to detect or perceive
74 genetically related neighbors (Biedrzycki & Bais, 2010; Sher et al. 2025). The plant signals to
75 detect genetically related neighbors are highly variable across species, and are categorized into

76 four broad categories: root exudates (i.e., complex organic secretions from roots) (Yang et al.,
77 2018; Wang et al., 2020), volatile organic compounds (i.e., carbon-based volatile chemical
78 secretions) (Rahman et al., 2019; Ninkovic et al., 2021), light profiles (i.e., light quality cues
79 such as red: far-red (R:FR) light ratio change) (Crepy & Casal, 2015; Chen et al., 2023), and
80 common mycorrhizal networks (i.e., below-ground plant-mycorrhizal symbiotic associations)
81 (Song et al., 2015; Chagas et al., 2018).

82 **Kin recognition: a general hypothesis of invasiveness**

83 In the introduced range, the invasion success of non-native plants is primarily determined by
84 both inter-specific and intra-specific competition for limiting resources with neighboring plants
85 (Zhang et al., 2022). While inter-specific competition may lead to competitive exclusion of
86 native species, intra-specific competition can also induce a self-limiting effect (Mangla et
87 al., 2011; Boström-Einarsson et al., 2013; Kula et al., 2020). Yet, invasive plants are frequently
88 observed to form extensive, high-density stands that exceed both their densities in native range,
89 and those of co-occurring native plants (Zheng et al., 2015; Iqbal et al., 2020; Zhao et al., 2020).
90 To resolve this paradox, we propose that kin recognition serves as a critical mechanism
91 influencing invasiveness (**Figure 1**). A heightened ability to identify genetically related
92 individuals could allow invasive plants to reducing competition among close relatives, even
93 foster cooperative or altruistic behaviors, wherein individuals act to benefit the population or
94 closely related conspecifics, sometimes at a cost to themselves (**Figure 1**). Consequently,
95 invasive populations often exhibit reduced competition and improved overall fitness when
96 grown with kin compared to non-kin, ultimately facilitating the formation of high-density
97 monocultures (**Figure 1**). We conduct a systematic literature search using Web of Science
98 (<https://www.webofscience.com>) and Scopus (<https://www.scopus.com>). Of the relevant
99 studies identified, all the eight studies provided at least partial evidence supporting the
100 existence of kin recognition in invasive plants (see Supporting Information).

101 **Evolution of kin recognition in non-native plants**

102 Recent studies have confirmed that invasive plant species possess the ability to discriminate
103 between kin and non-kin neighbors. For instance, the invasive *Xanthium italicum* reduces its
104 root biomass and competitive intensity when grown with kin compared to non-kin (Abd El-
105 Gawad et al., 2017). Similarly, the clonal invasive *Kalanchoë daigremontiana* produces more
106 plantlets when competing with kin than with non-kin (Yamawo et al. 2017). Consistent with
107 the observation that the invasive *Potentilla recta* perform better among kin under low-water
108 conditions, kin-conditioned soil has also been shown to enhance survival and growth under
109 drought (Wu et al., 2021). Furthermore, the invasive rosette species garlic mustard (*Alliaria*
110 *petiolata*) exhibits kin recognition, manifested as increased petiole elongation and specific leaf
111 area among siblings, a morphological adjustment that reduces mutual shading and reflects
112 cooperative behavior (Murphy et al., 2022). Collectively, this evidence indicates that kin
113 recognition occurs in non-native plants within their introduced ranges. This ability may
114 represent an evolved response or an inherent trait that facilitates invasion success.

115 Multiple selective pressures in introduced ranges likely drive the evolution of enhanced
116 kin recognition in invasive plants. First, following introduction, founder effect frequently
117 reduces genetic diversity in non-native plant populations (Dlugosch & Parker, 2008; Colautti
118 et al., 2010; Lee et al., 2021). In response, plants may shift toward self-pollination or clonal
119 propagation (Liu et al., 2006; Razanajatovo et al., 2016; Yamawo et al., 2017). Under such
120 conditions, selection may favor the evolution of kin recognition and reduced competitive or
121 even facilitative responses towards their kin (Yamawo et al., 2017; Zhang et al., 2019; Lee et
122 al., 2021). Such responses are often adaptive, promoting inclusive fitness through cooperative
123 behaviour among genetically related individuals. Second, invasive plant species frequently
124 form high-density, clustered populations in their introduced ranges (Zheng et al., 2021). Under
125 such conditions, intense intra-specific competition can become a major constraint on

126 population growth (Chesson, 2000). To persist and spread, invasive plants must alleviate such
127 intra-specific competition. Kin recognition offers an effective mechanism to reduce
128 competitive costs among relatives, thereby enhancing population fitness and strengthening
129 competitive advantage over native plants (Zhang et al., 2019; Zheng et al., 2021).

130 Indeed, limited but suggestive evidence indicates that kin recognition may evolve in
131 invasive populations of non-native species. For example, Zhang et al. (2019) found that
132 introduced genotypes of *Alternanthera philoxeroides* produced more branches when grown in
133 competition with kin (i.e., same genotype) compared to when competing with non-kin (i.e.,
134 different genotypes), whereas the native genotypes showed the opposite response. Moreover,
135 introduced genotypes produced longer stems when grown in competition with con-specifics
136 compared to growing alone, whereas native genotypes produced shorter stems. This indicates
137 that introduced genotypes exhibit better shade-avoidance responses to competition from con-
138 specific than native genotypes. Such reduced intra-specific aggression among kin potentially
139 increased the stand level fitness of *A. philoxeroides* during early stages of invasion, and
140 subsequently promotes its establishment and spread in the introduced range (Zhang et al., 2019).
141 Additionally, invasive populations growing with kin produced more branches, suggesting that
142 kin recognition may facilitate resource allocation from vegetative growth to reproduction,
143 thereby accelerating their spread in novel environments. Overall, this study provides
144 compelling evidence that kin interaction in *A. philoxeroides* have shifted from competition in
145 its native range (i.e., Argentina) to facilitation in the invasive range (i.e., United States), driven
146 by a higher frequency of interactions following introduction (Zhang et al., 2019).

147 **Kin recognition difference between invasive and native plants**

148 Given that invasive non-native plants often occupy larger areas and establish denser
149 populations than native counterparts (Zheng et al., 2015; Iqbal et al., 2020; Zhao et al., 2020),
150 we hypothesize that they may possess a superior ability for kin recognition. Since kin

151 recognition can decrease intra-specific competition, this enhanced capacity could confer a
152 demographic advantage on invasive plants, thereby driving their invasion success.
153 Nevertheless, kin recognition ability can vary across populations within same species. For
154 example, variation in kin recognition has been observed among populations of both invasive
155 *Taraxacum officinale* and native *T. platycarpum*, with populations from similar habitats
156 sometimes showing convergent responses (Lee et al. 2021). This may because the selection
157 pressures differ for varied populations. Indeed, Zheng et al. (2021) demonstrated that the
158 invasive *Eupatorium adenophorum* exhibits stronger kin recognition than its native congeners
159 (*E. fortunei* and *E. lindleyanum*) under high-density conditions. This relatively higher kin
160 recognition allows invasive plants to mitigate intra-specific competition by optimizing resource
161 allocation, for example, by reducing carbon investment in roots while increasing height to
162 enhance light capture efficiency (Zheng et al., 2021; Chen et al., 2023). Such adjustments
163 collectively improve stand-level population fitness, reinforcing their competitive dominance.
164 A recent study reveals a clear divergence in kin-mediated growth strategies between invasive
165 and native congeneric species (Li et al., 2026). In the invasive *Alternanthera philoxeroides*,
166 competitive allocation (longer stolons, more nodes and branches) toward neighbors was
167 reduced among kin, boosting stand-level performance. This is evidence of functional kin
168 recognition. In contrast, the native *A. sessilis* intensified such competitive traits within kin
169 groups, suggesting weaker or absence of kin recognition. Together, by adjusting resource
170 allocation strategies based on neighbor identity, non-native plants can optimize resource use,
171 facilitate survival and intensify spread in the introduced ranges, ultimately contributing to their
172 ecological dominance.

173 **Conclusion and way forward**

174 We propose a novel hypothesis that kin recognition promotes plant invasiveness by reducing
175 competition among genetically related individuals, thus facilitating the establishment of high-

176 density populations. We concluded that current body of relevant experimental evidence is
177 sufficient to firmly support the evidence of kin recognition in invasive plants. Future work
178 should expand kin recognition research to a broader suite of invasive species, include more
179 genotypes across a gradient of genetic relatedness, and examine how genetic diversity
180 influences kin-mediated interactions. Furthermore, long-term field experiments are essential to
181 understand how kin recognition regulates plant invasions under global environmental changes.

182

183 **Acknowledgments**

184 Yanjie Liu acknowledges funding from National Natural Science Foundation of China
185 (W2411021; 32371748).

186

187 **Declaration of interests**

188 The authors declare no competing interests.

189

190 **Author contributions**

191 YL conceived the idea and design the framework of the study. RA and YL wrote the manuscript.

192

193 **Declaration of generative AI and AI-assisted technologies in the writing process**

194 During the writing process, the first author used ChatGPT (www.chatgpt.com) to improve the
195 clarity and language of the manuscript. The author(s) reviewed and edited the content as needed,
196 and take full responsibility for the content of the publication.

197

198 **References**

199 Abd El-Gawad, A.M., Zotti, M., Sarker, T.C., Mazzoleni, S., & Bonanomi, G. (2017). Does a
200 plant detect its neighbor if it is kin or stranger? Evidence from a common garden
201 experiment. *Community Ecology*, 18: 305–310.

202 Anten, N.P., & Chen, B.J. (2021a). Detect thy family: mechanisms, ecology and agricultural
203 aspects of kin recognition in plants. *Plant, Cell & Environment*, 44: 1059–1071.

204 Anten, N.P., & Chen, B.J. (2021b). Kin discrimination in allelopathy and consequences for
205 agricultural weed control. *Plant, Cell & Environment*, 44: 3705.

206 Biedrzycki, M.L., Jilany, T.A., Dudley, S.A., & Bais, H.P. (2010). Root exudates mediate kin
207 recognition in plants. *Communicative & Integrative Biology*, 3: 28–35.

208 Boström-Einarsson, L., Bonin, M.C., Munday, P.L., & Jones, G.P. Strong intraspecific
209 competition and habitat selectivity influence abundance of a coral-dwelling
210 damselfish. *Journal of Experimental Marine Biology and Ecology*. 448: 85–92.

211 Chagas, F.O., de Cassia, Pessotti. R., Caraballo-Rodriguez, A.M., & Pupo, M.T. (2018).
212 Chemical signaling involved in plant–microbe interactions. *Chemical Society Reviews*, 47:
213 1652–1704.

214 Chen, L., Pan, Y., Pan, X., Yu, L., Sosa, A., Yang, J., & Li, B. (2023). From competition to
215 cooperation: Kin selection against selfish shade avoidance behaviour promotes plant
216 invasions. *Journal of Ecology*, 111: 645–654.

217 Chesson, P. (2000). Mechanisms of maintenance of species diversity. *Annual Review of*
218 *Ecology and Systematics*, 31: 343–366.

219 Colautti, R.I., Eckert, C.G., & Barrett, S.C. (2010). Evolutionary constraints on adaptive
220 evolution during range expansion in an invasive plant. *Proceedings of the Royal Society*
221 *B: Biological Sciences*, 277: 1799–1806.

222 Crepy, M.A., & Casal, J.J. (2015). Photoreceptor-mediated kin recognition in plants. *New*
223 *Phytologist*, 205: 329–338.

224 Crepy, M.A., & Casal, J.J. (2016). Kin recognition by self-referent phenotype matching in
225 plants. *New Phytologist*, 209: 15–6.

226 Diagne, C., Leroy, B., Vaissière, A.C., Gozlan, R.E., Roiz, D., Jarić, I., ... & Courchamp, F.
227 (2021). High and rising economic costs of biological invasions worldwide. *Nature*, 592:
228 571–576.

229 Dlugosch, K.M., & Parker, I.M. (2008). Founding events in species invasions: Genetic
230 variation, adaptive evolution, and the role of multiple introductions. *Molecular Ecology*,
231 17: 431–449.

232 Dudley, S.A., & File, A.L. (2007). Kin recognition in an annual plant. *Biology Letters*, 3: 435–
233 438.

234 Dudley, S.A., Murphy, G.P., & File, A.L. (2013). Kin recognition and competition in plants.
235 *Functional Ecology*, 27: 898–906.

236 Enders, M., Havemann, F., Ruland, F., Bernard-Verdier, M., Catford, J.A., Gómez-Aparicio,
237 L., ... & Jeschke, J.M. (2020). A conceptual map of invasion biology: Integrating
238 hypotheses into a consensus network. *Global Ecology and Biogeography*, 29: 978–991.

239 Iqbal, M.F., Liu, M.C., Iram, A., & Feng, Y.L. (2020). Effects of the invasive plant *Xanthium*
240 *strumarium* on diversity of native weed species: a competitive analysis approach in North
241 and Northeast China. *PLoS ONE*, 15: e0228476.

242 Karban, R., Shiojiri, K., Ishizaki, S., Wetzel, W.C., & Evans, R.Y. (2013). Kin recognition
243 affects plant communication and defence. *Proceedings of the Royal Society B: Biological
244 Sciences*, 280: 20123062.

245 Kula, A.A.R., Hey, M.H., Couture, J.J. Townsend, P.A., & Dalgleish, H.J. (2020). Intraspecific
246 competition reduces plant size and quality and damage severity increases defense
247 responses in the herbaceous perennial, *Asclepias syriaca*. *Plant Ecology*, 221: 421–430.

248 Lee, S., Woo, S., & Kim, E. (2021). Differential effect of inter-and intra-specific competition
249 on the performance of invasive and native *Taraxacum* species. *Plant Species Biology*, 36:
250 187–197.

251 Li, Y., & Xu, X. (2026). Differential kin interactions between invasive and native plants:
252 Evidence from *Alternanthe philoxeroides* and its native congener. Preprint.

253 Liu, J., Dong, M., Miao, S.L., Li, Z.Y., Song, M.H., & Wang, R.Q. (2006). Invasive alien plants
254 in China: role of clonality and geographical origin. *Biological Invasions*, 8: 1461–1470.

255 Mangla, S., Sheley, R.L., James, J.J., Radosevich, S.R. (2011). Intra and interspecific
256 competition among invasive and native species during early stages of plant growth. *Plant
257 Ecology*, 212: 531–542

258 Milla, R., Forero, D.M., Escudero, A., & Iriondo, J.M. (2019). Growing with siblings: A
259 common ground for cooperation or for fiercer competition among plants? *Proceedings of
260 the Royal Society B: Biological Sciences*, 276: 2531–2540.

261 Murphy, G.P., Shah, R., & Dudley, S.A. (2022). Comparison of competitive behaviours
262 between native and invasive ecotypes of garlic mustard under different density conditions,
263 presence and identity of neighbours. *Botany*, 100: 761–769.

264 Ninkovic, V., Markovic, D., & Rensing, M. (2021). Plant volatiles as cues and signals in plant
265 communication. *Plant, Cell & Environment*, 44: 1030–1043.

266 Penn, D.J., & Frommen, J.G. (2010). Kin recognition: an overview of conceptual issues,
267 mechanisms and evolutionary theory. In: Kappeler, P., ed. *Animal behavior: evolution
268 and mechanisms*. Berlin, Heidelberg: Springer, pp. 55–85.

269 Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., ... & Richardson, D.M.
270 (2020). Scientists' warning on invasive alien species. *Biological Reviews*, 95: 1511–1534.

271 Rahman, M.K.U., Zhou, X.G., & Wu, F.Z. (2019). The role of root exudates, CMNs, and VOCs
272 in plant-plant interaction. *Journal of Plant Interactions*, 14: 630–636.

273 Razanajatovo, M., Maurel, N., Dawson, W., Essl, F., Kreft, H., Pergl, J., ... & van Kleunen, M.
274 (2016). Plants capable of selfing are more likely to become naturalized. *Nature
275 Communications*, 7: 13313.

276 Roy, H.E., Pauchard, A., Stoett, P., Truong, T.R., Bacher, S., Galil, B.S., ... & Vandvik, V.
277 (2023). IPBES invasive alien species assessment: summary for policymakers. *IPBES*.

278 Sher, J., Zheng, Y.L., Burns, J.H., Jan, G., & Zhang, J.L. (2025). Kin recognition in plants—an
279 ecological perspective: an overview of plant kin recognition under different resources,
280 consequences and future challenges. *Journal of Plant Interactions*, 20: 2548579.

281 Song, Y.Y., Simard, S.W., Carroll, A., Mohn, W.W., & Zeng, R.S. (2015). Defoliation of interior
282 Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors
283 through ectomycorrhizal networks. *Scientific Reports*, 5:1–9.

284 Takigahira, H., & Yamawo, A. (2019). Competitive responses based on kin-discrimination
285 underlie variations in leaf functional traits in Japanese beech (*Fagus crenata*) seedlings.
286 *Evolutionary Ecology*, 33: 521–531.

287 Thakur, M.P., Gu, Z., van Kleunen, M., & Zhou, X. (2025). Invasion impacts in terrestrial
288 ecosystems: global patterns and predictors. *Science*, 390: 381–385.

289 Torices, R., Gómez, J.M., & Pannell, J.R. (2018) Kin discrimination allows plants to modify
290 investment towards pollinator attraction. *Nature Communications*, 9: 2018.

291 Waldman, B. (1988). Mechanisms of kin recognition. *Journal of Theoretical Biology*, 128:
292 159–185.

293 Wang, Y.X., Murdock, M., Lai, S.W.T., Steele, D.B., & Yoder, J.I. (2020). Kin recognition in
294 the parasitic plant *Triphysaria versicolor* is mediated through root exudates. *Frontiers in*
295 *Plant Science*, 11: 560682.

296 Wu, A. (2021). Transgenerational effects of kin recognition in plants: soil conditioning by an
297 invasive plant. Master dissertation, McMaster University.

298 Xia, X.X., Yan, S., Wang, P., & Kong, C.H. (2025). A Meta-Analysis of Response Strategies
299 and Interfering Factors of Kin Recognition in Plants. *Plants*, 14: 683.

300 Yang, X.F., Li, L.L., Xu, Y., & Kong, C.H. (2018). Kin recognition in rice (*Oryza sativa*) lines.
301 *New Phytologist*, 220: 567–578.

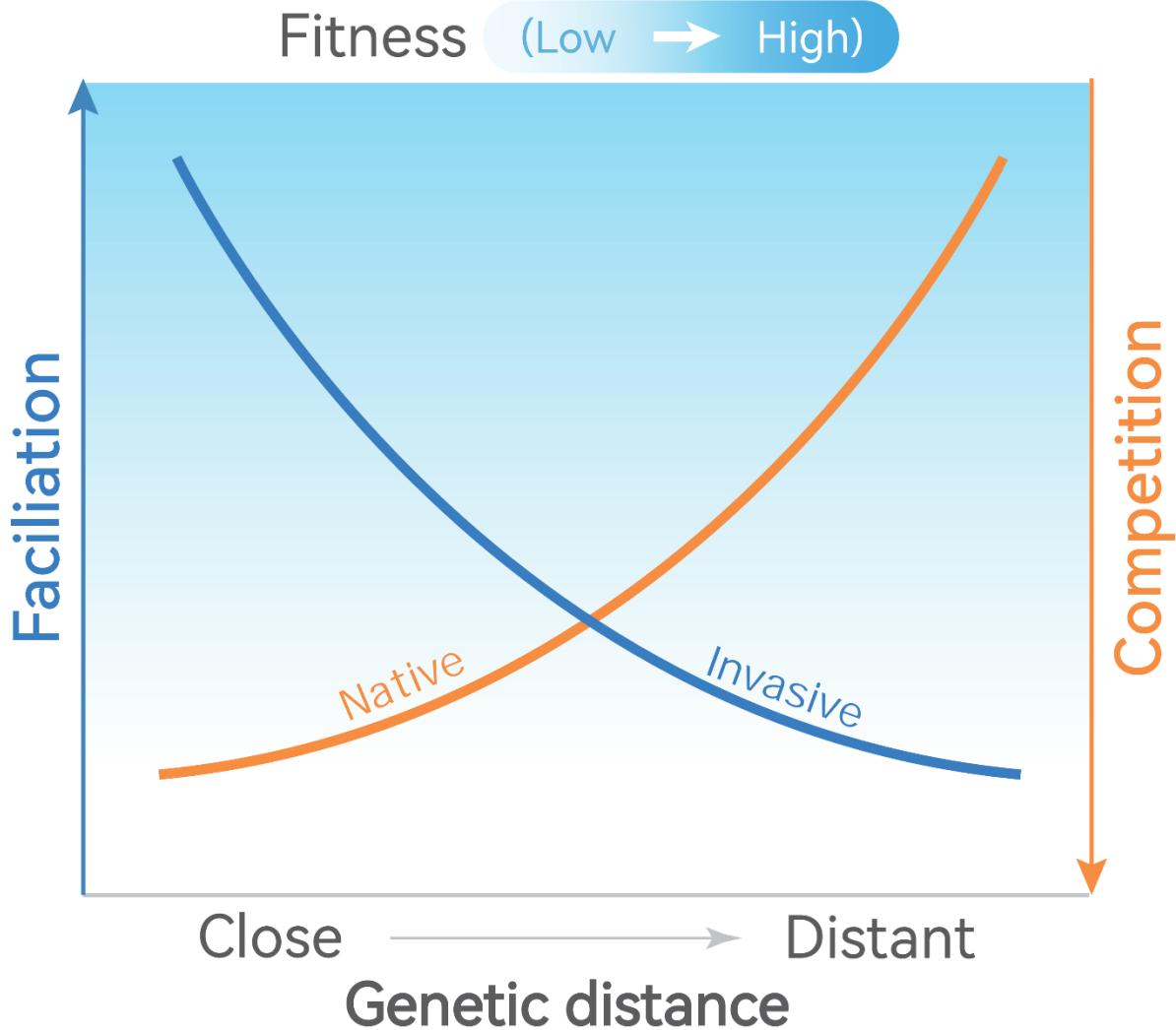
302 Yamawo, A., Sato, M., & Mukai, H. (2017). Experimental evidence for benefit of self-
303 discrimination in roots of a clonal plant. *AoB Plants*, 9: plx049.

304 Zhang, Z., Zhou, F., Pan, X., van Kleunen, M., Liu, M., & Li, B. (2019). Evolution of increased
305 intraspecific competitive ability following introduction: the importance of relatedness
306 among genotypes. *Journal of Ecology*, 107: 387–395.

307 Zhang, Z., Liu, Y., Hardrath, A., Jin H., & van Kleunen, M. (2022). Increases in multiple
308 resources promote competitive ability of naturalized non-native plants. *Communication*
309 *Biology*, 5: 1150.

310 Zhao, Y.Z., Liu, M.C., Feng, Y.L., Wang, D., Feng, W.W., Clay, K., & Kong, D.L., (2020).
311 Release from below- and aboveground natural enemies contributes to invasion success of
312 a temperate invader. *Plant and Soil*, 452: 19–28.

313 Zheng, Y.L., Burns, J.H., Wang, R.F., Yang, A.D., & Feng, Y.L. (2021). Identity recognition
314 and the invasion of exotic plant. *Flora*, 280: 151828.


315 Zheng, Y.L., Feng, Y.L., Zhang, L.K., Callaway, R.M., Valiente-Banuet, A., Luo, D.Q., ... &
316 Silva-Pereyra, C. (2015). Integrating novel chemical weapons and evolutionarily

317 increased competitive ability in success of a tropical invader. *New Phytologist*, 205: 1350–
318 1359.
319

Table 1: A systematic assessment of evidence for kin recognition in invasive plant species.

Reference	Plant invader	Life form	Evidence for kin recognition in invasive plant species
Li & Xu, 2026	<i>Alternanthera philoxeroides</i>	Herb	Under kin groups, the invasive species gained a growth advantage, whereas the native <i>A. sessilis</i> was disadvantaged.
Murphy et al. 2022	<i>Alliaria petiolata</i>	Herb	The invasive rosette-forming species <i>A. petiolata</i> increases petiole elongation and specific leaf area when growing with siblings, a phenotypic plasticity that reduces mutual shading and represents cooperative behavior
Zheng et al. 2021	<i>Eupatorium adenophorum</i>	Herb	Under high-density conditions, the invasive <i>E. adenophorum</i> exhibited stronger kin recognition compared to its native congeners (<i>E. fortunei</i> and <i>E. lindleyanum</i>).
Wu et al. 2021	<i>Potentilla recta</i>	Herb	Consistent with the finding that plants grew better with kin under low-water conditions, kin-conditioned soil also enhanced plant survival and growth under drought conditions.
Lee et al. 2021	<i>Taraxacum officinale</i>	Herb	While kinship effects on plant performance varied among populations in both invasive <i>T. officinale</i> and native <i>T. platycarpum</i> , populations originating from same site exhibited convergent kin recognition abilities.
Zhang et al. 2019	<i>Alternanthera philoxeroides</i>	Herb	While introduced genotypes of <i>A. philoxeroides</i> produced more branches when competing with kin versus non-kin, its native genotypes exhibited the opposite response.
Yamawo et al. 2017	<i>Kalanchoë daigremontiana</i>	Sub-shrub	Plants produced a higher number of clonal plantlets when growing with kin competitors versus non-kin competitors.
Abd El-Gawad et al. 2017	<i>Xanthium italicum</i>	Herb	Root rather than shoot biomass and competition decreased in plants grown with kin compared to those grown with non-kin.

1 **Figure**

2

3 **Figure 1 Conceptual illustration of effect of kin recognition on native and non-native**
4 **plants.** In invasive non-native plants (blue curve), a smaller genetic distance (i.e., closer
5 relatedness) among individuals results in greater facilitation and reduced competition, thereby
6 enhancing population-level fitness (indicated by a dark blue background). In contrast, among
7 native plants (orange curve), a smaller genetic distance leads to stronger competition and
8 reduced facilitation, consequently decreasing population-level fitness (indicated by a light blue
9 background).

10

11 **Supporting information**

12 **A systematic literature search for evidence of kin recognition in non-native plant species**

13 The rising interest in kin recognition facilitating invasions has produced a growing body of
14 literature that can enhance our understanding of the efficacy of its effectiveness as a mechanism
15 underlying species invasiveness and guide future research. To synthesize this evidence, on 5th
16 August, 2025, we performed a systematic literature search on the Web of Science Core
17 Collection (<https://www.webofscience.com>) and Scopus (<https://www.scopus.com>) using the
18 relevant keyword string as: TS(("identity recognition" OR "neighbour recognition" OR "kin
19 recognition" OR "kin selection" OR "kin discrimination") AND (invasi* OR invader OR
20 nonnative OR non-native OR exotic OR allochthonous OR alien OR non-indigenous OR
21 nonindigenous OR introduced OR naturalised OR naturalized OR bioinvasi* OR weed OR
22 "biological invasion")). The search retrieved 488 and 316 articles from Web of Science and
23 Scopus respectively, which resulted in 605 unique studies after removal of duplicates. Of the
24 resultant studies, we only considered experiments (1) investigating the evidence of kin
25 recognition among invasive plants, (2) report a metric of plant performance (especially related
26 to plant fitness and competitive ability) in both the treatment (i.e., kin group) and control (non-
27 kin group). The screening process identified five studies that explicitly tested kin-recognition
28 in invasive plants. In addition, three relevant studies known to authors were included, resulting
29 in a total of eight studies. Overall, all the eight studies provided support for the existence of kin
30 recognition in invasive plants.

31